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THE DELIGNE–MUMFORD AND THE INCIDENCE
VARIETY COMPACTIFICATIONS OF THE STRATA OF

ΩMg

by Quentin GENDRON

Abstract. — The main goal of this work is to construct and study a reasonable
compactification of the strata of the moduli space of abelian differentials. This
allows us to compute the Kodaira dimension of some strata of the moduli space
of abelian differentials. The main ingredients to study the compactifications of the
strata are a version of the plumbing cylinder construction for differential forms
and an extension of the parity of the connected components of the strata to the
differentials on curves of compact type. We study in detail the compactifications
of the hyperelliptic minimal strata and of the odd minimal stratum in genus three.
Résumé. — L’objectif central de cet article est de construire et d’étudier une

compactification raisonnable des strates des différentielles abéliennes. L’ingrédient
principal pour l’étude de cette compactification des strates est une généralisation
des techniques de plomberie cylindrique aux différentielles. Cette compactification
nous permet de calculer la dimension de Kodaira de certaines de ces strates. Un
autre résultat digne d’intérêt est le calcul de la dimension de la projection des
strates dans l’espace des modules des surfaces de Riemann. Enfin nous étudions
certains problèmes liés à la parité des strates au bord, les composantes hyperellip-
tiques ainsi que la strate minimale en genre trois.

1. Introduction

LetMg be the moduli space of algebraic curves of genus g. In the early
1980s Harris and Mumford ([18]) proved that Mg is of general type for
g > 24. They used in a crucial way the compactification ofMg proposed by
Deligne and Mumford at the end of the 1960s ([10]). This compactification
is the moduli spaceMg of stable algebraic curves of arithmetic genus g.

Keywords: Abelian differentials, Riemann surfaces, Moduli spaces, Strata, Compactifi-
cation, Kodaira dimension.
2010 Mathematics Subject Classification: 14H15, 30F30, 14E99, 14H45.



1170 Quentin GENDRON

More recently, the moduli space of nonzero holomorphic differentials
ΩMg and its projectivisation PΩMg have gained great interest, coming
in particular from the theory of dynamical systems (see [27]). The moduli
space ΩMg has a natural stratification given by the orders of the zeros
of the differentials. For a given tuple (k1, . . . , kn) of positive numbers such
that

∑
ki = 2g − 2, we define the stratum

ΩMg(k1, . . . , kn) :=
{

(X,ω) : X ∈Mg, div (ω) =
n∑
i=1

kiZi

}
,

and their images in PΩMg are denoted by PΩMg(k1, . . . , kn). In analogy
withMg, it is likely that a good compactification of PΩMg should help us
to compute the Kodaira dimension of the strata of PΩMg.

In this paper, we first introduce and study two compactifications of the
strata of the moduli space of abelian differentials. This allows us to compute
the Kodaira dimension of some of these strata. The last sections are devoted
to the study of the hyperelliptic minimal strata and the non hyperelliptic
minimal stratum in genus three.

1.1. The incidence variety compactification

The notion of abelian differentials can be generalised to the case of sta-
ble curves by the notion of stable differentials. Therefore, we can prolong
ΩMg aboveMg simply by looking at the moduli space of stable differen-
tials ΩMg. The closure of the strata inside ΩMg are called the Deligne–
Mumford compactifications of these strata. The main drawback of this
method is the loss of information. Indeed, a non vanishing stable differen-
tial may vanish on some irreducible components of the stable curve, losing
completely the information on this component.
In order to keep track of more information, we introduce in Section 2

another compactification for the strata. Let us define the closure of the or-
dered closed incidence variety PΩMinc

g,n(k1, . . . , kn) inside the moduli space
of marked stable differentials by{

(X,ω,Z1, . . . , Zn) : (X,Z1, . . . , Zn) ∈Mg,n,

n∑
i=1

kiZi = div (ω)
}
.

Now there is an action of a subgroup S of Sn permuting the zeros of
same order. The incidence variety compactification of ΩMg(k1, . . . , kn) is
given by

PΩMinc
g,{n}(k1, . . . , kn) := PΩMinc

g,n(k1, . . . , kn)/S.

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF STRATA 1171

The interior of the incidence variety compactification is isomorphic to
PΩMg(k1, . . . , kn). But we show that its closure contains in general much
more information than PΩMg(k1, . . . , kn). The following theorem illus-
trates this point in the case of the principal stratum (see Theorem 2.5).
Let us denote the projection from the incidence variety compactification to
the Deligne–Mumford compactification of the principal stratum by

π : PΩMinc
g,{2g−2}(1, . . . , 1)→ PΩMg(1, . . . , 1).

Theorem 1.1. — The fibre of π is positive dimensional above the locus
of differentials (X,ω), where X is a reducible stable curve of genus g > 2
with two irreducible components connected by one node and ω vanishes on
one component.

In order to study the incidence variety compactification, we introduce
some tools.

In Section 3, we develop the theory of limit differentials, which has a
flavour of limit linear series. More precisely, we associate to a family of
differentials a limiting object consisting of a collection of meromorphic dif-
ferentials parametrised by the irreducible components of the special curve.
For a given component Xi, the differential is obtained by rescaling the
family in such a way that it converges on Xi (see Definition 3.2).
To construct examples of limit differentials, we extend the classical

plumbing cylinder construction of differentials with simple poles to more
general differentials (see Lemma 3.14). In particular, this allows us to give
necessary and sufficient conditions to be a limit differential for an important
case (see Theorem 3.17). However, they are not sufficient in full generality
(see nevertheless Lemma 3.19 and Lemma 3.10).

The second main ingredients are the notions of spin structure on (semi)
stable curves and of Arf invariant. They allow us to generalise the notion
of parity of smooth differential to some stable differentials in Section 4. In
the case of curves of compact type, we associate a canonical spin structure
to a stable pointed differential (see Definition 4.10). Using this notion, we
show that the parity of the spin structure above the curves of compact type
is invariant under deformations (see Theorem 4.12).

Theorem 1.2. — Let n > 3 and (X,ω,Z1, . . . , Zn) be a differential in
the closure of the stratum ΩMinc

g,{n}(2l1, . . . , 2ln) such that X is of compact
type. Then the parity of the spin structure Lω associated to ω is ε if and
only if (X,ω,Z1, . . . , Zn) is in the closure of ΩMinc

g,{n}(2l1, . . . , 2ln)ε.

The notion of spin structure does not seem to be the right one for the
irreducible pointed differentials. However, in this case, we show that the

TOME 68 (2018), FASCICULE 3



1172 Quentin GENDRON

Arf invariant can be generalised (see Definition 4.18) in such a way that it
stays constant under deformations (see Theorem 4.19).
It would be very interesting to extend this invariant to the whole bound-

ary of the incidence variety compactifications. But we show that, unfor-
tunately, this invariant cannot be extended to the whole incidence variety
compactification of the strata (see Corollary 1.8).

Further developments. In parallel to the process of refereeing, the
subject of constructing compactifications evolved rapidly. On the one hand,
Farkas and Pandharipande [13] described for every stratum a space having
the compactification of the stratum as one of several irreducible compo-
nents. They aimed for simple conditions and applications towards divisor
class computations where they hope to correct the contributions of extra
components by inclusion-exclusion techniques. On the other hand, in col-
laboration with Bainbridge, Chen, Grushevsky and Möller, we completed
in [3] the conditions given here (and in parallel, from a flat viewpoint by
Chen in [8]) to a complete characterization of the incidence variety com-
pactification of every stratum.

1.2. The Kodaira dimension of strata

One of the main motivations for a good compactification of the strata
of the moduli space of abelian differentials is the computation of their
Kodaira dimensions. In the recent works [12, 14, 15], Farkas and Verra
computed the Kodaira dimension of the moduli space of spin structures
and Bini, Fontanari and Viviani computed the Kodaira dimension of the
universal Picard variety in [6]. They followed the path opened by Harris
and Mumford for the moduli space of curves. In particular, they used in
an essential way a nice compactification of these spaces constructed by
Cornalba in the first case and Caporaso in the second.

A second way to compute the Kodaira dimension of complex varieties is
to use the theory initiated by Iitaka. We can obtain information about the
Kodaira dimension of the total space of an algebraic bundle using knowl-
edge about the Kodaira dimension of the base and of a generic fibre.

Using these methods, we want to compute the Kodaira dimension of the
strata S of the moduli space of abelian differentials for which the forgetful
map π : S →Mg is generically surjective. We give a complete description
of these strata and, more precisely, the dimension of the image of every
connected component of each stratum (see Theorem 5.7).

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF STRATA 1173

Theorem 1.3. — Let g > 2 and S be a connected component of
ΩMg(k1, . . . , kn). The dimension of the projection of S by the forgetful
map π : ΩMg →Mg is

dim (π(S)) =


2g − 1 if S = ΩMg(2d, 2d)hyp;
3g − 4 if S = ΩMg(2, . . . , 2)even;
2g − 2 + n if n < g − 1 and S 6= ΩMg(2d, 2d)hyp;
3g − 3 if n > g − 1 and S 6= ΩMg(2, . . . , 2)even.

Using this theorem and the fact that the Kodaira dimension of a finite
cover is not smaller than the Kodaira dimension of the base, we deduce the
Kodaira dimension of the strata of projective dimension 3g − 3, whenMg

is of general type (see Corollary 5.9).

Theorem 1.4. — The connected strata PΩMg(k1, . . . , kg−1) are of
general type for g = 22 and g > 24.

Moreover, for a fibre space f : X → Y there is the inequality κ(X) 6
dim(Y ) + κ(Xy) for a generic fibre Xy of f . This gives the Kodaira dimen-
sion of the strata which impose few conditions. Indeed, by showing that
a generic fibre of the forgetful map has negative Kodaira dimension, we
obtain the following result (see Theorem 5.10).

Theorem 1.5. — For any g > 2, let (k1, . . . , kn) be a tuple of positive
numbers of the form (k1, . . . , kl, 1, . . . , 1) with ki > 2 for i 6 l such that

n∑
i=1

ki = 2g − 2 and
l∑
i=1

ki 6 g − 2.

Then the Kodaira dimension of the stratum PΩMg(k1, . . . , kn) is −∞.

The Iitaka conjecture has been proved by Eckart Viehweg for the fibre
spaces f : X → Y , where Y is of general type. So, a similar method could
be used to determine the Kodaira dimension of the strata for which the
forgetful map is generically surjective toMg, whenMg is of general type.
However, this method is more subtle for the remaining strata and we can
only prove that the strata PΩMg(g − 1, 1, . . . , 1) are of general type when
Mg is of general type (see Proposition 5.13).
To conclude, we compute the Kodaira dimension of both odd (Corol-

lary 5.17) and even (Proposition 5.15) components of the strata
PΩMg(2, . . . , 2) and of the hyperelliptic component of PΩMg(g− 1, g− 1)
(Proposition 5.14).

TOME 68 (2018), FASCICULE 3



1174 Quentin GENDRON

1.3. Examples

We conclude this work by the explicit description of the incidence va-
riety compactification of some strata. We focus on the minimal strata
PΩMg(2g − 2). In genus two, there is only one stratum PΩM2(2) and
this stratum has many interpretations. For example, it can be seen as the
Weierstraß divisor inM2,1 or the moduli space of even spin structures.
More generally, the hyperelliptic strata PΩMhyp

g (2g−2) are very special
and can be studied with specific tools. They are studied in Section 6 and the
main result is Theorem 6.7 where we show that the fibres of the forgetful
map from the incidence variety compactification of ΩMhyp

g (2g − 2) to the
Weierstraß locus of hyperelliptic curves insideMg,1 are projective spaces.
To be more concrete, let us describe an important locus in the inci-

dence variety compactification of the hyperelliptic minimal strata (see The-
orem 6.9).

Theorem 1.6. — LetX be the union of a smooth curve X̃ of genus g−1
and a projective line attached to X̃ at the pointsN1 andN2. Then (X,ω,Z)
is in the incidence variety compactification of the minimal hyperelliptic
stratum ΩMinc

g,1(2g − 2)hyp if and only if the point Z is in the projective
line, and the differential ω is the stable differential with a zero of order
g − 2 at both N1 and N2.

The first non hyperelliptic minimal stratum is PΩModd
3 (4). The descrip-

tion of the boundary of this stratum gives us the opportunity to illustrate
most of the tools developed in this paper.
Let us define a generic curve in the divisor δi to be a curve in the divi-

sor δi with a single node. The description of the boundary of PΩModd
3 (4)

above the set of curves stably equivalent to generic curves in δ0 and δ1 is
given in Corollary 7.8 and Corollary 7.4. For example, the pointed stable
differentials in the boundary of PΩModd

3,1 (4) such that the projection to
M3 is stably equivalent to a generic curve of the divisor δ0 is given by the
following theorem.

Theorem 1.7. — Let (X,ω,Z) be a stable pointed differential in
PΩMinc

3,1(4)odd such that X is the union of a smooth curve X̃ of genus
two and a projective line which meet at two distinct points N1 and N2.
Then (X,ω,Z) satisfies that Z ∈ P1, the restriction of ω to P1 vanishes
and the restriction of ω to X̃ is of one of the following two forms.

(1) The restriction of ω to X̃ is an holomorphic differential with a zero
of order two at N1.

ANNALES DE L’INSTITUT FOURIER
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(2) The restriction of ω to X̃ is an holomorphic differential with two
simple zeros at N1 and N2.

This theorem together with Theorem 1.6 implies that the incidence va-
riety compactifications of the hyperelliptic and odd connected components
of PΩM3,1(4) intersect each other (see Corollary 7.9).

Corollary 1.8. — Let X be the union of a curve X̃ of genus two and
a projective line glued together at a pair of points of X̃ conjugated by the
hyperelliptic involution. Let Z ∈ E and ω be a differential which vanishes
on E and has two simple zeros at the points which form the nodes on X̃.
Then the pointed differential (X,ω,Z) is in ΩMinc

3,1(4)hyp and ΩMinc
3,1(4)odd.

2. The Incidence Variety Compactification of the Strata of
the Moduli Space of Differentials

The projectivisation of the Hodge bundle over the moduli space of curves
PΩMg has a natural compactification given by the moduli space of stable
differentials PΩMg. The first idea in order to compactify a stratum is to
take its closure inside PΩMg. This is called the Deligne–Mumford com-
pactification of the stratum. However, this compactification loses lots of
information. To keep track of more information we introduce in Defini-
tion 2.2 another compactification PΩMinc

g,{n}(k1, . . . , kn) via the closure of
the strata inside the moduli space of marked differentials. This compactifi-
cation of the strata will be called the incidence variety compactification of
the stratum. The end of this section is devoted to the study of the spaces
PΩMinc

g,{n}(k1, . . . , kn). We show in Theorem 2.4 and Theorem 2.5 that this
compactification contains much more information at the boundary than the
one given by the closure inside PΩMg.
In this section, all spaces we consider will be complex orbifolds. The

orbifold structure does not play an important role in this article. Hence we
will often designate by the same symbol the orbifold and the underlying
coarse space, hoping that this abuse of notation will not cause troubles to
the reader.

Background on moduli spaces. We begin this section by recalling
some basic facts and notations about various moduli spaces. The moduli
space of curves of genus g, denoted byMg, is the space of complex struc-
tures on a curve of genus g. Themoduli space of n-pointed curves is denoted

TOME 68 (2018), FASCICULE 3



1176 Quentin GENDRON

by Mg,n. It is well known since Riemann (see for example [16]) that the
dimension ofMg,n is 3g − 3 + n.

A modular compactification ofMg,n is given by the moduli spaceMg,n

of n-marked stable curves (where the markings are considered as punc-
tures). This compactification is called the Deligne–Mumford compactifica-
tion of the moduli space of n-marked curves. Recall that a stable curve is a
connected nodal curve for which each irreducible component of the normal-
isation has not an abelian fundamental group. If we weaken this condition
by allowing the fundamental groups to be isomorphic to Z, the resulting
curves are called semistable. The dual graph of a stable curve X of genus
g, denoted by Γdual(X), is the weighted graph such that the vertices cor-
respond to the irreducible components of X, the edges correspond to its
nodes and the weight at a vertex is given by the geometric genus of the
corresponding component.
The complement ofMg in theMg is the boundary ofMg. The boundary

is a union of divisors δi for i = 0, . . . , bg/2c being the closures of the loci of
curves with one node which are either irreducible in the case i = 0 or the
union of smooth curves of genera i and g−i meeting at one point otherwise.
In the following a generic curve in divisor δi is a curve in the divisor δi with
a single node.
The moduli space of nonzero holomorphic 1-forms ΩMg or Hodge bun-

dle ofMg parameterises pairs (X,ω), where X is a smooth curve of genus
g and ω is a nonzero holomorphic 1-form on X. We remark that the space
ΩMg is sometimes denoted by Hg in the literature (for example [27],
[11],. . . ). We will never use this notation due to the risk of confusion with
the notation of the hyperelliptic locus insideMg (see Section 6).

The Hodge bundle ΩMg has a natural stratification by the multiplicities
of zeros of ω. Let (k1, . . . , kn) be a n-tuple of strictly positive numbers
such that

∑n
i=1 ki = 2g− 2. The stratum ΩMg(k1, . . . , kn) is the subspace

of ΩMg consisting of equivalence classes of pairs (X,ω), where ω has n
distinct zeros of respective orders (k1, . . . , kn). In particular, for g > 2 the
following decomposition holds (see for example [27]):

(2.1) ΩMg =
⊔

n∈{1,...,2g−2}
2g−2>k1>···>kn>1,

∑
ki=2g−2

ΩMg(k1, . . . , kn).

The notion of differentials extends to the case of stable curves in the
following way. A stable differential on a stable curve X is a meromorphic
1-form ω on X which is holomorphic outside of the nodes of X and has at
worst simple poles at the nodes and the two residues at a node are opposite.

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF STRATA 1177

Alternatively, the stable differentials could be defined as the global sections
of the dualizing sheaf ωX of X (see [17]). We can now extend the Hodge
bundle ΩMg above Mg. The space ΩMg is the moduli space of stable
differentials of genus g.

We now extend this notion to the case of stable marked curves.

Definition 2.1. — A marked stable differential (X,ω,Q1, . . . , Qn) of
genus g is the datum of a stable n-marked curve (X,Q1, . . . , Qn) inMg,n

and a stable differential ω on X.

The moduli space of marked stable differentials will be denoted by
ΩMg,n. It is the pullback of the Hodge bundle ΩMg under the forget-
ful map π : Mg,n →Mg. Its restriction to the locus of smooth n-marked
curves is the moduli space of n-marked abelian differentials and is denoted
by ΩMg,n.
There is a natural C∗-action on the moduli space of abelian differentials

given by

(2.2) C∗ × ΩMg → ΩMg : (α, (X,ω)) 7→ (X,αω).

The quotient of ΩMg under this action is denoted by PΩMg. Remark
that this action preserves the stratification of ΩMg and the images of
ΩMg(k1, . . . , kn) inside PΩMg are well defined and are denoted by
PΩMg(k1, . . . , kn). Moreover, the group C∗ acts in a similar way on ΩMg,n

and we denote the quotient under this action by PΩMg,n.

The Incidence variety compactification of the strata of ΩMg.
In order to compactify the strata of ΩMg, we define the ordered incidence
variety PΩMinc

g,n(k1, . . . , kn) to be the subspace of the moduli space of n-
marked differentials given by

(2.3)
{

(X,ω,Z1, . . . , Zn) : div (ω) =
n∑
i=1

kiZi

}
⊂ PΩMg,n.

Moreover, we denote by PΩMinc
g,n(k1, . . . , kn) the closed ordered incidence

variety defined as the closure of the ordered incidence variety inside
PΩMg,n.

In general, there exists a subgroup of Sn acting non-trivially on the
closed ordered incidence variety PΩMinc

g,n(k1, . . . , kn). Namely, if ki = kj for
i 6= j, then the transposition (i, j) acts on PΩMinc

g,n(k1, . . . , kn) by permut-
ing the points Zi and Zj . Let S be the subgroup of Sn generated by these
transpositions. It is easy to see that S ∼=

∏
Sli , where li := # {j|kj = i}

is the number of indices j such that the order kj is equal to i.

TOME 68 (2018), FASCICULE 3



1178 Quentin GENDRON

Definition 2.2. — Let ΩMg(k1, . . . , kn) be a stratum of ΩMg and let
S be one of its connected components. The incidence variety compactifica-
tion of S is

(2.4) PΩMinc
g,{n}(k1, . . . , kn) := PΩMinc

g,n(k1, . . . , kn)/S.

A triple (X,ω,Z1, . . . , Zn) ∈ PΩMinc
g,{n}(k1, . . . , kn) will be called a

pointed differential or a pointed flat surface.

We remark that the notions of pointed differentials and marked differen-
tials (see Definition 2.1) do not coincide.

The ordered incidence variety is a suborbifold of PΩMg,n. Indeed, it is
well known that this space has local period coordinates. Therefore the inci-
dence variety of every stratum is an orbifold as the quotient of an orbifold
by a finite group. On the other hand the closed ordered incidence variety
and the incidence variety compactification are in general singular.

The forgetful map. There is a natural forgetful map between the in-
cidence variety compactification and the corresponding stratum. Before
defining this map on the whole compactification, we restrict ourselves to
its restriction above the smooth pointed differentials. This restriction is
given by

ϕ : PΩMinc
g,{n}(k1, . . . , kn)→ PΩMg(k1, . . . , kn)

(X,ω,Z1, . . . , Zn) 7→ (X,ω).

This map turns out to be an isomorphism.

Lemma 2.3. — The forgetful map

(2.5) ϕ : PΩMinc
g,{n}(k1, . . . , kn)→ PΩMg(k1, . . . , kn)

is an isomorphism of orbifolds.

In particular, this lemma clearly implies that the dimension of the inci-
dence variety compactification PΩMinc

g,{n}(k1, . . . , kn) is 2g − 2 + n.
Proof. — It suffices to show that there exists an inverse ψ to ϕ. Let

(X,ω) be a smooth differential with zeros of order (k1, . . . , kn). We denote
by Z1, . . . , Zn the corresponding zeros.
Let us define the map

ψ̃ : PΩMg(k1, . . . , kn)→ PΩMinc
g,n(k1, . . . , kn)

(X,ω) 7→ (X,ω,Z1, . . . , Zn).

We define ψ by the composition of ψ̃ with the quotient by the action of S.
It is a routine to prove that both maps are inverse to each other. �

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF STRATA 1179

We extend the map ϕ : PΩMinc
g,{n}(k1, . . . , kn) → PΩMg(k1, . . . , kn) at

the boundary of the strata. Let (X ′, ω′, Z1, . . . , Zn) ∈ PΩMinc
g,{n}(k1, . . . , kn)

be a pointed differential. We denote by X the image of X ′ by the forgetful
map π :Mg,n →Mg. Moreover, for every irreducible component Xi of X,
the corresponding irreducible component of X ′ is denoted by X ′i. An ex-
ceptional component of X ′ is an irreducible component which is contracted
by the map π : X ′ → X.

We obtain a differential ω on X in the following way. The restriction of ω
on every non-exceptional component Xi of X is the differential ω′|X′

i
. The

fact that the map ϕ is well defined follows clearly from the fact that ΩMg,n

is the pullback of ΩMg under the forgetful mapMg,n →Mg. Hence

ϕ : PΩMinc
g,{n}(k1, . . . , kn)→ PΩMg(k1, . . . , kn)

(X ′, ω′, Z1, . . . , Zn) 7→ (X,ω)

is an extension of the forgetful map ϕ to the incidence variety compactifi-
cation.

Closure of the principal stratum. In this paragraph, we show that
the incidence variety compactification contains much more information
than the Deligne–Mumford compactification at the boundary of the princi-
pal stratum. The proofs of these theorems use in a crucial way the results
of Section 3. Hence we postpone these proofs at the end of Section 3.

Theorem 2.4. — Let (X,ω) ∈ PΩMg(2g − 2) be a differential in the
minimal stratum. This differential is in the boundary of principal stratum
PΩMg(1, . . . , 1) and the dimension of the fibre of the forgetful map

π : PΩMinc
g,{2g−2}(1, . . . 1)→ PΩMg(1, . . . , 1)

above (X,ω) is max(0, 2g − 4).

We state an analogous result for the absolute boundary of
PΩMinc

g,{2g−2}(1, . . . 1) for curves in the divisor δi, for i > 1.

Theorem 2.5. — The fibre of the forgetful map

π : PΩMinc
g,{2g−2}(1, . . . 1)→ PΩMg(1, . . . , 1)

is positive dimensional over a differential (X,ω), where X is a generic curve
in δi for i > 1 and ω vanishes on one component of X.

We are going to present some other results about the closure of the
minimal hyperelliptic strata in Section 6 and of the closure of PΩModd

3,1 (4)
in Section 7.
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3. Limit Differentials and Plumbing Cylinders

In order to remedy the disadvantage of stable differentials that may van-
ish on some components, we introduce the notion of limit differential. It
is, in a sense, similar to the notion of limit linear series, but for families
of pointed differentials in a stratum: for every irreducible component of
the stable limit of the underlying family of curves, we rescale the family
of differentials in order to obtain a non zero limit on this component (see
Definition 3.2). In particular, a limit differential is a collection of non-zero
meromorphic differentials parametrised by the set of irreducible compo-
nents of a stable curve. We stress that these differentials may have poles of
order greater than one at the nodes.
We give necessary conditions for being a limit differential in Section 3.1.

Two local conditions are easily stated: a limit differential (X,ω) satisfies
the compatibility condition

ordN1(ω) + ordN2(ω) = −2

at every node N := N1 ∼ N2 of X, and the residue condition

ResN1(ω) + ResN2(ω) = 0

at every node where ω has simple poles. We give two other non local nec-
essary conditions. The first one is a condition on the “ordering” that ω
can induce on the dual graph of X (see Lemma 3.8). The second one is a
condition on the residue of the limit differentials at some nodes where the
differential has a pole of order greater or equal to two (see Lemma 3.10).
In order to describe sufficient conditions for being a limit differential, we

extend the classical plumbing cylinder construction from the case of curves
to the case of differentials. This is the content of Section 3.2. This allows
us to give sufficient conditions for being a limit differential in important
cases in Section 3.3 (see Theorem 3.17 and Lemma 3.19). Unfortunately,
we were not able to give a set of necessary and sufficient conditions, but
such conditions were described during the referring process in [3].

We conclude in Section 3.4 by some applications of our machinery to the
study of the incidence variety compactification. In particular, we prove The-
orem 2.4 and Theorem 2.5. Other applications appear in all the remaining
sections of this article.

3.1. Limit Differentials

Before defining the notion of limit differential, we prove a preliminary re-
sult about families of pointed differentials in the spirit of linear series. First
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we fix some notations. A family of smooth pointed curves (f : X → ∆∗,
Z1, . . . ,Zn) is a flat family of smooth curves above a pointed disc of small
radius ∆∗ := ∆ \ {0}, together with n disjoint sections Zi : ∆∗ → X .
For such a family of smooth pointed curves, we denote by (f : X̄ → ∆,
Z̄1, . . . , Z̄n) the stable extension of this family to ∆. The fibre of this family
above 0 is called the stable limit of the family. A family of smooth pointed
differentials inside ΩMinc

g,n(k1, . . . , kn)(
f : X → ∆∗,W : ∆∗ → f∗ωX /∆∗ ,Z1, . . . ,Zn : ∆∗ →X

)
is a family of smooth pointed curves together with a section W of f∗ωX /∆∗

such that the equality div (W (t)) =
∑
kiZi(t) holds for every t ∈ ∆∗ and

such that W extends to a meromorphic section of f∗ωX̄ /∆.

Lemma 3.1. — Let (X ,W ,Z1, . . . ,Zn) be a family of pointed differ-
entials inside the stratum ΩMinc

g,n(k1, . . . , kn).
(1) For every irreducible component Xi of the stable limit X there

exists a unique ri ∈ Z such that for a generic section s̄ : ∆ → X̄

intersecting Xi we have

(3.1) `(W , s̄) := lim
t→0

triW (t, s̄(t)) 6= 0.

(2) Every map αi : ∆ → C satisfying the property that the limit for
t→ 0 of αi(t)W (t, s̄(t)) is equal to `(W , s̄) is of the form

tri(1 + tC [t]).

Any such map αi is called a scaling of the component Xi for this
family.

(3) The limit of the family of differentials in the incidence variety com-
pactification is given by

lim
t→0

(α(t)W (t)) ,

where α is a scaling such that for every scaling αi the quotient α/αi
is bounded at the origin.

Given a stable curve X, we denote by Irr(X) the set of irreducible com-
ponents of X.

Proof. — Since the sections Z̄i exist over all ∆, we obtain a trivialisation
of ωX̄ /∆. Using this trivialisation, we can define the meromorphic map

h : X̄ → C, (t, x) 7→ W (t, x),
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where W is seen as a meromorphic section of OX̄

(∑
kiZ̄i

)
. Remark that

for every t ∈ ∆∗ the map h is of the form h(x, t) = h(t), where h is never
vanishing. Hence the divisor of h is of the form

div (h) =
∑

Xi∈Irr(X)

−riXi,

where ri ∈ Z. This implies that αi := tri is a scaling for Xi. The uniqueness
of the exponent is clear, thus proving (1).
Moreover a scaling αi clearly has tri as lowest monomial. The coefficient

of this monomial has to be 1 since otherwise, the two limits would differ
by a multiplicative constant. This proves (2).
Now for (3), let α be a map such that lim

t→0
(α(t)W (t)) is a non vanishing

stable differential and αi be the scaling of a component ofX. By definition α
is the scaling of some component of X. It suffices to show that the quotient
α
αi

is bounded in a neighbourhood of 0. For any section s : ∆∗ → X we
have the equality

α(x)W (t, s(t)) = α(t)
αi(t)

αi(t)W (t, s(t)).

Hence, if α
αi

is not bounded at the origin, the limit can not be bounded on
Xi. In particular, the limit would be non stable. �

We want to study a limiting object for families of differentials. For this
purpose, we define a candidate differential of type (k1, . . . , kn) to be the da-
tum of a stable n-pointed curve (X,Z1, . . . , Zn) together with a collection ω
of (possibly meromorphic) differentials ωi on the irreducible componentsXi

of X such that
∑

div (ωi|Xsmooth) =
∑
kjZj , for Zj ∈ X pairwise distinct.

We are now in position to define the central objects of this section.

Definition 3.2. — A limit differential of type (k1, . . . , kn) is a can-
didate differential (X,ω,Z1, . . . , Zn) of type (k1, . . . , kn) such that there
exists a family of pointed differentials (X ,W ,Z1, . . . ,Zn) inside the stra-
tum ΩMinc

g,{n}(k1, . . . , kn) which satisfies the two following properties.
(1) The marked curve (X,Z1, . . . , Zn) is the stable limit of the family

(X ,Z1, . . . ,Zn).
(2) For every irreducible component Xi of the curve X and ω|Xi is the

restriction to Xi of the meromorphic extension of αiW to X̄ , where
αi is the scaling of Xi.

We now give two local necessary conditions at the nodes for a candidate
differential to be a limit differential.
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Lemma 3.3. — Let (X,ω,Z1, . . . , Zn) be a limit differential and N1 ∼
N2 be a node of the curve X. Then ω satisfies the Compatibility Condition

(3.2) ordN1(ω) + ordN2(ω) = −2.

Moreover, if the orders of ω at N1 and N2 are −1, then ω satisfies the
Residue Condition

(3.3) ResN1(ω) + ResN2(ω) = 0.

Note that in the compatibility condition implies that at a node N :=
N1 ∼ N2 the order of ω at N1 is k and at N2 is −k − 2, for k ∈ N ∪ {−1}.
We define the order of ω at N to be ordN (ω) := k.
Proof. — Let (f : X → ∆∗,W ,Z1, . . . ,Zn) be a family of pointed dif-

ferentials which converges to the limit differential (X,ω,Z1, . . . , Zn). Let
U be a neighbourhood of the node N1 ∼ N2 in X̄ . Without loss of gen-
erality, we can assume that U satisfies the following properties. First, the
intersections Zi ∩ U are empty for every i ∈ {1, . . . , n}. In particular, the
only possible zeros and poles of W |U are contained in X|U . Second, there
exists a coordinate system (x, y, t) of an open subset of ∆3 containing the
origin such that

(3.4) U := {xy = ta} ,

where a > 1. Moreover, we can suppose that X|U is given by the equation
{xy = 0}. In the rest of the proof, we denote by Xx, Xy and XU the subset
of U of respective equations {y = 0}, {x = 0} and {xy = 0}.
We pick a differential η that generates Ω1

U/f
∗(Ω1

∆) and that vanishes
nowhere on U , for example (see [4])

η := xdx− ydy
x2 + y2 .

For t 6= 0, its restriction to the curve Xt is a differential without zeros
or poles. For t = 0, its restriction to the component Xx (resp. Xy) has a
unique simple pole at N1 (resp. N2) with residue 1 (resp. −1).
Since η generates Ω1

U/f
∗(Ω1

∆), the family of differentials W |U\XU is
given by

W = h · η,
where h is a meromorphic function with neither poles nor zeros in U \XU .
By multiplying the function h by a power of ta, we obtain a new family of
differentials proportional to W on U \ XU . In particular, we can suppose
that h is holomorphic on U and vanishes on at most one component of XU .
This new family will still be denoted by W and the holomorphic function
by h.
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We have two cases to consider. The first one is the case where h is
invertible on U . In this case the limit differential of W on XU is simply a
scaling of the restriction of η on XU . Hence the residues of ω at N1 and
N2 are respectively h(0) and −h(0). In particular, in this case, both the
compatibility and the residue conditions are satisfied.
The second case is where h vanishes on one component. Without loss of

generality, we can suppose that h|Xy ≡ 0 and h|Xx 6≡ 0. By the Weierstraß
preparation theorem, the function h can be written as

(3.5) h(x, y) =
(
xd + h1(y)xd−1 + · · ·+ hd(y)

)
h̃(x, y),

where h̃ is invertible and the hi are holomorphic maps vanishing at the
origin. Moreover, since by hypothesis the divisor of h is a multiple of Xy,
we deduce that the functions hi are identically zero. Hence the function h
is of the form

(3.6) h(x, y) = xd · h̃(x, y).

This implies that restriction ωx of ω to the component Xx is given by(
xd · h̃(x, y) · xdx− ydy

x2 + y2

)∣∣∣∣
Xx

= xd · h̃(x, 0)dx
x
.

By rescaling the family of differentials W by the function (ta)−d, we find
that the restriction ωy of ω to the component Xy is given by

y−d · h̃(0, y)−dy
y

.

In particular, since h̃(0, 0) ∈ C∗, the sum of the orders of ωx and ωy at the
origin is −2. �

It is convenient to formulate a byproduct of our proof as a separate
lemma.

Lemma 3.4. — Let (X ,W ,Z1, . . . ,Zn) be a family of pointed differen-
tials which converges to the limit differential (X,ω,Z1, . . . , Zn). Let N be a
node between the irreducible components Xi and Xj (which may coincide),
and suppose that the equation of X around N is xy = ta for some a > 1.
If the order ordN (ω) of ω at N on the component Xi is k > −1, then

the exponent of the scaling αi of Xi is greater or equal to the exponent of
the scaling αj of Xj . More precisely the scalings satisfy the equality

(3.7) αi
αj

= (ta)k+1.

We now describe a global necessary condition on the limit differentials.
Let us look first at a very simple example.
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Example 3.5. — Let X be irreducible with one node and the differential
ω has a zero of order k and a pole of order k+2 at the node. It follows from
Lemma 3.4 that the differential cannot be smoothed. Indeed, the scaling of
an irreducible component is unique for a given family of differentials. But
in this case, by Lemma 3.4, the scaling α of X satisfies α

α = (ta)k+1 for an
a > 1, which is absurd.

To formalise this example, we introduce a decorated version of the dual
graph of a stable curve.

Definition 3.6. — Let (X,ω,Z1, . . . , Zn) be a candidate differential.
The dual graph Γω of (X,ω) is the partially directed weighted graph given
by the following data.

• The graph coincides with the dual graph of X.
• An edge is directed from the component with the zero to the com-
ponent with the pole of ω and no orientation in the case of simple
poles.

• The weight w(e) of an edge e is one greater than the order of ω at
the corresponding node.

The dual graphs of the candidate differentials described in Example 3.5
and in Example 3.9 are pictured in Figure 3.1.

g − 1

1

0

1
k + 1 > 1

1 1

Figure 3.1.

Definition 3.7. — Let Γ be a partially oriented graph. A path γ is a
finite sequence of pairs {(ei, αi)}i∈{1,...,l}, where the ei are edges of Γ such
that the end of ei is the beginning of ei+1 and αi ∈ {0,±1} is 0 if the edge
has no orientation, 1 if the directions coincide with the orientation of ei
and −1 otherwise. Such a path γ will be denoted by

γ :=
l∑
i=1

αiei.
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We now give another property which is satisfied by the limit differentials.
We designate by NX the set of nodes of a curve X.

Lemma 3.8. — Let (X,ω,Z1, . . . , Zn) be a limit differential. There ex-
ists a tuple (s1, . . . , sr) of r = |NX | positive numbers such that for every
closed path γ =

∑l
i=1 αiei in the dual graph of (X,ω) the equation

(3.8)
l∑
i=1

αiw(ei)sji = 0

is satisfied, where the node corresponding to ei is Nji and w(ei) is weight
of ei.

It is clear that this result implies that the dual graph Γω of a limit
differential has no oriented cycles. It is proved in [3] that the converse
holds.
Moreover, in the applications, Equation (3.8) will appear in the form

(3.9)
l∏
i=1

ε
αiw(ei)
ji

= 1

where εi ∈ ∆∗. These two equations are equivalent since Equation (3.8) is
simply minus the logarithm of Equation (3.9), in particular sji = − log(εji).
Proof. — Let (X ,W ,Z1, . . . ,Zn) be a family of pointed differentials

having limit differential (X,ω,Z1, . . . , Zn). Let γ =
∑l
i=1 αiei be a closed

path in the dual graph Γω of the limit differential (X,ω), starting at the
vertex v1 and ending at the vertex vl+1 = v1. We denote the node corre-
sponding to ei by Ni. We suppose that the local equation of X̄ around Ni
is given by xy = taNi . We denote by ωVj the restriction of ω to the irre-
ducible component XVj of X corresponding to Vj . We can suppose (maybe
after rescaling) that the family of differentials W converges to ωV1 on XV1 .
It follows from Lemma 3.4 that the scaling parameter of XV2 for W is
(taN1 )α1w(e1). Therefore the family of differentials

(taN1 )α1w(e1) W

converges to ωV2 . Looking at the node N2, the family

(taN2 )α2w(e2) (taN1 )α1w(e1) W

converges to ωV3 . We iterate this process until i = l and we obtain that the
family of differentials

(3.10)
l∏
i=1

(taNi )αiw(ei)W
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converges to ωV1 . By uniqueness of the scaling for a given irreducible com-
ponent, the following equation is satisfied

(3.11)
l∏
i=1

(taNi )αiw(ei) = 1.

Hence the solution to Equation (3.8) is given by si = aNi . �

We now describe a condition on the residues of ω at some nodes of X. It
is of different flavour than the residue condition (3.3). Let us first look at
a simple example.

Example 3.9. — Let (X,ω,Z) be a candidate differential of genus two
such that the curve is X := X1∪P1∪X2, where (X1, ω|X1) and (X2, ω|X2)
are two flat tori and the projective line has coordinate z such that it is
attached to X1 at 0 and to X2 at ∞. Finally, the restriction of ω to P1 is
ω0 := (z−1)2

z2 dz.
The differential (X,ω,Z) is not a limit differential. Otherwise, the

differential W (t) of the family (f : X → ∆∗,W : ∆∗ → f∗ωX /∆∗ ,

Z : ∆∗ → X ) would have a zero of order two at Z (t). Therefore, the
point Z (t) would be a Weierstraß point of X (t). Since the limiting posi-
tion of the Weierstraß points are the 2-torsion points of both elliptic curves,
the curve X (t) would have seven Weierstraß points (see Theorem 6.5), a
contradiction.

The following lemma gives a necessary condition for being a limit differ-
ential.

Lemma 3.10. — Let (X,ω,Z1, . . . , Zn) be a limit differential and N :=
N1 ∼ N2 be a node which separates X into two disjoint subcurves such
that ω has a pole at N1. Then the residue of ω at N1 is zero.

Proof. — Let (X ,W ) be a family of (pointed) differentials which con-
verges to (X,ω). We take a family of simple cycles γt which shrinks to N for
t → 0. Since γt vanishes in the homology H1(Xt,Z), the integral

∫
γt

W (t)
vanishes for every t 6= 0. Multiplying W (t) by the scaling of the lower com-
ponent meeting N does not change the value of this integral. Now the limit
is the residue at the pole of ω at N , which hence has to vanish. �

As generalisation of Example 3.9, we obtain from this lemma the inter-
esting fact that the zero of a differential in the strata ΩMg(2g− 2) cannot
converge to the node of a compact curve with two components.
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Corollary 3.11. — Let (X,ω,Z) be a limit differential with a single
zero of order 2g − 2. Then (X,Z) is not the union of two components
connected by a pointed projective line.

Proof. — If it was the case, then the restriction of the form ω to the
projective line would be

(z − 1)2g−2

z2g1
dz

in a coordinate z, where the nodes are z = 0 and z = ∞. This form
has always a nonzero residue at the nodes. Let X1 be another irreducible
component. This would implies that X1 has a differential with a single pole,
which is of order one. �

3.2. Plumbing Cylinder Construction

This section is devoted to the introduction of a plumbing cylinder con-
struction for abelian differentials at a node. Let us recall this classical result
known since (at least) Klein. For a simple proof of the polar case, which
extends to the holomorphic case, see [24, Encadré III.2].

Lemma 3.12. — Let ω be a differential on a Riemann surface X and
Q ∈ X. Let k be the order and a−1 be the residue of ω at Q. There exists
an open neighbourhood U of Q and a coordinate z on U such that z(Q) = 0
and:

• If k 6−2, the differential ω|U is given by the equation (zk+ a−1
z )dz.

• If k = −1, the differential ω|U is given by the equation a−1
z dz.

• If k > 0, the differential ω|U is given by the equation zkdz.
These equations are called the local normal form of ω at Q.

We need two variants of the plumbing cylinder construction. In both
cases, we denote by U := {u ∈ C : |u| < 1} and V := {v ∈ C : |v| < 1} two
discs in C and by W = U ∪ V/ ∼ the nodal Riemann surface obtained by
identifying the discs at their origins. Recall that ∆ designates a disc with
coordinate t of sufficiently small radius.
The local plumbing family of W is the family of Riemann surfaces

defined by

X :=
{

(x, y, t) ∈ C3 : xy = t, x ∈ U, y ∈ V
}
→ ∆, (x, y, t) 7→ t,

and we denote by Xt its fibre over t considered as a subset of C2 with
coordinates (x, y). Moreover, we define

X ′t = Xt \ {(x, y) ∈ Xt : |x| = |y|} ,

ANNALES DE L’INSTITUT FOURIER



COMPACTIFICATIONS OF STRATA 1189

and

B′t = B′U,t ∪B′V,t

=
{
u ∈ U : |u| >

√
|t|
}
∪
{
v ∈ V : |v| >

√
|t|
}
.

We define a biholomorphism ϕ : B′t → X ′t given by the two following
restrictions (see Figure 3.2):

ϕU,t : B′U,t → X ′t, u 7→
(
u,
t

u

)
,

ϕV,t : B′V,t → X ′t, v 7→
(
t

v
, v

)
.

x

y

Xt ⊂ xy = t

|x| = |y|

B′U,t

B′V,t

ϕU,t

ϕV,t

√
|t| 1

√
|t|

1

Figure 3.2. The maps ϕU,t and ϕV,t

The goal of the plumbing is, starting from two suitable meromorphic
differentials ω|U and ω|V , to construct a family of differentials W on X

such that on any fiber Xt the form W restricts to a suitable differential
and the scaled limit of W on X0 is ω.

Lemma 3.13 (Classical plumbing). — Suppose the differential ω on W
is given in local coordinates by

ω|U := a−1

u
du and ω|V := −a−1

v
dv.
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Then there exists a family of differentials W on the local plumbing family
X satisfying

(1) For any t 6= 0, the pullback ϕ∗U,tWt is equal to ω on B′U,t.
(2) For any t 6= 0, the pullback ϕ∗V,tWt is equal to ω on B′V,t.
(3) For any t 6= 0, the form Wt has neither zeroes nor poles on Xt.
(4) The restriction of W to X0 is equal to ω.

We now plumb a zero and a higher order pole. In this case we need to
modify the differential with the zero by a small polar part in order to match
the residues.

Lemma 3.14 (Higher order plumbing). — Let k be a non-negative in-
teger. If the differential ω on W is given in local coordinates by

ω|U := uk du and ω|V =
(
− 1
vk+2 −

a−1

v

)
dv,

then there exists a family of differentials W on X satisfying
(1) For any t 6= 0 the pullback ϕ∗U,tWt differs from ω on B′U,t by a

differential a with simple poles that converges to zero as t→ 0, i.e.

(3.12) ϕ∗U,t(Wt) := uk du + tk+1 a−1

u
du.

(2) For any t 6= 0 the pullback ϕ∗V,tWt is equal to tk+1ω on B′V,t.
(3) For any t 6= 0, the form Wt has neither zeroes nor poles on Xt.
(4) The scaling limit of Wt as t → 0 (in the sense of Lemma 3.1) over

t = 0 is equal to ω.

Proof of Lemma 3.13 and Lemma 3.14. — First, we prove the classical
plumbing and the higher plumbing without residue.
We define the differential form Wt on Xt to be the restriction of the

differential of C2 of equation

(3.13) xk+1

x2 + y2 (xdx− ydy) .

It is well known that (Xt,Wt) is a cylinder where Wt has no singularities
(see [4]).
It remains to compute the pullbacks of Wt under ϕU,t and ϕV,t. It is easily

verified that the pushforward of ∂u via ϕU,t and ∂v via ϕV,t are respectively

∂x −
y

x
∂y, and − x

y
∂x + ∂y.
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Hence the pullbacks under ϕ of ωt on B′U,t and B′V,t are:

ϕ∗U,t (η) = ukdu,(3.14)

ϕ∗V,t (η) = − t
k+1

vk+2 dv.(3.15)

This leads to the higher order plumbing without residues and for the clas-
sical plumbing, it suffices to multiply this Wt by a−1 to obtain all the
residues.
For the general result, one can easily verify that the differential ωt given

the restriction to Xt of the differential

(3.16) xk+1 − tk+1a−1

x2 + y2 (xdx− ydy)

satisfies the conclusions of Lemma 3.14. �

Remark 3.15. — In order to use Lemma 3.14, we need to prove the
existence of a coordinate u on the cylinder U \ B(0,

√
|t|) such that the

sum of a differential with a zero of order k and a differential with a simple
pole of residue tk+1a−1 is given by

azkdz + tk+1 a−1

z
dz.

This can be proved with methods similar to the ones used to prove existence
of local normal form of differentials. We refer the reader to [3, Theorem 4.3]
for a detailed proof of this fact.

3.3. Smoothing some limit differentials

In view of the previous subsection, we can define the subset of the set
of limit differentials which can be obtained by plumbing the nodes. This
section is devoted to the study of this object.

Definition 3.16. — A limit differential (X,ω,Z1, . . . , Zn) is plumbable
if there exists a family of pointed differentials (X ,W ,Z1, . . . ,Zn), satis-
fying the following conditions.

(1) The tuple (X,ω,Z1, . . . , Zn) is the limit differential associated to
this family as defined in Definition 3.2.

(2) For every node Ni of X, there exists a neighbourhood Wi of Ni in
X̄ not containing any other node or marked point Zi satisfying the
following properties:
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(a) the complement of the union of the Wi is

X̄ \
⋃
i

Wi =
(
X \

⋃
i

Wi

)
×∆,

where Wi denotes the restriction of Wi on X;
(b) the sections Z̄i are given by Zi ×∆;
(c) the differentials (Wi,t,W (t)|Wi) are given by the plumbing

cylinder construction at Ni with a parameter εi(t).

We now prove that the conditions given in Lemma 3.3 and Lemma 3.8
characterise limit differentials without poles of order > 2 with a nonzero
residue. Let us recall that for a curve X, we denote by NX the set of
nodes of X. Moreover, let ei be an edge in the dual graph of (X,ω) (see
Definition 3.6), we denote by w(ei) the weight of ei (which is one greater
than the order of ω at the corresponding node).

Theorem 3.17. — Let (X,ω,Z1, . . . , Zn) be a candidate differential
which has no residue at the poles of order k > 2. If (X,ω,Z1, . . . , Zn)
satisfies the following three conditions, then it is a plumbable differential.

(1) The Compatibility Condition (Equation (3.2))

ordN1(ω) + ordN2(ω) = −2,

at every node N1 ∼ N2 of X.
(2) The Residue Condition (Equation (3.3))

ResN1(ω) + ResN2(ω) = 0,

at every node N1 ∼ N2 of X.
(3) There exists a tuple (ε1, . . . , εr) ∈ (∆∗)NX satisfying Equation (3.9),

i.e.
l∏
i=1

ε
αiw(ei)
ji

= 1

for every closed path γ :=
∑l
i=1 αiei in the dual graph of (X,ω).

Before proving this result, let us remark that condition (3) can be re-
placed by the more natural condition that the dual graph Γω has no oriented
cycles (see [3]).
Proof. — Let (X,ω,Z1, . . . , Zn) be a candidate differential which has no

residue at the poles of order k > 2 and let N1, . . . , Nr ∈ NX be the nodes
of X.
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First let us consider the nodes where ω has simple poles. The residue
condition (3.3) implies that ω satisfies the hypotheses of Lemma 3.13 at
these nodes. Hence we can use the classical plumbing to smooth locally
these nodes. From now on we assume that the order of ω at every node is
non negative.
Let us suppose that we can plumb the nodes using discrete parameters

(ε1, . . . , εr) that satisfy Equation (3.9) for any closed path. Then we can
construct a family satisfying the hypotheses of Definition 3.16 by using
the parameters (ε1/t1 , . . . , ε

1/t
r ) for any t ∈ ∆∗. Hence it suffices to show

that (X,ω,Z1, . . . , Zn) can be plumbed using the parameters (ε1, . . . , εr)
satisfying Equation (3.9).
According to [1, p. 184], at every node Ni there exist neighbourhoods

Wi which contain neither any other node nor any point Zi. They may be
chosen as the unions of two discs Ui and Vi identified at their origins. Since
there is no residue at the polar part of this node, Lemma 3.12 implies that
there exist coordinates u and v such that ω is of the form ukidu on Ui and
v−(ki+2)dv on Vi.
We denote by X̃j the connected components of X \

⋃
i

Wi and by Xj the

corresponding irreducible components of X. Moreover, we denote by C(X̃j)
the set of the discs Ui, Vi which are contained in Xj .
Using the higher order plumbing of Lemma 3.14, we can replace all the

neighbourhoods Wi of the nodes by a cylinder with a differential pro-
portional to ω. More precisely, there exist differentials ω′1, . . . , ω′r on the
cylinders given by the local plumbings such that ω′i = aiε

±(ki+1)
i ω, where

ai ∈ C∗, the sign + has to be taken on the half cylinder mapping to the
disc containing the zero and the sign − on the other half cylinder.

To complete the proof, it suffices to show that we can extend the differ-
entials ω′i by a differential ω′ on X ′ which is proportional to ω on every
component X̃i. Observe that such a differential exists if and only if for every
component X̃j there exists a common constant of proportionality between
ω′i and ω for every disc in C(X̃j).
Let us construct the constants of proportionality in the following way.

Let X1 be an irreducible component of X. We impose that on every disc
of C(X̃1) the relation between ω and ω′i is given by ω′i = ω.

Let Xk be another irreducible component of X. For every path

γ1,k =
lk∑
i=1

αki e
k
i
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from X1 to Xk in the dual graph of (X,ω) we define

(3.17) aγk :=
lk∏
i=1

ε
αkiw(eki )
ji

,

where w(eki ) is the weight of eki . This number measures the variation of the
constants of proportionality between the differentials ωi and ω′i view along
the path γ.
It suffices to prove that under the third condition of Theorem 3.17 the

aγk do not depend on the choice of the path γ. Indeed, if this is the case
there exists a differential ω′ on X ′ which coincides with akω on X̃k.

Let γ1 and γ2 be two paths from X1 to X2 in the dual graph of (X,ω).
Then the number associated by Equation (3.17) to the concatenation γ1 ◦
γ−1

2 is aγ1
k (aγ2

k )−1. Hence it suffices to show that aγ1
k (aγ2

k )−1 = 1 to conclude
the proof. Let us denote the path γ1 ◦γ−1

2 by
∑l
i=1 αiei. Then by definition

aγ1 =
l∏
i=1

ε
αiw(ei)
ji

.

Since the parameters εi satisfy Equation (3.9), this quantity is 1 has ex-
pected. �

As an easy application of this theorem, we have the following remark.

Remark 3.18. — Let (X,ω) be a holomorphic differential with at least
one zero Z of order k > 2. Moreover, let (P1, 0, 1,∞) be a rational curve
with three marked points and define the differential ηi := zi(z − 1)k−idz
on P1. Attaching P1 to X via the identification of Z with ∞ and using the
plumbing cylinder construction of Lemma 3.14, we obtain the construction
of [11] for breaking up a zero of a differential into a pair of zeros.
An advantage of this construction is that it can be easily generalised to

the case of breaking up a zero into more zeros. We use such a generalisation
in the proof of Theorem 2.4.

We now give conditions which are sufficient to smooth a candidate dif-
ferential having poles of order > 2 with nonzero residue. These conditions
are too strong to be necessary, but they apply to interesting examples (see
Theorem 7.7). A strong restriction that we make is that every node with a
residue going to an irreducible component must be smoothed at the “same
speed”.
For an irreducible componentXα ofX we denote byNXα the set of nodes

of X meeting Xα. And if N is a node between Xα and Xβ , we denote by Nα
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the point of N belonging to Xα. Moreover, the order of ω at N is denoted
by kN .

Lemma 3.19. — If (X,ω,Z1, . . . , Zn) is a candidate differential which
satisfies the following properties, then it is plumbable.
The Compatibility Condition (3.2) holds at every node of X, and the

Residue Condition (3.3) holds at every node of X with a simple pole of ω.
There exists (ε1, . . . , εn) ∈ (∆∗)NX satisfying the two following conditions.
First Equation (3.9) is satisfied for every closed path γ in the dual graph of
(X,ω). Second, for every irreducible component Xα, there exists a constant
cα ∈ C∗ such that for every node N ∈ NXα where ω has a pole of order
> 2 with a non zero residue at Nβ , we have

εkN+1
N = cα.

Moreover, on every irreducible component Xα there exists a differen-
tial ηα with simple poles with residue −ai at every node Ni ∈ NXα where
ω|Xβ has a pole of order k > 0 with residue ai 6= 0. At every other point Q
in Xα, the residue of ηα is zero and

ordQ(ηα) > ordQ(ω).

We will prove that on the open set corresponding to Xα, the smoothed
differential is proportional to ω + cαηα.

Proof. — First we smooth locally every node where ω has a simple pole
using the classical plumbing of Lemma 3.13. From now on, we suppose that
the order of ω at every node is non negative.
Next we remark that if the parameters εi are small enough, then the

orders of ωα and ωα + cαηα coincide at every node of Xα where ηα has
no simple pole. Hence, the compatibility condition (3.2) remains true at
every node and the order at every marked point Zi remains ki. Moreover,
at the nodes where ηα has simple poles, we can suppose that ωα + cαηα
is given by Equation (3.12) in some local coordinate (see Remark 3.15).
Let N = Nα ∼ Nβ be a node of X between the components Xα and Xβ .
Without loss of generality we suppose that ω has a zero at Nα and a pole
at Nβ . First suppose that the pole of ω at Nβ has no residue. Then by
plumbing the node N , we can find a differential which coincides with

ωα + cαηα

on the part of the cylinder meeting Xα and with

εkN+1
N (ωβ + cβηβ)
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on the other part of the cylinder. Now suppose that ωβ has a pole of order
k > 2 with a nonzero residue. Then the plumbing cylinder construction
gives a differential which coincide with

ωα + εkN+1
N ηα

on the part of the cylinder meting Xα and with

εkN+1
N (ωβ + cβηβ)

on the other part. Since by hypothesis εkN+1
N = cα, we can prolong this

differential on the component Xα.
Finally, it follows from the fact that the parameters satisfy Equation (3.9)

that the constants of proportionality are globally well defined (see the proof
of Theorem 3.17 for details). �

3.4. Applications to the incidence variety compactification

We begin this section by showing that on curves of compact types, the
marked points of a pointed stable differential determines the limit differ-
entials up to multiplicative constants. Recall that a curve of compact type
is a stable curve such that the dual graph is a tree. As an application
we can prove that a limit differential (X,ω,Z1, . . . , Zn) where the curve is
of compact type is uniquely determined up to multiplicative constants by
(X,Z1, . . . , Zn).

Proposition 3.20. — Let (X,Z1, . . . , Zn) be a marked curve of
compact type in the image of the incidence variety compactification
ΩMinc

g,{n}(k1, . . . , kn) by the forgetful map. Then there exists a limit dif-
ferential on (X,Z1, . . . , Zn) of type (k1, . . . , kn). Moreover for any two of
such limit differentials ω and ω′ there exist constants ci ∈ C∗ such that

ω

ω′

∣∣∣
Xi

= ci,

for every irreducible component Xi of X.

Proof. — Let Xi be an irreducible component of X which corresponds
to a leaf of the dual graph of X. Let Zi,1, . . . , Zi,ni be the marked points
in Xi. Then the restriction of ω to Xi has zeros of order ki,j at Zi,j and at
most one other zero or a unique pole which has to be located at the node
of Xi. Moreover, the order of ω at the node is imposed by the fact that
the degree of ω|Xi is 2gi − 2. Hence ω|Xi is uniquely determined up to a
multiplicative constant.
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Now we continue this process on the irreducible components adjacent
to the preceding components. The orders at the nodes with the previous
components are determined by the compatibility condition (3.2) and the
orders at the marked points Zl are kl. Hence it follows that the order of ω
at the last node is imposed by the condition on the degree of ω.
Iterating this process we show that there is at most one limit differential

(up to multiplication) on (X,Z1, . . . , Zn). And since (X,Z1, . . . , Zn) lies
in the projection of ΩMinc

g,{n}(k1, . . . , kn), there exists at least one limit
differential on this curve. �

Now we want to associate a stable pointed differential to a limit differ-
ential. Before introducing this map, let us introduce some terminology. Let
X1 and X2 be two irreducible components of a limit differential (X,ω). We
say that X1 and X2 are polarly related by ω if X1 = X2 or the differential ω
has simple poles at the nodes between X1 and X2. The equivalence classes
of this relation are the polarly related components of (X,ω).
We define a map ϕ from the set of limit differentials of type (k1, . . . , kn)

to the space of marked stable differentials ΩMg,n which is given by setting
the differentials to be zero on the polarly related components which contain
a pole of order > 2. It is a priori not clear that there exists a family of
differentials with a given stable limit such that the stable limit is its image
by ϕ. Indeed, it is possible that the differential has to be set to zero on
more components of X. However, we show that such family exists, at least
in the case of plumbable differentials.

Proposition 3.21. — Let (X,ω,Z1, . . . , Zn) be a plumbable differ-
ential satisfying the hypotheses of Lemma 3.19. The marked differential
ϕ (X,ω,Z1, . . . , Zn) is contained in the stratum ΩMinc

g,n(k1, . . . , kn).

Proof. — Let (X,ω,Z1, . . . , Zn) be a plumbable differential in the closure
of the stratum ΩMinc

g,{n}(k1, . . . , kn). Let us first remark that we can sup-
pose that the polarly related components are the irreducible components
of X. Otherwise, we use the classical plumbing at the nodes where ω has
poles of order one. Hence we have to prove that there exists a smoothing
of ω such that all the scaling of the components of X with a holomorphic
differential are equal.
Let (ε1(t), . . . , εn(t)) ∈ (∆∗)n be parameters at the nodes of X which

satisfy Equation (3.9). Let ci(t) and ηi(t) be the constants and differentials
satisfying the hypotheses of Lemma 3.19. A family of differentials which is
obtained by plumbing the nodes with these parameters and such that the
limit is a nonzero stable differential ω̃ is denoted by (X ,W ,Z1, . . . ,Zn).
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The differential ω̃ may vanish on some components where ω is non zero.
We now modify this familly in order to change the scaling of the components
of X where ω is holomorphic but ω̃ vanishes.
Let Xi be an irreducible component of X such that ω|Xi is holomorphic,

but the differential ω̃|Xi is identically zero. Let Ui be the subset of Xi

which are contained in the open set Wj in which the plumbing take place.
In Ui ×∆, the differential satisfies

W |Ui×∆ = h(t) (ω|Ui + ci(t)ηi(t)) ,

where h is a function vanishing at the origin.
We denote by Πi the product for all nodes Ni,j meeting Xi of kNi,j + 1.

Then we make a base change of order Πi in this family (we continue to use
the same notations as before for this new family). This operation does not
change the relative scaling but it allows use to take roots of h. For every
node Ni,j of Xi, we replace the parameter εNi,j by

h(t)1/(kNi,j+1) · εNi,j (t),

where kNi,j is the order of (the zero of) ω at Ni,j . The parameters remain
unchanged at the other nodes of X.
Let us show that these new parameters satisfy the conditions given by

Equation (3.9). Let γ be a closed path in the dual graph of (X,ω). Let
us denote the vertex corresponding to Xi in the dual graph of (X,ω) by
Ui. Since γ is closed, it has the same number of edges which point to Ui
as edges which come from Ui. Using the fact that the component Xi has
only holomorphic nodes for ω, we deduce that an incoming edge and an
outgoing edge of γ contribute together to Equation (3.9) by(

h(t)1/(kNi,j+1)εNi,j

)(kNi,j+1)
·
(
h(t)1/(kNi,k+1)εNi,k

)−(kNi,k+1)
,

which is clearly equal to

(εNi,j )
(kNi,j+1) · (εNi,k)−(kNi,k+1).

So the contribution to Equation (3.9) of the new parameters at the nodes
of Xi is the same as the contribution with the old ones. This implies that
this equation remains satisfied by the new parameters. It is direct to check
that the constants cj coincide with the previous ones when j 6= i and ci
is replaced by new constants c′i. It is easily verified that we may keep the
same differentials ηi.

According to Lemma 3.19, we can smooth the limit differential ω using
these new parameters. We scale the family of differentials in such a way
that the new one coincides with the old one on Uj×∆, for every irreducible
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component Xj different from Xi. On the other hand, we claim that in a
neighbourhood of Vi, we have

Wnew|Ui×∆ = ω|Ui + c′iηi,

for the family with the new parameters. Indeed, let Xk be an irreducible
component which meets Xi at Nl. Let hj : ∆ → ∆ denote the functions
such that

Wnew|Uj×∆ = hj(t)(ω|Uj + c′jηj).

Since for every irreducible component Xj distinct from Xi, this equation
holds for the family W , it follows from Lemma 3.14 that

hj
h

= (εNl)(kNl+1) and hj
hi

= h · (εNl)(kNl+1).

It follows from these two equations that hi = 1 as claimed. This implies
that the stable limit of this family restricts to ω on Xi and to ω̃ on the
other irreducible components of X.
The Proposition follows by doing this procedure at every component of

X where ω′ vanishes but ω restricts to a holomorphic differential. �

To conclude this section, we prove Theorem 2.4 and Theorem 2.5. Let
us recall that both theorems show that the forgetful map between the inci-
dence variety compactification and the Deligne–Mumford compactification
of the stratum ΩMg(1, . . . , 1) is not finite.

We first deal with the case where all the zeros meet together.
Proof of Theorem 2.4. — Let (X,ω,Z) ∈ PΩMinc

g,1(2g− 2) be a pointed
differential of genus g and (P1, Q1, . . . , Q2g−2, P ) be a marked rational
curve. There exists a meromorphic differential with a single zero at all
the Qi and a pole of order 2g at P . Indeed, this differential is given up to
scalar multiplication by

η :=
∏2g+2
i (z −Qi)
(z − P )2g dz.

Let us glue the curve X with this rational curve via the identification of Z
with P and let us call the resulting curve by X ′. We verify that the candi-
date differential (X ′, (ω, η), Qi) satisfies the hypotheses of Theorem 3.17. It
satisfies the compatibility condition at the node since ω has a zero of order
2g − 2 and η has a pole of order 2g. Since η has a unique pole, this pole
has no residue. The residue condition is empty in this case and the last
condition is clearly satisfies for any ε ∈ ∆∗. Hence we can smooth the can-
didate differential (X ′, (ω, η), Qi) inside the stratum ΩMinc

g,{2g−2}(1, . . . , 1).
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The differential that we obtain has 2g − 2 simple zeros. This shows that
the pointed differential(

X ∪ P1/Z ∼ P, (ω, 0), Q1, . . . , Q2g−2
)

is an element of PΩMinc
g,{2g−2}(1, . . . , 1) for any tuple (Q1, . . . , Q2g−2, P ).

A simple dimension count concludes the proof. �

Now we deal with the case where the stable pointed curve lies in the
generic locus of δi for i > 1.

Proof of Theorem 2.5. — Let (X := X1 ∪X2/N1 ∼ N2, ω) be a differ-
ential of genus g > 2 in PΩMg(1, . . . , 1) and suppose that ω|X1 = 0. If
the genus of X1 is greater than one, the component X1 contains more than
2g1−2 marked points. Moreover if the genus of X1 is one, then X1 contains
at least two points. Indeed, otherwise there would exists a differential on
X1 with a unique zero of order, which is known to be impossible. The map
h : X(k)

1 → J (X1) from the symmetric product of X1 to the Jacobian of
X1 given by

(Q1, . . . , Qk) 7→ OX1

(∑
i

Qi − (k − 2g1 + 2)N1

)
is surjective. Hence the dimension of the fibre of π at (X,ω) is at least k−g1.
Such divisors are canonical and since there is no residue at N1, we apply
Theorem 3.17 to conclude that every such differential can be smoothed in
PΩMg(1, . . . , 1). �

4. Parity at the Boundary of the Strata

The notion of theta characteristic is an essential tool for the description
of the connected components of the strata of ΩMg. Indeed, every stratum
ΩMg(2l1, . . . , 2ln) has at least two connected components distinguished by
the parity of the theta characteristic associated to the differential. It would
be nice to show that this invariant can be extended for all limit differentials
in the closure of such strata. However, we will show (see Corollary 7.9)
that such extension is not possible in general. Indeed, the incidence variety
compactifications of the even and the odd components of PΩM3,1(4) meet
each other.
In this section, we will nevertheless extend this invariant to two impor-

tant cases. In the first part, we treat the case of limit differentials above
curves of compact type (see Theorem 4.12). This uses the theory of spin
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structures introduced by Cornalba, which we will recall at the beginning of
this section. In the second part, we extend this invariant to the case of ir-
reducible stable pointed differentials (see Theorem 4.19). For this purpose,
we generalise the Arf invariant to such differentials (see Definition 4.17).

4.1. Differentials of Compact Type

Let us begin this section by some preliminary paragraphs about line
bundles on (semi) stable curves and Cornalba theory of spin structures.

Some basic facts about line bundles on stable curves. The mate-
rial of this paragraph comes mostly from [1] and [17]. We will use ν : X̃ → X

(or simply X̃) to designate the normalisation of a stable curve X. We
denote by Irr(X) := {Xi} the set of irreducible components of X and
by νi : X̃i → Xi the restriction of the normalisation to Xi. The set of
nodes NX of X is of cardinality n and for each node Ni of X, its preimage
by ν is {Ni,1, Ni,2}.
The key to describe the Picard group of X is the exact sequence

(4.1) 1→ O∗X → ν∗O∗
X̃

e−→
∏

N∈NX

C∗N → 1,

where the map e is defined in the following way. For every h ∈ ν∗O∗
X̃
, the

C∗Ni-component of e(h) is h(Ni,1)
h(Ni,2) . The long exact sequence associated to

the short exact sequence (4.1) is

(4.2) 1→ C∗ → (C∗)|Irr(X)| → (C∗)n → Pic(X) α∗−−→ Pic(X̃)→ 1.

The interpretation, from the right to the left, of this sequence is the fol-
lowing.

(1) To describe a line bundle L on X it suffices to give a line bundle L̃
on X̃ and an identification ϕNi : L̃Ni,1 → L̃Ni,2 of the fibres above
the preimages of each node Ni ∈ NX . The second part of the data is
usually called the descent data of L. Let us remark that the descent
data can be interpreted as a condition for a section of L to be a lift
of a section of L̃.

(2) If L̃ is trivial, a choice of trivialisation identifies each ϕN with a
well defined non-zero complex number. So, two line bundles L1 and
L2 such that L̃1 = L̃2 differ only by a tuple of n nonzero complex
numbers.
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(3) Let L̃ be a line bundle on X̃. If two n-tuples describe in ii) differ only
by multiplicative constants on each irreducible component, then the
line bundles associated to L̃ and these descent data are the same.

(4) The descent data are well defined up to a global multiplicative con-
stant.

Let us discuss two examples in which we will be particularly interested.

Example 4.1. — If the curve X is of compact type, then the sequence
(4.2) implies that the Picard groups of X and X̃ are isomorphic. Therefore
in this case, we will define line bundles by specifying their restrictions on
every irreducible components of X.

Example 4.2. — Let us now suppose that the curve X is an irreducible
nodal curve with r nodes. Then the sequence (4.2) gives the sequence

1→ (C∗)r → Pic(X) α∗−−→ Pic(X̃)→ 1.

Hence in this case a line bundle on X is described by a line bundle on X̃
and a r-tuple of non zero complex numbers.

We now give a description of the limit of a line bundle over a smooth
family of generically smooth curves such that the special fibre is of compact
type. The proof is given at the beginning of [17, Section 5.C].

Theorem 4.3. — Let f : X → ∆ be a smooth family such that for
every t 6= 0, the curve X (t) is a smooth curve of genus g and X (0) is a
reduced curve of compact type.
Let L be a line bundle of relative degree d on X \X (0) and

α : Irr(X (0))→ Z

be any map such that ∑
Xi∈Irr(X (0))

α(Xi) = d.

Then there exists a unique extension Lα of L to X such that

deg(Lα ⊗OXi) = α(Xi)

on every irreducible component Xi of X (0).
Moreover, if N is a node between two irreducible components Xi and

Xj , and β is obtained from α by adding 1 to α(Xi) and subtracting 1 from
α(Xj), then

Lβ ⊗OXi = Lα ⊗OXi(N),(4.3)
Lβ ⊗OXj = Lα ⊗OXj (−N).(4.4)
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If the special fibre is not of compact type, there is not such a precise
description. However, the idea at the beginning of [17, Section 5.C] remains
true for families of curves with a more general special fibre.

Theorem 4.4. — Let f : X → ∆ be a smooth family such that for
every t 6= 0, the curve X (t) is a smooth curve of genus g and X (0) is a
(semi) stable curve.
Let L be a line bundle of relative degree d on X such that the restric-

tion of L to X (0) is a line bundle. Let Xi be an irreducible component
and let {Nj,k}k be the set of nodes between Xi and an other irreducible
component Xj .
Then, we have the relations

L ⊗OX (Xi)|Xi = L |Xi ⊗OXi

∑
j,k

−Nj,k

 ,(4.5)

L ⊗OX (Xi)|Xj = L |Xj ⊗OXj

(∑
k

Nj,k

)
.(4.6)

Abstract spin stable curves. A spin structure (X,L) is a pair where
X is a smooth curve and L is a theta characteristic on X. It is known that
there exists a moduli space Sg of spin structures of genus g. Moreover, Sg
is the disjoint union of S−g and S+

g parametrising respectively the odd and
even spin structures. Following the article of Cornalba [9], we now extend
the notion of spin structure to the case of stable curves.
The following curves are the base of the construction.

Definition 4.5. — A decent curve is a semistable curve in which every
exceptional component meets precisely two non-exceptional components.
In particular, the exceptional components have no self intersection.

We can think of decent curves as stable curves with some of its nodes
blown up, in the following sense. Let π : X̄ → X be the map from a
semistable curve X̄ to its stable model and let {n1, . . . , nr} be the nodes of
X whose preimages by π are projective lines. We say that X̄ is the blow-up
of X at the set of nodes {n1, . . . , nr}.
Now we can define the notion of spin structure on decent curves.

Definition 4.6. — A spin curve is a triple (X,L, α), where X is a
decent curve, L is a line bundle of degree g − 1 on X and α is a map from
L⊗2 to the dual sheaf ωX , which satisfies the following two properties.

(1) The line bundle L has degree 1 on every exceptional component
of X.
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(2) The map α is not zero at a general point of every non-exceptional
component of X.

Now we explain why this is the right generalisation of the notion of
smooth spin curves.

First of all it is easy to verify that for smooth curves, this definition
coincides with the usual one, since α is uniquely determined by L.

Let X be a curve of compact type and L a spin structure on it. It follows
easily from the definition of spin structures that the restriction of L to every
irreducible component Xi of X of genus g > 1 is a theta-characteristic on
Xi. But the sum of the degrees of these restrictions is the genus of X minus
the number of irreducible components of X. To have a line bundle of degree
g − 1, the curve X has to be a decent curve with a projective line at every
node.
An expected property of the notion of spin structure is that there exist

22g isomorphism classes of spin structures on a given decent curve. How-
ever, there exist in general infinitely many non isomorphic line bundles
L satisfying the first part of Definition 4.6 (this follows from the exact
sequence (4.2)). The morphism α rigidifies this notion and the following
proposition shows that it gives the right number of spin structure on a
decent curve.

Proposition 4.7 ([9, Paragraph 6]). — Let X be a stable curve, then
the number of non isomorphic spin structures on (the set of decent curves
stably equivalent to) X is 22g. Moreover, the number of even ones is
2g−1(2g + 1) and the number of odd ones is 2g−1(2g − 1).

Before recalling that all these properties are well behaved in families, we
discuss a basic but typical example.

Example 4.8. — Let X be a curve of genus g, which is the union of X1
and X2 of genus i and g − i meeting at a unique point N .

Let us blow up X at N and denote by E the exceptional component.
Let L be a line bundle on X̄ such that L|X1 and L|X2 are theta character-
istics on X1 and X2 respectively, and L|E = OE(1). The degree of L is g−1
on X̄. The morphism α : L2 → ωX̄ vanishes on E and is the isomorphism
between L2

i and ωXi on Xi.
Moreover, the spin structure L is odd if the parities of L|X1 and L|X2

are distinct, and even otherwise.

Let Sg be the moduli space of stable spin curves. It is a natural com-
pactification which projects toMg. Let us recall from [9] some important
properties of Sg.
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Proposition 4.9 ([9, Proposition 5.2]). — The variety Sg is normal,
projective and is the disjoint union of the even part Sg

+ and the odd part
Sg
−. Moreover the forgetful map π : Sg →Mg is a finite map.

In the rest of this section, we will not make the morphism α precise and
we will suppose that our spin structures are square roots of the canonical
bundle.

Spin structure associated to limit differentials on curves of com-
pact type. In this paragraph we compute the spin structure associated to
a limit differential (see Definition 3.2) on a curve of compact type which
has only zeros and poles of even orders. But a limit differential of type
(2l1, . . . , 2ln) on a stable marked curve of compact type is determined, up
to multiplication by constants, by the marked curve (see Proposition 3.20).
Hence the invariant that we will construct will only depend on the marked
curve, and be well defined for the limit pointed differentials of compact
type.
On a smooth curve X, we can associate a spin structure to an abelian

differential with only even orders of zeros by

(4.7) ϕ : ΩMg(2l1, . . . , 2ln)→Sg; (X,ω) 7→
(
X,Lω := OX

(
1
2 div (ω)

))
.

We extend this definition to the case of limit differentials on curves of
compact type.

Definition 4.10. — Let (X,ω,Z1, . . . , Zn) be a limit differential in the
closure of the stratum ΩMinc

g,{n}(2l1, . . . , 2ln). Let π : X̄ → X be the blow-
up of X at every node of X. Then the spin structure Lω associated to ω is
defined by the following restrictions on X̄.

• If E is an exceptional component of X̄, then Lω|E = OE(1).
• IfXi is an irreducible component ofX, then Lω|Xi =OXi( 1

2 div(ω)).

We now verify that the line bundle Lω associated to ω is indeed a spin
structure in the sense of Definition 4.6.

Proof. — Let Xi be an irreducible component of X. The line bundle
Lω|Xi is by definition a square root of the canonical bundle ofXi. It remains
to check that the degree of Lω is g− 1. We denote by Ne ⊂ NX the subset
of nodes of X which have been blown up to give the decent curve. At each
nodeN1 ∼ N2, the compatibility condition (3.2) degN1(ω)+degN2(ω) = −2
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implies that

deg(Lω) =
∑

Xi∈Irr(X)

deg(Lω|Xi) + #Ne

= g − 1−#NX + #Ne.

It follows from this equation that deg(Lω) = g−1 if and only if every node
of X is blown up. �

Of course, this notion can only be useful if it behaves well in families.
This is the content of the following lemma.

Lemma 4.11. — Let (f : X → ∆∗,W ,Z1, . . . ,Zn) be a family of
pointed differentials in ΩMinc

g,{n}(2l1, . . . , 2ln) and (f : X → ∆∗,LW →X )
be the associated family of theta characteristics inside Sg. If the stable limit
of X is of compact type, then the spin structure associated to the pointed
limit differentials of this family coincides with the restriction to the special
curve of the completion of LW inside Sg.

Proof. — Let (X ,W ,Z1, . . . ,Zn) be a family of pointed differentials in-
side the stratum ΩMinc

g,{n}(2l1, . . . , 2ln), and (X,ω,Z1, . . . , Zn) be its limit
differential. Above ∆∗, the associated theta characteristics are given by the
bundle OX ( 1

2 div (W )). Let us remark that according to Proposition 4.9,
there exists an extension of L above the decent curve X̄ in such a way
that L|X̄ is a spin structure on X̄. By Theorem 4.3, there exists only one
such an extension. Since the line bundle defined in Definition 4.10 is such
extension, this concludes the proof. �

A direct application of this result, is the fact that the incidence variety
compactifications of the even and odd components of ΩMinc

g,{n}(2l1, . . . , 2ln)
remain disjoint above the set of curves of compact type.

Theorem 4.12. — Let n > 3 and (X,ω,Z1, . . . , Zn) be a stable dif-
ferential of compact type in the incidence variety ΩMinc

g,{n}(2l1, . . . , 2ln).
Then the parity of the spin structure Lω associated to (X,ω,Z1, . . . , Zn)
is ε if and only if (X,ω,Z1, . . . , Zn) is in the connected component
ΩMinc

g,{n}(2l1, . . . , 2ln)ε.

Let us remark that Theorem 4.12 remains true with minor modifications
even for n 6 2 zeros. But the fact that in these cases the strata contain
three connected components complicates the statement.
Proof. — By Proposition 3.20, we can associated a unique (up to multi-

plicative constants) limit differential to (X,ω,Z1, . . . , Zn). By Lemma 4.11,
this limit differential has parity ε if and only if it lies in the closure of
ΩMinc

g,{n}(2l1, . . . , 2ln)ε. �
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Let us conclude this paragraph by describing the spin structures associ-
ated to the limit differentials of the minimal strata above the generic curves
of δi for i > 1.

Proposition 4.13. — Let X := X1∪X2/N1 ∼ N2 be a curve in δi and
let X̄ := X1 ∪ E ∪X2 the blow-up of X at the node.
The spin structure L associated to the limit differential (X,ω,Z) in the

boundary of the minimal stratum is given by

(4.8) L|Xi = OXi((g − 1)Z − gjNi), L|Xj = OXj ((gj − 1)Nj),
L|E = OE(1),

where (i, j) = (1, 2) or (i, j) = (2, 1).

Proof. — The fact that the point Z is not contained in E has been
proved in Corollary 3.11. So we can suppose that Z ∈ X1. Then ω is a
limit differential with a zero of order 2g − 2 at Z, if it has a pole of order
2g2 atN1. But by Theorem 3.17 the form ω has a zero of order 2g2−2 atN2.
The description of the restrictions of L is now given in Definition 4.10. �

4.2. Irreducible Pointed Differentials

The main purpose of this paragraph is to extend the Arf invariant to
the set of irreducible marked curves (see Definition 4.17). This implies
that the incidence variety compactifications of the even and odd connected
components of every strata remain disjoint above this locus of curves (see
Theorem 4.19).

We first recall some basic facts about the Arf invariant of abelian differ-
entials. It was first investigated in [19] (see also [27]).

Through this paragraph, we will use the following notations. The pair
(X,ω) denotes an abelian differential or an irreducible stable differential
with simple poles at every node. For a smooth simple closed path γ :
[0, 1]→ X, we denote by

G(γ) : [0, 1]→ S1

the Gauss map associated to γ by the differential ω and by

Ind(γ) := deg(G(γ)) mod 2

the index of γ.
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Definition 4.14. — Let (X,ω) be a holomorphic abelian differential
of genus g and let (a1, . . . , ag, b1, . . . , bg) be a symplectic basis of H1(X,Z)
composed by smooth and simple curves which miss the zeros of ω. The Arf
invariant of (X,ω) is

(4.9) Arf(X,ω) :=
g∑
i=1

(Ind(ai) + 1)(Ind(bi) + 1) mod 2.

Johnson has shown that for every differential in ΩMg(2l1, . . . , 2ln), the
Arf invariant is independent of the choice of the symplectic basis. Moreover,
he showed that the Arf invariant coincides with the parity of the theta
characteristic associated to the differential ω (see Equation (4.7)).
We now generalise the Arf invariant in the case of irreducible pointed

stable differentials. Note that such differentials have only poles of order
one at every node.

First we define the set of curves which generalises the symplectic basis.
Let us recall that the normalisation of a nodal curve X is denoted by
ν : X̃ → X and the preimages of a node Ni by ν are denoted by Ni,1 and
Ni,2.

Definition 4.15. — Let X be an irreducible stable curve of genus g
with k nodes denoted by N1, . . . , Nk. An admissible symplectic system of
curves (a1, . . . , ag, b1, . . . , bg) onX is an ordered set of simple smooth curves
on X satisfying the three following properties.

(1) The curves (ν∗ak+1, . . . , ν
∗ag, ν

∗bk+1, . . . , ν
∗bg) form a basis of

H1(X̃,Z).
(2) For every i, j ∈ {1, . . . , g} we have

ai · bj = δij , ai · aj = 0, and bi · bj = 0.

(3) For i 6 k, we have ν∗ai(0) = Ni,1, ν∗ai(1) = Ni,2 and the limits

lim
t→0

∂ν∗ai
∂t

(t) and lim
t→1

∂ν∗ai
∂t

(t)

exist.

The curve ai is called an admissible path of the node Ni.

Note that an admissible symplectic system of curves on a smooth curve
X is a symplectic basis of H1(X,Z).

We now describe the behaviour of the Gauss map of the admissible paths.
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Lemma 4.16. — Let (X,ω) be an irreducible stable differential with
only meromorphic nodes, let N0 be a node of X and let γ be an admissible
path for N0. Then, the limits

lim
t→0

G(γ)(t) and lim
t→1

G(γ)(t)

exist and coincide with the direction of the flat cylinder associated to N0.

Proof. — Since the Gauss map of a smooth path is continuous, there
exist limits of G(γ)(t) for t → 0 and t → 1. Since the tangent vector of γ
has a limit, the path cannot turn around the node infinitely many times.
This implies that the limit for the Gauss map is the direction of the flat
cylinder associated to this node. �

Lemma 4.16 allows us to define the index of the paths intersecting the
nodes in an admissible system of curves.

Definition 4.17. — Let (X,ω) be an irreducible stable differential with
meromorphic nodes, N0 be a node of X and γ be an admissible path for
N0.
The index of γ is

Ind(γ) := deg(G(γ)) mod 2.

We can now extend the notion of Arf invariant.

Definition 4.18. — Let (X,ω) be a stable differential such that X is
irreducible and ω has a simple pole at every node of X. Let (a1, . . . , ag,

b1, . . . , bg) be an admissible symplectic system of curves for (X,ω).
The generalised Arf invariant of (X,ω) is

(4.10) Arf(X,ω) :=
g∑
i=1

(Ind(ai) + 1)(Ind(bi) + 1) mod 2.

We show that the generalised Arf invariant does not depend on the choice
of the admissible system.

Theorem 4.19. — Let (X,ω,Z1, . . . , Zn) ∈ ΩMinc
g,{n}(2d1, . . . , 2dn) be

a stable differential such that X is irreducible with k nodes N1, . . . , Nk.
Then the generalised Arf invariant only depends on ω and Arf(X,ω) = ε if
and only if (X,ω) is in the closure of a component of ΩMg(2d1, . . . , 2dn)
with associated spin structure of parity ε.

We prove the result by recurrence on the number of nodes. The main tool
for the recurrence step is the Plumbing cylinder construction of Section 3
(see in particular Theorem 3.17).
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Proof. — If X has no nodes, then the generalised Arf invariant of X
coincides with the usual Arf invariant. This implies the result for a smooth
differential.
Let us suppose that Theorem 4.19 has been proved in the case of k − 1

nodes and let (X,ω,Z1, . . . , Zn) be a differential with k nodes satisfying
the hypothesis of Theorem 4.19. Let (a1, . . . , ag, b1, . . . , bg) be an admissible
symplectic system for (X,ω).
Let V and W be neighbourhoods of Nk,1 and Nk,2 respectively, such

that U := V ∪W and ω|U satisfy the hypothesis of the classical plumbing
(Lemma 3.13). Without loss of generality, we can suppose that U ∩ ai = ∅
for all i 6= k and U ∩ bj = ∅ for all j ∈ {1, . . . , g}. Moreover, let θk be
the direction of the cylinders associated to ω at Nk. We can suppose that
G(ak)(t) is in the interval

]
θk − π

4 , θk + π
4
[
for every t such that ak(t) ∈ U .

In particular, the path ak meets only once the boundaries of V and W .
Since (X,ω,Z1, . . . , Zn) satisfies the hypotheses of Lemma 3.13, we can

smooth this differential. In particular, the set U is replaced by a flat cylin-
der U ′ and ak by any simple closed smooth curve which coincide with ak
outside of U ′.
By induction, the generalised Arf invariant is well defined on this curve.

In particular, it does not depend on the chose of ak. Hence it remains to
show that the index of every curve in the new admissible symplectic system
coincide with the index of the corresponding curve in the old admissible
system. The indices of every curve distinct from ak are clearly invariant
under the plumbing cylinder construction. It remains to show that the
index of ak and ãk coincide. But we can choose ãk such that in U ′ the
Gauss map satisfies G(ãk)(t) ∈

]
θ − π

2 , θ + π
2
[
. In particular, it is clear

that the index of ãk coincides with the index of ak.
This shows that the generalised Arf invariant is a well defined invariant

of (X,ω) and coincides with the Arf invariant of any partial smoothing
of (X,ω) at a node. By induction these smoothings are in the closure of
a component of ΩMg(2d1, . . . , 2dn) with associated theta characteristic of
parity ε. �

5. Kodaira Dimension of Some Strata of PΩMg

In this section, we compute the Kodaira dimension of some strata of
PΩMg. We show in Theorem 5.10 that the strata which “impose few con-
ditions on the differentials” (see the theorem loc. cit. for a precise definition)
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have negative Kodaira dimension. In Theorem 5.7, we compute the dimen-
sion of the projection of every connected component of every stratum of
ΩMg toMg. This result implies that the strata PΩMg(k1, . . . , kg−1) dif-
ferent from PΩMeven

g (2, . . . , 2) are of general type when Mg is of general
type (see Theorem 5.4).
The end of this section is devoted to the computation of the Kodaira

dimension of other strata. In Proposition 5.13, we show that the stratum
PΩMg(g−1, 1, . . . , 1) is of general type whenMg is of general type. We give
in Proposition 5.14 the Kodaira dimension of the connected components
PΩMhyp

g (g − 1, g − 1). Moreover, we give the Kodaira dimension of every
odd (see Corollary 5.17) and every even (see Proposition 5.15) component
of PΩMg(2, . . . , 2).

Generalities. We first recall the definition of the Kodaira dimension of
complex varieties Y following [25]. The (complex) dimension of Y will be
denoted by dimY .

Definition 5.1. — Let Y be a smooth irreducible compact complex
variety. The Kodaira dimension κ(Y ) of Y is

(5.1) κ(Y ) =

−∞, if H0(Y,mKY ) = 0 for all m > 0
min

{
n ∈ N ∪ {0} : h

0(Y,mKY )
mn is bounded

}
, otherwise

The variety Y is of general type if κ(Y ) = dim(Y ).

Since we will be mainly interested in singular non-compact varieties, we
extend the notion of Kodaira dimension to singular and non-compact vari-
eties. If Y is a singular compact complex variety, then itsKodaira dimension
κ(Y ) is the Kodaira dimension of any non-singular model of Y . If Y is a
non-compact complex variety, then its Kodaira dimension κ(Y ) is the Ko-
daira dimension of any non singular model of any compactification of Y .
Let us remark that, as the Kodaira dimension is a birational invariant, the
two preceding definitions make sense.
The Kodaira dimension of a given complex variety Y is in general difficult

to compute. On the other hand it is easily proved that κ(Y1×Y2) = κ(Y1)+
κ(Y2). One could hope that a similar statement holds for more general fibre
spaces and for maps π : Y → Z which behave like bundle maps. This is
what we explain now.
The first important notion is the one of fibre space of complex varieties.

This is a proper and surjective morphism π : Y → Z of reduced analytic
spaces such that the general fibre of π is connected. Moreover, a meromor-
phic mapping ϕ : Y → Z is generically surjective or dominant if the image
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of ϕ is dense in Z. A fibre space π : Y → Z is uniruled if a generic fibre Yz
of π is a projective line. If a space is uniruled, then its Kodaira dimension
is negative.
It is well known that the Kodaira dimension of a fibre space can not be

larger than the Kodaira dimension of the base plus the Kodaira dimension
of a generic fibre (see [25, Theorem 6.12]).

Theorem 5.2. — Let π : Y → Z be a fibre space of complex varieties.
There exists an open dense set V ⊂ Z such that for any point z ∈ V the
inequality

(5.2) κ(Y ) 6 dim(Z) + κ(π−1(z))

holds.

In particular, if the Kodaira dimension of a generic fibre or of the basis
of a fibre space is negative, then the total space has negative Kodaira
dimension.

A very important open problem is to determine the best lower bound in
the preceding settings.

Conjecture 5.3 (Iitaka (or Cn) conjecture). — Let π : Y → Z be
a fibre space of an n-dimensional algebraic manifold Y over an algebraic
manifold Z. Then we have

(5.3) κ(Y ) > κ(Z) + κ(Yz),

for a generic fibre Yz := π−1(z).

Even though the conjecture is known to be false in general (see [25,
Remark 15.3]), it holds in very important cases. The first one is when
π : Y → Z is a generically surjective map of complex varieties of the same
dimension (see [25, Theorem 6.10]).

Theorem 5.4. — Let π : Y → Z be a generically surjective meromor-
phic mapping of complex varieties such that dimY = dimZ. Then we have
the inequality

(5.4) κ(Y ) > κ(Z).

The second important case of this conjecture has been proved by
Viehweg. He proved that the Iitaka conjecture holds as soon as Z is of
general type.
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Theorem 5.5 ([26]). — Let π : Y → Z be a generically surjective
meromorphic mapping of complex varieties such that κ(Z) = dimZ. Then
we have the inequality

(5.5) κ(Y ) > κ(Z) + κ(Yz),

for a generic fibre Yz := π−1(z).

The strata of PΩMg. The rest of this section is devoted to the com-
putation of the Kodaira dimension of several strata of the moduli space of
abelian differentials.
Let us first remark that the Kodaira dimension of the principal stratum

follows directly from Theorem 5.2.

Proposition 5.6. — The Kodaira dimension of the moduli spaces
PΩMg and the principal strata PΩMg(1, . . . , 1) is −∞.

Proof. — Since PΩMg → Mg is a bundle with fibre Pg−1, the result
follows from Theorem 5.2. Since the closure of the principal stratum is
PΩMg, this implies the result for the principal stratum. �

In order to apply the Theorem of Iitaka–Viehweg, we have to determine
for which strata the forgetful map π : ΩMg →Mg is generically surjective.
In fact, we compute the dimension of the image of every connected com-
ponent of the strata of ΩMg via the forgetful map. This theorem greatly
generalises a previous result of Chen (see [7, Proposition 4.1]).

Theorem 5.7. — Let g > 2 and S be a connected component of
ΩMg(k1, . . . , kn). The dimension dπ(S) of the projection of S by the for-
getful map π : ΩMg →Mg is

(5.6) dπ(S) =


2g − 1, if S = ΩMg(2d, 2d)hyp;
3g − 4, if S = ΩMg(2, . . . , 2)even;
2g − 2 + n, if n < g − 1 and S 6= ΩMg(2d, 2d)hyp;
3g − 3, if n > g − 1 and S 6= ΩMg(2, . . . , 2)even.

This theorem is proved by degeneration. The main ingredients are the
plumbing cylinder construction of Section 3, the explicit description of the
spin structures on the curves of compact type (see Section 4) and the local
parametrisation ofMg given by [1, Theorem 3.17].

Before proving the theorem let us introduce the main type of stable curve
that we use in the proof.
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Definition 5.8. — Let (X1, N1,1) and (Xg, Ng−1,2) be 2 one-marked
elliptic curves and let (X2, N1,2, N2,1), . . . , (Xg−1, Ng−2,2, Ng−1,1) be g − 2
two-marked elliptic curves. The snake curve X defined by these elliptic
curves (see Figure 5.1) is

X :=
(

g⋃
i=1

Xi

)
/ (Ni,1 ∼ Ni,2) .

X2
Xg

X1 X3
Xg−1

Figure 5.1. The snake curve X

Proof. — We begin the proof by treating the case of the hyperelliptic
strata Hg.

The hyperelliptic strata. — The hyperelliptic locus Hg ⊂Mg of genus
g has dimension 2g − 1. Since the projections of each of the hyperelliptic
strata ΩMg(2g − 2)hyp and ΩMg(2d, 2d)hyp to Mg are Hg, they have
dimension 2g − 1.

From now on, S will be a an non hyperelliptic connected component of
ΩMg(k1, . . . , kn).

The strata ΩMg(k1, . . . , kn) with n > g. — Let us remark that if n > g,
then the stratum S′ := ΩMg(k1 + kn, . . . , kn−1) lies in the boundary of
S. So if the dimension of the projection of S is d, the dimension of the
projection of S′ is at least d. This implies that it suffices to prove the
theorem for the strata with at most g − 1 zeros.

From now on, we suppose that n 6 g − 1.

The connected strata ΩMg(k1, . . . , kn). — Let X be the snake curve
from above such that there exists a differential ω on X defined by the
following restrictions.

• For i = 1, let ω|X1 be a differential on X1 with a pole of order k1
at N1,1 and a zero Z1 of order k1.

• For i ∈ {2, . . . , n}, let ω|Xi be a differential such that the divisor is

div (ωi) = kiZi +

∑
j<i

kj − 2(i− 1)

Ni−1,2 −

∑
j6i

kj − 2(i− 1)

Ni,1,
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where Zi ∈ Xi \ {Ni−1,2, Ni,1}.
• For i ∈ {n+ 1, . . . , g − 1}, the differential ω|Xi is the differential
with divisor

div (ωi) = 2(g − i)Ni−1,2 − 2(g − i)Ni,1.

• For i = g, the differential ωg is simply the holomorphic differential
of Xg.

Let us remark that this implies that the points Ni−1,2 must be a 2(g− i)-
torsion of (Xi, Ni,1) for i > n+ 1. Moreover, the differential ω satisfies the
Compatibility Condition (3.2), that is ordNi,1(ω|Xi)+ordNi,2(ω|Xi+1) = −2
for every node Ni,1 ∼ Ni,2. Moreover, the differentials ωXi have no residues,
so according to Theorem 3.17, they form a limit differential ω which can
be smoothed in the stratum ΩMg(k1, . . . , kn).
We now construct a neighbourhood of X of dimension 2g − 2 + n such

that every curve in this neighbourhood possesses a limit differential of type
(k1, . . . , kn).
Let us first give a parametrisation of a small neighbourhood U of X in

Mg (see [1, Chapter 11, Theorem 3.17]). Let (t1, . . . , t3g−3) ∈ ∆3g−3 be
a parametrisation of U such that the coordinates of X are (0, . . . , 0) and
satisfying the following properties.

• The first g variables t1, . . . , tg parametrise the deformations of the
g elliptic curves (X1, N1,1), . . . , (Xg, Ng,1).

• The g − 2 next variables tg+1, . . . , t2g−2 parametrise the deforma-
tions of the nodes N1, . . . , Ng−1. Alternatively, they parametrise the
deformations of (Xi, Ni−1,2, Ni,1) which leave the curve Xi fixed.

• The g− 1 last parameters t2g−1, . . . , t3g−3 parametrise the smooth-
ings of the nodes of X.

Observe that the existence of a limit differential as previously defined
does not depend on the normalisation of the elliptic curves. Therefore,
we can deform the differential ω above the curves of parameter equal to
(t1, . . . , tg, 0, . . . , 0) in such a way that it remains a limit differential of type
(k1, . . . , kn).
Now let us remark that for i ∈ {n+ 1, . . . , g − 1}, the points Ni−1,2

have to be points of 2(g − i)-torsion of (Xi, Ni,1). On the other hand, the
points Ni,2 and Ni+1,1 can move freely on Xi for i ∈ {1, . . . , n}. Hence, this
means that the parameters ti are free for i 6 n and constant for i > n+ 1
for any curve in the projection of the stratum ΩMg(k1, . . . , kn).
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It follows from Theorem 3.17, that the smoothings of the nodes at the
limit differential (X ′, ω′) of parameter (t1, . . . , tg+n−1, 0, . . . , 0) are differ-
entials in S.
Summarising this discussion, we have shown, that every curve with co-

ordinates

(t1, . . . , tg+n−1, 0, . . . , 0, t2g−1, . . . , t3g−3) ⊂ ∆3g−3

has a limit differential in the closure of S. Since this neighbourhood of X
has dimension 2g− 2 +n, this proves Theorem 5.7 in the case of connected
strata.

The non-connected strata. — Next, we deal with the non-connected
strata of ΩMg determined in [21]. The problem of the last argument is that
we do not know a priori in the boundary of which connected component is
the limit differential (X,ω) that we have constructed.
Recall from Definition 4.10 that on a curve of compact type X, a spin

structure is determined by its restrictions on every irreducible component of
X. More precisely, if ω is a limit differential on X with only zeros and poles
of even orders, then the theta characteristic on an irreducible component
Xi of X is OXi

( 1
2 div (ω|Xi)

)
. Moreover, we have shown in Theorem 4.12

that the parity of a spin structure is given by the sum of the parities of
these restrictions and is invariant under deformation.

The components of the strata ΩMg(2, . . . , 2). — We first prove that
the dimension of the image of ΩModd

g (2, . . . , 2) under the forgetful map is
3g−3. The construction of the differential on the snake curve in the case of
connected strata can be performed in the case of the strata ΩMg(2, . . . , 2).
Hence it suffices to show that this differential has odd parity to prove this
case. On the g − 1 first curves X1, . . . , Xg−1, the theta characteristics are
given by the line bundles OXi(Zi − Ni,1). In particular, they have even
parity. On the other hand, the theta characteristic on the curve Xg is OXg ,
which has odd parity. Since the parity of ω is given by the sum of the
parities, it has odd parity.
We now deal with the case of the component ΩMeven

g (2, . . . , 2). Let
us remark that the dimension of the projection of this component is at
most 3g − 4. Indeed, let (X,ω) ∈ ΩMeven

g (2, . . . , 2). Then clearly, ω ∈
H0(X, 1

2 div (ω)). This implies that h0(X, 1
2 div (ω)) > 2. The locus of

curves having such theta characteristic is a divisor ofMg according to [5].
So it remains to show that dim(π(ΩMeven

g (2, . . . , 2))) > 3g − 4. We prove
this by induction on the genus of the curve.
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In genus 3, the even component ΩMeven
3 (2, 2) coincides with the hyper-

elliptic component ΩMhyp
3 (2, 2). So the claim follows from the description

of the hyperelliptic strata.
Let us do the induction step. Let X̃ be generic curve in the image of

ΩMeven
g−1 (2, . . . , 2) under the forgetful map. Let Ñ ∈ X̃ be a generic point

of X̃. Let (X1, N1) be an elliptic curve. We define the genus g curve X by

X := (X̃ ∪X1)/(Ñ ∼ N1).

We now construct a limit differential (X,ω) in the closure of the con-
nected component ΩMeven

g (2, . . . , 2). Let (X̃, ω̃) be a differential in the
connected component ΩMeven

g−1 (2, . . . , 2). Let ω1 be a meromorphic differ-
ential on X1 which has a pole of order 2 at N1 and a zero of order two. The
differential ω is given by the differential ω̃ on X̃ and the differential ω1 on
X1. Since Ñ is a general point, it is not a zero of ω̃. This implies that ω
verifies the compatibility condition (3.2). Hence ω is a limit differential in
the closure of the connected component ΩMeven

g (2, . . . , 2).
The end of the proof is similar to the case of connected strata. We can

parametrise a neighbourhood of X by (t1, . . . , t3g−3) ∈ ∆3g−3 such that
the locus of nodal curves is given by t3g−3 = 0. Only the deformations of
Xg−1 which stay inside the projection of ΩMeven

g−1 (2, . . . , 2) are allowed. The
dimension of such deformations is 3(g−1)−1 by the induction hypothesis.
To conclude, we use a similar deformation-smoothing argument as in the
case of connected strata. We can deform the point of attachment on Xg−1,
the elliptic curve (X1, N1) and the node. Thus we deduce by induction,
that the dimension of the projection of the component ΩMeven

g (2, . . . , 2) is
3g − 4.

The components of ΩMg(2l1, . . . , 2ln) for 2 6 n 6 g− 2 and (2l1, 2l2) 6=
(g− 1, g− 1). — Observe that these strata have only two connected com-
ponents which are determined by the parity of the associated theta char-
acteristics.
Let X be the snake curve defined in the case of connected strata. We

show that we can choose a limit differential in two ways, such that one is in
the boundary of the odd component and the other in the even component
of ΩMg(2l1, . . . , 2ln). Choose a limit differential ω on X, and denote by ω1
its restriction on X1. The divisor of the differential ω1 is div (ω1) = 2l1Z1−
2l1N1,1. So the associated theta characteristic is Lω1 := OX1(l1Z1−l1N1,1).
There are two cases to consider: the first one is when l1 = 2 and the

second one when l1 > 3. If l1 = 2, the theta characteristic Lω1 is odd if
Z1 is a 2-torsion of (X1, N1,1) and even if Z1 is a primitive 4-torsion of
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(X1, N1,1). If li > 3, the theta characteristic Lω1 is even if Z1 is a 2-torsion
point of (X1, N1,1) and odd if Z1 is a primitive l1-torsion of (X1, N1,1).
The parity of ω is the sum of the parities of the restrictions ω|Xi on

every irreducible curve Xi of X. This implies that fixing ω on the g − 1
components Xi for i > 2, we can define a differential ω in the boundary of
both components of ΩMg(2l1, . . . , 2ln) by changing the parity of ω1. The
deformation-smoothing argument of the connected strata now implies the
claim.

The non-hyperelliptic components of ΩMg(g − 1, g − 1). — Since we
have already dealt with the hyperelliptic case, it remains the case of the
other connected component if g is even or the two other components if g is
odd.
Let (Xg−1, ωg−1, Zg−1, Ng−1) be a generic pointed differential inside

ΩMg−1(g− 1, g− 3) and (X1, ω1, Z1, N1) be an elliptic curve with a differ-
ential ω1 with div (ω1) = (g− 1)Z1− (g− 1)N1. Then the pointed differen-
tial (X,ω,Z1, Zg−1) is a limit differential on the boundary of the stratum
ΩMg(g− 1, g− 1). Let us remark that the curve Xg−1 is not hyperelliptic,
because the dimension of the projection of the stratum ΩMg−1(g−1, g−3)
is 2(g − 1) which is strictly larger than the dimension of the hyperelliptic
locus Hg−1. In particular, the limit differential (X,ω,Z1, Zg−1) is not in
the boundary of the hyperelliptic component of these strata. Moreover, if
g− 1 is even, then this pointed differential is either in the boundary of the
even or in the boundary of the odd strata according to the parity of ωg−1.
The conclusion of this case uses the same deformation-smoothing argu-

ment as previously in this proof.

The non-hyperelliptic minimal strata. — The zero of a differential
(X,ω) in the strata ΩMg(2g − 2) is a Weierstraß point. Since there ex-
ists only finitely many Weierstraß points on a curve, the projection from
every component of PΩMg(2g − 2) to Mg is finite. It is known that the
dimension of PΩMg(2g − 2) is 2g − 2, so the dimension of its projection
has dimension 2g − 2 too.
This concludes the proof of Theorem 5.7. �

As a corollary of Theorem 5.7, when Mg is of general type we obtain
the Kodaira dimension of all the strata ΩMg(k1, . . . , kg−1) different from
PΩMeven

g (2, . . . , 2).

Corollary 5.9. — The connected strata PΩMg(k1, . . . , kg−1) and the
connected component PΩModd

g (2, . . . , 2) are of general type for g = 22 and
g > 24.
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Proof. — It has been proved that Mg is of general type for g > 24 by
Harris and Mumford and for g = 22 by Farkas. According to Theorem 5.7
and Theorem 5.4 we have

κ(Mg) 6 κ(PΩMg(k1, . . . , kg−1)) 6 dimPΩMg(k1, . . . , kg−1).

Since the left and the right term of this inequality are equal to 3g − 3, the
inequalities are equalities and the corollary follows. �

Using the subadditivity of the Kodaira dimension (see Theorem 5.2),
we can determine the Kodaira dimension of the strata which impose few
conditions on the differential.

Theorem 5.10. — For any g > 2, let (k1, . . . , kn) be a tuple of positive
numbers of the form (k1, . . . , kl, 1, . . . , 1) with ki > 2 for i 6 l such that

n∑
i=1

ki = 2g − 2 and
l∑
i=1

ki 6 g − 2.

Then the Kodaira dimension of the stratum PΩMg(k1, . . . , kn) is −∞.

The proof makes an essential use of the following space.

Definition 5.11. — Let X be a curve of genus g and i = (i1, . . . , il) ∈
Nl be a l-tuple of positive numbers. The vanishing incidence of order i of
X is

Ii(X) :=
{

((Q1, . . . , Ql), ω) ∈ X l × PH0(X,Ω1
X) : ordQj (ω) > ij

}
.

Proof of Theorem 5.10. — Let X be a generic curve of genus g. We show
that the fibre π−1(X) by the forgetful map π : PΩMg(k1, . . . , kn) → Mg

is connected and has Kodaira dimension −∞. The theorem follows readily
from this fact combined with Theorem 5.2.
Recall that by hypothesis (k1, . . . , kn) is equal to (k1, . . . , kl, 1, . . . , 1),

with ki > 2 for i 6 l. Let us denote k := (k1, . . . , kl) and let r :=
∑l
i=1 ki

be the sum of these orders. We show that the vanishing incidence of order
k is an algebraic fibre space with generic fibre Pg−r−1. Indeed, it follows
from Riemann–Roch that for any l-tuple of points (Z1, . . . , Zl) ∈ X l, the
vector space

H0

(
X,Ω1

X

(
−

l∑
i=1

(kiZi)
))

is of dimension at least g − r. Since X is generic, the space corresponding
to differentials having order exactly ki at Zi and one otherwise is an open
subset of this space. This implies the claim that the vanishing incidence
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variety of order k is an algebraic fibre space with generic fibre isomorphic
to Pg−r−1.
Now, the second projection of the vanishing incidence variety of

order k to Pg−1 is clearly surjective on the closure of π−1(X) inside
PΩMg(k1, . . . , kn). Moreover, this map does not factorise through the first
projection. This implies that the generic fibre of the forgetful map π :
PΩMg(k1, . . . , kn) →Mg is uniruled. Therefore, its Kodaira dimension is
−∞. �

Some other strata. We determine the Kodaira dimension of some other
strata. Let us remark that if Mg is of general type and n > g, it suffices
to determine the Kodaira dimension of a generic fibre of the map from the
stratum S := PΩMg(k1, . . . , kn) to Mg in order to compute the Kodaira
dimension of S. However, this seems to be a quite subtle problem in general.

The strata PΩMg(g − 1, 1, . . . , 1), when Mg is of general type.
According to Theorem 5.7, the generic fibres of the forgetful map

π : PΩMg(g − 1, 1, . . . , 1)→Mg

are curves. Let us determine these curves.

Lemma 5.12. — Let X be a generic curve of genus g > 3. If g > 4, the
closure of the fibre at X by π is a curve isomorphic to X. If g = 3, then the
closure of the fibre at X by π is a singular curve such that X is its stable
model.

The proof uses the vanishing incidence of order g − 1 of X that we
introduce in Definition 5.11. We will use WP(X) to denote the set of
Weierstraß points of an algebraic curve X.
Proof. — Let X be a generic curve inMg. The preimage of X under the

forgetful map π : PΩMg(g − 1, 1, . . . , 1) → Mg is isomorphic to an open
subset of the image of the projection of Ig−1(X \WP(X)) into Pg−1. The
closure of this locus is isomorphic to the projection in Pg−1 of the closure
of Ig−1(X \WP(X)).
Let first X be a generic curve of genus 3. Then the fibre above X of the

forgetful map π : PΩM3(2, 1, 1)→M3 is isomorphic to an open subset U
of X. The closure of U has 24 cusps (at the Weierstraß points of X) and
28 nodes (at the double tangents of order (2, 2)).
Let X be now a generic curve of genus g > 4. The fibre at X under the

forgetful map π : PΩMg(g − 1, 1, . . . , 1) → Mg is an open subset U of
X. The points of X \ U are the Weierstraß points of X together with the
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points Q ∈ X such that there exist ω ∈ H0(X,KX) and R ∈ X such that

div (ω) > (g − 1)Q+ 2R.

The closure of U in Pg−1 is also a curve birationally equivalent to X. �

It follows that the generic fibres of the forgetful map π are of general type.
Therefore, Theorem 5.5 implies that PΩMg(g−1, 1, . . . , 1) is of general type
whenMg is of general type:

Proposition 5.13. — The strata PΩMg(g − 1, 1, . . . , 1) are of general
type for g > 24 or g = 22.

The hyperelliptic strata PΩMg(g − 1, g − 1). We show that the hy-
perelliptic components of the strata PΩMg(g − 1, g − 1) are uniruled.

Proposition 5.14. — The connected component PΩMhyp
g (2d, 2d) is

uniruled for every genus g > 2.

Proof. — The fibre of the morphism PΩMhyp
g (2d, 2d)→ Hg is a projec-

tive line without 2g+2 points (corresponding to the Weierstraß points). So
the closure of the generic fibre is a projective line. The Kodaira dimension
of the component PΩMhyp

g (2d, 2d) follows from Theorem 5.2. �

The even connected component of PΩMg(2, . . . , 2).

Proposition 5.15. — The connected component PΩMeven
g (2, . . . , 2) is

uniruled for every genus g > 2.

Proof. — Let X be a generic curve in the projection of the stratum
PΩMeven

g (2, . . . , 2) and ω an even differential on X. Since X is generic,
we have h0(X, 1

2 div(ω)) = 2. Otherwise we would get h0(X, 1
2 div(ω)) > 4.

The squares of these sections would be differentials inside the closure of
ΩMeven

g (2, . . . , 2), which is clearly discarded by dimensional reasons. In
particular, the fibre of PΩMeven

g (2, . . . , 2)→Mg at X is a projective line.
�

The odd connected component of PΩMg(2, . . . , 2). We show that
the connected components PΩModd

g (2, . . . , 2) are birationally equivalent to
the moduli space of odd spin structures S−g . This allows us to deduce the
Kodaira dimensions of these strata using the work of Farkas and Verra [15].

Proposition 5.16. — There exists a birational morphism

ϕ : PΩModd
g (2, . . . , 2)→ S−g

(X,ω) 7→
(
X,OX

(
1
2 div (ω)

))
.
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Proof. — It is clear that the map ϕ is well defined. To prove the propo-
sition, we construct a birational inverse for ϕ.

Let X be a curve in Mg such that π : PΩModd
g (2, . . . , 2) → Mg has

only finitely many preimages at X and such that it has no differential
in ΩModd

g (2l1, . . . , 2ln) for n 6 g − 2 or in any even component
ΩMeven

g (2l1, . . . , 2ln). Moreover, we suppose that every theta character-
istic L on X satisfies h0(X,L) = 1. According to Theorem 5.7, this set is
an open dense set insideMg. Hence it suffices to give an inverse to ϕ above
this set of curves.
Let (X,L) be an odd theta characteristic on X. It suffices to show that

there exists a unique (g − 1)-tuple (Q1, . . . , Qg−1) such that

2
g−1∑
i=1

Qi ∼ KX , and L ∼ OX

(
g−1∑
i=1

Qi

)
.

The inverse of ϕ would then be given by

ϕ−1(X,L) = (X,ω),

where ω is the differential with divisor div (ω) =
∑

2Qi. Indeed, by hy-
pothesis on X, the differential ω is neither in ΩMeven

g (2l1, . . . , 2ln) nor in
ΩModd

g (2l1, . . . , 2ln) for n 6 g−2. Thus the differential ω is in the stratum
ΩModd

g (2, . . . , 2).
Let us remark that since by definition h0(X,L) > 1, the line bundle L is

effective. Moreover, every effective line bundle of degree g− 1 on X can be
represented by OX (

∑
Qi) for Qi ∈ X. Since by definition L⊗2 = OX(KX)

the divisor 2 (
∑
Qi) is linearly equivalent to KX . And finally h0(X,L) = 1

implies that
∑
Qi is the only effective divisor on X equivalent to L. �

Therefore, we can deduce the Kodaira dimension of these connected com-
ponents from the work of Farkas and Verra (see [15]).

Corollary 5.17. — The component PΩMg(2, . . . , 2)odd is uniruled if
g 6 11 and is of general type for g > 12.

6. Hyperelliptic Minimal Strata PΩMinc
g,1(2g − 2)hyp

The main result of this section is Theorem 6.7, where we relate the
incidence variety compactification PΩMinc

g,1(2g − 2)hyp of the hyperelliptic
minimal strata with the locusWP(Hg) of Weierstraß points of hyperelliptic
curves. We show that the fibres of the forgetful map π from the component
PΩMinc

g,1(2g − 2)hyp to WP(Hg) are projective spaces.
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For sake of concreteness, we describe the hyperelliptic curves with one
node in Theorem 6.4 and the closure of the locus of Weierstraß points of
hyperelliptic curves in Mg,1 in Theorem 6.5. Moreover, we describe the
pointed differentials in the incidence variety compactification of the hy-
perelliptic minimal strata in the most simple cases in Theorem 6.8 and
Theorem 6.9.

Admissible covers. The key tool to study hyperelliptic curves is the
theory of admissible covers. Let us quickly recall its definition and relation-
ship with hyperelliptic curves. For more details see [17, Section 3.G].

Definition 6.1. — Let (B;Q1, . . . , Qn) be a stable n-pointed curve of
arithmetic genus zero and N1, . . . , Nk the nodes of the curve B. An admis-
sible cover of the curve B is a nodal curve X and a regular map π : X → B

such that the following two conditions hold.

(1) The preimage of the smooth locus of B is the smooth locus of X
and the restriction of the map π to this open set is simply branched
over the points Qi and otherwise unramified.

(2) The preimage of the singular locus of B is the singular locus of X
and for every node N of B and every node Ñ of X lying over it,
the two branches of X near Ñ map to the branches of B near N
with the same ramification index.

This notion is well adapted to describe the closure of the loci of k-gonal
curves insideMg.

Definition 6.2. — Let X be a stable curve. We say that X is k-gonal
if and only if it is a limit of smooth k-gonal curves.

The following theorem allows us to characterise the k-gonal curves
(see [17, Theorem 3.160]).

Theorem 6.3. — A stable curve X is k-gonal if and only if there exists
a k-sheeted admissible cover X ′ → B of a stable pointed curve of genus 0
which is stably equivalent to X.

In particular, since the smooth hyperelliptic curves are exactly the
smooth 2-gonal curves, the stable hyperelliptic curves will by given by the
2-sheeted admissible covers.

The hyperelliptic locus Hg in Mg. A hyperelliptic curve with one
node is described in the following theorem.
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Theorem 6.4. — Let X ∈ Hg be a hyperelliptic curve of genus g with
one node.

• If X is irreducible, the normalisation X̃ of X is hyperelliptic and
the preimage of the node is a pair of points conjugated by the
hyperelliptic involution.

• IfX is of compact type, the curveX is given byX1∪X2/(N1 ∼ N2),
where the Xj are hyperelliptic and Nj are Weierstraß points of Xj

respectively.

The Weierstraß locus insideMg,1 is defined by

WP(Mg) := {(X,W ) | W is a Weierstraß point of X} .

The hyperelliptic Weierstraß locus is simply the restriction of this locus
above the hyperelliptic locus ofMg:

WP(Hg) := {(X,W ) ∈ WP(Mg) | X is hyperelliptic} .

We describe now the marked curves in the closure of WP(Hg) which are
generic in δi.

Theorem 6.5. — Let (X,W ) ∈ WP(Hg) ⊂ Mg,1 be a marked curve
in the closure of the hyperelliptic Weierstraß locus, such that X is stably
equivalent to a generic curve in δi. The pair (X,W ) is of one of the following
form.

• The curve X is stably equivalent to a curve in δ0. Then X is either
irreducible and W is in WP(X), or X is the blow-up at the node
of an irreducible curve and W is in the exceptional component.

• The curve X is generic in the divisor δ1 and the point W is one of
the 2g− 1 smooth Weierstraß points of the curve of genus g− 1 (or
a 2-torsion point if g = 2) or a 2-torsion point of the elliptic curve.

• The curve X is generic in the divisor δi for i > 2 and the points W
are smooth Weierstraß points of the irreducible components of X.

These two theorems are consequences of the theory of admissible covers
and in particular, we will use Theorem 6.3 in a crucial way.

Proof of Theorem 6.4 and Theorem 6.5. — Let us first suppose that
1 6 i 6

[
g
2
]
and let X be a hyperelliptic curve in δi as given in the theorem.

By Theorem 6.3, the curve X is stably equivalent to an admissible cover
π : X ′ → B of degree two above a stable marked curve of genus zero
(B;x1, . . . , x2g+2). Let B0 be an irreducible component of B which meets
only one other component and denote X0 := π−1(B0). Let us remark that
there exists such a B0 since B is of compact type. Since (B;x1, . . . , x2g+2)
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is a stable marked curve, at least two marked points lie on B0. Moreover the
cardinality of the preimage of the node is one because otherwise X would
have a nonseparating node. Let us call this point N0. It is a ramification
point of the map to B0, so by Riemann–Hurwitz the curve X0 has genus
at least 1. And since X is generic in δi, the component X0 has genus i
or g − i. We will suppose that X0 has genus i. Then the curve B0 has
2i + 1 marked points and the preimages of these points together with N0
are the Weierstraß points of X0. Now there is at least one other extremal
component and the same argument show that it has genus g − i. This
concludes the proof of both theorems in the case where 1 6 i 6

[
g
2
]
.

The case i = 0 is similar. Let π : X ′ → B be an admissible cover of degree
two stably equivalent to X. This time, for every irreducible component B0
of B which meets one other component of B, the preimage of the node
contains two distinct points. As in the previous case, the curve B has only
two components: one of them contains two marked points and the other
the 2g reminding ones. The curve X is obtained from X ′ by forgetting the
preimage of the projective line which contains only two marked points and
identifying together the two preimages of the node of B. The restriction of
the projection to this second component implies that the two preimages of
the node are conjugated by the hyperelliptic involution.
Since the Weierstraß points are the ramification points of the map to P1,

their limits are the ramification points of the smooth locus of the admissible
cover. �

Let us conclude this paragraph by describing the ramification locus of the
forgetful map π : WP(Hg) → Hg from the hyperelliptic Weierstraß locus
to the hyperelliptic locus. This is a direct application of Theorem 6.5.

Corollary 6.6. — The map π : WP(Hg) → Hg is unramified above
the generic locus of the divisors δi for i > 1. On the other hand, above an
irreducible curve X with k nodes there are 2g − 2 − 2k unramified points
and k ramification points of order two.

The relationship between the hyperelliptic Weierstraß locus
and the hyperelliptic minimal strata. We now describe the incidence
variety compactification of the hyperelliptic minimal strata. We will de-
scribe precisely its relationship with the hyperelliptic Weierstraß locus. Be-
fore that, let us recall that two irreducible components X1 and X2 of X
are polarly related by a differential ω if X1 = X2 or ω has simple poles at
the nodes between X1 and X2.
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Theorem 6.7. — Let (X,Z) ∈ WP(Hg) ⊂ Mg,1 be a pair consist-
ing of a hyperelliptic curve X together with a Weierstraß point Z. Then
there exists a stable differential ω on X, such that for every pointed sta-
ble differential (X,ω′, Z) in PΩMinc

g,1(2g − 2)hyp we have the following two
properties.

• If ω ≡ 0 on an irreducible component Xi, then ω′ ≡ 0 on Xi.
• There exists (α1, . . . , αr) ∈ Pr−1 such that

ω|
X̃i

= αiω
′|
X̃i
,

where
{
X̃i

}
i=1,...,r

is the set of polarly related components of the
differential (X,ω) such that ω|

X̃i
6≡ 0.

In particular, the fibres of the forgetful map

π : PΩMinc
g,1(2g − 2)hyp →WP(Hg)

(X,ω,Z) 7→ (X,Z) .

are isomorphic to Pr−1.

The proof is similar to the one of Proposition 3.20, where we show a
related result for curves of compact type. In fact, since hyperelliptic curves
are covers of degree two above a curve of compact type, many ideas will
work in this case.

Proof. — Let (X,Z) be a hyperelliptic curve together with a Weierstraß
point of X. There exists a family (X ,Z ) of hyperelliptic curves with a
Weierstraß section which converges to (X,Z). Let W be a family of dif-
ferentials on X such that W (t) has a zero of order 2g − 2 at the section
Z (t). It turns out that the limit differential of this family only depends on
(X,Z) as we show in the following.

According to Theorem 6.3, there exists a semistable curve X̄ stably equiv-
alent to X such that π : X̄ → B is an admissible cover of degree two.
Moreover, the point Z is a ramification point of the map π. We will now
define a differential on X̄ unique up to scaling on the components of X̄
such that by contracting the exceptional components we can associate a
limit differential on X.
Since B is of compact type, the set of irreducible components of B which

meet one other component is not empty. Let us denote this set of irreducible
components by Irr1(B). The irreducible components of X̄ which map to
Irr1(B) are denoted by Irr1(X̄). By definition, the irreducible components
in Irr1(X̄) have at most two nodes. If a component has one node, then
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it is a Weierstraß point of this component. Otherwise, the two nodes are
conjugated by the hyperelliptic involution.
Let X1 be an irreducible component of genus g1 in Irr1(X). If X1 is an

exceptional component, then we associate the differential with two simple
poles at the nodes and which is holomorphic outside of the nodes. If X1
is not an exceptional component, there is a unique way (up to scaling) to
associate a differential which can be the restriction of a limit differential
according to these four cases.

(1) If X1 contains the point Z and has a unique node. Then the differ-
ential on X1 is the differential with a zero of order 2g− 2 at Z and
a pole of order 2(g − g1) at the node.

(2) If X1 contains the point Z and has two nodes. Then the differential
on X1 is the differential with a zero of order 2g − 2 at Z and two
poles of order (g − g1) at both nodes.

(3) If X1 does not contain the point Z and has a unique node. Then
the differential on X1 is the differential with a zero of order 2g1− 2
at the node.

(4) If X1 does not contain the point Z and has two nodes. Then the
differential on X1 is the differential with two zeros of order g1 − 1
at both nodes.

Indeed, the only zeros and poles of the differentials are contained in the
marked locus. Moreover, the fact that the differential is anti-invariant under
the hyperelliptic involution implies that the orders of the differentials have
to coincide at a pair of points conjugated by the hyperelliptic involution.
Now we can continue this process in the following way. We remove to the

dual graph ΓB of B the vertices corresponding to Irr1(B) and the edges
pointing to them. This new graph is denoted by Γ1

B . Either Γ1
B is empty

and we have achieved the construction of the differential. Or Γ1
B is a non

empty tree. In this case the set of irreducible components Irr2(B) of B
corresponding to the leafs of Γ1

B is not empty. The irreducible components
of X̄ mapping to the components of Irr2(B) are denoted by Irr2(X̄).
The description of the differential on these components is similar to

the previous one. To be more precise, because of the compatibility con-
dition (3.2), the sum of the degrees of the differentials at the nodes with
the components of Irr1(X̄) is −2. The only other zeros or poles allowed on
an irreducible component are at the marked points and the orders have to
be invariant by the hyperelliptic involution.
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We continue this process and eventually obtain a differential on the curve
X̄. Then we can associate a differential ω̃ on (X,Z) by contracting the
exceptional components of (X̄, Z).
Let us remark that at every pair of points conjugated by the hyperelliptic

involution, the residues of ω̃ at these points are opposite. This has two
consequences. The first one is that nodes corresponding to loops on the
dual graph of X satisfy the residue condition. The second consequence is
that we can multiply the restrictions on the irreducible components of the
form ω̃ by constants in such a way that the residue condition is satisfied at
every node.
Hence we obtain a unique differential up to multiplicative constants on

each polarly related component of (X, ω̃, Z).
To conclude, we obtained a stable differential ω by imposing

ω|
X̃i

= 0

when ω̃|
X̃i

has a meromorphic node of degree greater or equal to 2 in the
polarly component X̃i of (X, ω̃), and otherwise

ω|Xi = ω̃|Xi .

By an argument similar to the one in Proposition 3.21, we can deduce that
there exists a family in ΩMinc

g,1(2g − 2)hyp which has (X,ω,Z) as stable
limit. Moreover, every other stable differential on (X,Z) in the closure of
the connected component ΩMinc

g,1(2g − 2)hyp differs only by multiplicative
constants on the polarly related components of (X,ω). �

For sake of concreteness, let us describe explicitly the stable differen-
tials inside the component ΩMinc

g,1(2g − 2)hyp when the curve has at most
two irreducible components. First we look at differentials such that the
underlying curve is in δi for i > 1.

Theorem 6.8. — Let (X,ω,Z) be a stable differential in the component
PΩMinc

g,1(2g − 2)hyp such that X := X1 ∪ X2/(N1 ∼ N2) is in the divisor
δi. We suppose without loss of generality that Z ∈ X1. Then (X,ω,Z) is
characterised by the following three properties.

(1) The curvesXj are hyperelliptic and the pointsN1 andN2 are Weier-
straß points of X1 and X2 respectively.

(2) The point Z is a Weierstraß point of X1.
(3) The differential ω is identically zero on the component of X that

contains Z and is the holomorphic differential with a zero of order
2g2 − 2 at N2 on X2.
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Now we look at differentials such that the underlying curve is stably
equivalent to a curve in δ0.

Theorem 6.9. — Let X be either an irreducible curve or an irreducible
curve blown up at a node. Then (X,ω,Z) is in the incidence variety com-
pactification of the connected component PΩMhyp

g,1 (2g− 2) if and only if it
is of one of the following two forms.

• The point Z is in the smooth locus of the irreducible curve X and
the differential ω is a section of ωX which vanishes at Z with order
2g + 2.

• The point Z is in the exceptional divisor coming from the blow-up of
a node N1 ∼ N2, and the differential ω vanishes on this component.

We omit the proofs of both theorems. They are relatively similar to the
proof of Theorem 6.7, and the reader can look at the proofs of the main
theorems of Section 7 for similar computations.

7. The Boundary of PΩMinc
3,1(4)odd

In this section, we give a precise description of the geometry of the
pointed differentials which lie in the boundary of the incidence variety com-
pactification of PΩModd

3,1 (4). Since this description depends in an essential
way on the dual graph of the underlying curve, we will restrict ourself to
the most simple cases. We recall that a generic curve in the divisor δi is a
curve in the divisor δi with a single node.
For a generic curve in δ1, the description of the limit differentials in the

boundary of PΩModd
3,1 (4) is given in Theorem 7.2 and the stable differen-

tials in Corollary 7.4. This description implies (see Corollary 7.5) that the
incidence variety compactification of the connected component PΩModd

3,1 (4)
is better than the Deligne–Mumford compactification ΩModd

3 (4).
For a curve stably equivalent to a generic curve in δ0, the description

of the limit differentials in the boundary of PΩModd
3,1 (4) is given in Theo-

rem 7.6 and Theorem 7.7 and the stable differentials in Theorem 7.6 and
in Corollary 7.8. In the first theorem we investigate the case where the
underlying curve is stable, and in the second only semistable.
To conclude, we give two examples of families in ΩMinc

3,1(4). In the first
example, the underlying curve is given by a quartic in the projective plane.
In the second, we deform the polygonal representation of differentials be-
longing to ΩM3(4).
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7.1. The underlying curve is generic in δ1

In order to describe the limit differentials in PΩModd
3,1 (4), let us introduce

the following definition.

Definition 7.1. — Let (X,Q) be an elliptic curve, k > 2 be an integer
and ` be the set of non-trivial divisors of k. The points of X \Q which are
k-torsion but not l-torsion of (X,Q) for any l ∈ ` are primitive k-torsion
of (X,Q).

In this section X will denote a generic curve in δ1 (see the background
paragraph of Section 2) and will be given as the union of a curve X1 of
genus one and a curve X2 of genus two meeting at N1 ∈ X1 and N2 ∈ X2.
We now give a precise description of the limit differentials in the bound-

ary of the connected component ΩMinc
3,1(4)odd such that the projection to

M3 is a generic curve of the divisor δ1.

Theorem 7.2. — Let (X,ω,Z) be a limit differential at the boundary
of the odd component of the stratum ΩM3,1(4). If the curve X is stably-
equivalent to a generic curve in the divisor δ1, then the curve X is a generic
curve in δ1 and (X,ω,Z) is of one of the following two forms.

• The point Z is a primitive 4-torsion point of (X1, N1) and the point
of attachment N2 ∈ X2 is a Weierstraß point of X2. The restriction
of ω|X1 is the meromorphic differential with a zero of order 4 at
Z and a pole of order 4 at N1. The restriction of ω to X2 is the
abelian differential with a zero of order 2 at N2.

• The point Z is not a Weierstraß point of X2 and the pair (Z,N2)
satisfies the relation

(7.1) 4Z − 2N2 ∼ KX2 .

The restriction of ω to X1 is an abelian differential. The restriction
of ω to X2 is the meromorphic differential with a zero of order 4 at
Z and a pole of order 2 at N2.

The main tools of the proof consist of the theory of limit differentials
and the spin structure on stable curves.

Proof. — SinceX is stably-equivalent to a generic curve in δ1, the marked
curve (X,Z) must be of one of the following three forms, where the genus
of Xi is i.
The third case does not occur according to Corollary 3.11.
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X1 X2

Z

X1 X2

Z

X1

P1

X2

Z

Let us remark that since ω|Xi has at most one pole, this pole cannot
have a residue. Therefore, the limit differentials on the curve X are charac-
terised in Theorem 3.17. In the case at hand, observe that the only relevant
condition of Theorem 3.17 is the Compatibility Condition (3.2)

ordN1(ω) + ordN2(ω) = −2,

at the node of X.
Let us now treat the case where Z ∈ X1. Since Z is a limit differential in

the boundary of ΩMinc
3,1(4) the restriction of ω to X1 has a zero of order 4

at Z and a pole of the same order at N1. It follows from the Compatibility
Condition (3.2) that the order of ω|X2 at N2 is 2. Thus N2 is a Weierstraß
point of X2.
It remains to show that Z is a primitive 4-torsion point of (X1, N1). By

the continuity of the parity of the spin structure (see Theorem 4.12) the
parity of the spin structure associated to ω has to be odd. But since the
parity of ω|X2 is odd, the parity of ω|X1 is even. We conclude the first case
by observing that for a 4-torsion Z, we have h0(X1,OX1(2Z − 2N1)) = 0
if Z is primitive and h0(X1,OX1(2Z − 2N1)) = 1 otherwise.

The case where Z ∈ X2 is very similar, hence we do not write every
detail. Since ω has a zero of order 4 at Z, it has to have a pole of order 2
at N2. Therefore the points Z and N2 satisfy Equation (7.1).
Let us now show that the point Z cannot be a Weierstraß point. First

let us remark that in this case, the point N2 would be a Weierstraß point
too. Indeed Equation (7.1) would be equivalent to

2Z ∼ 2N2 ∼ KX2 ,

which clearly implies that N2 is a Weierstraß point. Now the claim fol-
lows again from the continuity of spin structures. Since in this case the
restriction of ω to X1 is odd, the restriction ω|X2 has to be even. Since
the associated theta characteristic on X2 is OX2(2Z −N2), it would have
exactly one section if Z (and therefore N2) were a Weierstraß point, con-
tradicting Theorem 4.12. �

Remark 7.3. — An interesting fact is that there are only a finite number
of points in X1 which are in the closure of the zero of order 4 of ΩMinc

3,1(4).
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This has to be compared with [17, Theorem 5.45] which tells us that when
N2 is a Weierstraß point, then every point of X1 is in the closure of the
Weierstraß locus.

We can characterise the pointed differentials in this case from Theo-
rem 7.2 and Proposition 3.21.

Corollary 7.4. — Let (X,ω,Z) be a stable pointed differential in
ΩMinc

3,1(4)odd. If the curve X is stably-equivalent to a generic curve in the
divisor δ1, then X is a stable curve in δ1 and (X,ω,Z) is of one of the
following two forms.

• The point Z is a primitive 4-torsion point of (X1, N1) and N2 is a
Weierstraß point of X2. The restriction of ω to X1 vanishes iden-
tically. The restriction of ω to X2 is the abelian differential with a
zero of order 2 at N2.

• The point Z is not a Weierstraß point of X2 and the pair (Z,N2)
satisfies the relation 4Z − 2N2 ∼ KX2 . The restriction of ω to X1
is a holomorphic differential. The restriction of ω to X2 vanishes
identically.

These properties illustrate that the incidence variety compactification of
the connected component ΩModd

3 (4) is better than its Deligne–Mumford
compactification.

Corollary 7.5. — Let X be a generic curve in δ1 such that the nodal
point of the curve of genus two is a Weierstraß point. Let (X,ω) be a
differential in ΩM3(4) where ω is of one of the following two kinds.

(1) The restriction of ω is identically zero on X1 and is a holomorphic
differential with a zero of order two at N2 on X2.

(2) The restriction of ω is identically zero on X2 and is holomorphic
on X1.

Then the stable differential (X,ω) lies in the boundary of both connected
components of the minimal strata in ΩM3. However, the closure of the
two connected components of ΩMinc

3,1(4) are disjoint over the generic locus
of δ1.

This corollary follows readily from Theorem 7.2 and the description of
the boundary of the closure of the hyperelliptic minimal strata as given in
Theorem 6.7.
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7.2. The underlying curve is generic in δ0

In this section we denote a generic curve in δ0 by X̃/(N1 ∼ N2), where
X̃ is a smooth curve of genus two and N1, N2 are distinct points of X̃.

The following two theorems give the description of the limit differentials
which lie in the incidence variety compactification PΩMinc

3,1(4)odd when the
underlying curve is generic in δ0.
First we give the case where the zero of the differential lies in the smooth

part. Observe that in this case the limit differentials in the closure of
ΩMinc

3,1(4)odd coincide with the stable differentials in ΩMinc
3,1(4)odd. In the

following theorem, we denote by X the curve X̃/(N1 ∼ N2).

Theorem 7.6. — Let Z be a non Weierstraß point of X̃. There exists
a unique pair of distinct points (N1, N2) ∈ X̃2 and a unique (up to a scalar
multiplication) differential ω inH0(X,ωX) with a zero of order 4 at Z and a
simple pole at N1 and N2 such that the triple (X,ω,Z) is in PΩMinc

3,1(4)odd.
The set of triples

C :=
{

(N1, N2, Z) : (X,Z) ∈ π
(

ΩMinc
3,1(4)odd

)}
is a curve in X̃3. Moreover, for a given pair among the three points N1, N2
and Z from the curve C, there exists exactly one point of X̃ such that the
triple lies in C.

Now we describe the case where the zero of the differential lies on a
bridge joining the two points of the node.

Theorem 7.7. — Let (X,ω,Z) be a limit differential at the boundary
of the stratum ΩModd

3,1 (4) such that X is the union of a smooth curve X̃
of genus two and a projective line P1 which meet at two distinct points N1
and N2. Then the point Z is in the projective line P1, and (X,ω,Z) is of
one of the following two forms.

• The restriction of ω on P1 has a zero of order 4 at Z, a pole of
order 4 at N1 and a pole of order 2 at N2. The restriction of ω to
X̃ is an holomorphic differential with a zero of order two at N1. In
particular, N1 is a Weierstraß point of X̃.

• The restriction of ω on P1 has a zero of order 4 at Z and two poles
of order 3 at N1 and N2. The restriction of ω to X̃ is a holomorphic
differential with two simple zeros at N1 and N2. In particular, N1
and N2 are conjugated by the hyperelliptic involution of X̃.

We can easily deduce the form of the pointed differentials in this case
from Theorem 7.7 and Proposition 3.21.
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Corollary 7.8. — Let (X,ω,Z) be a stable differential in ΩMinc
3,1(4)odd

such that the curve X is the union of a smooth curve X̃ of genus two and
a projective line P1 which meet at two distinct points N1 and N2. Then
the point Z is in the projective line P1. The restriction of ω on P1 vanishes
everywhere. Either N1 is a Weierstraß point of X̃ and the restriction of ω
to X̃ is an holomorphic differential with a zero of order two at N1 or the
points N1 and N2 are conjugated by the hyperelliptic involution of X̃ and
the restriction of ω to X̃ is a holomorphic differential with two simple zeros
at N1 and N2.

The proofs of Theorem 7.6 and Theorem 7.7 are relatively similar. In
particular, the main steps will be the following. The first one is to determine
all the possible candidates as triples at the boundary. Then we show that we
can smooth them using the plumbing cylinder construction of Section 3.
The last step consists of determining the cases such that the smoothing
occurs in the odd component and the ones where the smoothing occurs in
the hyperelliptic one.

Proof of Theorem 7.6. — Let (X,Z) be an irreducible marked curve of
genus two. Then the pointed differentials (X,ω,Z) which could appear in
the boundary of the stratum PΩMinc

3,1(4) are stable differentials ω with a
zero of order 4 at Z and poles at the nodes of X.

We now suppose that Z is not a Weierstraß point of X̃. We show that
there exists a pair (N1, N2) on X̃ such that h0(K

X̃
+N1 +N2−4Z) = 1 and

moreover that this pair is unique. Since Z is not a Weierstraß point of X̃,
the divisor 4Z −K

X̃
is not canonical. Indeed, this would be equivalent to

the fact that 2(Z − ιZ) is principal, where ι is the hyperelliptic involution.
But this would give the existence of a function with a pole of order two
at Z, contradicting the fact that Z is not a Weierstraß point. Now let
us consider the locus E inside X̃(2) consisting of pairs (Q, ιQ). Then the
Jacobian J (X̃) of X̃ is the quotient of X̃(2) after identifying all points of
E (see [23, p. 52]). And since 4Z −K

X̃
is not canonical, this implies that

for each point Z /∈ WP there is a unique pair (N1, N2) such that

O
X̃

(K
X̃

+N1 +N2 − 4Z) = O
X̃
.

It remains to show that the projection of the set of triples (N1, N2, Z)
to the first coordinate is finite. Since X̃ is a curve, it is enough to show
that there are no pairs (Q1, Q2) ∈ X̃ such that for an open set of Q ∈ X̃
the equality K

X̃
+ Q1 + Q2 − 4Q ∼ 0 holds. But this is clearly the case,

because the map of X̃ → J (X̃) is nondegenerate and the pairs are never
conjugated by the hyperelliptic involution.
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Now applying the plumbing cylinder construction (see Theorem 3.17), we
can smooth every of these differentials, preserving the zero of order four.
Moreover, the curves that we obtain are clearly not hyperelliptic since the
special fibre is not hyperelliptic.

Suppose now that Z is a Weierstraß point of X̃. We have to show that
every smoothing of such a curve which preserves the zero of order 4 is
hyperelliptic. An analogous argument using the Riemann–Roch Theorem
implies that the points N1 and N2 are conjugated by the hyperelliptic
involution. But then the continuity of the parity of the generalised Arf
invariant proved in Theorem 4.19 concludes the proof. �

We now prove Theorem 7.7 following a similar scheme.

Proof of Theorem 7.7. — First we prove that it is necessary that the
differentials are of the form given in Theorem 7.7.
It is clear that the point Z is on the bridge between N1 and N2 since

otherwise (X,Z) would not be stable. Moreover, the points which form
the node are conjugated by the hyperelliptic involution or one of them
is a Weierstraß point. Otherwise, the differential would have a zero at a
smooth point of X̃. But this zero would be preserved by any deformation,
contradicting the fact that the differential is in the boundary of PΩM3,1(4)
and that Z /∈ X̃.
Let us suppose that we are in the first case: the restriction of ω to X̃ has

a zero of order two at N1. Let us take a coordinate z on P1 such that 0 is
identified toN2 and∞ toN1. The restriction of ω to P1 is given by (z−1)4

z2 dz.
We want to use the plumbing cylinder construction with parameters (ε1, ε2)
at the nodes. By Lemma 3.8, they have to satisfy ε1 = ε32 =: c. We can
find a differential η on X̃ with simple poles at N1 and N2 and holomorphic
otherwise. Remark that we can multiply η in order that the residus of η and
ω|P1 sum up to zero. Since the differential ω|

X̃
has no zeros on the smooth

locus, the condition on the order of η at every point is trivialy satisfied.
Hence we can apply Lemma 3.19 to plumb the differential and obtain an

holomorphic differential with a zero of order 4. Moreover, this differential
is not hyperelliptic since the special fibre is not hyperelliptic. This proves
the first point.
Let us now suppose that the differential has a simple zero at both N1

and N2. We can still use Lemma 3.19 to plumb this differential. But this
time, there are two distinct ways (up to isomorphisms) to plumb the nodes.
Let ε1 be the parameter of the cylinder at the node N1, then according to
Lemma 3.8, the parameter of the cylinder at N2 has to be of the form
ε2 = ±ε1. To conclude the proof, it suffices to show that the case ε1 = ε2
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leads to a hyperelliptic curve and that the case ε1 = −ε2 leads to a non
hyperelliptic curve.
The hyperelliptic involution ι on X restricts to the hyperelliptic involu-

tion on X̃ and to the involution which fixes Z and permutes N1 and N2
on the component P1. Hence we can suppose that there exist two open
neighbourhoods Wi = Ui ∪ Vi of Ni and coordinates u1, v1 on W1 and u2,
v2 on W2 such that ι(ui) = uj and ι(vi) = vj for i 6= j.
We can suppose that the cylinder given by the plumbing of N1 is given

by the equation x1y1 = ε1 and the cylinder at N2 by x2y2 = ±ε1. Then on
the cylinders, the hyperelliptic involution has to be of the form ι(x1) = x2
and ι(y1) = ±y2 in order to coincide with the hyperelliptic involution on
the part of the smoothed curve coming from X̃. But it is easy to verify that
this map can be prolonged to a holomorphic map on the whole smoothed
curve if and only if the sign is positive. Moreover, in this case one can easily
verify that this map is the hyperelliptic involution of the smoothed curve.
And in the other case, the uniqueness of the hyperelliptic involution implies
that the smoothed curve cannot be hyperelliptic. �

We can deduce from Theorem 7.7 the surprising fact that the odd and
hyperelliptic components of the incidence variety compactifications of
PΩM3,1(4) meet at their boundaries.

Corollary 7.9. — Let X be the union of a curve X̃ of genus two and
a projective line glued together at a pair of points of X̃ conjugated by the
hyperelliptic involution. Let Z ∈ P1 and ω be a differential which vanishes
on P1 and has two simple zeros at the points which form the nodes on X̃.
Then the pointed differential (X,ω,Z) is in ΩMinc

3,1(4)hyp and ΩMinc
3,1(4)odd.

Examples. We give two examples of concrete families in ΩModd
3,1 (4)

which degenerates to a curve stably equivalent to an irreducible curve with
one node. The first one is given as family of curves in P2 with a hyperflex.
The second is a family of flat surfaces given as a family of polygons with
identifications.

Example 7.10. — We define in P2 ×∆ the family of curves given by:

P (x, y, z; t) := xyz2 + y4 + x3z + tz4.

Each curve has a hyperflex of order 4 at (1, 0, 0; t), thus the differential
corresponding to the line at infinity has a zero of order 4 at this point. The
special curve is irreducible with only one node as singularity. Moreover the
differential associated to the tangent has a simple pole at the node. Now
the Weierstraß form of the normalisation is y2 + 4x5− 1 and the preimages
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of the node are over x = 0 and x = ∞. In particular, the point which is
over x =∞ is a Weierstraß point. We can show that the Igusa invariant of
this curve is zero.
More generally, let us consider the family{
xyz2 + y4 + a1x

3z + a2x
2yz + a3xy

2z + a4y
3z + tz4 = 0

}
⊂ P2 × {t},

where the ai, i = 1, . . . , 4 are complex numbers. This gives us examples
where the special curve has any given Igusa invariants.
Let us now take a look at the family given by the equation

P (x, y, z; t) := x2yz + y4 − x3z + tz4.

Moreover, the differential associated to the line at infinity has a zero of
order 4 at (1, 0, 0; t). The singularity of the special curve is a cusp meeting a
smooth branch. It follows from the classification of Kang [20, Corollary 2.5]
and the fact that the family is smooth, that the stable limit of this family
is an irreducible curve with one node. The limit of the zeros of order 4 is in
the node. The limit stable differential has a zero of order two at one of the
preimages of the node, which is also a Weierstraß point. In this example,
the other preimage of the node is a Weierstrass point of the normalisation.

Let us now give examples using the polygonal representation of the flat
surfaces. Since a complete classification of the cylinder decompositions of
flat surfaces in PΩM3,1(4) was first given in [22, Appendix C] by S. Lelièvre
(see [2, Proposition 3.1] too), these examples could lead to another proof
of Theorem 7.7 using degeneration of these diagrams.

Example 7.11. — First we give in Figure 7.1 an example of a curve such
that a zero of order two is identified with another point of the curve. In
this figure and in the following one, the vertical segments are identified
by a horizontal translation. In this example, it is not difficult to see that
the second point which forms the node is a Weierstraß point of the curve.
However, it is not difficult to construct examples where this point is not a
Weierstraß point.
More interesting is the case where the special curve is irreducible and the

nodal points are conjugated by the hyperelliptic involution. In this case,
we can produce a smoothing in both connected components of ΩM3,1(4).
The Figure 7.2 shows such a smoothing. One can easily verify that the
smoothing are in the correct stratum using the Arf invariant of these curves.
A consequence of this is that the Arf Invariant of the nodal curve depends
on the choice of a basis of the homology.
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Figure 7.1. A family of curves in ΩM3(4) degenerating to an irre-
ducible curve with one of the points of the node a Weierstraß point
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Figure 7.2. Two smoothings of an irreducible curve with a node of
conjugated points, one of them in ΩModd

3,1 (4) and the other in
ΩMhyp

3,1 (4)
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