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Abstract

In [3], four quantum dilogarithm identities containing infinitely many factors are pro-
posed as wall-crossing formula for refined BPS invariant. We give algebraic proof of these
identities using the formula for universal R-matrix of quantum affine algebra developed
by K. Ito [6], which yields various product presentation of universal R-matrix by choos-
ing various convex orders on affine root system. By the uniqueness of universal R-matrix
and appropriate degeneration, we can construct various quantum dilogarithm identities
including the ones proposed in [3], which turn out to correspond to convex orders of
multiple row type.
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§1. Introduction

Dimofte, Gukov, and Soibelman proposed four remarkable identities with respect
to quantum dilogarithm functions as the wall-crossing formulas for the refined BPS
invariants, which they proposed in the study of type II string theory [2]. In [2],
it is observed that the refined BPS invariants has very similar wall-crossing be-
havior to that of motivic Donaldson-Thomas invariants introduced by Kontsevich
and Soibelman [I0], and it is conjectured that the two invariants coincide under
appropriate identification of variables.
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Let g, 21, x5 be indeterminate satisfying the relations qr; = z1q, qre = z2g,
129 = ¢2xax1, and let

e 1 —n n
(11) ]E(.’L') = H m, Um,n = E(q nnx;nxz)-
k=0

Then the identities they found are written down as following [3]. Note that the
parameter ¢ in this paper corresponds to ¢'/2 in 3.
(1.2) Uy 1Ug1 = (Up,1Uz,1 Uy . ..)
x B(—gqa?) 'E(—g " 'a}) !
X (... Ug,-1Uy,1Uz ),
(1.3) Ui,-1U19Up1 = (Up1U1,1 U1 U341 ...)
x Ui oE(—qa) "E(—¢~2]) ™!
x (... U;3,_1Ug 1 U5 1),
(1~4) Ui—lUg,l = (U(Q),lU%,lUg,legm .- )
x UY gE(—qai) 'E(—¢'ai) ™!
x (. -~U§,—1Ug,—1Ui—1)7
(1.5) Uy ,Ug, = (Ug,Up2U7 U3 U5 )
x UY oE(—gqaf) ' E(—¢~'2})™!
x (... U3 _1Us 52U} _1U; _s).

The function E(z) is called quantum dilogarithm since

&0 n
(1.6) E(z) = exp (Liz’q2 (—qa:)) , Lig(z) = T; ﬁ
and (1 — ¢)Lis 4(x) degenerates to classical dilogarithm by ¢ — 1.

These identities, however, are derived by physical insight, and mathematically
rigorous proofs for them have not been given. In this paper, we develop algebraic
construction of these identities, which eventually yields mathematical proof of
them as equalities of skew formal power series.

In [9], Kashaev and Nakanishi established systematic construction of quantum
dilogarithm identities from periods of quantum cluster algebras. Their identities,
however, involve only finitely many factors, while the four identities , ,
, contain infinite product. Thus, these identities belong to essentially
new class of quantum dilogarithm identities.

On the other hand, K. Tto constructed the product formulas for the (quasi-)
universal R-matrix of quantum affine algebra, which correspond to convex orders
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on affine root system [6]. In the formulas, the factors corresponding to real roots
are g-exponential function, which is in fact written as exp,(z) = E((¢ — ¢~ ")z).
The resemblance between the wall-crossing formulas and product formulas for the
universal R-matrix implies existence of connection between wall-crossing formulas
and quantum groups.

By this observation, we develop systematic construction of quantum dilog-
arithm identities containing infinite product, using the product formula for the
universal R-matrix. As a result, we show that all four identities Dimofte et al.
found can be derived algebraically by our method. In section [2| we review gen-
eral construction of convex orders on affine root systems, concrete construction of
PBW type bases for the positive part U;’ of quantum affine algebra U,(g) using
convex order, and the explicit product formula for the quasi-universal R-matrix of
Uq(a)-

In section [4] we show how to construct quantum dilogarithm identities using
quasi-universal R-matrix © of U,(g). By virtue of the uniqueness of ©, we can
equate all the product presentations of © associated with convex orders. Thus
we have infinite product identities whose parts corresponding to real roots are
g-exponential function of root vectors. Next, we construct continuous projection
of the completed quantum double algebra Uq+ @Uq’ , which contains ©, onto skew
formal power series algebra Dg associated with affine Dynkin quiver @). By this
projection, some root vectors vanish and thus their g-exponential become 1 in the
image. If one choose appropriate convex order and Dynkin quiver (), one can make
infinitely many root vectors not to vanish for the convex order, while only finitely
many root vectors alive in the image for reversed convex order. Eventually one
can obtain various quantum dilogarithm identities of the form “finite product =
infinite product”.

To obtain concrete identities, we have to compute the root vectors explicitly to
determine whether they vanish by the projection. In section [3] we show that every
root vector can be written as “g-commutator monomial”, which is finite applica-
tion of g-bracket on the Chevalley generators. We also developed combinatorial
algorithm for the computation of root vectors, which enable us to obtain concrete
presentations of root vectors as g-commutator monomials. The computation is
done as manipulations of binary trees.

We concretely found appropriate convex orders and Dynkin quivers which
produce identical identities with to , which will be explicitly presented
in section [5| It is remarkable that the factor of © correspond to imaginary roots
becomes g-exponential function by the projection, in spite of the factor itself is not
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g-exponential function. We also note that the convex orders correspond to (|1.3)),
(1.4), and (1.5 are of multiple row type, which was newly found by Ito [4].

§2. Product formula for the universal R-matrix of quantum affine
algebras

First we summarize Ito’s works [4] [6] which provide explicit product presentations
of the (quasi-) universal R-matrix of quantum affine algebras.

§2.1. Quantum algebra U,(g)

To begin with, we recall quantum enveloping algebra Uy (g) corresponding to sym-
metrizable Kac-Moody algebra g of rank £ + 1, where ¢ is an indeterminate (thus

we work on generic case). We use

ei, fi €9:
hCg:

a; €h:

a; €h*

s; € End(h*) :
AcCh®

W = (s0,81,---,8¢)
Ay CA:
A_CA:
A C A
A= A\ AT

following notations as in [§].

Chevalley generators,
Cartan subalgebra,

simple coroots,

: simple roots,

(i=0,1,...,0),

simple reflections

: set of all roots,

: Weyl group,

set of all positive roots,
set of all negative roots,
set of all real roots,

set of all imaginary roots.

We also use the symbol Ry := RN AL for every R C A.
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Definition 2.1. The quantum enveloping algebra U,(g) is the associative Q(g)-
algebra defined by following generators and relations:

(2.1) Generators : E;, F;, K\ (i =0,1,...,¢; A € P).

(2.2) Relations : KxK,, = Ky, Ko=1,
(2.3) K\E; K ' = ¢ME;, K\FK,'=q¢MF,
K;— K
(2.4) (B, Fj] = 6;j———— (i=0,1,...4 \,u € P);
qi — g,
T l-a
— W4y l—a;;—k
(25) S v ] B Emt
k=0 qi
1_aij 1
— QAjj —a;;—k . .
2.6 S ] BT tER =0 20,
k=0 qi

where (-, -) is the invariant bilinear form on h*,

P:={Xeb* | (a, ) €Z(Vi=0,1,...,0)}

n

is the weight lattice, and let a;; := 2((;,/"5")) € Z, q := g2l [n]g = q;‘:qq; ,

ot i= [1g[2lq - [na], [1], = g € Zla,a ')

It is well-known that U,(g) becomes a Hopf algebra with following coalgebra
structure (Uy(g), A, e) and antipode S.

AE)=E®1+K ®FE, AF)=FK '+1aF,
A(K)\) = K\ ® K, E(El) =0, E(Fl) =0, E(K,\) =1,
S(E;) ==K 'E;, S(F;):=-FK; S(K)):=K"
A :Uy(g) = Uy(g) @U,y(g) and € : Uy(g) — Q(g) are uniquely extended as algebra
homomorphisms, and S : U,(g) — U,(g) is also extended as an anti-automorphism.

Several subalgebras of U, (g) generated by standard generators are defined as
usual:

Uf ==(Eo,E1,....E;), U)=(K\x|X€P), Uj:=(Fy,F,....F).
Then we have triangular decomposition of Uy,(g) [11], 3.2.5].
(2.7) U;®U§®U;§Uq(g), TRY®z— TYZ.

Let Uy, == {x € Uy(g) | KoK ' =qMWz (VA € P) } be the weight space of
weight € P. For convenience, let V, := V N U, for every subspace V C U,(g).
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Then we also have the weight space decomposition

14

(2.8) Uqs(g) = @ U, (Q:= @Zai C P : root lattice),

neQ i=0

and U,(g) becomes a Q-graded algebra. Using this gradation, we introduce g¢-
bracket [-,],, which is defined on each weight spaces as follows:

(2.9) [z,y]q := 2y — ¢P )y (v eQ;zeUy,yel,).
§2.2. Convex orders on affine root system

Next, we introduce the definition and classification of convex orders on the set of
positive roots [4]. We also prepare a number of notations on affine root systems.

Definition 2.2. [0, Definition 3.3] A total order < on a set of positive roots
B C A, is called convex if it satisfies the following two conditions.

(1) For any pair of positive real roots 5,y € BNA'f satisfying 8 < v and S+ € B,
the order relation 8 < 8+ v < v holds.

(2) If e B,ye AL\ Band f+ v € B, then § < 8+1.
Example 2.3. Set g = 5/@ Then the following order on A is convex.

d—a1 <20—a1 <30 —a1 < ...
(2.10) <o<20<36<...
<20+ <0+ ap < ag.

Here § := ag + a4 is null root.

When g is of untwisted affine type, convex orders on A, are already clas-
sified by Ito [4]. To describe convex orders in general, we have to introduce a
numerous amount of symbols on affine root systems. In the rest of this section,
we restrict g to be an untwisted affine Lie algebra of type X él), where X is one
of A,B,C,D,E,F,G and / is a positive integer. We assign indices 0,1, ..., ¢ for
each vertex of the Dynkin diagram corresponds to g as in [7] so that the full
subdiagram without the vertex 0 is of finite X, type.

First, let [ := {1,2,...,¢} be the set of indices other than 0, and g C g be the
Lie subalgebra generated by { €i, fir Qi

iel } Then g is isomorphic to the simple
Lie algebra of type X, due to our assignment of indices, and f) = @ief Ca; CH
is a Cartan subalgebra of g. Let A C b* be the set of all roots of g, and W =

si|1€ I> C W be the finite Weyl group.
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Associated to each J C I, we introduce several symbols below [4].
Iy :={a;|jeJycCh’, Wy=(s;|jeJ)cW,
W’ ::{wGW w(aj)€A+(Vj€J)},
Ay V() A= A\A, AL —ATNA,
A (w, %) = {m5+5 m € Zx>o, szAi}ﬂAJr (we W),

Aj(w,+) ::{m5+e meZzo,eEwAJi}ﬁAJr (we W),

where § € A is the null root. For every symbol X; (resp. X”), we omit the
subscript (resp. superscript) J and write X := X (resp. X := X7) when J = I
(resp. J = (). Notice that X” = X; = X for every symbols introduced above.

Since every proper full subdiagram of affine Dynkin diagram is finite direct
sum of diagrams of finite type [8], so is root subsystem A ;. Thus we have the
partition J = ] Je, where C is the set of connected components of Dynkin
diagram of A and J, C J is the set of vertices belong to connected component
c € C. Each component A J, is irreducible root system of finite type, so that there
exists unique highest root 6, € A Tt

Moreover, several symbols are defined for each connected component J. as
follows.

HJC::ﬁJCH{(S—aJC}, HJZZHHJC,
ceC
Sjpi={sal|lacll}, W;:=(5)CW,
Af]e = WJ(HJ), AJ = Af]eHAim.
Furthermore, we associate each y € W; with a set of positive roots ®;(y) :=
yAj_ N A 4. Also we set

V(J, u, y) = AJ(“& 7) il U(I)J(y)

for each u € W. These infinite sets of positive real roots V(J, u, y) have biconvex
property and play crucial role in the classification of convex orders [4].

We also need to introduce a decomposition of elements of Weyl group defined
by the next lemma.

Lemma 2.4. For every w € W, there exists unique decomposition w = w'wy,
where w’! € W7, w; € Wj.

By definition of W, each w € W, can be written as a finite product of
elements in S;. An expression w = tits...t, (t; € S;) is called reduced if the
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number m is smallest among all the expressions of w as finite product of elements
in Sy, and the smallest number m is called length of w. Let ¢;(w) denote the
length of w. An infinite sequence of elements w1, usg,...in Sy is called infinite
reduced word when £;(ujus ... u,,) = m for all positive integer m. The set of
all infinite reduced words is denoted by #7°, and the k-th factor of s € #;° is
denoted by s(k) € S;. We also use a function on positive integers ¢s : Z>1 — Ay
defined by ¢s(k) := s(1)s(2)...s(k — 1)(Bx), where i € II; is the positive root
correspond to s(k) = sg, € Sy. Note that

Dy (5(1)8(2)..5 (k) = {65 (1), 06 (2) ..., s ()} (K € Z1),
We associate each s € #7° with a infinite set of positive roots
®y(s) :=={os (k)| kE€Zx1}.

Now, we can state the general description of convex orders. To begin with, we
pick an element w € W. Then we have the decomposition

(2.11) Ay = A(w, =) LAY T A(w, +).

Note that A(w,+) = A(ww,,—) with the longest element w, € W, since w,
reverses the sign of every root in A. Thus the set of positive real roots consists
of two sets of the form A(w,—). We will construct convex orders on A(w, —) and
connect them to construct whole order.

Convex orders on A(w, —) are constructed by the following procedure.

(1) Select a positive integer n and a filtration of indices
I:J02J12J22~--2Jn=(0.

(2) Select elements y; € Wy,, y2 € Wy, ..., yp, € W, and infinite reduced words
Sp € W};", s1 € W50, ..., sn—1 € WF° | satisfying the conditions below.

(2.12) 0= V(Jo,w”, 1w) S V(Ji,w" y1) S
: ; V(Jnqu7layn) = A(w7 _)7

(2.13) V(Ji,w” y) = V(Jimg,w = yim) Hw’ =y 1 @5, (si-1)
(i=1,2,....n).
(3) Then every root a € A(w, —) can be uniquely written as

(2.14) a=w "y b, (p) (1<k<n,p€cZs).
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Using this expression we define a total order < on A(w,—) by

(2.15)  w”*typ g (ds,, (p) < w'tyy (b5, (0))
(gg(k<l)or(k:lapSQ) (kalapaqezzlakalgn)
Then < is well-ordered and its ordinal number is nw, so that this well-order
< is called n-low type.

Using this procedure, we construct two convex orders <_, <, on A(w,—),
A(w, +) = A(ww,, —) respectively. The parameters used in the procedure can be
chosen independently between <_ and <,. We also set a total order <g on Ai_ﬁn
arbitrarily. Then we define a total order < on whole A, as follows.

a€Aw,—), BEAT, yeAlw,+) = a< <7

o< Ea< o (nadeA(w-); B<FEB<H (8.5 €A
def
T<HYEY <4y (1Y €Aw,+)).
Notice that <, needs to be reversed, and therefore whole < is not well-ordered.

Theorem 2.5. [J, Theorem 7.9, Corollary 7.10] The total order < on Ay con-
structed above is convex, and any convexr order on Ay can be constructed by the
above procedure.

§2.3. Convex bases of Uq+ constructed by convex orders

When g is of finite type, it is known that Uq+ has canonical bases, which can be
described concretely by using braid group action on Ug,(g) and correspond to each
reduced expressions of longest element w, of Weyl group W [I1]. In the affine type
case, however, a couple of difficulties arise to construct basis of U{;r due to the
absence of longest element of W and the existence of imaginary roots. These prob-
lems are solved by constructing certain elements correspond to imaginary roots,
using extended braid group action on U,(g), which is proposed by Beck [I]. Then
Tto generalized this construction to general convex orders [6]. In this subsection,
we summarize the construction of PBW type bases of U; from convex orders.
We first introduce the notion of convex basis, which is a PBW type basis with
convexity property.

Definition 2.6. Let U be a Q(qg)-algebra, A C U be a subset, and < be a total
order on A. For every subset ¥ C A, the set of increasing monomials consist of the
elements in ¥ is denoted by

g<(2) = {E/\1E)\2 ...E)\

E\, €%, E\, <E),,<---<E,, }CU.

m
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We call a subset I C A interval if I = A, or I coincide with one of (z,x),

[z,%), (x9), (9], (2,9), [2,9), (z,y], [2,y] for some z,y € A, where (z,%) :=
{AeA|z< A}, [zy) ={ AeA|xz< A<y} and so on.

&< () is called convex basis of U if it has following properties:
(1) &<(A) is a basis of U as Q(g)-linear space.

(2) For every interval I C A with respect to given order <, let Ur denote the Q(q)-
subalgebra of U generated by I. Then &<(I) is a basis of U; as Q(g)-linear
space.

It is known that one can construct convex bases for quantum algebra U,(g)
by using the braid group action on U, (g), which is given explicitly by the following
fundamental result.

Theorem 2.7. [11, Chap. 37, 89] There exists unique Q(q)-algebra automor-
phism T; € AutUqy(g) (1 =0,1,...,£) satisfying

(216) Ty(E;) = —EK;, Ti(F)=-K;'E;, T/(K\)=K,u (\e€DP),

R —— P T R
217) Ti(E;)= —— —Dkg*| V| E VR EF
@11 1) = oy SV | B
t k=0 qi
1 - | —aij R
(2.18)  Ti(Fy) = Caylal Z(—l)k‘ﬁ[ i j} FYFF (J #1).
WG p—o qi

Moreover, the automorphisms T; satisfy the braid relation
m(i,5) m(i,5)
—l
where m(i,7) € Z>1 U {oo} is the order of s;s; in the Weyl group.

Recall that the braid group B associated with the Weyl group W is defined
by generators 7; and relation (2.19). It is well-known that B has the following
property with respect to reduced expressions in W.

Proposition 2.8. Let w = s;,8;,...5;, = 8j,8j,...5;, are two reduced expres-
sions of w € W. Then T;, T3, ... T;, = T;, T}, ... T, € B. Therefore a map
(2.20)

[ W =B fw):=T,T,..Ti,_(E;,) €B (w=s454...5: reduced)

is well-defined and a section of canonical surjection 7 : B — W; T; — s;.

Thus we can define the action of w € W on Uy(g) by Tow := T(w), where Ty,
denotes the action of b € B on U,(g).
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When g is of finite type, set X, := T, T, ... T;

i1 (Bi,) (¢ =1,2,...,N) where
Wo = 84, Si, - - - Siy 1S a reduced expression of the longest element. Then it is known
that increasing monomials X*1 x%2 .X,’f,” constitutes a convex basis of US. X,
has weight 8, := s;,5,...5i,_,(;,) and called a root vector associated to the
root B,. Root vectors depend on reduced expression of ws.

Reduced expression of w, = s;, 8, - .. Si, induces a convex order 51 < By <
-+ < Pn. This is because if a;, + 8, 8i, 4, ---5i,_, (@5,) = Sip .- 54, (@,,) and
suppose that | < m, then applying s; _,s; _,...s; both sides yields a;, € A_,
which is absurd. Thus the given order has the convexity property. Conversely, let
w €W and 1 < B2 < -+ < B be a convex order on ®(w) := wA_NA,. Then f;
must be a simple root «;,. To see this, we suppose that 3; is not simple. Then 3;
can be written as a sum of two positive roots, and at least one of them belong to
®(w) due to the biconvexity of ®(w). This contradicts the minimality of 31, and
now we conclude 51 = «,. Since the action of W preserve the addition of roots,
$iy(B2) < 85y, (B3) < -+ < 84, (BnN) is a convex order on ®(s;, w). By induction on
the length of w, we can construct a reduced expression of w from given convex
order. Therefore, each convex order on A, generates a reduced expression of w,.
These correspondences between convex orders and reduced expression of w, is
clearly inverses of each other, the correspondences are one-to-one.

Using the correspondences above, we want to construct bases for U;r from
convex orders on A, . To extend the construction for affine case, we have to deal
with several problems such as the definition of root vectors when given convex
order has multiple lows, existence of imaginary roots, which are unreachable from
simple roots by only using the braid group action. These problems have already
been solved by Beck [I] and Ito [6].

Before introducing their construction, we need to extend the affine Weyl group
properly. We now return to consider the case when g is untwisted affine Lie algebra
of type Xél). The linear map t) € Endbh*, called the translation by A € fo]*, is
defined by

(2.21) tA(p) = p+ (p,0)\ — {;(A,)\)(M,é) + (M,A)} §d (nep),

where § € Aif‘ is the null root. Let T := {tu(d)

&€ C} } be the group of transla-

tions, where v : h — bh* is the canonical isometry and Q C b is the coroot lattice.
Then it is well-known that W = W x T [8]. Note that in general T does not
contain translation ¢., by fundamental coweight ¢; € 6*, which is characterized
by (€5, ;) = 0;; for i,5 = 1,...,£. We extend the affine Weyl group W by ap-
pending the translations t.,. Let W denote the subgroup of GL(h™*) generated by
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W and t.,[g. (i € I)7 where h'™* := @fzo Ca; C b*. In fact, the extended Weyl
group W coincides with a semidirect product of W and a subgroup of the Dynkin

automorphism group.

Proposition 2.9. [7] [6, Proposition 2.1] Let I, := {j el ‘ (g5,0;) =1 }, and
Pij = te;WojWo for each j € I*, where w,,w,; are the longest elements of W,
Wf\ m respectively. Then there exists an automorphism p of the Dynkin diagram
of type Xél) such that ij(ai) = a, for all i = 0,1,...,£. The correspondence
j — p is one-to-one. Moreover, 2 := {pjj ’ j € I, } IT {idg/+ } forms a subgroup of
GL(H™), and

(2.22) W=QxW,
where pi; € Q acts on W by Pij-Si = Sp(i)-
We define the length of w € W by

(2.23) C(w) = L(u) = £;(u),

where we use the decomposition w = pu (p € Q,u € W) given by . Recall
that W = W;. We can also consider reduced expressions of w € w. Namely, we
call an expression w = tity...t,, € W, t; € S Q reduced if the sequence of
integer £(t1), £(t1ta2), ..., €(w) is increasing. Thus every element of Q has length 0,
and reduced expressions of w € 1% may have different number of factors but the
number of factors which belong to S must coincide with the length of w.

Dynkin automorphism p acts on the subalgebra Ul (g) := (E;, F;, Ki!) C
Uy(g) as algebra automorphism by permuting indices: E; — E,;), Fi = Fogys
Ko, — K, ;. Thus we have an action of the extended braid group B := Q1 x B
on Uy (g) by extending the braid group action of Theorem. 2.7} Proposition also
holds for W and B, and therefore every w € W has an action T on Uy(g )

We will define the root vectors associated to real roots by lifting the expression
to quantum algebra U,(g), in which process simple reflection s; is replaced
by T; and simple root «; is replaced by E;. In this lifting process, we also have to
specify appropriate alternatives for 6 — 6, € Il;, and s5_4, € S, where J. C 1
is a connected subdiagram. The simple root vector Es_g, is in fact uniquely
determined due to the following lemma.

Lemma 2.10. [0, Lemma 5.1] Let ¢ € Ay and suppose that s == s; 54, ...5;.,
is a reduced expression in W satisfying § — € = 8, 8iy ... Si,,_,(ag,,) and ®(s) C
A(1,—). Such a s exists and

(2.24) Es_e =TT, ... T,

Tm—1

+
(Ei,) €U,
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1s independent of the choice of s.
The appropriate alternative for ss_p,_is given by somewhat technical manner.

Definition 2.11. [0 Definition 3.4] First, we fix an index j. € J. satisfying
(€j.,05,) =1 for every nonempty connected subdiagram J. C I. Then we define a
map - : Sy — W by

~ , — Je e
(2.25) sp=s; (GEJT), S5me, = (te;,) " 5, (tafc) ’
where j. € I is the unique index which satisfies wo(a;,) = —a;,. We also define

the extended map ~: W; — W simply by @ := 1t .. .t when w = tity ...t is
a reduced expression in Wj.

Now, we can describe the construction of root vectors for affine case.

Definition 2.12. [6] Theorem 8.4] Suppose that < is a convex order on A..
Let o = w’~1y,_1¢s, ,(p) be the expression (2.14) of a positive real root o
determined by <. Then root vector E< , € U, associated to « is defined by

(2.26) F< .,

Tka,lTﬁTsm)Tsm) . Tsk_l(/p\fl)(Eskfl(p)) (Oz S A(w, —))

\I/Tka,lTy/klesm)Tsm) . Tsk_/l(\pfl)(ESkfl(p)) (a € A(w, +))

where E,, := E;, and U : U,(g) — U,(g) is the anti-automorphism of Q(g)-algebra
defined by ¥(E;) := E;, V(F,) := F;, Y(K,) == K} .

The root vectors for imaginary roots is constructed using the action of ex-
tended braid group, which contains coweight lattice [I]. Since each imaginary root

has multiplicity ¢ in affine Lie algebra g of type X él)

, we will construct as many
number of root vectors as the multiplicity. The construction is rather technical
and we proceed step-by-step.

First, we introduce weight vectors E,5-_n, (i € I ), which is independent of

convex order.
(2.27) Ensoay =TPT7YWE;) (n € Zsy,i€ ),

where T, := T, € Aut U,(g) was defined via the extended braid group action
and lifting a reduced expression of t., € WtoB by l} Then we set

(228> Pin = [8n5—ai7Ei]q = né—aiEi - q;2Ei£n5—ai (n S ZZlai S Io)
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Despite of these ¢; ,, have weight né € Ai_f_n, i, are not yet suitable for imaginary
root vectors. The genuine imaginary root vectors are constructed by modifying ¢;
through the following technical procedure. For every i € I, let

(2.29) 0i(2) = (g — ;") Y _ pimz" € U [[2]]

be the generating function of ¢; . U [[2]] has topological algebra structure by
declaring that z is central and U,f[[z]] has z-adic topology. Then imaginary root
vectors I; ,, € Uq+ are defined as the coefficient of the function

(2.30) Li(z) = log(1 + ¢i(2)) = (6 —¢; 1) Y Lin=",
n=1
where the logarithm is defined by log(1 + z) := Y °_; (_17):71 ™.

It is shown that the these root vectors constitute convex bases for positive
part of quantum affine algebra U,j .

Theorem 2.13. [6, Theorem 8.6] Let < be a convex order on positive roots A
of untwisted affine root system, and let w € W be the parameter determined by the
decompositon of AL in accordance with the given convex order <. Let

(2.31) AN={Eco|acAY }U{Ty(Lim) | meZs1;i=1,2,...,0}

denote the set of root vectors constructed above, and we set the order on A by using
given order < and

Tw(Lim) < Tw(ljm) & (m<m')or(m =m',i < j).
Then increasing monomials &< (A) constitute a convex basis of U .

Once a convex basis of U(j is constructed, we also obtain the one for U,
through Chevalley involution Q : Ut — Uy ; E;j — Fi,q — ¢!
automorphism of QQ-algebra.

, which is anti-

§2.4. Product formula for the quasi-universal R-matrix

The convex bases for quantum affine algebra enable explicit construction of quasi-
universal R-matrix. By applying Drinfeld’s quantum double construction, Ito ob-
tained the product formula for the quasi-universal R-matrix [6]. Since the quasi-
universal R-matrix does not lie in the algebraic tensor product U,(g) ® Uy(g), we
have to give appropriate topology on U,(g) ® U,(g) and complete it.
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First, we set the gradation of U,(g) @ U,(g) by
(2.32)
U, @Un= P U U@UU))-UlaUr CUys)@Uys) (b€ Zxo),
M VEQY
ht(p+v)=h

that is, we only count the weight of positive part with respect to the triangular
decomposition ([2.7). Then we set a topology which is generated by the subsets of
the form

(2.33) z+ é(Uq QU (z € Uy(g), k € Zso).
h=k

In short, we give Uy(g) ® Uy(g) linear topology. Let

(2.34) f];@[/]; = pr(k)i%)im (Uq (9 @Uq(a)/ @ (Ug ® Uq)h)
2 h=k

be the completion of U,(g) ® Uy(g), and U &U, C ﬁ;@@ denote the closure of
Ul ® U, . The algebra structure of Uy(g) ® U,(g) extends uniquely onto /U\q@)@.

Definition 2.14. [I1] 4.1.2] Let T € Aut U,(g) be the Q-algebra automorphism
determined by

Y(E;) = E;, Y(F):=F, YK\ =K' T(q:=q",

and set A := (Y ® T) o A o Y. The quasi-universal R-matrix of U,(g) is the
unique element © € U,®U, satisfying

(1) ©-A%(u) = A°(u) - © (Vu € Uy(g)).
(2) @ =1®1,

where Oy € (U; ® Uy)o is the image of © by the canonical projection
Uy®U, — Uy ( (0)/ P U, @ Uy), = (U, @ Uy)o,
h=1

and fP(u) ==y @, if f(u) =Y 2 ®@y;.

The uniqueness of © will be the core of the proof of identites. Finally, we
introduce the product formula for quasi-universal R-matrix.

Theorem 2.15. [3] [6] Let < be a convex order on Ay of affine root system,
and E< o, 1;, denote the root vectors constructed above. For every i,j € I and
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positive integer n, let

1 x>0
[aijn]q,

(235) bi,j;n = sgn(aij)”f,
n(qj‘ —qj)

sgn(z):=<¢0 x=0-.
-1 <0

Let (cijin)t j—1 € Mat(Q(q),€) denote the inverse matriz of (bi jin)% j—; -

We also set

Fg,a = Q(Eg’a) elU_, (Ot S Af)7 Ji,n = Q(Ilyn) e U_ps,
—in(n-1)

oo q i
exp,(w) =) E ¢ (aen),
n=0

(236) Sy = Z Cj,i;nIi,n (%9 Jj,n S U;_ ® Uq_,

ijel
o . Jewe {6 —a)Eca @ Fea} o AY
<,a =
- exp {Tw ® Ty (Sn)} a=nd (n=12,...

Then the quasi-universal R-matrix © has the product presentation

>
(2.37) o= ] 0<a eUSEU,,

a€EA L

where H§GA+ Xq means that if o < 3, the order of multiplication is XgXqy. In

short, the order of multiplication is reverse to given convex order.

§3. Explicit presentation of root vectors using ¢-bracket

We will construct quantum dilogarithm identities by using various presentation
of quasi-universal R-matrix O, taking advantage of the uniqueness of ©.
However, to obtain specific identities, we have to calculate root vectors explicitly,
which is described by braid group action (Theorem . In this section, we show
that in general quantum algebra Uy (g) of symmetrizable Kac-Moody algebra g, the

element T, (E;) € U (w € W) can be written as ” g-commutator monomial”, that

is, finite application of g-bracket on the generators F;. We also construct concrete

algorithm for getting explicit presentation of T,,(F;) as g-commutator monomial,

which enables us direct computation.
Let g be a symmetrizable Kac-Moody algebra of rank n.
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Definition 3.1. For every subsets A, B C U,(g), let
[A,Bl, :={[z,ylq |z € A,y € B} C U,(g).

We define subsets P, C U,(g) inductively by

k

Py:={E1,By,....En}, Puyr:= |JIPPly (k€ Zs).
i,j=0

We call the elements of the form ¢cM € U,y(g) for some ¢ € Q(q), M € Uz P
g-commutator monomial.

Our claim is that T,,(E;) € U;‘ is g-commutator monomial for all:=1,...,n
and w € W. To prove it, several formulas have to be prepared. First we recall

| ——
(3.1) Ti(E;) = Caulal (Ei, [Eiy -+ [Eis Ejllg - -1g (0 7 5)

by definition of the braid group action, and

32 T(leyl,) =M@, T, (@yeUle),i=12...,n),

since the Weyl group action preserves the invariant bilinear form. The basic process
of calculation for T, (E;) (w € W,1 < j < n) is as follows: choose a reduced
expression w = S;, Si, ... S;,,, and expand every T;, of T, = T;, ... T;, from the
tail using and . However, there is a problem that Ty (Ey) = —Fp K}
may be appeared in the process of expansion. To resolve it, we use the following
formula.

Lemma 3.2. For every 1 < i # j < n and positive integer m,

e (s 8) @) )] =l -a -y (ad E)m (E).

q
N

where ad z(y) = [z, ylq.

Proof. By defining relation of U,(g),

EK; =q; °K,F;, E;K;=q;, ""K,E;,

Ki—K!
EF, = FE +——"t_  [E,F, = FE;.
qi — q;
Thus the commutation relations of F' := T;(E;) = —F,K; and E;, E; are as follows.
K2-1

&F:g%ﬂ—a%?T E;F = q; “"FE;.
i i
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Since the weight of F' = —F; K, is —a;, we have
(3.4) [E;,F|, = E;F —q, “"FE; =q, ""FE; —q;, “"FE; = 0.
Now, we begin the proof by induction on m. Suppose that (3.3)) holds for some

positive integer m. Let

Coim 1= 0 =l X (s ) (B

Since the weight of X,, is ma; + «;, we have X,, K; = q;sza”' K;X,,. Then by
the induction hypothesis,
XpF =q, "™ " F X + Cpp Xpn 1.
Using these commutation relations, we obtain the equation for the case of m + 1.
[Xm+1a F ]q
= [1B:, Xl , F]

q
_ [EiXm — &M X, B F]q
= E Xy F — ¢ 2"t pE X,
— e {XmEiF — g At FXmEi}
o {qu‘““FXm + Cme,l} — g MmN pp

2m—+ta;; — K?—l —2(m+1)—a;;
—q"" {Xm (qi QFEi—([_l>—qi ey FXmEi}
v 9y

—2m—a;; —92 KZZ -1 2(m+1)+as;
=4q; q; FE; — - 1 X + Cr By X1 — q; FE; X,

qi — 4q;
2m—+ta;; —2 —2m—ay; 2m—+ta;; KZ2 -1
—q; q; (Qi X, + Ome—1> E;, + q; Xmi_l
)
+4; *FXpE;
—om—a,, K2 —1
= —¢; "~ Xy + O Ei X
qi — 4q;
2(72m7aij)K2 1
- qz‘2(m71)+aij Cme—lEi + q2‘27n+aij Ql _12 Xm
q; — g,
q;2’n7,7ai]‘ _ q?m“raz]

= 1 Xm + Cm [Ei7 mel]q

qi — g;
= ([—aij - Qm}qi + Cm) Xm
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Thus we obtain the recursion formula

Cm+1 = Cm + [—aij — Qm]qi (m Z 1)
It is easy to verify Cp, := [m]g,[1 — a;; — m]g, satisfies this recurrence relation.
Therefore, (3.3) holds for m + 1.
For the case of m = 1, above calculation works if one uses (3.4) in place of
induction hypothesis and lets Cy := 0. O

Proposition 3.3. Suppose that the root subsystem spanned by o, o (i # j) is
of finite type and w = s;5;s;5; ... is a reduced expression. Then T3, (Ey) (k =1 if
L(w) is even, k = j otherwise) is a g-commutator monomial consists of E; and Ej.

Proof. Since length of reduced expression of the form s;sjs;s;... is at most 5
when finite type case, our task is just compute T, (E}) directly for all cases. Using
the formula , the computation is easily accomplished. For example, when
ai; = aj; = —1 we have

1,15(8) B 1 (185, B)) B ), Tie)), € 18, B, 1 E)

Lemma [

1]% [1 - (_1) - I]QiEj = Ej'

Thus we have a reduction formula
(3.5) TT(E:) = Ej  if (i, a51) = (-1, —1).
O

For infinite type case, we use the following formulas, which can be verified by
direct computation using (3.3)).

Lemma 3.4. For indices i,j (i # j) and nonnegative integers p, k, let

p

3.6 Siip = +..878;5i8;S7,
WJip 9155515
(k) - *
(37) Vi»j:p = Tsi,j;p <ad EJ) (E’L)
P k

—_——
(3.8) =TT | (- 1B Eilg Eslgr - Bilg
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These VZE?’)p satisfy the following recurrence relations.

1 1 = i 1
(3:9) Vishir = =77 (24 o (Vi) (wi<-2),
[—aji —1]g,!
(3.10)
—a;;—3
m 1 avo) @) - .
Viip+2 = [—a;; —1],,! (ad Vi,jm) (Vi,j;p) (aij = —1,a5 < =3),
J q;
(3.11)

7(1]-,;74

V(Z) B [2]%' ?1 V(l) V(z) (aij = —1,a;; < —4)

i,5;p+2 T [_aj, _ 2]q LA i,J5p 4,;p @ij = 1 Gji = ’
(] j

Theorem 3.5. For every w € W and index j satisfying w(ey) € Ay, T,(E;) €
Uy(9) is a g-commutator monomial.

Proof. The proof is by induction on £(w). The case {(w) = 1 is immediate by (3.)).
Suppose that there exists integer m > 2 such that T,,(E;) is a g-commutator
monomial if w(a;) € Ay and (w) < m. Let w € W satisfies w(e;) € Ay
and ¢(w) = m. Take a reduced expression of w and let s; be its suffix. Then
i # j due to the assumption. Let w{»/} € W be the shortest element satisfying
w=wibit . s;s;5;8;. Then wi™i}(a;), wi®i}(a;) € A} due to the minimality of
w7}, By the induction hypothesis, T,,(:.;1 (E;) and T, ) (E;) are g-commutator
monomials. Thus using , the proof completes if ... T;T;(E;) turns out to be
a g-commutator monomial consists of only E; and Ej.

Let % (i # j) denotes the set of g-commutator monomials consist of only
E,; and E;. We are going to prove that if s; ;,, (p € Z>1) is a reduced expression,
then Ej, .
immediate by . When a; and o span a finite root system, s; ., is reduced only
for finitely many p € Z>q. Thus when (a;5,a;,) = (—1,-1), (—1,-2), (-1,-3),
(=2,-1), (—3,—1), we can verify Ej
exists only finitely many cases. The computation is easily accomplished using the
formula . For example when (a;;,aj;) = (—1,—1) and p = 3, we have

=...T;T;(E;) € #;; by induction on p. The cases when p = 1,2 are

.. € Fij by direct computation since there

E

Si,5;3

= 1,1 B 1 (8, Bl B 138, 13(B))),

1By, Blo Ty(Ep)], "2 B2 1), (1= (—1) = 1), E: = Bs.

q

When a; and o; span infinite root system, then a;;a;; > 4. Now we suppose

that p > 2 and Fjs € F;j for all r < p. First, E, can be written as follows.

i,45m Si,jip+1

1 N 7(1”'71 1
(3.12) Eaypir = 1 <ad E> (Vi)

[—aij]q,!
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Since Fs,, , € F;, which is the induction hypothesis, we are reduced to verify
Vl(]l)p 1 € Fj. When a;; < 72,aﬁ § —2, the fact Vl(]l)1 € %;; derived from 1)

and inductive use of the formula show 1A% 1 € Fij. When a;; = —1,a;; <

i,jip—
—4, we can directly verify V. LA VAC F;; using ( ., and the

0> 7, NE 1’ z ,7;07 2 731
recurrence formulas ., show V) v _1 €%y, forallp > 1.

4,3;p—17 "i,55p—1
When a;; < —4,a; = —1 we need to continue the calculation of (3.12))

slightly. Using the formula (3.3)), we have

7y (1B, 1B Eilal,) = 1B, B, B,

q

Thus Fg, ,.,,, can be written as
1 - A
ESi,j;p+1 = [_aij]q-! <ad ESj,i;p) (‘/j,i;p72) .
Since V(Zp 5 € Z;; due to the discussion of the case a;; = —1,a;; < —4, we
conclude Es, . ., € Fj. O

By the proof of the theorem we can easily construct an algorithm for
describing T, (E;) as a concrete g-commutator monomial once formulas for the
elements of the form ...T;T;T;(E;) are prepared. In particular for simply laced
case, we have a simple graphical algorithm for the calculation of T,,(E;), which
we are going to describe below.

First, we introduce a graphical notation of g-bracket, which is convenient to
write down g-commutator monomials.

X Y
(3.13) =X Y] (XY €Uy (g)).

We also abbreviate E; to ¢ in the schematic notation. For example, the g-Serre
relation (2.5)) can be written as the following binary tree.
1-— (%7

[ A A |

w _ (;;i E>1 (E;)=0 (i #j).

Using these notation, we can describe every g-commutator monomial as a binary
tree, whose node represents g-bracket and whose leaf denotes a Chevalley generator
FE;. Now we can describe the algorithm for simply laced case.

Proposition 3.6. Let g be a simply laced Kac-Moody algebra, w € W and j
be an index satisfying w(o;) € A;. Let w = s;,5,,...5;, be a reduced expres-
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sion. Then the binary tree constructed by the following procedure represents a

g-commutator monomial equal to T, (E};).

(1)

(2)

(4)

In this procedure, we manipulate a binary tree, each of whose leaf holds a pair
of a reduced expression sj, sj, ... s;, and an index p such that s;,sj, ... s, (o)
SANS

At the beginning we have a binary tree consists of only the root, whose reduced
expression is s;; S;, ...s;,, and whose index is j. The procedure terminates
immediately when m = 0.

For each leaf of the binary tree, the following manipulations are applied re-

cursively. Let s;, 55, ...5;5, and p be the reduced expression and the index of

the leaf we are working on respectively.
(a) We are done for the leaf if & = 0.

(b) If k > 1, then ji # p. If aj,, = 0, then delete the factor s;, in the reduced
expression since T}, (E,) = E,. Repeat this deletion until aj,, = —1.

(c) If 55,85, ...55,_,(ap) € A_, then there exists a number ! such that

55155 ++ - Sjp_1 — Sj1 543 - - - Sjl—lSjH»l <o Sj_15ps

due to the exchange condition [8]. By aj,, = ap;, = —1 and (3.5)), we
have
T3\ Tj, - T T (Bp) =T, Ty - T Ty - T T T, (B
=TT Tj Ty - Ty (Ej)-

According to this calculation, replace the reduced expression with
8§84y - Sj;_1Sj,,1 -+ S5, and replace the index with ji. Repeat this
replacement until s;, sj, ... 55, ,(ap) € Aj.

(d) Finally, when s;, 8, ...5j,_,(ap) € Ay, then aj,, = ap;, = —1 by the
manipulations so far. Thus T}, (E,) = [Ej, , Epl, by (3.1), and
841855 - Sjp_15ks Sj1Sjs - --Sj,_15p are reduced. Therefore, create new
branch at the current leaf and generate two leaves as below, where s’ :=
84,85, - - S5._;- The new two leaves have index ji, p respectively, and both
reduced expression is s’. Figure|l|shows this branching procedure, where
s[p] denotes reduced expression s and index p.

Repeat above procedure until all reduced expressions in the leaves has length
0. This algorithm terminates within finite steps because each manipulation
shortens the length of reduced expression of target leaf.
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. il s'lp]

Figure 1. Branching rule

§4. Construction of quantum dilogarithm identities

In this section, we show how to construct quantum dilogarithm identities using
the product formula of the quasi-universal R-matrix ©.

First, we introduce certain projections of the algebra U; U, ; onto skew for-
mal power series algebras determined by Dynkin quivers. Through the projections,
most of the elements of the form ©< , € U;@U; (a € AT) become the unit of
image, while several factors survive and retain their form as g-exponential func-
tion, which can also be seen as quantum dilogarithm functions. Moreover, under
appropriate setting of parameters, the product of factors in © associated with
imaginary roots can be written using quantum dilogarithm functions in the im-
age of the projection. Thus the image of © will be written as certain product of
quantum dilogarithm functions. Choosing various convex orders, one can obtain
various product presentations of the image of ©, which have finitely or infinitely
many factors depending on selected order. Eventually, we can construct quan-
tum dilogarithm identities of the form “finite product = infinite product”, which
will exactly coincide with the identities proposed in [3] after suitable change of
variables.

§4.1. Projections of U;‘@Uq_ onto skew formal power series algebras

Let g be symmetrisable Kac-Moody algebra of rank n and A = (a;;)};_; be its
Cartan matrix. Let dq,ds,...,d, be coprime positive integers such that c;; :=
dia;j = djaj; (1 <i,j <n). Then C := (c;;)7;_; is symmetrized matrix of A. We
normalize the invariant bilinear form (-,-) so that (ay,a;) = ¢;; for 1 < 4,5 < n.
Choose o;; € {£1} for each pair of indices i < j such that a;; # 0, and set

0;5Cij 1<y
(4.1) bij =40 i=7j.

—045Cij 1> ]
Then the matrix B = (b;;)};_; is skew-symmetric matrix, and this data can be
interpreted as the Dynkin quiver which has an arrow from 7 to j if ;; = +1. Let
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{-,-}B : Q@ x Q — Z be the skew-symmetric form satisfying {a;, a;}p = b;; for all
indices 1, j.
Let Pg be a Q(g)-algebra defined by the generators and relations below.
Generators : e1,€3,..., €.
Relations : e;e; = qb”ejei (i,7=1,2,...,n).
‘P has natural Q-graded algebra structure if each e; is supposed to have weight v,
hence g-bracket makes sense on Pg. Each weight space of Ppg is one dimensional

subspace spanned by a monomial of the form e’fleg2 ...ekfn. The degree of each
monomial
(4'2) deg 6’1“652 ce efl" =k +kot+---+ky,

coincides with the height of its weight. Let Pp ,, be the subspace of Pp spanned
by monomials of degree m. Also note that
(4.3) lei,ej]lq = eiej — ¢ eje; = (qb”' —q“)eje; =0 if o5 = +1.

Due to the following well-known fact, Pp turns out to be a quotient of Uqu C

Uq(9)-

Proposition 4.1. [I1][33.1.3] The positive part of the quantum enveloping al-
gebra Uq+ is isomorphic to the Q(g)-algebra whose generators are E1, Es, ..., E,
and whose relation is given by the quantum Serre relation (2.5).

Proposition 4.2. There exists unique -graded algebra surjection
(4.4) mp: U = Pp
such that 7g(E;) =¢; foralli=1,... n.

Let P}, := Pp and Py be a copy of P but whose generators e; are replaced
by fi. Recall that U, is isomorphic to U, as algebra [I1][3.2.6]. Let 7, := 7 :
Uf = Pj, n5: Uy — Py (75(F;) := fi) are Q-graded algebra surjections given
by the Proposition Then we have an algebra surjection

(4.5) @7 : U @U; — Pi @ Pg.

We want to construct a completion of this surjection to define image of © &
U;‘ @Uq_. To define the completion, we give a topology on Dp := 732; ® Py so that
the surjection ﬂg ® mg becomes continuous.

For every nonnegative integer m, set

(oo}
(4.6) Dy =P Pi,.®P5 CDs,

k=m



QUANTUM DILOGARITHM IDENTITIES 25

and define the completion of Dpg by

(4.7) Dy = projlim Dp/Dp,.
m>0

Recalling the definition lj of f];@@, composition of the surjection 7r§ ®Tg
U; ®@U, — Dp and inclusion ¢ : Dp < Dp is continuous with respect to the rela-
tive topology on U, (;r U, C f];@l/]; . Hence this map induces an unique continuous
map

(4.8) n4®ng U @U; — Dp
due to the completeness of 5;.

§4.2. Skew formal power series algebras

Let y; := (¢; fqi_l)ei ® (qi_1 —qi)fi € l/?g, Sp C 5; be Q(g)-subalgebra generated

—

by y1,Y2,...,Yn, and Sg C 5; be its closure. Since the increasing monomials
e’f“eg”...e?"(@fflll ;nlz...f,T;z €Dp

form a topological basis of 5;, the increasing monomials y"*y5** ...y form a
topological basis of g;. Therefore 3; is isomorphic to formal power series alge-
bra Q(¢)[[y1, Y2, - - - » Yn]] as Q(g)-linear space. This isomorphism endows the Q(q)-
linear space Q(q)[[y1, Y2, - - -, yn]] with a complete topological Q(q)-algebra struc-
ture, whose multiplication is uniquely determined by the commutation relations
Yy = "I Y i

In the same way, skew Laurent polynomial algebra £p can be defined. Namely,
Lp is Laurent polynomial algebra Q(q)[y%l,yfzw..,yfl] as Q(g)-linear space,
and multiplication in L£p is uniquely defined by the commutation relations y;y; =
g2t y;¥i- Sp can be naturally considered as a subalgebra of Lp.

Let L be the lower triangular part of B. Since B is skew-symmetric, B = L—'L.
We define normal ordered product in Lg by

t,
(4.9) Y™ = g mimym (m = (my,ma,...,m,) € Z"),

m ._ ,,Mi, M2 My
where y™ =y 'y, 2 .oy

Let B' = (b;fl)Z:lzl € M,/ (Z) be another skew-symmetric matrix. We shall
consider algebra homomorphism 9 : Lg — Lp = Qq)[y/=h v5t ..yt
which is determined by a n’ X n-matrix R € M, ,,(Z) and

(4.10) Yr(y:) == :y/R”i :,
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where v; € Z™ is the ¢-th unit vector. i is well-defined if and only if it preserves
the commutation relation y;y; = q?bii y;y; for all 4,7 =1,2,...,n, in other words

. JRv; .. IRv;. __ 2%;Bv;. IRv;.. IRv;. L.
vy Ty =g Foy' iy (45 = 1,2,

On the other hand,

.,n).
i v, Y Rv;)B'Rv; v v;
y’R”ly’R i — q2 (Rv;)B'R Jy/R ]y/R € Lp.
Thus ¢ is well-defined if and only if v;’RB’Rv; = "v; Bv; for all i, j. This shows

Proposition 4.3. Let B € M,(Z), B' € M,/ (Z) be skew-symmetric matrices,
and R be integer-valued n’ X n-matrix. There exists unique algebra homomorphism
YR : Lp — Lp satisfying ¥gr(y;) = 197 (i = 1,2,...,n) if and only if

(4.11) '‘RB'R = B.

Moreover, ¥ preserves the normal ordered product.
Proposition 4.4. Suppose that R satisfies . Then
(4.12) Yr(y™:) = /™ (meZ").

Proof. We prove by induction on degm := |my| + |ma| + -+ + |my|. The case
degm = 1 is trivial since “;Lv; = 0 for any unit vector v;. Suppose that (4.12)
holds if degm < N for some integer N > 2. Let m be of degree N. Choose

my, my € Z™ so that m = m; + my and degmy, < N (k =1,2). Since y™ y™2 =
g2malmagmitma e have
pymitme qt(m1+mz)L(m1+mz)ym1+m2

= q“fn?LmlJmle?:ym1 B T

= qt’m?Bml:ym1 ny™2
Then by the induction hypothesis,

YR(ry™ ™) = g (™ )

= qthBmlzy'le srq/ T2

_ qtm2Bm1J(Rm2)B’Rm1:y/m1+mz .

= ymtme. (- ([LTT))
Thus holds for arbitrary m of degree N. O

When all the component of matrix R satisfying (4.11]) are nonnegative, we
have the restricted homomorphism ¢ g : Sgp — Spr.
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Proposition 4.5. Suppose that R € M,/ ,(Z>() satisfies . The algebra
homomorphlsm Vg : Sp — Spr is continuous with respect to the relatwe topology
in Sp B and Sy 5 if and only if each column of R contains nonzero component.

Proof. By the definition of g, it is continuous if and only if:

For any N € Z>, there exists some M € Zsq such that m = {(my, ..., m,) €
Z% of total degree degm > M = deg Rm > N.

Since deg Rm = Z?Zl r;m; where r; is the sum of components in i-th column of
R, this condition holds if and only if all the r; are positive. O

Thus, when R satlsﬁes these cond1t10ns 1¥r uniquely extends to continuous
algebra homomorphism 1/) R: - Sp B — S B.

§4.3. Several formulas related to quantum dilogarithm

To compute the image of the quasi-universal R-matrix ©, we briefly prepare for a
couple of formulas related to quantum dilogarithm function Lig 4(z). Let

(4.13) log(1—a) =~ %

n=1
(4.14) Lig 4(x) := 2= POk
(4.15) E(z) := exp (Lip 2 (—qz)),
(4.16) (;q)o0 = H(l —q"x).
n=0

In this paper we consider these functions just as formal power series. The function
(25 q)oo is characterized by the recurrence relation

(4.17) (1= 2)(q2;q)00 = (73 9) 0

Since —Lis 4(gz) 4+ log(l — x) = —Lis 4(x), exp(—Lig 4(x)) satisfies the recur-
rence relation. Therefore

(4.18) exp Lis ¢(2) = (259)5
(4.19) E(z) = (—qz;¢*)3),

which coincides with the product presentation of E(x) in the introduction. By this
presentation, E(x) is characterized by the recurrence relation

(4.20) (1+ q2)E(z) = E(¢*z).



28 M. SUGAWARA

Recall that g-exponential function was defined by

—in(n-1)

o 4

(421) equ(a?) = Z T.’En
n=0 a:

Then it can be directly verified that exp,(z) satisfies

(4.22) (1+q(q— ¢ ")) exp,(x) = exp,(¢°x)

and we conclude that
(4.23) exp,(z) =E ((q — "ER

In the same way, we can also prove another presentation of (z; q)eo [I3], which
we will use in the computation of imaginary root vectors.

(4.24) exp (Z —Mmm> = (2, ¢)co-

m=1

§4.4. Computation of the image of quasi-universal R-matrix ©

Now, we suppose that g is untwisted affine Lie algebra. We shall compute
15@15(0) € Dy for various product presentation of © and equate them
to obtain concrete identities.

First we remark that g-commutator monomials degenerate to ordinary mono-
mials. Let X,, X5 € Pj; have weight a, 8 € Q respectively. Then by definition of
P, X, is a linear combination of monomials e;, e, . . . €;,,, where a;, +a, ++ -+
a;, = o. Hence X, X3 = q{aﬁ}BXﬁXu and we have

m

(4.25)  [Xas Xpl, = XaXp = ¢ @D XX, = (1= ¢+ P0)0) X, X,
It is convenient to introduce the bilinear form («, 8)p := («, ) — {«, 8} 5. Then

the values of the bilinear form (-, ) g are even integers, since

(A£Dei; i#J

(i, aj)p = ¢ij — by =
! S i=j

The formula (4.25) shows that [Xa, Xg]q vanishes if and only if (a, ) g = 0, oth-
erwise it is nonzero multiple of X, Xg. Therefore we have the following vanishing
criteria for g-commutator monomials.

Proposition 4.6. A g-commutator monomial M € U;‘ lies in the kernel of 71';
if and only if there exists an application of g-bracket [Ea,EB]q in M for some
E., Ez € U;’ of weight o, 8 € Q satisfying (a, 8)p = 0. If there are no such
application of g-bracket in M, 75 (M) € P} is a nonzero monomial.
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Recall that the root vectors for U;~ were defined by F< , := Q(FE< ), where
ae A and Q: US = U Q(E;) = F;, Q(q) := ¢~ was Chevalley involution,
which is anti-automorphism of Q-algebra. Notice that {2 preserves g-bracket except
for multiple of a power of q.

(4.26) Q ([Ea,Eg}q) =—q > IF,, Fgl, -

Thus F< , are also g-commutator monomials, and they coincide with F< , except
for multiple of +¢* and replacing F; with F;.

There exists unique anti-isomorphism of Q-algebra Qp : Pg — Pg which
sends e; to f; and ¢ to ¢~ '. This is useful to compute 75 (F< o) because

(4.27) Qponf=mpo

Since ht & — 1 times of g-brackets occur in E< , for o € AL, its image takes
the form below.

hta—1
(4.28) mh(E<q) = Cq" ( H (1- qki)> eqlel™ . ept,

i=1

where C € Q(q) is the coefficient of E<, as g-commutator monomial, a =
S omiay; and u, k; € Z. When simply-laced case, C' = 1 because no non-trivial
scalar multiple occur in the algorithm of section [3| (Proposition . We also note
that each k; is a value of the bilinear form (-,-) g and thus even integer. Using Qp,
the image of F< , is

(4.29)
ht a—1
Tp(Fea) = Qpomh(Eca) = QC)g " ( IT (- qki)) HE SR
i=1

Recall that the subalgebra Sp C Dp, which is generated by y; = (¢; —
q;l)(q;l —¢;)e; ® f; for i =0,1,...,n. The normal ordered product of monomial
Y™ o= gy Ly (mo= (g, ma, ., my) € Z2EY) was defined as y™ =
qtmLmym, where L was the lower triangular part of B.

Using these notations, when simply-laced case we have

(430) mhers ((a—a") (a7 —q) F<.a ® F<a)
ht a—1 L, 2
= ( H {21} ) T T T
i=1 q

Recall that exp,(z) = E((q — ¢~ ')z) (4.23). Therefore if k; = £2 for all i, we
have simple description of the image of ©< , for positive real root a.
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Proposition 4.7. Let A be simply-laced affine root system, o = Z?:o mioy €
A and < be a convex order. We suppose that when a presentation of E< , as
g-commutator monomial is given, («, 8)p = %2 for each application of g-bracket
[Xa, Xplg, where o, € AT and X, € U, X € UJ . Then

(4.31) 15015 (0<.0) =E Gyy oy .oy

While we have the general simple description of the images of real root vectors,
the computation of the images of imaginary root vectors requires some ingenuity.
Recall that ¢;,, € U: 5 were defined as

(4.32) Gin = [T2T7 (B, E], (n€Zs1,i€l),

and imaginary root vectors I; , were polynomials consists of p; ,,. Since T2} T, i_l (Ey)
can be written as a g-commutator monomial by using the algorithm in section [3]
¢ n themselves are g-commutator monomials. But we need to compute T, (I; )
(w e W) for general convex order, and we cannot apply the algorithm to T, (¢;.n)
when w(a;) € A_ because Ty, (E;) no longer lies in U

First, we compute T;(g; ) using the following fact.

Proposition 4.8. [5] For every i,j € I and positive integer n,

(433) Tej (‘pi,n) = Pin-

We will also use the property that for u,v € /V[7, Tww = TuT, if L(uv) =
(u) + £(v).

Since t¢, (a;) = —d+a; € A_, the length of u := t.,s; in W is 0(u) = 0(t.,)—1.
Thus T, = T,/ T; and we have

u

(4.34) Ti(pin) =Ty, Hpin) = [LIZVTH(E:) TN (E)] -

Now we can compute arbitrary Ty, (;.,) for w € W. When w(oy) € Ay, we
have

(4.35) Tu(pin) = [TWTET (Bi), Tw (B))],

and thus simply applying the algorithm to T,T. g:‘lT w(E;) and Ty, (E;) yields ex-
plicit presentation of T, (¢; ) as a g-commutator monomial.
When w(a;) € A_, let w' := ws;. Then Ty, = T, T; and using (4.34]) we have

(4.36) Tu(pin) = Tw [LIZVTH(E) T (B,

Let Ai=¢e1+e0+---+ep € fﬂ]*, which is strictly dominant weight. Then T) :=
Ty, = Te,Te, ... Te, and tr(o;) = =0 + o; € A_ (i € I). Thus t, inverts every
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positive roots in A_H which implies that there is an expression t) = vw, where
veW and w, € W is the longest element satisfying £(tx) = ¢(v) + £(w,). Notice
that
T Ty (Br) = T T, T (Ey) = T T2 (B,

and T (E;) = Ty '(E;) since Tv,(E;) = E; if i # j. We also note that T, =
Twow—1Ty for every w € W due to the maximality of w,.

Recall the anti-automorphism of Q(g)-algebra ¥ : Uf — UJ defined by
U(E;) := E;. Since ¥ preserves weights, it reverses g-bracket:

(4.37) U([z,ylg) = [¥), ¥(@)]g (z,y € U)).
It is also easy to verify that WT; = T[lkll forie 1.
Let t) = 0w, (1 € Q,v" € W) and w, = ww. Then
T Ty (Ey) = T T, ' T T T (E)
— T, T (E)
= UTya)-1 (Br-1())-

Finally we have

(4.38) Tow(pin) = [TuT2 T (E) , VT () (Er10)], -
We can apply the algorithm to Tz, (ET—I(,L‘)). Since ¥ just reverses the directions
of g-brackets, Ty, (ET—I(i)) is a g-commutator monomial.

Proposition 4.9. T, (p; ) is a g-commutator monomial for every w € VV, 1€ f,
and positive integer n.

§5. Examples of quantum dilogarithm identities

In this final section, we give specific convex orders and Dynkin quivers, which
eventually induce the identities proposed in [3].
Recall that affine positive root system A, is decomposed as

Ay = A(w,—) LA™ T A(w, +)

and convex orders on Ay consists of convex orders on each A(w, =) (the or-
der on Aif‘ is not significant since any total order can be chosen). Convex order
on A(w,—) was determined by the following parameters with several restrictions

£ E13:

(1) A positive integer n and a filtration of indices
IT=Jo 21202 2J,=0.
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(2) Y1 € WJ17 Y2 € WJ27 -y Yn € WJn'
(3) Infinite reduced words sg € #°, 81 € #7°, ..., 8,1 € WF° .

We have to specify not only the parameters for A(w, —), but also for A(w,+) =
A(ww,, —) to construct whole convex order on Ay. In the examples below, let *
denote the parameters for A(w, +). For instance, @ = ww,.

Fortunately, the parameters y; are all 1 in our examples below, so we omit
the value of y; in the examples. Also, the numbers of rows n are same for both
A(w,—) and A(w,+), in other words 7 := n for all the examples below.

1
§5.1. Type A§ )

Let g = 5/[; be affine algebra of type Agl). In this case, there are only two convex
orders on A, except for the order on Aifrn, and one of them is just the reverse of
the another one. The corresponding parameters are as follows:

{1} =J0 211 =0,

w:=1n:=1; I
Sp \— (8081)00,
I={1}=Jo,2Ji =0,

S = (5180)00,

where (s)* := sss... denote infinite repetition of s. Then corresponding convex
order < turns out to coincide with (2.10).

Next, we compute the root vectors from this convex order. Since Agl) is not
simply-laced, we cannot use the algorithm of section [3] But the following formula
is sufficient to accomplish the computation.

(5.1) T ([EO,El]q> = [Er, Eoly, To ([EI,EO]q) = [Eo, Erl,.
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By definition of root vectors and the chosen order, one can verify

E< (on41)5-a, = (ToTl)n(EO

E< (2n4+2)5—a; = (ToTl)nEo(E)

E§,2n5+a1 = T

E< oni1)sta, = (TlTo )" T (
2n+1
2n+1 ((ad EOaEl ) (El>> ’
foraln=0,1,2,....

Using the reduced expression t., = psi, where p € ) is the transposition of 0
and 1, one can show that for any positive integer m,

Plm = [(TpTl)m_l (Eo) 7E1}
q
= [ESJWS—O&uEl}qa

T (<P17m> = Tp*1 (¢17m)
= [\IIES,(m—l)é—&-al ) EO] q

(5.3)

We set the projection of section by og1 := +1. Then corresponding skew-
symmetric matrix is B = (g ’02), and matrix presentation of the bilinear form
(0B is ((as, ;) B)i j=g = (249). Since (ag, a1)p = 0, the projection T Uf —
P} annihilates [Eo, E1],. Thus all the root vectors vanish in P} except for sunple
root vectors E< o, = E; (i = 0,1). Therefore, the image of quasi-universal R-

matrix © is
(5.4) 15@15(0) =E(y1)E(y) € Dp.

Beware that the order of product is reverse to given convex order .

Now we consider the reversed order <’, which is in fact obtained by just swap-
ping A(w, —) for A(w,+). The corresponding parameters are also just swapping
every parameter - for ©. Thus F</ , = WE< , for every real root a € A’°. One can
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verify that all the real root vectors for <’ satisfy the condition of Proposition
and thus do not vanish.
Since w = s1, T1(I1,m) (m > 1) are used as imaginary root vectors. Using

(5.3) we have
(5.5) 5 (Tip1m) = [m+1g(qg — )™ Heger)™

Let D := (q—q ")?epe1. Then the image of generating function T1¢1(z) € U |[[2]]

is

- 1

. T: (1 1]q =
(5:6) 75 (T (L+ 1 ( mZ::O mt (1—gD2)(1 — ¢ 1Dz)’
where 7 : U] — Pi[[2]] is defined degreewise. Recall that I1(z) = (q —
g Y Iimz™ = log(1 + ¢1(2)). Since log(l + z) = —> °_ (—1)™a™/m
[ET3),

m
(5.7) mh (T (2 Z wpm m
m=1

and therefore

arta
m(qg—q)
Now we compute the image of S], :=T1 ® T1(Sy,) (2.36). By definition by 1., =
[2m]o/(m(q~" — q)) and 1,1, = by 1,p,,- Thus

(5.8) 51 m) = D™,

Sm = Cl,l;mll,m ® Jl,m = 7_(])-[1,771 ® Q.[l,m S U;_ & Uq_

m
Let D' := Qg(D) = (¢' — q)*f1fo. By virtue of {4.27) and QT; = T;Q (i =
0,1,...,¢), we can compute as follows.

m(gt—q) ¢"+q¢™ ¢ +q "
2m],  m(g—q ') m(g~! —q)
Lqgm+q ™ , q"(q"+q ™)

-1 77 (pgpym=-_+ % TLT J
mqm — q‘m( ) m(1 —¢>m)

Th @7g5(S,) = D™ @ D'™

(D® D)™

By (4.24)), we obtain the image of Oiy, := [ _; Oms-

(5.9) 1575 (Om) = E(—¢D ® D) 'E(-¢"'D® D')~*
: -1

=E(—q:yoy1:) "E(—q¢ ":you1 1)
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Finally, we have
150715(0) = EG:yo )E(ydy )E(yayis) . ..
X B(=q:yoy1:) T E(—q yoyr )
X .. E(ygyif :)]E(:ygyf DE(Gy ).

Comparing with (5.4]), we eventually obtain the following quantum dilogarithm
identity, which was first found by Terasaki [13].

1

Theorem 5.1. [I3] Let yo, y1 be indeterminate. Then the following identity holds
in skew formal power series algebra Sy := Q(q)[[yo, y1]] with commutation relation

Yoy1 = ¢~ *y1yo-
E(:y19)E(yo:) = EG:yo:)EGy5y1 )ECGyiuts) . .
(5.10) x E(—q:yoyn1 :)*IE(—qflzyoyl :)*1
X .. .E(:ygyf :)E(:yoyf DECGy:),

cmo, M1, 2 mo, M1
where 1yy 0yt = ¢=O My 0yt

Let B' = (,01 (1)), S = g,; =~ Q(q)[[x1,22]]- Then @122 = ¢?z2x1, which
coincides with the commutation relation in the introduction. If we set R := (9 3),
R satisfies ‘RB’R = B. Thus by Proposition and there exists unique

continuous algebra homomorphism 5 : S — § satisfying
(5.11) U1(yo) = w2, Y1(yr) = :xial: = ¢ Cafad.

Let £ := Lp = Q(q)[zF!, 23], Since S := (% 9) satisfies 'SB'S = B/,
we have algebra automorphism ¥g € Aut L. ¥g transforms variables x1,xo as
Vs(w1) =:a1a;y " = Py ?, Ys(wa) = oo

Applying 7 on 1' and transforming variables x1,zs by ¥g, we obtain
1) in Q(q)[[3%, x2]]. Recall that ¢, and 15 preserves the normal ordered product

Proposition .
Corollary 5.2. The identity holds in Q(q)[[i—%, z2]].

Remark. We shall call a group homomorphism Z : () — C central charge.
When Z is injective and Z(A,) lies in the (closure of) upper half plane H :=
{z€C|Imz>0},

(5.12) a<zp o arg Z(a) <argZ(8) (o,B € AY)

defines a convex order on positive real roots, where we choose principal value of
argument so that 0 < argz < 27.
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Setting Z(ap) := 1, Z(ay) := 1 + /=1 yields the convex order (2.10). Notice
that <z yields only convex order of single row, because every root is of the
form md + a (m € Z,ac € A U{0}) and thus Z(A) lies in finite number of lines
parallel to Z(9).

§5.2. Type A(Ql)
Let g = 573 be affine algebra of type Aél). We choose a convex order by setting

wi= 8y, N:=2;

f:{1,2}:J02J1 ={1} 2 2 =10,

S0 1= (S05182)°, s1:=(81586—0a; ),

i:j02j1 ::{2}2j2:®a

80 := (525180)°, 81 := (Ss—as52).
Then the corresponding convex order < is

d—a1—aa<d—aa <20 —a1 —ap <20 —as < ...
<o <dt+a1 <20+a;1 <30+a; <...
<E<20<36<40<...
<3 <20 —a1 <d—
<0t artay<ditas <aptas < as,

where the null root § = ag + a1 + .
Using the algorithm of Proposition and notation (3.13]), real root vectors
in the first row of A(w, —) are computed as follows.

m—1

(5.13) Ecmios—ay = 0T02T02 - mm’

m—1
1 | 1 1
(5.14) Ecmsa, = 0T02T02 102102

(m>1).

This can be directly proven by induction on m, noting that
(5.15) Toh Tz ([Eo, Eolq) = Ev, ToTiTa(Er) = [Eo, Eog,

and ToThT>([Eo, E1]g) = E<36—a;—as, Which means that applying 7717 on
[Eo, 1] adds 3 branches from right.
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The computation of real root vectors in the second row requires more prepa-
ration. First, we have to compute E5_,, of . Since ®(sgs2) = {ap, a0 +
az} C A(l,—), we have Es_,, = To(E2) = [Ey, Es]q. Next, we need to com-
pute S;_a; € W, which is appropriate extension of ss_a, € Wy,. By the defini-
tion , So—a, = t1s1t!*. To compute this, we require reduced expression of
te, € W. Let p € Q denote the Dynkin automorphism which acts on the indices
as p(0) =1, p(1) =2, p(2) = 0. Then

(5.16) te, = psasi, te, =p°sisa €W C GL(H™)

are reduced expressions. Note that the length of w € W defined by || coincides
with the number of positive roots aw € Ay such that w(a) € A_. More generally,

Proposition 5.3. Let g = 5733 be affine algebra of type Agl). We set the indices
0,1,...,¢ so that a1 # 0 for i = 0,1,...,£ — 1. Let p € Q be the Dynkin
automorphism which acts on indices as p(i) =i+1 (0 < i < {—1), p(f) = 0. Then

(5.17) te, = (pts1sa.s) T (i=1,2,...,0)

k2
are reduced expressions in W.

Proof. Firstly, we have to check the equality. It is enough to compare the action
of both sides on simple roots since W c GL (§"*). Moreover, since every element
of W fixes the null root § = oo+ a1+ -+ ay, it is enough to check the action on
a; for j =1,2,...,£. On the one hand, ¢.,(o;) = a; — ;7. On the other hand, let
R; :=p~ts1s9...8;. When £ =1, Ry(a1) = p~!(—a1) = —ap = a; — § and hence
holds. Next, we assume ¢ > 2. Recall that for 1 <i,j < ¢,

@ li—jl>1
(518) Si(Oéj) = o; + o j =1x1
- J=1

in the root system of type A,. By direct calculation we have

a; 1<j<i—1
4o toip+--+o j =1

(519)  Rilog) = . T
d—aip1 —aipa— - —ag j=i+1
Q51 ]>Z+1

When 1 < j < i, it is clear that R () = a;.
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When j = i, the case ¢ = /¢ is the above formula. When i < ¢, notice that
R;(a; + ai41) = . Using this inductively,
R ow) = R0+ i+ iga + -+ + )
=R 0o i o ae)

= Rl(—d + o, + Ozi+1) = -0+ q

and thus RS (o) = =6 + a;.
When j =i + 1, notice that R?(a;+1) = . Thus

R (i) = R How) = i

When j >i+1, RIT 7 (a;) = Rf7j+2(ai+1) = Rffj(ag) = ;.

By above calculation, we conclude t., = Rf“fi.

To verify that Rf“ﬂl is reduced expression, it is enough to show that the
length of ¢, € W is i(¢ +1 —14). The length of t., coincides with the number of
positive roots which ¢., sends to negative roots. Recall that

(5.20) A={t(ai+aii+ +a;)|1<i<j< L}

in finite root system of type Ay. t., translates the roots containing +a; by F6.
Thus, if « = md+e € Ay (m € Zsg, € € A) satisfies t., (o) € A_, then m = 0 and
€ must be a positive root containing a;. Such ¢ takes the form o; + o414+
(j < i < k), and the number of such (j,k) is (¢ — ¢ + 1). This shows that the
length of t., is i(¢ + 1 —i). O

By Proposition t1r = (pts1p7ts1)”t = (psas1)”t = psy and we have
(5.21) 56 _a, = PS251PSa.
Now we can compute real root vectors in the second row. Since w’t = s{* =1
and Eé—al = To(El) = TPTQ(El),
(T Y /2(EBy) m : even
<,mé+a; —
ST T (T ) 2T (Bs_a,) m: odd
ObSQI‘Vng TlTpT2 (Eo) = Eo and TlTpTg([El, EQ]q) = [El, Eg]q, we have

m

(522)  Beppra, = WL20LZ - DIZ01Z ()5
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Similarly, root vectors for real roots in A(w, +) = A(s2s1, —) are computed as
follows. Comparing sg = (s9s152)™ and §g = (525150)™°, E< ms+as, F< mé+ar+as
are obtained by swapping all the index 0 for 2 in E< ms—ai—ass F<,mé—a, and
applying W, which just reverses all the directions of ¢-bracket. As a result,

m
2 217 - 2 2T2
(5.23) Ecmsroy = 0210271 021021 ’
m
020 B = EEL TITL 20
Since Wt = s281 and §1 = (85—qa,82)°°, root vectors for md — ay are defined as

VT (T, Ty)m=V/2(Es_,,) m : odd
VT (T To) ™2/ PT— (E2)  m: even

S6—ag

(525) E§7m5—0t1 = { (m Z 1)5

where Es_,, = To(F1). By Proposition ta‘]; = (p‘lslsg)jl = p?s; and thus

So—ap = t21sot]} = p?s159p%s1. Rewriting Es_q, = To(E1) = T,2T1(E2),

€2
(5.26) B ms—ay = UL T (T Ty o)™ ' TeTy(Ey)  (m > 1).
Moreover, one can deform this presentation to the form ¥(T,,)™T,(E;) by realizing
T-'(E;) = E. Since T ' = Tl’lT{lTp_l7 we can replace Ey with Ty ' 75 T, 1 (Ey).
In the extended braid group B,
T,TT;'=17'T,,
TT\T» - Ty 'T, = Ty 'T, - T2 To Ty,

where we used 7} T2 = T, Ty ' and TVIoTy ' =Ty YT\ Ty. Therefore we have

T (T, T To)" T Ti (Bs) = ToT, (T ToTi)™ ' (Es).
Finally, rewriting Fo =T L(Ey) yields
ToT, (T ToTy)™ (Ea) = ToT, (T, ToTh)™ T, (Eq)
=To(T,2ThT2)™ (Eo)
= (T, T1)™ "To(Ep).

As a result, we obtain

(5.27) E<ms—a, = V(TT,T)" "To(Ey) (m > 1).
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The advantage of this presentation is that inductive computation becomes
easy. In fact,
2021
(5.28) Ty, Ty Ty(Eo) = \gyo

and thus applying T>7,2T; to [E3, Eplq adds 2 branches from right. By virtue of
[E2, E1]q and Ey being invariant by 157,271, finally we have

m =1
| T TS
Next, we compute imaginary root vectors. Since w = sy, T1(L;m) (I =

1,2;m € Zx1) are used as imaginary root vectors. We use (4.34) to compute
Ty (p1.m)- Since to, = psasy = usy, u = psa. Thus

Ti(p1,m) = {Tl (TpT2Tl)m_1 T ' (Ey), T, ! (EI)L

_ |:(T1TPT2)m_1 (Ey), \I'Tsz_l (El)}

q

Since 1T, Ty(Er) = 10 L7 and TyT, 15 fixes Ey and [Ey, B,

1
TR0 . T2TiT02

(5.30) Ti(p1,m) = (m>1).

The computation of T3 (ps,,) is more easy. By definition,
Ti(p2m) = [MTLTy ' (Br), Th (B2)],
and in the computation of E< ,,5_,, we have already computed
NIy " (Bo) = T,(T,2ToTy)™ H(Bs) = (T, ThTo)™ ' (Eo) = T2 1 (Ey).

Since T2 Ty Ty (Eo) = 01& and Tv, fixes By and [Eo, )y,

m=1

We also require Ty (9i,m) = 1211 (¢ m) for the reversed order <’. Fortunately,
in this case we can simply apply T5 on every leaf of the presentation of T3 (¢1,.m,).
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As a result,
m—1
(5.32) TQTl(@lﬁm) :2 1mm e mm07
m =1

Set the projection 7r§ : U;‘ — Pg of section by oog1 = +1,002 =

0-1-1
41,012 := +1. Then corresponding skew-symmetric matrix is B = (} ? —01),

(0)
¢\

which corresponds to the Dynkin quiver () ><:> . The matrix presentation of
2 00

*g 22 g) Thus [E07El]q; [Eo,EQ]q,
and [E4, Es), lie in the kernel of Wg. Examining the computed presentations of

the bilinear form (-,-)p is ({ai, o) B)7 ;=9 = (
root vectors above, all the root vectors except for simple root vectors vanish by
Wg. Therefore, the image of quasi-universal R-matrix © is

(5.34) T5&15(0) = E(y2)E(y1)E(yo) € Dp.

Now we reverse the given order. Recall that the real root vectors for the
reversed order <’ are obtained just by reversing all the direction of g-bracket.
Then one can verify that the real root vectors in the first row, namely, F</ yn5—a, =
U(E< ms—ay), B<' mo—ar—as = Y(E< ms—ai—a,) (M > 1) satisty the condition of
Proposition [£.7]

However, by contrast, real root vectors in second row behave differently.
E<r §—0y = Y(E< §-0,) = [Fa, Eo), does not vanish by 73 since (a2, ap)p = —2 #
0 and satisfies the condition of Proposition @ In the same way E</ o, = E)
does not vanish. But F</ u5-a, and E</ (;,_1)54q, Vanish for m > 1 because
(o + g, 1 + 2) p = (g, 1) p = 0. Thus the real root vectors in the second row
vanish except for E</ s_o, and F</ q,.
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Next, we have to compute the image of imaginary root vectors ToT1(I; ).

Using (4.25) and the presentations (5.32)) (5.33]), we have

TET T (01m) = (1= ¢ 2)*2(1 — g2 D)egeq (eze0er) ™ eg
=(q—q

q—q ")?" m+ 1]g(eoerea)™,

(g—q Vegea m=1

+
T 1T (po.m) = )
B 0 m>1

since {(ag + ap, a2 + a1)p = 0. The second equality is due to the following cal-
culation. Recall that the commutation relations in ’P;C become ejeq = qegeq,
esep = gepea, eze; = gejez. Thus

eser(eaeper)™ teg = gerea(q®eperen)™ teg = ¢ (egeren)™  (m > 1).

Let D := (¢ — g !)3ege1ea. Then by definition of generating function ;(z) €
U=,

o0

T (2) = 2 I+ U, D"" = s € P

m=1

WE(TQT:[()OQ(Z)) = Dz.

Thus the image of imaginary root vectors are

e
5.35 (T I ) = —————D™,
( ) B( 241 1,m) m(q_q_l)
_1)m,—1
5.36 T (TyTi L) = 0" pm s 1),
( ) B(2 142, ) m(qiqfl) ( )

At last, we compute the image of S], := (ToT1 @ T5T1)(Sy) (m > 1) in (2.36]).
By definition,

bl,l;m b1,2;m — 1 [Qm]q (*1)m71[m]q
(=1) ’

b2,1;m b2,2;m

C11m C1,2m | _ m(g~' —q) 2m],  (=1)™[m],
€2,1:m €2,2;m [2m]§ - [mE
and thus S, is written down as

(5.37) Sp— M40

[2m]G = [m]3

{[2m]q(11,m ® Jim + Iom @ Ja,m)
q

+ (_1)m[m]q(ll7m & JZ,m + I2,m ® Jl,m)}-
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Let D' :=Qp(D) = (¢~ — q)®f2f1 fo. Then

qrt+qa ™
7D m7
m(qg~t —q)
(-pm!
m(q~' —q)

(538) 71'; (TQTlJl’m) ==

(5.39) mp(TeT1J2m) =

Therefore the image of S/, is computed as follows.

(75 ©7g)(Sh)
_omlat =) Jy (@ —aTm) 1 o
= {[2 ]q ( 1)2> D" ® D

2m]3 — [m]3 m*(g—q1)* m*(q—q-

m (=D™@" +a"™) oy
+ (=1)™[m], - 2 TR D™ ® D }
m(g™' —q)  —[2m]g (1+(¢™ +¢7™)?) +2[m]g(¢™ +q~™)
2m]3 — [m]; m*(q —q~1)?
[2m]q(¢®™ + 3+ ¢7%™) — 2[m]g(¢™ +¢~™)
([2m]2 — [m]2) - m(q —q")
1@ =g ) (" +3+¢*) —2(¢" —¢ ™) (¢" +q ™)
m (¢>™ —q=2m)% = (™ — ¢~ ™)?
1 (g

(Do D)™

(Do D)™

( m o q—m>(qm + q—m)<q2m + 1 + q—Zm)
(@™ =g ™) (¢*m +1+q72m)
Lgm(@"+qg ™) /
= —149 79 Jpgp)m.
m  1—q¢?m (D@ D)

(D& D)™

This result coincides with the case of type Agl). Therefore

75@75(Om) =E(—¢D @ D')'E(—¢ 'De D')"!

(5.40) - ~ _
=E(—q:yoy1y2:) "E(—q¢ "yoyry2:)

Comparing (5.34)), finally we attain the following identity.

(Do D)™

43

Theorem 5.4. Let yo,y1,y2 be indeterminate with commutation relation yoy; =
a 2190, Yoy2 = ¢ 2y2%0, Yi1y2 = q 2yoy1. Then the following identity holds in
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skew formal power series algebra Sy = Q(D!lyo, y1, y2]]-

EGy2)ECGy1)EGyo:)

.
= ST EGu ™ v OBCyr o s :) p EGyoye:)
m>0

(5.41) . . .
x E(=q:y0y192:) " E(—¢ " :yoy1y2:)
H EGyg'yrys ™ OEGyg vy )
m>0
where H2>0 A = apa1as . . ., H;>0 Qm = ...aa1aq9, and normal ordered prod-
mo, mi, M2 mom,l—l-momg—T-m,lmz mo, M1 m2.

uct i 1Yy 'Yy Yo 1 =¢ Yo "Y1 Y

Set R:= (911). Then the condition of Propomtlo 3lholds for B’ = ( °; §).
Thus we have continuous algebra homomorphism 77/12 1Sy — S which satisfies

(5.42) ba(yo) = 2, Po(yn) = 1235, Yolys) = :m1a2n.

Applying @/D; on 1) and transforming variables using 15, we obtain 1) This
proves that the identity 1) holds in Q(q)[[33, x2]]-
2
1.3

Remark. To derive (|1.3)), convex order of multiple row is mandatory because
the factor Uio in the middle cannot be appear by only using convex orders of
single row. We also note that convex orders of multiple row never appear as the
form of <y determined by central charge Z (5.12)).

§5.3. Type Aél)
Let g = 5/[2 be affine algebra of type Agl). We set a convex order by
w = §98183, N :=3;
I=Jy2J1:={1,3} 2 Jo:={3} 2 J3 =0,
S0 := (S052515352505351)™, 81 := (5185-a,)™,

S2 1= (8355—a3)"",

W = WWo = 518352}
I=Jo 201 ={1,3} 2 Jo:={1} 2 3 =0,
So 1= (5153525053515052)%, 81 1= (S5-a553)",

89 1= (8§—a,81)%°
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Then the corresponding convex order < is as follows.

5—a1—a2—a3<a2<5—a3<5—a1

<20 —a1—ag—az3 <d+ag <20 —a3 <20 —

<artay<dtatay<20+a;t+ay<3d+a;+as<...
<astaz<dtastaz<20+ast+az3<3it+ast+az<...
<d<20 <30 <4 <.
<3 —ag—a3 <20 —ay —a3 <0 —ay—ag

<30 -~ <20 —ap —ag <0 — a1 —

<20—as<d4+a1t+arstaz3<dt+az<d+ao
<d—ay <oy tastag<az<ai.

where the null root 6 = a9 + a1 + a2 + 3.
Set

0-10-1 Q a
1010 . .
(5.43) B := (corresponding quiver: ).

0-10-1
1010 O

The matrix presentation of the bilinear form (-,)p is

2000
-22-20
0020
-20-22

(<ai70‘j>B)?,j:0 =

In the same way in the examples so far, one can verify that all the root vec-
tors except for simple root vectors vanish by the projection ﬂ'g. On the other
hand, real root vectors for the reversed order <’, namely, E</ s4q for a =
tay, *ag, tas, H(a; +ag +a3z) (m > 0ifa € Ay, m > 1ifa € A_) do
not vanish by 7, and satisfy the condition of Proposition The real root vec-
tors in the second and third row F</ imsta;+as, E</ métastass </ (m1)6—ai—as
E< (m+41)5—as—a, vanish if and only if m > 0, and satisfy the condition of Propo-
sition 1 when m = 0. This behavior in the second and third row resembles that
of the case of type Agl).

Although the computation of imaginary root vectors also has resemblance
to the previous examples and in fact we will obtain identical presentation of
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wE@wE(@im), the process of computation is far from obvious. After somewhat
lengthy computation (we used T_,'(E;) = E; for i = 1,3 in the process), one will
obtain

To(p1.m) = [(TWT,T5T2)™ ' Ti(Eo), [Es, E2lglg,
Tis(2,m) = (1T ToT 2 To) ™ T5T1 (Es), Eolq,
Ti(03,m) = (T5T s Ty o) T5(Ey), [Er, Ealgly  (m > 1),

75 Ts(1,m) = 75T (03.m) =

(g — q Yegeseres m=1
0 m>1 ’

T Ta(p2,m) = (@ —a )™ m + g(eoezeres)™  (m > 1).

Thus the images of imaginary root vectors are

(_1)m—1 m
75w (Iim) = 75T (Is.m) = ma—q )
moygm
ETo(lom) = L4 pm (m>1
Tp ( 2, ) m(q_q_l) (’ITL = )7

where D := (q — ¢ !)*egesee3.
Our last task is to compute the image of S/, := (T ® Tp)(Sm) (m > 1). The

definition (2.35)) reads

1 M (=)™ My 0
(bi’j?m)?ﬁjzl = m(gL —q) (1™ tM,y My (=1)m=1My |,
0 (_1)m—1M1 M2

1 M3 — M?  (=1)"™M; M, M?
3 _ m(q q) m 2 m
(Ciim)i jm1 = SYERTIVEIVA (=1)™M; M, M (=1)™M M, |,
2 1°72 M? (=)™ MMy M2 — M?
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where M), := [km], for k = 1,2. Thus the image of .S

T, 1s computed as follows.

m(qg~! —q)
2m]3 — 2[2m]y[m]2

x (2(12m2 - (m]?)

(nf @ 7p)(S),) =

1

m(q—q 1 )m(g~t —q))
(=)™ g™ +q™)

“m(q—q " )m(g —q))

+4(=1)"[2m]y[m]

+2[m]? !
“m(qg—q)m(g~! —q))
(q™ +q™)?
el )
>< D’"L ® D/m
__1gm@g"+q™) (D& D)™

m 1—g2m

where D' := Qp(D). This is identical with the previous examples and we conclude
1587 5(Oim) = E(—¢D ® D')'E(—¢~'D ® D’)~'. As a result,

Theorem 5.5. The following identity holds in skew formal power series algebra
83 :=Sp = Q(q)[[yo, y1, y2, y3]].

EGy1:)ECys:)EGy2:)E(yo:)

- HXm E(:y1y2:)E(:y2y3:)

m>0
(5.44) . . .
X E(—q:yo11y2y3:) E(—q¢ :yov1y2y3:)
—
< ECyoyr )ECGyoys:) § [ Yom ¢ s
m>0
where

X = ECyg iy vs DECyg yiys " y5" )
X ECyg s s OB Gy Tty Ty ),
Yo = E(: gy Lyt lymymt (g mtl metlymd
< ECysyiysys T OECys v s ys ).
Set R:= (9191). Then the condition of Proposi/ti\on h(ﬂds for the same
B’. Thus we have continuous algebra homomorphism 3 : S5 — S which satisfies

(5.45) ba(yo) = Pa(y2) = w2,  Pa(yn) = Palys) = :z122:.
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Applying 171\3 on 1) and transforming x1, x5 by ¥g yields 1) This proves the
identity (1.4]).

§5.4. Type DS)

Let g = sog be affine algebra of type Dfll). Let

00-100
00-100 @\ @

. . /
(5.46) B:=111011 (corresponding quiver: @ ).
00-100 7N
00-100 @ @

Using the assignment of indices in the Dynkin quiver above, we set a convex order
by

W = 1535452515354, N :=4;
T=Jo 2 ={1,3,4} 21 := (3,4} 2 Jy := {4} 2 J, =,
S0 1= (S051535452)%, 81 := (8186-a,),

So 1= (5355—113)00’ S3 1= (3455—0‘4)00’

W = WWo = S$251535452;
T=Jo 21 ={1,34} 2 Jo:={3,4} 2 J5:= {3} 2 L = 0,
o 1= (5251535450)™, 81 := (85-a,51)™,

So 1= (55,a383)00, S3 1= (85,(1484)00.
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Then the corresponding convex order < is as follows.

00— — 200 —a3 —ay <o <az < ay
<d—ay<aitastaztas<d—a;—asy
<Od—ag—a3<d—ag—ay <20 —ay
20 —a1 —2a9 —ag—as < d+ta; <d+az <o+ ay
<3d—as<dt+aitastaztay<20—a;—a
<20 —ag— a3 <20 —ap —ay <46 — g

<agtazt+ag<dtagtazt+as<20+ast+aztay<...
<artastas<dtoartastas<20+at+ast+as<...
<oaptoagtag<dtagtayt+a3<20+a;+as+taz<...
<E<20<36<40<...
<3 —ag —ap—a3 <20 —a1 —ag—az3 <d—a] — Qs — Qs
<30 —ap —ap — s <20 —p —g — g <O — g — Qg — Oy

<3 —ag— a3 — <20 —ag—az3—ag <0 — Qg — Qa3 —Qy

<O+ag+2a0tag+ay <20 —ay <20—a3<20—o

<304+ <20 —a1 —ag—ag3—ay <0+ ag+ oy

<d4astaz<d+oa;+a<2i+a
<ar+2ataztas<d—ays<d—az3<d—a;
<Od4+ay<d—a)—ay—a3 —aq < g+ oy

< ogtaz <o+ oy < g,

where the null root § = ag + a1 + 2a9 + a3 + ay.

To compute root vectors, reduced expressions of fundamental translations
te, € W (i = 1,2,3,4) are required. Let 7 := (95334), 7/ := (91234) be
Dynkin automorphisms. In the same way of the proof of Proposition [5.3 one can

verify that

gq — TS815253545251,

(5.47)

/
ez — T 535251545253,

w

t
te, = S0525354525152835452,
t
t

/
€4 TT $48251535284
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are reduced expressions in W, Using these formulas, one can compute all the root
vectors and verify that all of them except for simple root vectors vanish by Wg.
For the reversed order <’ real root vectors in the first row satisfy the condition
of Proposition .7} On the other hand, real root vectors in the second, third, and
fourth row, namely,

ES”m5+a1+az+a3 ’ ES’,m5+a1+a2+a47 ES’,m5+a2+a3+a4v

Eg’,(m—i-l)é—al—ag—aga Eg’,(m+1)6—a1—a2—o¢47 ES’,(m+1)6—a2—a3—a4

vanish for m > 0, and satisfy the condition of Proposition [£.7] when m = 0.
The image of T (pim) are computed as follows.
(5.48)
q(qg — g Yoeperezeses m=1

75T (1,m) =7 5T (@3,m) =75 T (Pa,m) = ;
0 m > 1

75T (p2,m) = ™ (g — ¢ 1) m + 1], (eoerezese3)™.

Note that e;e; = eje; and eze; = gejes in Py for 4,5 = 0,1, 3,4. Thus

i Tallin) = A D) (=0.1,3.9),
(5.49) s
w5 Ta(lm) = b @D)™ (m21),

where D := (g — ¢ ")%egereseqed, D' := Qp(D). The definition (2.35) reads

. s 1=]
bi,';mzix t 1 52 €]
J m(¢g~t —q) 7 gy
0 i#J4,]#2
(5.50) s? 1=j=2
oot =g)  Js(s =27 =g
b = 2 32) ) Ly i#5i2e{ig}

st i # G0, #2
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where s := [2m],, t := (=1)™"![m],. Finally, the image of S}, := (Tiy ® T»)(Sm)

is computed as follows.

(75 @ mp)(S,) = ;Z((ga_l_;;)) m(q — Q‘l)lm(q_l —q)
[{3:5(s2 = 26%) #6522} - (1) (-1
F6- () ()P )
(g g™
x (¢D)™ @ (¢~ D)™
~mlg - q—1>1s2(32 AL
1 g™ (g™ +q™™)

= _EW(D ®@ D)™

Therefore surprisingly, the image of S/ is identical to that in the examples of
type A ), and we have 15;®75(Om) = E(—¢D ® D')"'E(—¢"'D® D’)~!. As a
result,

Theorem 5.6. The following identity holds in skew formal power series algebra
Sy =g = Q(9)[[yo, y1,Y2, Y3, yal-

E(: Cya)ECys)EGy)E(Gyo:)

y2:)E
{ H (:y29394 ) E(: y192y4 ) E( y192y32)

(5.51) ) » , .
x E(—q:yoy193y3ya:) "E(—q i yov1y3ysya:)

X E(:y0y2y4 ) E(: yoy2y3 ) E(: yoy1y2:) H Yin 0

m>0
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where

v sy OB Cyg T s ys )

vy s sy OB Gy s sy )

E(:

E(:

( 2m—+1 2m+1y4m+1y§m+1y2m+1 )E( Y y{n+1y§m+1ygn+1y21+l )
(-0

(0

(:

% m+1 m, 2m+1 m+1 m+l

E
x E
Y, =E

yi'ys Sy s gyt

DEGyg
m—+1 m+1y2m+1 m+1 )E( 2m+2 %m+2 4m+3 2m+2y2m+2:)’
(5o

m, m+1 2m+2 m+1 m+1
Yo Y1 HE

Yo Ys

m+1 m+1 2m—+2 m+1, m
A T/

m+1 m+1y§m+2ymyzln+1 )E( Y y11n+1y§m+2ym+1ym+l )

x E(:yg

]E( y2m+1 2m+1y421m+3y§m+1y2m+1 )]E( y6n+1y{nygm+ly§nyzw)
E(:yg"
E(:

oy sy T OB Gy T s s )

m, m+1 2m+1 m, m )E( 2m, 2m, 4m+1_2m 2m.)'

Yo Y1 Y3 Yg - Yo Y1 Y2 Y3 Ya

Set R := ($9399). Then the condition of Proposition |4.3] holds. Thus we
have continuous algebra homomorphism 1/14 84 —+ S which satisfies

(5.52) $a(yo) = Da(y1) = Yalys) = Yalys) = w2,  Waly2) = ;123

Applying 14 on (5.51)) and transforming variables using ¢ g yields (1.5)). This proves
the identity (L.5]).

Main Theorem 5.7. The four identities , , , holds in the

skew formal power series algebra Q(q)[[5%, z2]].
2
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