Seamless Execution of Action Sequences

Freek Stulp, Wolfram Koska, Alexis Maldonado and Michael Beetz
Intelligent Autonomous Systems Group, Technische Universitit Miinchen
Boltzmannstrasse 3, D-85747 Garching bei Munich, Germany
stulp@cs.tum.edu

Abstract— One of the most notable and recognizable features
of robot motion is the abrupt transitions between actions in
action sequences. In contrast, humans and animals perform
sequences of actions efficiently, and with seamless transitions
between subsequent actions. This smoothness is not a goal in
itself, but a side-effect of the evolutionary optimization of other
performance measures.

In this paper, we argue that such jagged motion is an
inevitable consequence of the way human designers and plan-
ners reason about abstract actions. We then present subgoal
refinement, a procedure that optimizes action sequences. Sub-
goal refinement determines action parameters that are not
relevant to why the action was selected, and optimizes these
parameters with respect to expected execution performance.
This performance is computed using action models, which
are learned from observed experience. We integrate subgoal
refinement in an existing planning system, and demonstrate
how requiring optimal performance causes smooth motion in
three robotic domains.

I. INTRODUCTION

When it comes to elegant motion, robots do not have a
good reputation. Jagged movements are actually so typical
of robots that people trying to imitate robots will do so by
executing movements with abrupt transitions between them.
In contrast, one of the impressive capabilities of animals and
humans is their capability to perform sequences of actions
efficiently, and with seamless transitions between subsequent
actions. In nature, fluency of motion is not a goal in itself,
but rather an emergent property of time, energy and accuracy
requirements. In this paper, we demonstrate that requiring
optimal execution of action sequences also automatically
leads to smooth motion in robots.

Let us illustrate the problem with a typical scenario from
robotic soccer taken from [12], depicted in Figure 1. The
robot’s goal is to be in possession of the ball in front of the
goal, which can be achieved by the action sequence 1) go to
the ball; 2) dribble the ball in front of the goal. If the robot
naively executed the first action, it might arrive at the ball
with the goal at its back, as depicted in Figure 1a). This is
an unfortunate position from which to start dribbling towards
the goal. An abrupt transition occurs between the actions, as
the robot needs to brake to slowly and carefully dribble the
ball towards the goal.

What we would like the robot to do instead is to go to
the ball in order to dribble it towards the goal afterwards.
The robot should, as depicted in the Figure 1b, perform the
first action sub-optimally in order to achieve a much better
position for executing the second plan step. The behavior

shown in Figure 1b exhibits seamless transitions between
actions and has higher performance, achieving the ultimate
goal in less time.

753

%//
I //////// i

./ /////'
mm.mmmuluun“ m,,,m) Q0
8 E
i 1 '//////”_“Hl\\\

b)

Fig. 1. Alternative executions of the same action sequence. Execution b)
is faster and has seamless transitions between the actions.

a)

In this paper, we will argue that jagged motion is a
fundamental problem that inevitably arises from the way
robot controllers and actions are designed and reasoned
about. We then present subgoal refinement, which deals with
this problem by reasoning about how action execution can
be tailored to the task context [12]. To be able to predict
the performance of an action before it is actually executed,
the robots learn action models from observed experience.
Subgoal refinement optimizes action sequences with respect
to the predicted performance, with fluent motion as a side-
effect.

The contributions of this paper are 1) analyzing why
abrupt robotic motion arises, 2) integrating subgoal refine-
ment in an existing planning system, and 3) demonstrating
how optimality requirements lead to smooth motion in three
robotic domains: service robotics, robotic soccer and manip-
ulation. We believe these contributions help bridge the gap
between classical planning and applied robotics.

The rest of this paper will proceed as follows. The next
section will have a closer look at why abrupt transitions
arise, and informally introduce the solution idea, subgoal
refinement. Section III explains how sequences of actions
are generated and optimized using learned action models.
We evaluate the application of subgoal refinement in three
robotic domains in Section V, after which we present related
work in Section VI. We conclude with Section VII.

II. PROBLEM ANALYSIS AND SOLUTION IDEA

In this section we will explain the key issues that cause
jagged motion, as well as the rationale behind our solution.
These issues are related to the different modules of the
system implementation, which we present in Section III.
References to the corresponding subsections have been made.

1) Parameterizable actions enable abstract action se-
lection. A successful approach to expressing high-level goals
in terms of low-level motor commands is to specify a set of
temporally extended parameterizable actions, also known as
behaviors, skills or controllers. Complex behaviour is then
achieved by generating sequences of parameterized actions,
as in Figure 1. Planning, behaviour-based, hierarchical re-
inforcement learning, and most hand-coded controllers use
actions to facilitate controller learning or design.

Because actions are designed with a certain goal in mind,
they can be selected based on what they do, thereby abstract-
ing away from how they do it. For instance, the name of the
action approachBall alone already gives a clear indica-
tion of what it is intended to do, although it is unknown,
and for high-level action selection purposes irrelevant, how
it actually achieves what its name indicates. In Section III-
A, we describe a planning system that automatically selects
parameterizable actions based on their abstractions.

2) Action conditions bind some action parameters, but
not all. What an action can achieve is usually referred to as
its effects or post-conditions, and when it can be executed as
its pre-conditions. These conditions are either only implicitly
known to the designer of the action, or explicitly encoded in
the controller, as in planning. Programming action selection
modules in terms of such modular, declarative components is
widely held to be easier than in a direct procedural account.

Conditions are abstractions, as they usually disregard
many aspects of the situations before, during, and after action
execution. This means that they often abstract away from
some of the action’s parameters. How to determine which
action parameters are bound by the conditions and which
are not will be discussed in Section III-B.

The disadvantage of abstracting away from action parame-
ters is that these parameters might influence the performance
or robustness of actually executing the action. This became
clear in the example in Figure 1. From the point of view
of the abstract conditions, being at the ball is sufficient for
dribbling it. Although the angle of approach might not be
relevant on an abstract level, the example clearly shows that
it does influence execution performance. Instead of requiring
the user to refine conditions to include these considerations,
the robot should do this autonomously.

3) Free action parameters can be optimized with
respect to expected performance. Parameters that are not
bound by the conditions of an action are called free action
parameters. For instance, in the running example, the free
action parameter is the angle of approach. The position and
angle of the robot with respect to the ball are not, as they
are bound by the precondition of the dribbleBall action.
Changing these values could mean the condition no longer
holds, and the action cannot be executed correctly. On the
other hand, the angle of approach is free, and any angle
of approach would lead to a successful execution of the
action sequence. Instead of choosing just any angle, our
system automatically computes the value that optimizes the
overall expected performance of the action sequence, as in
Figure 1. Because one optimal intermediate goal is chosen

from many, this procedure is called subgoal refinement. The
implementation of this optimization will be discussed in
Section III-D.

4) Action models can be learned. Subgoal refinement
requires the expected performance of the overall action
sequence to be predicted. Therefore, robots acquire models of
their actions, which enable them to predict the performance
of the action, given a certain parameterization. Before task
execution, these models are learned from observed expe-
rience. First, each action is executed for a multitude of
parameterizations and the performance recorded. A learning
algorithm then learns a generalized model that maps an
action and its parameterization to expected performance.

The benefit of this approach over analytical methods is
that it is based on real experience, so it takes all factors
relevant to performance into account. Also, many hand-coded
actions are difficult to formalize, or analysis is impossible
because the inner workings of the action are unknown. In
principle, learning models can also be done on-line, so that
action models can adapt to changing environments [5].

III. IMPLEMENTING SUBGOAL REFINEMENT

In this section, we describe how subgoal refinement was
implemented, and used to optimize action sequences gener-
ated by the planning system VHPOP.

A. Generating Sequences of Abstract Actions

Figure 2 depicts the computational model of action se-
quence generation. It is similar to those of other approaches
that merge symbolic planning with robotic action execu-
tion [3], [4]. In the abstract planning domain, a planner
generates sequences of abstract actions based on an abstract
state and a goal. To do so, it uses the pre- and post-
conditions of the actions in the action library. The abstract
state is acquired by performing an abstraction on the robot’s
belief state, called anchoring. The sequence of actions is
acquired by replacing the abstract actions in the plan with
their corresponding executable actions from the library, and
replacing abstract conditions with belief state values.

Action Library
tonditionﬂ
1 oction |

| model |

model

Subgoal
Refinement

Fig. 2. Computational model of planning and subgoal refinement.

We use the Planning Domain Description Language
(PDDL2.1 [6]) to describe abstract actions, abstract states
and goals. Converting the continuous variables from the
belief state into named symbols (e.g. PDDL symbols) is
called anchoring [3]. As we currently do not consider re-
planning, anchoring need only take place at the beginning
of the planning process. Therefore, a complicated anchoring
process with object tracking was omitted.

Because the actual planning process is not the focus of
our research, we use VHPOP [15] to generate our abstract
plans. This partial order causal link planner was used as is:
no adaptations are needed to apply subgoal refinement to
the plans it generates. We are aware that VHPOP is far from
state-of-the-art with respect to robot planning, and that our
assumptions about robot planning might seem naive. We have
chosen VHPOP because its high abstraction level allows us to
focus on the important aspects of action abstraction, instead
of the many intricacies of robot planning. Our methods are
certainly not incompatible with more complex robot planning
systems [3], [4].

PDDL plans are very abstract, with clear semantics of
what actions do, even without knowing how the actions
are executed. This makes human inspection of the plan
feasible. However, it does not specify how this plan can
or should be executed in the real world. Therefore, once
the plan is acquired, the abstract action sequences must
be instantiated with the corresponding executable actions.
This requires information from the belief state. For instance,
the operator (goto doorl door2) is converted to an
action by extracting the doorl and door2 into the robot’s
coordinate system using the mapping from the anchoring
process, obtaining actual coordinates. The got oPose action
can thus be instantiated, parameterized, and then executed.

Abstract Operator Chain
1: (goto doorl door2)

Executable Action Sequence

1: gotoPose (
x=2.68, y=2.12, phi=1.78, vtra=0.00,
sxg=4.17, yg=3.40, phig=0.00, vtrag=0.00

B. Free action parameters

In the previous section, we saw an example of an instanti-
ated action that was fully parameterized. Since conditions
often abstract away from action parameters, the resulting
actions are actually often only partially parameterized. Un-
specified parameters are usually set to default values, such as
phig was set to 0.0 in the example. This value is arbitrary,
and in principle any value from the range of possible values,
defined by the action’s postcondition (to be at door2), could
be used.

To determine which parameters are free, and which ranges
can be used for them, our system considers the context
in which the actions are executed, their pre- and post-
conditions, as well as the values in the belief state. For
instance, the maximum velocity of our soccer robots is

2m/s, but the precondition of dribbleBall specifies that
it should be in the range [0m/s,0.3m/s] because the robot will
not be able to control the ball otherwise. So the goal velocity
of adribbleBall action will always be in this range, and
the starting velocity should be in this range, too. To achieve
this, the prior action which affects this parameter has to
know the context in which it is executed. In the example
below, approachBall should be executed to achieve (at
ballpos) for dribbleBall. In this case, the robot’s
velocity at the end of the approachBall action should
be slow, as the precondition of dribbleBall specifies.
In contrast, if achieving (at ballpos) for kickBall,
the velocity should be high. This contextual information is
contained in the causal links of the partial order planner.

Below an example of a partially specified action sequence,
corresponding to Figure 1 is listed. Note that each action pa-
rameter has an ID number, to keep track of equivalent values
in different actions, which is important for the optimization
process.

Abstract Action Chain
1: (approachBall startpose ballpos)
2: (dribbleBall ballpos goalpose)

Executable Action Sequence
1: approachBall (
1:x=0, 2:y=1, 3:phi=0,
11:xg=3, 1l2:yg=1,
13:phig=[-PI,PI],

4:vtra=0,

14:vtrag=[0,0.3]
)
2: dribbleBall (

11:x=3, 12:y=1,
13:phi=[-PI,PI], 1l4:vtra=[0,0.31,
21:xg=1, 22:yg=3, 23:phig=2.6, 24:vtra=0

C. Learning Action Models

To optimize free action parameters with respect to the
expected performance of all actions in the action sequence,
the robot must be able to predict the performance of each
action in the sequence. Before task execution, the robot
therefore learns action models from observed experience.
These models predict an action’s performance given a spe-
cific action parameterization. In this paper, the performance
measure is time. The difference with forward models [5]
is that action models predict the outcome of temporally
extended actions, not single motor commands.

The first step is acquiring training data for each action.
This is done by simply executing the action for varying
parameterizations, which is also known as motor babbling.
For instance, navigation actions are executed for random
poses in the area where the robot can go. Data acquisition
continues until the error of the learned model on a separate
test set stabilizes. How many executions are actually neces-
sary to learn an accurate model is domain dependent, and
will be presented in Section V. Before learning, the data is
transformed to a feature space appropriate for the action.

Then, model trees are trained with this data to acquire
a general model of the action. Model trees are functions

that map continuous or nominal features to a continuous
value. The function is learned from examples, by a piecewise
partitioning of the feature space. A linear function is fitted
to the data in each partition. This linear function interpolates
between data in the partition. Model trees are a generalization
of decision trees, in which the nominal values at the leaf
nodes are replaced by line segments. For more information
on model trees, we refer to [10] and [13]. In our implemen-
tation, we use WEKA [14] to learn these model trees, and
convert its output to an executable C++ function.

D. Free Action Parameter Optimization

Figure 3 depicts the optimization search space of the
running example from Figure 1. The free action parameter
is the angle of approach. The three graphs represent the
execution duration of the first and second action, as well
as their sum. Subgoal refinement determines the free action
parameter for which the overall performance is optimal.
In this case, the lowest execution time of 6.1 seconds is
achieved for an angle of 59°. Note that greedily optimizing
the performance of only the first action (2.1s) leads to a lower
overall performance (7.5) seconds.

$

7.5

%///// 5 . 4;/////////
(mmm 2 .]_HH\C&

Execution
‘ dqratjon (s)

N
w

r First

action
:

6.1

(&3}
o~

3.8
%////

6.1
2.3 '3
@

(%

. ///////

2
////////// &
2. S

1180 0 59 180
Angle of approach (degrees)

Fig. 3. The predicted performance for varying angles of approach. The
scenarios to the right represent the minimum of only the first action, or the
sum of both actions.

For this example, these minima can easily be read from
the graph, as the search space has only one dimension.
When applying subgoal refinement to real problems, search
spaces of ten dimensions easily arise, and exhaustive search
becomes intractable. Therefore, we use a genetic algorithm
to determine the optimum. Each action parameter is encoded
by one floating point in the chromosome, and the fitness
function is simply the summation of the action models of the
actions involved. Optimization time is usually small in com-
parison to the gain in performance. For the extreme scenario,
where several actions with many free action parameters are
optimized, our implementation of the genetic algorithm still
takes less than 0.5s to get a good result.

IV. APPLICATION DOMAINS AND SCENARIOS

In this section, we will present the three application
domains, and the scenarios and action sequences to which
subgoal refinement is applied. The accuracy of the learned
action models and the effect of applying subgoal refinement
to these action sequences will be presented in Section V. As
action model learning and subgoal refinement are indepen-
dent of specific action implementations, we do not describe
them here.

A. Robotic Soccer Domain

In this domain we have used a simulated and real
Pioneer I robot of our RoboCup mid-size team the
“AGILO RoboCuppers” [2], one of which is depicted in
Figure 4a). The optimized action sequence in this domain is
the approachBall action, followed by a dribbleBall
action, as in Figure 1. The action models for both these
actions were learned by executing them for random locations
on the field, as reported in [13]. The free action parameters
at the intermediate state are the angle of approach and the
translational velocity.

Fig. 4.
PowerCube arm used in the manipulation domain.

a) The Pioneer robot used in the robotic soccer domain. b) The

B. Manipulation Domain

In this domain, an articulated robot performs reaching
movements. Strictly speaking, we do not manipulate any ob-
jects yet, but we will continue our research in this direction.
The experiments were performed with a Powercube arm from
Amtec Robotics with 6 degrees of freedom mounted on a
B21 Robot, shown in Figure 4b). Each joint has a brushless
servo motor with a Harmonic gear head, and an incremental
optical encoder to measure the position. For the experiments,
only two joints were used.

Data were gathered by generating random way-points in
joint-space and angular velocities at these way-points. In this
domain, we have used only one action, that takes the arm
from one way-point to the next using a ramp velocity-profile.
A PID controller sends power commands to the joints to
allows fine control of the action, which is parameterized by
initial position, initial velocity, cruise velocity, final position,
final velocity, and acceleration.

Because this particular task does not require abstract plan-
ning, we did not use VHPOP. For demonstration purposes,
we had the arm draw the first letter of the first name of each
author, and chose the way-points accordingly. The free action
parameters are the angular velocities at these way-points.

C. Service Robotics Domain

The experiments in this domain were carried out in a
simulated kitchen environment, depicted in Figure 5. The
simulation was implemented with the ‘“Player” and “Gazebo”
modules of the Player/Stage project [7]. “Player” provides
a network interface to the “Gazebo” 3D robot simulation,
which is a realistic simulation of the robot, its sensors and
the environment. It also provides a rendered view for the user.
We used a B21 robot model, which was modified to have two
articulated arms, as shown in Figure 5. It is a model of the
a real B21 in Section I'V-B.

Scenario 1: Plan

Scenario 1: Parameterization

Fig. 5. Scenario 1. In each episode, the objects and the initial robot position
are different. Possible positions are indicated by arrows.

The set of actions in this domain are: goToPose, grip,
put. Again, action models were learned from data acquired
by executing these actions with varying parameterizations.

To evaluate the effect of subgoal refinement, two different
scenarios were tested. In the first scenario, the goal is to put
a cup from one table to the other, which can be achieved
by the action sequence depicted in Figure 5. In each episode
in the evaluation, the topology of the environment in each
scenario stays the same, but the initial robot position, the
tables and the cups are randomly displaced along the arrows
in Figure 5. Scenario 2 was a variation of Scenario 1, in
which two cups had to be delivered.

These scenarios have many free action parameters. Be-
cause pre-conditions usually fix either navigation or manip-
ulation motions but never both (they are independent), one
of these action parameter sets is always free. Furthermore,
the distance the robot must have to the table in order to
grab a cup must be between 40 and 80cm (as fixed in the
pre-condition of grip). This range is another free parameter.
As in the soccer domain, the velocity and orientation at way-
points are also not fixed, so free for optimization as well.

V. EMPIRICAL EVALUATION

In the evaluation, we first investigate the accuracy of the
action models. Table I lists the number of episodes (n)
executed to gather data for the training set, the data gathering
duration (in real time), as well as the model’s Mean Absolute
Error (MAE) on a separate test set, with n/3 episodes.
Note that the action models used in subgoal refinement
were trained with the data in both training and test set.
Although the results are good enough for subgoal refinement,
we believe that more accurate models can be learned by
using data gathered on-line during robot operation, as more

data can be collected. Furthermore, models will only have to
generalize over action parameterizations that actually arise
during actual robot operation.

Robot [Action n Duration MAE
Pioneer I goToPose 290 0:31 0.31s
(Real) dribbleBall 202 0:26 0.43s
Pioneer I goToPose 750 1:18 0.21s
(Simulated) | dribbleBall 750 1:32 0.29s
B21 goToPose 2300 5:45 0.49s

reach 2300 1:38 0.09s
PowerCube | reach 1100 0:53 0.21s

TABLE I

ACTION MODEL ACCURACY

Table II lists the results of applying subgoal refinement
to the different domains and scenarios. n is the number of
episodes tested and ¢, and ¢, are the mean execution times
of the entire action sequence with the greedy approach (in
which only the current action was optimized) and subgoal
refinement (which optimizes the current and next action).
The fifth column lists the mean improvement achieved with
subgoal refinement. The p-value of the improvement was
computed using a dependent z-test with repeated measures.
A significant and substantial improvement occurs in all but
one domain.

Scenario [n ty ts 1—ts/tg P

Soccer (Simu.) 100 9.8s 9.1s 6.6% 0.00

Soccer (Real) 100 10.6s 9.9s 6.1% 0.00

Kitchen (Sc. 1) | 100 46.5s 41.5s 10.0% 0.00

Kitchen (Sc. 2) | 100 91.7s 85.4s 6.6% 0.00

Manipulation 4 10.6s 10.0s 5.7% 0.08
TABLE II

SUBGOAL REFINEMENT RESULTS

Figure 6 depicts the results from the manipulation domain.
The angular velocities were set to zero (green, dashed)
or optimized with subgoal refinement (blue, solid). The
axes represent the angles of the two joints. Although the
letters in the figure are drawn in two-dimensional plane,
the robot actually draws the letters on a virtual sphere.
This figure shows well qualitatively that the trajectories ares
smoother with subgoal refinement: the arms often draws one
long stroke, rather than discernible line segments. Since the
manipulation domain was mainly included for visualization
purposes, there are only a few episodes. For this reason the
overall improvement is not significant (>0.05).

2 12% 5% 8%
“2 0 22 0 22 0 22 0 2
Fig. 6. Drawing letters with (blue, solid) and without (green dashed)

subgoal refinement.

VI. RELATED WORK

One way to solve suboptimal execution of action se-
quences is by implementing or learning many novel actions,
one for each action sequence context. This is a laborious
task, as each task context, and there are usually many,
would require their own task-specific action. The small
differences between these actions must also be reflected in
their conditions, because the correct action for the context
could otherwise not be selected. Many specific actions make
action selection programming and planning more complex,
and make the system less adaptive, less general and more
difficult to maintain.

Reinforcement Learning (RL) is another method that seeks
to optimize performance, specified by a reward function.
Recent attempts to combat the curse of dimensionality in
RL have turned to principled ways of exploiting temporal
abstraction [1]. In our view, the benefits of our methods are
that they acquire more informative performance measures,
facilitate the reuse of action models, and scale better to
continuous and complex state spaces [12].

Most similar to our work, from the point of view of
smoothness as an emergent property of optimality require-
ments, is described in [9]. Here a simulated robot maps its
environment with range measurements by traversing a set of
way-points. Reinforcement learns a policy that minimizes
the error in the resulting map. As a side-effect, smooth
transitions at way-points arise. This approach has not been
tested on real robots.

Although optimizing execution duration leads to smoother
motion in the manipulation domain, in humans it more likely
arises from variability minimization [11]. In this paper, our
main goal is not to explain or model human motion, but
rather to demonstrate the effects of optimizing sequences of
actions.

Overexpressiveness of actions has been well studied in the
context of arm control. In redundant manipulation systems,
different arm configurations can achieve the same task.
This set of configurations is called motion- or null space.
In [8], arm-specific search methods are used to find the
configuration with the best fault tolerance in motion space.
Our approach is more general, and can be applied to many
robotic domains.

In AI action planning [6], actions in plans are often
fully parameterized, because there is no difference between
an operator’s abstraction and its execution. Therefore, the
disadvantages and advantages of free action parameters do
not arise. In contrast to most planners, our system generates
action sequences that have been optimized with respect to
very realistic, non-linear, continuous performance models,
which are grounded in the real world as they are learned from
observed experience. We are not aware of other planning
systems that generate abstract plans and simultaneously
optimize the actual physical behaviour of robots.

VII. CONCLUSION

We believe our approach is an important contribution
towards bridging the gap between robot action execution

on the one hand, and planning systems and deliberative
components in general on the other. As robots are becoming
more dexterous, and their actions more expressive, abstrac-
tion will become more important for keeping action selection
tractable. This also means the gap between an action’s
abstraction and its execution will widen, and more free action
parameters will arise. Suboptimal performance and jagged
motion is an unavoidable consequence of leaving these free
action parameters unconsidered. Subgoal refinement not only
contemplates free action parameters, but exploits them by
optimizing them with respect to the expected overall perfor-
mance, thereby turning the curse of free action parameters
into a blessing. An interesting and pleasing side-effect is that
there are no abrupt transitions, and smooth natural motion
arises.

Subgoal refinement is part of a larger research project to
use action models to make robots more aware of their actions,
also enabling them for instance to coordinate actions [13].
Our future work aims at learning other performance mea-
sures, such as energy consumption, and combining them to
optimize multi-criteria performance measures.

ACKNOWLEDGMENTS

The work in this paper was partially funded by the
Deutsche Forschungsgemeinschaft in the SPP-1125 “Coop-
erating Teams of Mobile Robots in Dynamic Environments”.

REFERENCES

[1]1 A. Barto and S. Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete event systems, 2003.

[2] M. Beetz, T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schréter, and
B. Radig. The AGILO robot soccer team experience-based learning
and probabilistic reasoning in autonomous robot control. Autonomous
Robots, 17(1):55-717, 2004.

[3] A. Bouguerra and L. Karlsson. Symbolic probabilistic-conditional
plans execution by a mobile robot. In IJCAIO5 Workshop: Reasoning
with Uncertainty in Robotics (RUR-05), 2005.

[4] S. Cambon, F. Gravot, and R. Alami. A robot task planner that merges
symbolic and geometric reasoning. In ECAI, pages 895-899, 2004.

[5] A. Dearden and Y. Demiris. Learning forward models for robotics. In
IJCAI, pages 1440-1445, 2005.

[6] M. Fox and D. Long. PDDL2.1: An extension of PDDL for expressing
temporal planning domains. Journal of Al Research, 20:61-124, 2003.

[7]1 B. Gerkey, R.T. Vaughan, and A. Howard. The Player/Stage project:
Tools for multi-robot and distributed sensor systems. In ICAR, pages
317-323, 2003.

[8] R.Hooper. Multicriteria Inverse Kinematics for General Serial Robots.
PhD thesis, University of Texas, 1994.

[9] T. Kollar and N. Roy. Using reinforcement learning to improve
exploration trajectories for error minimization. In /CRA, 2006.

[10] R. Quinlan. Learning with continuous classes. In A. Adams and
L. Sterling, editors, Proc. of the 5th Australian Joint Conference on
Artificial Intelligence, pages 343-348, 1992.

[11] G. Simmons and Y. Demiris. Biologically inspired optimal robot arm
control with signal-dependent noise. In Proc. of IEEE International
Conference on Intelligent Robots and Systems, pages 491-496, 2004.

[12] F. Stulp and M. Beetz. Optimized execution of action chains using
learned performance models of abstract actions. In IJCAI, 2005.

[13] F. Stulp, M. Isik, and M. Beetz. Implicit coordination in robotic teams
using learned prediction models. In ICRA, 2006.

[14] LH. Witten and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, 2 edition,
2005.

[15] H.L.S. Younes and Reid G. Simmons. VHPOP: Versatile heuristic
partial order planner. Journal of Artificial Intelligence Research,
20:405-430, 2003.

