
Theory of Computing Systems
https://doi.org/10.1007/s00224-024-10197-5

Automatic Abelian Complexities of Parikh-Collinear Fixed
Points

Michel Rigo1 ·Manon Stipulanti1 ·Markus A. Whiteland2

Accepted: 16 September 2024
© The Author(s) 2024

Abstract
Parikh-collinear morphisms have the property that all the Parikh vectors of the images
of letters are collinear, i.e., the associated adjacency matrix has rank 1. In the confer-
ence DLT–WORDS 2023 we showed that fixed points of Parikh-collinear morphisms
are automatic. We also showed that the abelian complexity function of a binary fixed
point of such a morphism is automatic under some assumptions. In this note, we
fully generalize the latter result. Namely, we show that the abelian complexity func-
tion of a fixed point of an arbitrary, possibly erasing, Parikh-collinear morphism is
automatic. Furthermore, a deterministic finite automaton with output generating this
abelian complexity function is provided by an effective procedure. To that end, we
discuss the constant of recognizability of a morphism and the related cutting set.

Keywords Parikh-collinear morphism · Recognizable morphism ·
Automatic sequence · Abelian complexity · Substitution shift ·
Automated theorem proving

1 Introduction

This paper is an extension of the results in our previous work [1] that was presented
during the joint DLT–WORDS 2023 conference. The main objects of interest are fixed

B Markus A. Whiteland
m.a.whiteland@lboro.ac.uk

Michel Rigo
m.rigo@uliege.be

Manon Stipulanti
m.stipulanti@uliege.be

1 Department of Mathematics, ULiège, Allée de la Découverte 12, Liège 4000, Belgium

2 Department of Computer Science, Loughborough University, Epinal Way, Loughborough,
Leicestershire LE11 3TU, United Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10197-5&domain=pdf
https://orcid.org/0000-0001-7463-8507
https://orcid.org/0000-0002-2805-2465
https://orcid.org/0000-0002-6006-9902

Theory of Computing Systems

points of Parikh-collinear morphisms which are defined as follows. It is assumed that
the alphabet A = {a1 < · · · < ak} is ordered and �(w) denotes the abelianization or
Parikh vector (|w|a1, . . . , |w|ak) counting the number of different letters constituting
the word w ∈ A∗. A morphism f : A∗ → B∗ is Parikh-collinear if the Parikh vectors
�(f (b)), b ∈ A, are collinear (or pairwise Z-linearly dependent).

Parikh-collinear morphisms have received some attention in recent years. The
authors of [2, Sec. 4] list a dozen of fixed points of Parikh-collinear morphisms appear-
ing in the OEIS [3], e.g., A285249. Cassaigne et al. characterized Parikh-collinear
morphisms as those morphisms that map all words to words with bounded abelian
complexity [4]. These morphisms also provide infinite words with interesting prop-
erties with respect to the so-called k-binomial equivalence ∼k . Two words u, v ∈ A∗
are k-binomially equivalent if

(u
x

) = (
v
x

)
, for all x ∈ A∗ with |x | ≤ k. Recall that

a binomial coefficient
(u
x

)
counts the number of times x occurs as a subword of u.

The k-binomial complexity function of an infinite word x introduced in [5] is defined
as b(k)

x : N → N, n �→ #(Ln(x)/∼k), i.e., length-n factors in x are counted up to
k-binomial equivalence. (Here b(1)

x is the usual abelian complexity function [6].) For
a survey on abelian properties of words, see [7]. In a recent work, we showed that a
morphism is Parikh-collinear if and only if it maps all words with bounded k-binomial
complexity to words with bounded (k + 1)-binomial complexity (for all k) [8]. Thus
each fixed point of a Parikh-collinear morphism has a bounded k-binomial complexity
for all k (and in particular a bounded abelian complexity).

Let us summarize the contributions from [1] connecting Parikh-collinear fixed
points to the notions of automaticity. A k-automatic sequence is the letter-to-letter
coding of an iterated fixed point of a k-uniform morphism (images of letters have
length k). Equivalently, a sequence x = a0a1a2 · · · ∈ AN, with an ∈ A, is k-automatic
if there is a deterministic finite automaton with output that, on input n represented in
base k, reaches a state with output an . For more on automatic sequences, see [9, 10].
For an arbitrary morphism σ : A∗ → A∗, we let Mσ ∈ N

A×A denote its adjacency
matrix, where [Mσ]b,c = |σ(c)|b for all b, c ∈ A. A letter a ∈ A is called mortal if
σ n(a) = ε for some n ≥ 1. If a is not mortal, we call it immortal.

Lemma 1 Let f : A∗ → A∗ be Parikh-collinear and a ∈ A be immortal. Then
�(f (a)) is a (right) eigenvector of M f associated with the eigenvalue

∑
b∈A | f (b)|b.

For a Parikh-collinear morphism f , we let eig(f) := ∑
b∈A | f (b)|b and we call

eig(f) the eigenvalue f . This is justified as, the matrix M f having rank 1, the only
other eigenvalue is 0 with multiplicity #A − 1.

Even though Parikh-collinear morphisms are generally non-uniform (images of
some letters have distinct lengths) we proved the following result.

Theorem 2 [1, Thm. 5]Let f : A∗ → A∗ be aParikh-collinearmorphismprolongable
on a letter a ∈ A. Then the fixed point f ω(a) is eig(f)-automatic. Furthermore, a
coding together with an eig(f)-uniformmorphism generating f ω(a) can be effectively
computed.

The above theorem can be considered folklore: it can be seen as a consequence of
[2, Thm. 2.2 or 4.2], the former of which is itself a reformulation of a result of Dekking

123

https://www.oeis.org/A285249

Theory of Computing Systems

[11] (we note however, that the statements speak of non-erasingmorphisms). For some
perspective, it is well known that there exist infinite sequences that are the fixed points
of non-uniform morphisms, but not k-automatic for any k, and that every k-automatic
sequence is the image of a fixed point of a non-uniform morphism [12]. A recent
preprint [13] completely characterizes those uniformly recurrent (i.e., every factor
occurs infinitely often and with bounded gaps) morphic words that are automatic.

Next we proved in [1, Thm. 10] that, under some mild assumptions (on the auto-
maticity of the cutting set that we will discuss in Section 3), the abelian complexity
of a binary fixed point of a Parikh-collinear morphism is automatic. We can there-
fore use an automatic procedure to test whether or not this function is ultimately
periodic, for example. Answering a question raised by V. Salo and A. Sportiello
independently (personal communication), considering the abelian complexity of the
fixed point w = 0100111001 · · · of the morphism f : {0, 1}∗ → {0, 1}∗ given by
0 �→ 010011, 1 �→ 1001, we showed that its abelian complexity is aperiodic. To
conclude, we gave a proof sketch showing that the abelian complexity function of a
fixed point of a non-erasing Parikh-collinear morphism is automatic.

1.1 Our Contributions

For this special issue dedicated to DLT–WORDS 2023 we did not want to replicate
the results of the proceedings [1]. Therefore our main contribution is to generalize
[1, Thm. 10] to an arbitrary Parikh-collinear morphism: meaning on an alphabet of
arbitrary size and the morphism may be erasing.

Theorem 3 Let f : A∗ → A∗ be a Parikh-collinear morphism prolongable on the
letter a. The the abelian complexity function ax of x := f ω(a) is eig(f)-automatic.
Moreover, the automaton generating ax can be effectively computed given f and a.

Before proving this result in Section 4, we first need a computable bound on the
so-called recognizability constant. In Section 2, we have extracted from [14–16] and,
in particular [17], the relevant definitions and important results showing that, for our
study, such a constant exists. Expressed roughly, when we look at a sufficiently long
factor, there is a unique pre-image by the morphism f and there is only one way to
factorize this factor using blocks of the form f (b), where b is a letter.

On this basis, we define in Section 3 the notion of a cutting set. Since the infinite
word x = x0x1 · · · can be factorized as f (x0) f (x1) · · · , this set consists of the integers
| f (x0 · · · x j)| for all j ≥ 0. Our main observation is that, for a Parikh-collinear
morphism f , this set is eig(f)-definable. We insist that this is a major element which
then enables us to apply a decision procedure about the abelian complexity of x =
f ω(a). Such a procedure is described in Section 5. We consider the Parikh-collinear
morphism 0 �→ 012, 1 �→ 112002, 2 �→ ε and prove with the help of Walnut that the
fixed point starting with 0 has an ultimately periodic abelian complexity 135(377)ω.

123

Theory of Computing Systems

2 On the Recognizability

For an arbitrary morphism σ : A∗ → A∗, we define

|σ | := max{|σ(b)| : b ∈ A} and 〈σ 〉 := min{|σ(b)| : b ∈ A},

where, for a word w ∈ A∗, we let |w| denote its length.
Amorphism g is prolongable on a letter a if g(a) = ax , where x is a word for which

gn(x) �= ε for all n ∈ N. In particular, the infiniteword gω(a) := limn→∞ gn(a) exists
and is a fixed point of g. In what follows, f : A∗ → A∗ is a Parikh-collinear morphism
prolongable on the letter a ∈ A. For an arbitrary morphic word x, thanks to [18, 19],
one can decide whether x is ultimately periodic. In the case that x is generated by
a Parikh-collinear morphism, by Theorem 2, x is also eig(f)-automatic, and we can
thereforemake use of the logical characterization of automatic sequences; in particular,
ultimate periodicity can be readily decided with Walnut [20] using a formula such
as

¬(∃p > 0)(∃i ≥ 0)(∀n ≥ i)(x(n) = x(n + p)). (1)

We will therefore assume in what follows that x is not ultimately periodic. Also,
we restrict the alphabet A to the letters appearing in f n(a) for some n. As an example,
for the Parikh-collinear morphism f : 1 �→ 12, 2 �→ 21, 3 �→ 12 prolongable on 1,
we consider the restriction to the alphabet {1, 2}.

In what follows, an arbitrary morphism σ is called primitive if Mn
σ only contains

positive entries for some n ∈ N.

Lemma 4 A non-erasing Parikh-collinear morphism is primitive.

Proof Observe that all entries in the adjacency matrix are positive. ��
Remark 5 Note that for a non-erasing Parikh-collinear morphism g, we may apply
[15, Thm. 4] which directly provides a computable upper bound on the constant of
recognizability (see Definition 16) for the aperiodic word gω(a).

Since f is Parikh-collinear and possibly erasing, there is a strong dichotomy among
the letters of the alphabet. Either they are immortal and their image by f contains all
letters, or their image by f is empty. Formally, for all b ∈ A, either �(f (b)) = 0 or
�(f (b)) is a non-zero rational multiple of �(f (a)). In the latter case, for all n ≥ 0,
�(f n(b)) is therefore non-zero. So, the alphabet is partitioned as A = B ∪ C where

B := {b ∈ A | f n(b) �= ε, ∀n ≥ 0} and C := {b ∈ A | f (b) = ε}. (2)

Definition 6 We use notation from (2). Let κ : A∗ → B∗ be a morphism such that
κ(b) = b if b ∈ B and κ(c) = ε for all c ∈ C . Now we define a morphism g : B∗ →
B∗ such that g(b) = κ(f (b)) for all b ∈ B.

Roughly, the image by g of an immortal letter b of f is obtained by deleting the mortal
letters appearing in f (b).

The next statement is obvious.

123

Theory of Computing Systems

Lemma 7 With the above notation, g = κ ◦ f is a non-erasing Parikh-collinear
morphism prolongable on a and satisfies f (gω(a)) = f ω(a).

Asan example, consider theParikh-collinearmorphism f : 0 �→ 012, 1 �→ 112002,
2 �→ ε. We get g : {0, 1}∗ → {0, 1}∗ such that g(0) = 01 and g(1) = 1100.

An infinite word is called recurrent if each of its factors appears infinitely often.

Definition 8 Let z be a recurrent infinite word and u be a factor of z. A return word
to u is a non-empty factor w of z such that wu contains exactly two occurrences of u
as a prefix and as a suffix of wu. The infinite word z is K-linearly recurrent if, for all
factors u, any return word w to u is such that |w| ≤ K |u|.

We recall a result from [14] and [15, Prop. 12]. It is important to note that the given
upper bound is computable.

Proposition 9 Let σ : A∗ → A∗ be a primitive morphism prolongable on a. The
infinite word σω(a) is Kσ -linearly recurrent and the constant Kσ is bounded by
|σ |4(#A)2 .

By the above result and Lemmas 4 and 7, there exists a constant Kg such that
y = gω(a) is Kg-linearly recurrent.

Corollary 10 The infinite word x = f ω(a) = f (y) is K f -linearly recurrent and the
constant K f is bounded by Kg| f |/〈 f |B〉.
Proof Let u be a factor of x. There exists a factor v of y such that f (v) = pus for
some words p, s of minimal length and |v| ≤ |u|/〈 f |B〉 (recall that the letters of B
do not vanish under f). Since y is linearly recurrent, any return word r to v has length
at most Kg|v|. Observe that f (r) contains a return word to u and has length bounded
above by Kg|v| | f | ≤ Kg

| f |
〈 f |B 〉 |u|. Now Lemma 7 allows us to conclude. ��

The constant of recognizability is usually presented in the framework of shift spaces
whose elements are biinfinite words, i.e., sequences indexed by Z. We recap some of
the main definitions and results.

Definition 11 The shift operator S : AZ → AZ is defined by z = (zn)n∈Z �→ S(z) =
(zn+1)n∈Z. A shift space is a subset X ⊆ AZ that is shift-invariant, i.e., S(X) = X ,
and topologically closed. The language of X is the set denoted by L(X) of factors of
the words in X . A shift space is aperiodic if all its elements are aperiodic. Recall that
z ∈ AZ is periodic if z = Sn(z) for some n ≥ 1.

Let σ : A∗ → A∗ be a morphism. We let

L(σ) =
⋃

n≥0

⋃

a∈A

Fac(σ n(a))

and the so-called substitution shift associated with σ is

X(σ) = {x ∈ AZ : L(x) ⊆ L(σ)}.

123

Theory of Computing Systems

From the definition, it is clear that L(X(σ)) ⊆ L(σ). A morphism σ is aperiodic if
the shift space X(σ) is aperiodic.

The notion of return words and linear recurrence naturally extends to shift spaces.

Definition 12 Let X be a shift space and u ∈ L(X). A non-empty word w ∈ L(X)

is a return word to u in X if wu ∈ L(X) contains exactly two occurrences of u as a
prefix and as a suffix of wu. The shift space X is K-linearly recurrent if it is minimal
(for every closed stable subset Y of X , i.e., S(Y) ⊆ Y , one has Y = ∅ or Y = X)
and for all non-empty words u ∈ L(X), the length of every return word to u in X is
bounded by K |u|.
Proposition 13 Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A
such that x = f ω(a) is aperiodic. Then the shift space X(f) is K f -linearly recurrent.
Consequently, it is also aperiodic.

Proof Let X = X(f). We first show that X is K f -linearly recurrent. To that aim, let
u ∈ L(X) andw be a return word to u in X . Observe thatL(X) ⊆ L(f) = L(f ω(a)).
Hence u, wu are factors of x which is K f -linearly recurrent by Corollary 10. Since
x is aperiodic by assumption and X is minimal, X cannot contain a periodic point,
hence the conclusion. ��

We are now ready to first define the notion of recognizable morphism on X , then
to introduce recognizable morphism on X with some constant of recognizability.

Definition 14 Let X ⊆ AZ be a shift space. Amorphism σ : A∗ → B∗ is recognizable
on X if, for all y ∈ σ(X), there exists exactly one pair (x, �) ∈ X × N such that
0 ≤ � < |σ(x0)| and y = S�(σ (x)), where x0 is the first letter of x.

Béal, Perrin, and Restivo generalized Mossé’s theorem [17, Thm. 5.4].

Theorem 15 Every morphism σ : A∗ → A∗ is recognizable on the set of aperiodic
elements of X(σ). In particular, if σ is aperiodic, then it is recognizable on X(σ).

Let X be a shift space and u, v be two finite words such that uv ∈ L(X). The
cylinder with basis (u, v) is defined as

[u · v]X = {z ∈ X : z[−|u|,|v|−1] = uv}.

In particular, if u = ε, we simply write [v]X = {z ∈ X : z[0,|v|−1] = v}.
Definition 16 Let σ : A∗ → B∗ be a morphism. Let X be a shift space on A and let
Y be the closure of σ(X) under the shift. A pair (u, v) of words such that uv ∈ L(Y)

is synchronizing if there is at most one pair (b, �) with b ∈ A and 0 ≤ � < |σ(b)|
such that [u · v]Y ∩ S�σ ([b]X) �= ∅. The morphism σ is recognizable on X with
constant n if and only if every pair (u, v) ∈ Ln(Y) × Ln+1(Y) such that uv ∈ L(Y)

is synchronizing.

Let X be an aperiodic shift space. The repetition index of X (also called critical
exponent in the case of an infinite word) denoted by rep(X) is the supremum of the
set of rational numbers e such that L(X) contains words of exponent e. Finally, we
invoke the following result from [21].

123

Theory of Computing Systems

Theorem 17 The constant of recognizability on X(σ) of an aperiodic morphism σ is

bounded by 4 rep(X(σ)) �2 |σ |(2�+1)(2+|σ |(2�+1)�) where � = #A.

In [16, Thm. 24], it is shown that a k-linearly recurrent aperiodic word is (k + 1)-
power-free (recall that an infinite word is k-power-free if it does not contain a factor
of the form uk with u non-empty). This result extends to shift spaces: Let X be an
aperiodic shift space and suppose that it is K -linearly recurrent, then the repetition
index is bounded by rep(X) < K + 1; see [14] and also [16]. Now an immediate
application of Propositions 9 and 13 together with Theorem 17 leads to the following
result.

Corollary 18 Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A
such that f ω(a) is aperiodic. The constant of recognizability on X(f) of the aperiodic

morphism f is bounded by 4(| f |4�2 + 1) �2 | f |(2�+1)(2+| f |(2�+1)�) where � = #A.

Now consider the right-infinite word x = f ω(a). It appears as a factor of a ele-
ment in X(f). Indeed, since f is Parikh-collinear, there exists some j ≥ 1 such that
f j (a) = auav (one can take j = 2). Take the sequence (f n(au) · f n(a) f n(v))n≥0.
By compactness, we can extract a subsequence converging to some biinfinite word
z · f ω(a) belonging to X(f).

We have done all this to ensure that there is a computable bound C guaranteeing
that the word x is recognizable: there is a window size bounded by C such that any
factor within such a window is uniquely “desubstituted”. More precisely, this will
permit us to uniquely detect elements of the cutting set, which we discuss next.

3 The Cutting Set

Let k ≥ 2 be an integer and consider the structure 〈N,+, Vk〉, where Vk(0) := 1 and,
for all n ≥ 1, Vk(n) is the largest power of k dividing n. A set X ⊆ N

d is k-definable
if it can be defined by a first-order formula with d free variables within 〈N,+, Vk〉.
As a consequence of a theorem of Büchi [22], an infinite word x is k-automatic if
and only if for every letter a, the set of positions where a occurs in x is k-definable.
A sequence F = (F0, F1, . . .) ∈ (Nd)N of integer tuples is called k-synchronized
if the set {(n, Fn) : n ∈ N} is k-definable. Equivalently, a sequence F ∈ (Nd)N is
k-synchronized if there exists a finite automaton having as input a (d + 1)-tuple of
integers written in base-k (padded to have equal length) and accepting precisely the
tuples ([n]k, [Fn]k). For a reference on the logical approach to automatic sequences,
including synchronized sequences, see [9, 10].

Let σ be a morphism prolongable on a and write x = σω(a). For all n ≥ 0, we let
prefn(x) be the length-n prefix of x. The corresponding cutting set is defined by

CSσ,a := {|σ(prefn(x))| : n ≥ 0
}
. (3)

This set simply provides the indices where blocks σ(b), with b ∈ A, start in
a factorization of x of the form σ(x0)σ (x1)σ (x2) · · · . For example, applied to the

123

Theory of Computing Systems

Parikh-collinear morphism f : 0 �→ 012, 1 �→ 112002, 2 �→ ε considered before, we
get

x = |012|112002|112002|112002|012|012| · · · and CS f ,0 = {0, 3, 9, 15, 21, 24, 27, . . .}.

The unary predicateCSσ,a(n) holds truewhenever n ∈ CSσ,a . Making use of the theory
of recognizability presented in Section 2, we show that, in our usual setting, the cutting
set is definable.

Proposition 19 Let f be a Parikh-collinear morphism prolongable on a letter a ∈ A
such that x = f ω(a) is aperiodic. The cutting set CS f ,a is a eig(f)-definable unary
predicate.

Proof By Corollary 18, there exists a constant of recognizability C on X(f) with the
following property. By Definition 16, each factor w = ucv of x = f ω(a) of length
2C + 1 (here |u| = |v| = C and c ∈ A) gives rise to a synchronizing pair, i.e., there
exists a unique pair (b, �) where b ∈ A, 0 ≤ � < | f (b)| such that [u · cv]X(f) ∩
S� f ([b]X(f)) �= ∅. If � = 0, we have detected an element of the cutting set starting at
the “center” c of the factor w. So with each factor w of length 2C + 1, we associate a
Boolean T (w) stating whether or not the center of w belongs to the cutting set.

Since x is eig(f)-automatic (see Theorem 2), for every factor w of length 2C + 1
and all n ≥ C , the unary formula ϕw(n) ≡ x[n −C, n +C] = w tells whether or not
w occurs in x as a factor centered at position n (in other words, whether the position
n is the center of w in x). If n ≥ C , the formula

∨

w∈L2C+1(x)

ϕw(n) ∧ T (w)

holds true whenever n belongs to the cutting set. For n < C , this can be defined by
direct inspection: there is a finite number of elements in CS f ,a ∩ {0, . . . ,C − 1} to
encode manually into the final formula.

Nowwe have to effectively list all factors of length 2C+1 occurring in x. Again by
Theorem 2 we can effectively get a eig(f)-uniform morphism g and a coding τ such
that x is of the form τ(gω(e)) for some letter e. We can first list all length-2 factors
occurring in gω(e) = y. For instance, we can use a formula such as (∃n)(y(n) =
b ∧ y(n + 1) = c) to test whether or not bc occurs in y. Second, every factor of
length 2C+1 of y appears in g j (bc) for some letters b, c and j = �logeig(f)(2C+1)�.
So scanning these words g j (bc) with a window of size 2C + 1, we get all desired
factors and we apply τ to them to get all factors of length 2C + 1 occurring in x. ��

Let us observe that the above proposition can be given in a different framework
where we focus on the recognizability of a single infinite word with respect to the
considered morphism. We take the following definition from [15] adapted to (right)
infinite words.

Definition 20 Let x = x0x1 · · · be a fixed point of a prolongable morphism σ . We
say that σ is recognizable on x if there exists a constant D > 0 such that, for all

123

Theory of Computing Systems

n ≥ 0 and all i such that |σ(x0 · · · xi−1)| ≥ D, if the factors x[n − D, n + D] and
x[|σ(x0 · · · xi−1)| − D, |σ(x0 · · · xi−1)| + D] are equal, then there exists an index j
such that n = |σ(x0 · · · x j−1)| and xi = x j .

The least D with the above property is then called the constant of recognizability
of σ on x.

Remark 21 If σ is an aperiodic morphism, then σ is recognizable on any of its fixed
points x. The constant of recognizability of σ on x is bounded above by the constant
of recognizability of σ on X(σ) given in Theorem 17. There are some intricacies
regarding the two notions of constant of recognizability given in Definitions 20 and
16; we refer the reader to [23] for more on the topic.

The reader may readily adapt the proof of Proposition 19 to the following situ-
ation. Note the weaker version (speaking of Parikh-collinear morphisms) presented
in Proposition 19 will be used in the next section, but Theorem 22 gives an interesting
result on its own.

Theorem 22 Let x = σω(a) be a fixed point of a prolongable morphism σ . If σ is
recognizable on x with computable recognizability constant C and if x is k-automatic
for some k ≥ 1, then the cutting set CSσ,a is a k-definable unary predicate.

4 Proof of Theorem 3

We shall now proceed with the proof of the main result. Let again f : A∗ → A∗ be a
Parikh-collinear morphism and let x = f ω(a) be its fixed point.

The following theorem of Shallit outlines our strategy to complete the proof. In
the following, a numeration system is addable if addition is recognizable by a finite
automaton. All integer-based numeration systems are addable (thus covering our set-
ting), but others exist too (see, e.g., [10]).

Theorem 23 [24] Let x be an automatic sequence in some addable numeration system
S, and assume that

1. the sequence (�(prefn(x))n≥0 is synchronized (w.r.t. S); and
2. the abelian complexity function ax : N → N is bounded above by a constant.

Then (ax(n))n≥0 is an automatic sequence (w.r.t. S) and the deterministic finite
automaton with output computing it is effectively computable.

Furthermore, if Condition 1 holds, then Condition 2 is decidable.

Our aim is to show that the sequence (| prefn(x)|b)n≥0 is synchronized for each
b ∈ A (which straightforwardly implies that (�(prefn(x))n≥0 is also synchronized).
We will utilize the Parikh-collinearity of the morphism f ; in particular, we use the
property that for any word w ∈ A∗, we have that | f (w)|b = | f (a)|b

| f (a)| | f (w)|. In order to
do so, given an index i ∈ N, we look for two integers around i : the next and previous
elements found in the cutting set C f ,x. The next obvious lemma says we can do this
in an automatic way (a proof can be found in [1]).

123

Theory of Computing Systems

Lemma 24 Let C = {0 = c0 < c1 < c2 < · · · } be an infinite k-definable subset of
N for some k ≥ 1. The functions ne : N → N mapping i to the least element in C
greater than or equal to i and pr : N → Nmapping i to the greatest element in C less
than i , are k-definable. (We set pr(0) = 0.)

Lemma 25 Let f : A∗ → A∗ be a Parikh-collinear morphism prolongable on a
and write x = f ω(a). For all b ∈ A, the sequence (| prefn(x)|b)n≥0 is eig(f)-
synchronized.

Proof Let b ∈ A. Since f is Parikh-collinear, for each immortal letter c, the ratio
| f (c)|b/| f (c)| is constant and depends only on b. Thus write | f (a)|b/| f (a)| = r/q.

Consider the length-n prefix of x and write prefn(x) = f (pn)tn , where pn is a
prefix of x such that pr(n) = | f (pn)|, and tn is a prefix of the image of a letter. Since
| f (pn)|b = r

q | f (pn)|, we get q| prefn(x)|b = r | f (pn)| + q|tn|b. Define the function
F(n) = | prefn(x)|b for all n ≥ 0. Then the following binary predicate defines the
pair (n, F(n)):

P(n, y) = ∃m, z : (pr(n) = m) ∧ (q · (y − z) = r · m) ∧ (|x[m...n − 1]|b = z).

The formula for P has two free variables (y and n), so {(n, F(n)) : n ∈ N} is
eig(f)-definable: since x[pr(n)...n− 1| attains finitely many values (as a prefix of the
image of a letter), the last check (|x[m...n−1]|b = z) can be expressed by a first-order
logical formula with indexing into x; the word x is eig(f)-automatic by Theorem 2,
hence the positions of b in x are defined by a unary predicate ϕb; and the cutting set
C f ,a is eig(f)-definable by Proposition 19, so that pr is as well by Lemma 24. Hence
(| prefn(x)|b)n≥0 is eig(f)-synchronized. ��
Proof of Theorem 3 A fixed point of a Parikh-collinear morphism is e f -automatic
by Theorem 2. As a corollary of [4, Thm. 11], its abelian complexity function is
bounded by a constant, so Condition 2 in Theorem 23 is satisfied. Since Condition 1
is equivalent to the property that for each b ∈ A, the sequence (| prefn(x)|b)n≥0 is
eig(f)-synchronized, the above lemma allows to use Theorem 23 to conclude. ��

5 A Detailed Discussion of the Procedure

Throughout this section, we let f be defined by 0 �→ 012, 1 �→ 1120022 �→ ε, and
f ω(0) = x = x0x1 · · · . Our aim is to prove the following.

Proposition 26 The fixed point x = 012112002112002 · · · of the Parikh-collinear
morphism f : 0 �→ 012, 1 �→ 112002, 2 �→ ε has abelian complexity equal to
135(377)ω.

Computing eig(f) = ∑2
a=0 | f (a)|a = 3, we know that x is 3-automatic. In [1]

with Theorem 2, we give an effective procedure to compute an equivalent morphic
representation; the procedure produces the coding τ defined by

0̂1, 1̂4, 1̂5 �→ 0; 0̂2, 1̂1, 1̂2 �→ 1; 0̂3, 1̂3, 1̂6 �→ 2

123

Theory of Computing Systems

and the 3-uniform morphism g defined by

0̂1, 1̂5, 1̂6 �→ 0̂1̂02̂03; 0̂2, 1̂1, 1̂3 �→ 1̂1̂12̂13; 0̂3, 1̂2, 1̂4 �→ 1̂4̂15̂16,

so that τ(gω(̂01)) = x.
One notes that there are redundant letters (i.e., they have equal images under both

τ and g ◦ τ). We thus find a simpler morphism h by identifying them:

0 �→ 012; 1 �→ 134; 2 �→ 506; 3 �→ 506; 4 �→ 134; 5 �→ 506; 6 �→ 012,

with which τ ′(hω(0)) = x, where τ ′ is defined by 0, 5 �→ 0; 1, 3 �→ 1; 2, 4, 6 �→ 2.
We may introduce the 3-automatic word x to Walnut as follows:

morphism h "0->012 1->134 2->506 3->506 4->134 5->506
6->012";

morphism tau "0->0 1->1 2->2 3->1 4->2 5 ->0 6->2";
promote H h;
image X tau H;

Walnut now knows the infinite word as X, and it is now easy to verify that x is
aperiodic. Indeed, (1) translates to:

eval isaperiodic "?msd_3 ˜(Ep,i p>0
& (An n>i => (X[n]=X[n+p])))";

and Walnut produces True.
Following the procedure, we next wish to compute (or bound) the constant of rec-

ognizability. The bound given in Corollary 18 is (636 + 1) · 67·(2+627)+2, which is
unmanageable in practice. At this point, we compute the actual constant of recogniz-
ability (with the help of Walnut) to proceed with the illustration.

Lemma 27 Given f : 0 �→ 012, 1 �→ 1120022 �→ ε, its constant of recognizability is
2.

Proof We observe that the factor 120 appears both in f (00) = 012012 and f (1) =
112002, so the pair (1, 20) is not synchronizing. This observation bounds the constant
of recognizability from below by 2.

We observe that each factor of length 5 contains at least one occurrence of 2; this
is because 2 appears at the position n if and only if n ≡ 2 mod 3, a fact that can be
verified using Walnut:

eval appearance2 "?msd_3 An X[n]=@2 <=> Em n=3*m+2";

Let w = uv be a factor of x with |u| = 2 and |v| = 3. From the above we deduce
that v contains an occurrence of 2.

Since any cutting point is either 0 or appears just after an occurrence of 2 (both
f (0) and f (1) end with 2), it suffices to inspect the two letters appearing just before
a 2 in v. Indeed, the return words to 2 in x are 201, 200, and 211; if the two preceding
letters are 00 or 01, then the position after 2 is a cutting point. Otherwise it is not. Thus
the constant of recognizability is bounded above by 2. ��

123

Theory of Computing Systems

We next proceed to define the cutting sequence of x in Walnut as follows; the
index n is a cutting point if n = 0 or n ≥ 3 and xn−1 = 2 and xn−3 �= 1 (this can be
deduced from the proof of Lemma 27).

def cut "?msd_3 n=0 | (n>=3 & X[n-1]=@2 & ˜(X[n-3]=@1))";

Using the cut set, we define the pairs (n, x) such that x is the largest cut point
that is at most n. The following predicate prev recognizes exactly these pairs (see
Lemma 24).

def prev "?msd_3 x<=n & $cut(x)
& (Ay (y>x & y<=n)=>˜$cut(y))";

Next, we define the synchronized sequence of the number of 0’s (resp., 1’s, 2’s) in the
prefix of length n + 1, n ≥ 0.

def prefn0 "?msd_3 (n<=2 & y=1)
| (3<=n & Em,z ($prev(n,m) & 3*y=m+3*z
& ((X[m]=@0 & z=1) |
(X[m]=@1 & ((n<m+3 & z=0)
| (n=m+3 & z=1) | (n>=m+4 & z=2))))))";

Here prefn0(n,y) is true if y is the number of 0’s appearing in the prefix of length
n + 1 of x, with n ≥ 0. We note that if | f (w)| = �, then | f (w)|0 = �/3. Hence for a
prefix f (w)z, where z is a prefixof the image of a letter,we have | f (w)z|0 = �/3+|z|0.
If z begins with 0, then we know that z is a prefix of f (0), so that |z|0 = 1 as long as
z �= ε. Otherwise z is a prefix of f (1), and |z|0 = 0 if |z| ≤ 3; |z|0 = 1 if |z| = 4; and
|z|0 = 2 otherwise.

With similar arguments one can see that the following predicates define the pairs
(n, | prefn+1(x)|a), for a ∈ {1, 2}.
def prefn1 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z &

((X[m]=@0 & ((m=n & z=0) | (n>=m+1 & z=1))) |
(X[m]=@1 & ((m=n & z=1) | (n>=m+1 & z=2))))";

def prefn2 "?msd_3 Em,z $prev(n,m) & 3*y=m+3*z &
((X[m]=@0 & ((n<m+2 & z=0)
| (m+2=n & z=1))) | (X[m]=@1 &
((n<m+2 & z=0) | (n>=m+2 & n<m+5 & z=1)
| (n=m+5 & z=2))))";

From this point onward we may proceed as outlined by Shallit in [24] to find the
abelian complexity function of x as a 3-automatic sequence.

Remark 28 We could now find the sequence (�(prefn(x)))n≥0 as a synchronized
sequence with the following command:

def PrefParikhSync "?msd_3 (n=0 & x=0 & y=0 & z=0) |
(n>=1 & $prefn0(n-1,x) & $prefn1(n-1,y)
& $prefn2(n-1,z))";

123

Theory of Computing Systems

However, the automaton seems to be too complex to work with in a practical way.

We shall opt to proceed with the approach of [24] presented for the Tribonacci
word. A different, perhaps more efficient, approach is outlined in [10, §10.13.3]. In
particular, we work with the synchronized sequences (| prefn(x)|a)n≥0, a ∈ {0, 1, 2},
separately instead:

def pref0 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn0(n-1,y))";
def pref1 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn1(n-1,y))";
def pref2 "?msd_3 (n=0 & y=0) | (n>=1 & $prefn2(n-1,y))";

Next we define the automata accepting the triples (i, n, |xi · · · xi+n−1|a), for a ∈
{0, 1, 2}:
def sncin0 "?msd_3 Ax,y ($pref0(i,x) & $pref0(i+n,y)) =>

(z + x = y)";
def sncin1 "?msd_3 Ax,y ($pref1(i,x) & $pref1(i+n,y)) =>

(z + x = y)";
def sncin2 "?msd_3 Ax,y ($pref2(i,x) & $pref2(i+n,y)) =>

(z + x = y)";

For each a ∈ {0, 1, 2}, we inspect the possible differences |v|− | prefn(x)|a , where
v ranges over the factors of x of length n. Since x is guaranteed to have bounded
abelian complexity, there are only finitely many such possible values; here we may
inspect the possible values of the differences as follows. The first predicate accepts
the non-negative values of k such that k = |v|0 − | prefn(x)|; the second accepts the
non-negative values of k such that −k = |v|0 − | prefn(x)|0:
def diffs0pos "?msd_3 En,i,x,z $sncin0(i,n,x) & $pref0(n,z)

& x=k+z";
def diffs0neg "?msd_3 En,i,x,z $sncin0(i,n,x) & $pref0(n,z)

& x+k=z";

Inspecting the automata obtained, the possible values in both cases are k = 0, 1, 2.
This implies that

∣∣|v|0 − | prefn(x)|0
∣∣ ≤ 2, and all possible values are attained. With

similar inspections for the other letters, we find that

−3 ≤ |v|1 − | prefn(x)|1 ≤ 2 and 0 ≤ |v|2 − | prefn(x)|2 ≤ 1,

and all possible values are attained. We thus have that

�(v) − �(prefn(x)) ∈ {−2, . . . , 2} × {−3, . . . , 2} × {0, 1} (4)

for any factor v of length n. (Note that this in particular shows that x has bounded
abelian complexity.)

If S is the set of possible triples in (4), we note that the triples S + (2, 3, 0) will
be non-negative. To get all the possible triples (s, t, u), we inspect the automaton
constructed by Walnut with the command

123

Theory of Computing Systems

def validtriples "?msd_3 Ei,n,a,b,c,d,e,f
$sncin0(i,n,a) & $pref0(n,b) & s+b = a+2 &
$sncin1(i,n,c) & $pref1(n,d) & t+d = c+3 &
$sncin2(i,n,e) & $pref2(n,f) & u+f = e";

We obtain the automaton in Fig. 1. Inspecting it, we see that from the set appearing
in (4), all ten vectors with the property that the entries sum to 0 are attainable (we are
comparing Parikh vectors of two words of the same length n); they are

{(−2, 2, 0), (−2, 1, 1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1),

(0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−3, 1), (2,−2, 0)}.

Since (0, 0, 0) is attained for any length n, we have 29 possible sets of difference
vectors to consider. For each such difference vector, we may provide a predicate
recognizing those i and n for which the vector is attained. For example, the vector
(−2, 2, 0) is defined with the command

def vecn220 "?msd_3 Ea,b,c,d,e,f
$sncin0(i,n,a) & $pref0(n,b) & a+2=b &
$sncin1(i,n,c) & $pref1(n,d) & c=d+2 &
$sncin2(i,n,e) & $pref2(n,f) & e=f";

In principle, one could then consider all 29 possible combinations of possible dif-
ference vectors for a given length n. However, computations suggest that the possible
sets of vectors are the following:

S1 = {(−1, 0, 1), (−1, 1, 0), (0, 0, 0)},
S2 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)},
S3 = {(−1, 1, 0), (0, 0, 0), (1,−1, 0)},
S4 = {(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−2, 0)},
S5 = {(−1, 0, 1), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0), (2,−3, 1), (2,−2, 0)},
S6 = {(0, 0, 0), (1,−1, 0), (2,−2, 0)},
S7 = {(−2, 1, 1), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−2, 1), (1,−1, 0)},
S8 = {(−2, 1, 1), (−2, 2, 0), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)}.

Let us define, for each i, the lengths n for which the set Si is attained. For example,
the lengths corresponding to S1, S2, S3, and S6 would be defined as

0

[0,0,0]
1

[1,0,0]

2
[0,1,0]

3

[2,2,1]

[1,1,0], [0,2,0], [1,0,1], [0,1,1]

[2,0,0], [1,1,0], [0,2,0], [1,0,1], [0,1,1]

Fig. 1 The automaton accepting base-3 representations of triples of the form�(v)−�(prefn(x))+(2, 3, 0),
where v ranges through the factors of length n, and n ranges through the natural numbers

123

Theory of Computing Systems

def S1 "?msd_3 Ai ($vecn101(i,n) | $vecn110(i,n)
| $vec000(i,n))& (Ej,k $vecn101(j,n)& $vecn110(k,n))";

def S2 "?msd_3 Ai ($vecn101(i,n) | $vecn110(i,n)
| $vec0n11(i,n)
| $vec000(i,n)
| $vec1n10(i,n)) &

Ej,k,l,m ($vecn101(j,n) & $vecn110(k,n)
& $vec0n11(l,n) & $vec1n10(m,n))";

def S3 "?msd_3 (Ai $vecn110(i,n) | $vec000(i,n)
| $vec1n10(i,n)) &

(Ej,k $vecn110(j,n) & $vec1n10(k,n))";
def S6 "?msd_3 (Ai $vec000(i,n) | $vec1n10(i,n)

| $vec2n20(i,n)) &
(Ej,k $vec1n10(j,n) & $vec2n20(k,n))";

To avoid memory issues, we split the definitions of S4, S5, S7, and S8 into several
parts:
def S4a "?msd_3 Ai $vecn101(i,n) | $vecn110(i,n)

| $vec0n11(i,n) | $vec000(i,n) | $vec1n21(i,n)
| $vec1n10(i,n) | $vec2n20(i,n)";

def S4b "?msd_3 $S4a(n) & Ei $vecn101(i,n)";
def S4c "?msd_3 $S4b(n) & Ei $vecn110(i,n)";
def S4d "?msd_3 $S4c(n) & Ei $vec0n11(i,n)";
def S4e "?msd_3 $S4d(n) & Ei $vec1n21(i,n)";
def S4f "?msd_3 $S4e(n) & Ei $vec1n10(i,n)";
def S4 "?msd_3 $S4f(n) & Ei $vec2n20(i,n)";

def S5a "?msd_3 Ai ($vecn101(i,n) | $vec0n11(i,n)
| $vec000(i,n) | $vec1n21(i,n) | $vec1n10(i,n)
| $vec2n31(i,n) | $vec2n20(i,n))";

def S5b "?msd_3 $S5a(n) & Ei $vecn101(i,n)";
def S5c "?msd_3 $S5b(n) & Ei $vec0n11(i,n)";
def S5d "?msd_3 $S5c(n) & Ei $vec1n21(i,n)";
def S5e "?msd_3 $S5d(n) & Ei $vec1n10(i,n)";
def S5f "?msd_3 $S5e(n) & Ei $vec2n31(i,n)";
def S5 "?msd_3 $S5f(n) & Ei $vec2n20(i,n)";

def S7a "?msd_3 Ai $vecn211(i,n) | $vecn101(i,n)
| $vecn110(i,n) | $vec0n11(i,n) | $vec000(i,n)
| $vec1n21(i,n) | $vec1n10(i,n)";

def S7b "?msd_3 $S7a(n) & Ei $vecn211(i,n)";
def S7c "?msd_3 $S7b(n) & Ei $vecn101(i,n)";
def S7d "?msd_3 $S7c(n) & Ei $vecn110(i,n)";
def S7e "?msd_3 $S7d(n) & Ei $vec0n11(i,n)";
def S7f "?msd_3 $S7e(n) & Ei $vec1n21(i,n)";

123

Theory of Computing Systems

Fig. 2 The abelian complexity function of the fixed point x = 012112002112002 · · · of the Parikh-collinear
morphism f : 0 �→ 012, 1 �→ 112002, 2 �→ ε as a 3-automatic sequence

def S7 "?msd_3 $S7f(n) & Ei $vec1n10(i,n)";

def S8a "?msd_3 Ai $vecn211(i,n) | $vecn220(i,n)
| $vecn101(i,n) | $vecn110(i,n) | $vec0n11(i,n)
| $vec000(i,n) | $vec1n10(i,n)";

def S8b "?msd_3 $S8a(n) & Ei $vecn211(i,n)";
def S8c "?msd_3 $S8b(n) & Ei $vecn220(i,n)";
def S8d "?msd_3 $S8c(n) & Ei $vecn101(i,n)";
def S8e "?msd_3 $S8d(n) & Ei $vecn110(i,n)";
def S8f "?msd_3 $S8e(n) & Ei $vec0n11(i,n)";
def S8 "?msd_3 $S8f(n) & Ei $vec1n10(i,n)";

To obtain the abelian complexity function as an automatic sequence, we finally
perform the following commands:
def abcomp1 "?msd_3 n=0";
def abcomp3 "?msd_3 $S1(n) | $S3(n) | $S6(n)";
def abcomp5 "?msd_3 $S2(n)";
def abcomp7 "?msd_3 $S4(n) | $S5(n) | $S7(n) | $S8(n)";
combine abcomp abcomp1=1 abcomp5=5 abcomp3=3 abcomp7=7;
The first four automata recognize those lengths n for which the abelian complexity
equals 1, 3, 5, and 7, respectively. The last combines these automata to form an
automatic sequence over the alphabet {1, 3, 5, 7}. The automaton obtained is depicted
in Fig. 2. Inspecting the automaton, we see that the abelian complexity function of x
equals 135(377)ω, as desired.

6 Concluding Remarks

We may address similar questions. In the same vein as Sportiello and Salo’s question,
we may ask: Is the abelian complexity of the fixed point of any Parikh-constant
morphism, i.e., all images of letters have the same Parikh vector [5], always ultimately
periodic? We know with [1] that this is not the case for an arbitrary Parikh-collinear
morphism, but Parikh-constant morphisms are more restrictive: all columns of M f are
the same.

In Theorem 22, there is an assumption about recognizability. Nevertheless, there
are situations where recognizability does not hold and still, the cutting set is definable.

123

Theory of Computing Systems

As an example, consider the non-uniform morphism f : a �→ ab, b �→ b′c′, b′ �→ b,
c′ �→ ccc and c �→ cc. Its fixed point starting with a is also 2-automatic and generated
by themorphism a �→ ab, b �→ b′c′, b′ �→ bc, c′ �→ cc, c �→ cc (a slightmodification
of the morphism used to generate the characteristic sequence of powers of 2). Because
of the arbitrarily long blocks of c’s appearing in f ω(a), f is not recognizable on
this infinite word. Nevertheless, the cutting set CS f ,a = {0, 2, 4, 5, 8, 10, . . .} is 2-
definable because it is easy to see that it is of the form (2N\{4n+2 | n > 0})∪{4n+1 |
n > 0}. So the conclusion of Theorem 22may hold for a larger class of morphic words
(being simultaneously k-automatic for some k).

Acknowledgements We thank J. Leroy for fruitful discussions on morphic words and pointing out useful
references. We also thank P. Popoli for pointing out the alternative method of computing the abelian
complexity function in [10, §10.13.3]. Our appreciation is extended to A. Sportiello and V. Salo for asking
the question leading to this paper. We warmly thank M.-P. Béal, F. Durand, and D. Perrin for sharing a
draft of their book [21]. We also thank the reviewers of [1] for their suggestions. We thank the anonymous
reviewers of the current paper for their suggestions which greatly improved the readability and accessibility
of the text.

Author Contributions All authors equally contributed to the main content.

Funding M. Rigo is supported by the FNRS Research grant T.0196.23 (PDR). M. Stipulanti is an FNRS
Research Associate supported by the Research grant 1.C.104.24F. Part of the work was performed while M.
Whiteland was affiliated with University of Liège and supported by the FNRS Research grant 1.B.466.21F

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing Interests The authors declare no competing interests.

Ethics Approval and Consent to Participate Not applicable

Consent for Publication Not applicable

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rigo, M., Stipulanti, M., Whiteland, M.A.: Automaticity and Parikh-collinear morphisms. In: Combi-
natorics on Words. Lecture Notes in Comput. Sci., vol. 13899, pp. 247–260. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-33180-0_19

2. Allouche, J.-P., Dekking, M., Queffélec, M.: Hidden automatic sequences. Comb. Theory 1(20) (2021)
https://doi.org/10.5070/C61055386

3. Sloane, N.J.A., al.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-33180-0_19
https://doi.org/10.5070/C61055386
https://oeis.org

Theory of Computing Systems

4. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in binary words
with bounded Abelian complexity. Int. J. Found. Comput. S. 22(4), 905–920 (2011). https://doi.org/
10.1142/S0129054111008489

5. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial complexity of infinite
words. Theor. Comput. Sci. 601, 47–57 (2015). https://doi.org/10.1016/j.tcs.2015.07.025

6. Erdős, P.: Some unsolved problems. Michigan Math. J. 4, 291–300 (1958)
7. Fici, G., Puzynina, S.: Abelian combinatorics onwords: a survey. Comput. Sci. Rev. 47, 100532 (2023).

https://doi.org/10.1016/j.cosrev.2022.100532
8. Rigo, M., Stipulanti, M., Whiteland, M.A.: Characterizations of families of morphisms and words via

binomial complexities. European J. Combin. 118, 103932 (2024). https://doi.org/10.1016/j.ejc.2024.
103932

9. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge
University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511546563

10. Shallit, J.: The Logical Approach to Automatic Sequences: Exploring Combinatorics on Words with
Walnut. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge
(2022). https://doi.org/10.1017/9781108775267

11. Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Z.
Wahrscheinlichkeitstheor. Verw. Geb. 41, 221–239 (1978). https://doi.org/10.1007/BF00534241

12. Allouche, J.-P., Shallit, J.: Automatic sequences are also non-uniformly morphic. In: Discrete Math-
ematics and Applications. Springer Optim. Appl., vol. 165, pp. 1–6. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-55857-4_1

13. Krawczyk, E., Müllner, C.: Automaticity of uniformly recurrent substitutive sequences (2023). https://
doi.org/10.48550/arXiv.2111.13134

14. Durand, F.: A characterization of substitutive sequences using return words. Discrete Math. 179(1–3),
89–101 (1998). https://doi.org/10.1016/S0012-365X(97)00029-0

15. Durand, F., Leroy, J.: The constant of recognizability is computable for primitive morphisms. J. Integer
Seq. 20(4), 17–4515 (2017)

16. Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli diagrams and dimen-
sion groups. Ergodic Theory Dynam. Systems 19(4), 953–993 (1999). https://doi.org/10.1017/
S0143385799133947

17. Béal, M.-P., Perrin, D., Restivo, A.: Recognizability of morphisms. Ergodic Theory Dyn. Syst. 1–25
(2023). https://doi.org/10.1017/etds.2022.109

18. Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO Theor. Inform. Appl.
47(2), 201–214 (2013). https://doi.org/10.1051/ita/2013035

19. Mitrofanov, I.: A proof for the decidability of HD0L ultimate periodicity. arXiv (2011). https://doi.
org/10.48550/arXiv.1110.4780

20. Mousavi, H.: Automatic Theorem Proving in Walnut. arXiv (2016). https://doi.org/10.48550/arXiv.
1603.06017

21. Béal, M.-P., Durand, F., Perrin, D.: Substitution shifts. manuscript (2024)
22. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6,

66–92 (1960). https://doi.org/10.1002/malq.19600060105
23. Béal, M., Berthé, V., Perrin, D., Restivo, A.: A note on one-sided recognizable morphisms (2022).

https://doi.org/10.48550/arXiv.2204.03892
24. Shallit, J.: Abelian complexity and synchronization. INTEGERS: Electron. J. Comb. Number Theory

21(A.36) (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1016/j.tcs.2015.07.025
https://doi.org/10.1016/j.cosrev.2022.100532
https://doi.org/10.1016/j.ejc.2024.103932
https://doi.org/10.1016/j.ejc.2024.103932
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/9781108775267
https://doi.org/10.1007/BF00534241
https://doi.org/10.1007/978-3-030-55857-4_1
https://doi.org/10.1007/978-3-030-55857-4_1
https://doi.org/10.48550/arXiv.2111.13134
https://doi.org/10.48550/arXiv.2111.13134
https://doi.org/10.1016/S0012-365X(97)00029-0
https://doi.org/10.1017/S0143385799133947
https://doi.org/10.1017/S0143385799133947
https://doi.org/10.1017/etds.2022.109
https://doi.org/10.1051/ita/2013035
https://doi.org/10.48550/arXiv.1110.4780
https://doi.org/10.48550/arXiv.1110.4780
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.48550/arXiv.2204.03892

	Automatic Abelian Complexities of Parikh-Collinear Fixed Points
	Abstract
	1 Introduction
	1.1 Our Contributions

	2 On the Recognizability
	3 The Cutting Set
	4 Proof of Theorem 3
	5 A Detailed Discussion of the Procedure
	6 Concluding Remarks
	Acknowledgements
	References

