
An OpenMP Runtime for Transparent Work Sharing Across

Cache-Incoherent Heterogeneous Nodes

ROBERT LYERLY, Virginia Tech
CARLOS BILBAO, Virginia Tech
CHANGWOO MIN, Virginia Tech
CHRISTOPHER J. ROSSBACH, University of Texas at Austin and VMware Research

BINOY RAVINDRAN, Virginia Tech

In this work we present libHetMP, an OpenMP runtime for automatically and transparently distributing parallel computation
across heterogeneous nodes. libHetMP targets platforms comprising CPUs with diferent instruction set architectures (ISA)
coupled by a high-speed memory interconnect, where cross-ISA binary incompatibility and non-coherent caches require
application data be marshaled to be shared across CPUs. Because of this, work distribution decisions must take into account
both relative compute performance of asymmetric CPUs and communication overheads. libHetMP drives workload distribution
decisions without programmer intervention by measuring performance characteristics during cross-node execution. A novel
HetProbe loop iteration scheduler decides if cross-node execution is beneicial, and either distributes work according to the
relative performance of CPUs when it is, or places all work on the set of homogeneous CPUs providing the best performance
when it is not. We evaluate libHetMP using compute kernels from several OpenMP benchmark suites and show a geometric
mean 41% speedup in execution time across asymmetric CPUs. Because some workloads may showcase irregular behavior
among iterations, we extend libHetMP with a second scheduler called HetProbe-I. The evaluation of HetProbe-I shows it can
further improve speedup for irregular computation, in some cases up to a 24%, by triggering periodic distribution decisions.

CCS Concepts: ·Computer systems organization→Multicore architectures;Heterogeneous (hybrid) systems;Multicore

architectures; Heterogeneous (hybrid) systems; · Software and its engineering→ Distributed memory; Distributed memory.

Additional Key Words and Phrases: heterogeneous-ISA CPUs, OpenMP, work sharing

1 INTRODUCTION

In recent years there has been a shift towards increasingly heterogeneous platforms in order to cope with
the slowdown of Moore’s Law [54]. As chip designers have faced resistance in scaling single-core [53] and
multicore [20] performance due to physical limitations, they have responded by incorporating more specialized
processors into systems [46, 47]. These emerging heterogeneous systems are increasingly necessary to deal
with future challenges, e.g., Amazon has begun ofering cloud instances with diferent types of CPUs to match
analytics workloads [9] and the Summit supercomputer combines CPUs and GPUs for enhanced performance and
power eiciency [2]. The path forward for tackling these challenges is through increasing architectural diversity.
Chip manufacturers have begun diversifying server-grade CPU designs to strike diferent levels of single-

threaded performance, parallelism and energy eiciency. For example, Intel Xeon [32] CPUs package tens of

Authors’ addresses: Robert Lyerly, Virginia Tech, rlyerly@vt.edu; Carlos Bilbao, Virginia Tech, bilbao@vt.edu; Changwoo Min, Virginia Tech,
changwoo@vt.edu; Christopher J. Rossbach, University of Texas at Austin and VMware Research, rossbach@cs.utexas.edu; Binoy Ravindran,
Virginia Tech, binoy@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
0734-2071/2022/1-ART1 $15.00
https://doi.org/10.1145/3505224

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3505224

1:2 • Lyerly et al.

Fig. 1. Execution time of OpenMP benchmarks with work-sharing regions executed entirely on an x86 Intel Xeon, entirely on
an ARM Cavium ThunderX, and when leveraging both with libHetMP. How can the runtime automatically determine the best

workload distribution configuration across heterogeneous CPUs to optimize performance?

cores with high single-threaded performance, whereas Cavium ThunderX2 [45] CPUs instead package a large
number of lower-performance cores. At the same time, chip designers have begun tightly coupling heterogeneous
compute elements for power and performance beneits ś for example, Intel’s Agilex platform combines Xeon
CPUs with FPGAs and ARM processors into a single physical processor package [5]. These trends suggest future
platforms may provide greater architectural diversity by integrating asymmetric general-purpose server-grade
CPUs into a single motherboard or package.
We envision a system with heterogeneous CPUs, each of which has its own physical memory, connected by

either a point-to-point connection such as PCIe [1] or a fast memory bus such as AMD’s Ininity Fabric [33].
These CPUs will also likely use heterogeneous instruction set architectures (ISAs), which have been shown to
provide better performance and energy eiciency than asymmetric single-ISA CPUs [19, 55]. For developers,
the ability to optimize performance and energy eiciency of applications on such systems will be essential, but
leveraging diverse architectures together is a daunting task. While cores within a homogeneous set of CPUs,
termed a node, provide cache coherence, there is no coherence between heterogeneous CPUs. This necessitates
software memory consistency and data movement between discrete memory regions. Additionally, because these
CPUs use diferent ISAs, data must be marshaled to be shared. Data must either be laid out in a common format
by the compiler or dynamically transformed when transferred at runtime. Traditional programming models like
MPI [23] are a poor it for programming these tightly-coupled heterogeneous servers as they require developers
to manually manage memory consistency and work distribution.
Recent works such as K2 [34] and Popcorn Linux [7, 8, 30] instead use distributed shared memory (DSM) on

tightly-coupled heterogeneous CPU systems for better programmability, transparency and lexibility. In addition
to supporting cross-ISA execution migration [7, 19, 55], these systems provide transparent and on-demand data
marshaling between nodes. Because of this transparency, multiple discrete memory regions appear as shared
memory to applications. Distributing parallel computation across heterogeneous-ISA CPUs becomes simpler
as parallel runtimes can assign work items to CPUs and let the DSM transparently marshal data. On-demand
marshaling is expensive, however, and can have a signiicant performance impact in cross-node execution.

For tightly-coupled heterogeneous CPU platforms, the challenge is how to optimally distribute parallel work to
balance per-CPU performance against DSM communication overheads. For example, Figure 1 shows the execution
time of three OpenMP HPC benchmarks when run on an Intel Xeon E5-2620v4, a Cavium ThunderX, and when
utilizing both simultaneously with the libHetMP runtime presented in this work. Because of cross-node traic, it
is not always beneicial for a parallel computation to utilize the processing resources of both CPUs together ś
BT-C is fastest when run entirely on the ThunderX’s large number of small cores and streamcluster is instead

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:3

fastest when run entirely on the Xeon. For lavaMD, however, utilizing both processors in tandem leads to the
best performance as cross-node data accesses (and thus DSM traic) are limited. Because no work distribution is
best for all applications, how can parallel workloads automatically and transparently leverage heterogeneous CPUs

to maximize performance?
We present libHetMP, an OpenMP runtime for automatically work sharing parallel computation in hetero-

geneous CPU systems. Our target platform consists of architecturally-diverse CPUs coupled via point-to-point
connection or high speed bus. Because no such platform is commercially available, we emulate such a system by
connecting servers with heterogeneous-ISA CPUs using Ininiband. libHetMP transparently reorganizes OpenMP
execution for multi-node systems, eliminating sources of DSM overheads and extending existing OpenMP prim-
itives to support heterogeneous CPUs. For work distribution, libHetMP uses a measurement-based approach
to characterize an application’s performance and automatically distribute work to nodes to achieve the best
performance. libHetMP allows developers to use OpenMP, a well-known and mature parallel programming model,
in emerging heterogeneous-ISA CPU systems while also abstracting away the underlying system architecture
so developers do not have to reconigure work distribution for these emerging systems. Although the current
implementation targets 2-node systems, it is straightforward to extend libHetMP to systems with arbitrary
numbers of nodes.

libHetMP includes a new HetProbe loop iteration scheduler that dynamically measures and distributes parallel
work to best utilize heterogeneous CPUs. The HetProbe scheduler targets regular work-shared loops, where each
loop iteration performs the same amount of computation using similar memory access patterns. The HetProbe
scheduler analyzes the behavior of a small number of initial loop iterations and determines whether the remaining
iterations should be executed across multiple nodes. If cross-node execution is beneicial, the HetProbe scheduler
distributes work to threads based on the relative performance of each CPU. If work sharing across nodes causes
too much communication, the HetProbe scheduler executes all work on the set of cache-coherent homogeneous
CPUs best suited for a given computation. The diicult process of where to distribute work is transparently
automated by libHetMP.

The HetProbe scheduler is designed for work sharing regions with loops where each loop iteration performs a
constant and equal amount of work. This assumption allows the HetProbe scheduler to makeworkload distribution
decisions by monitoring the behavior of a small number of probe iterations. For irregular applications where the
behavior of the benchmark varies over time, e.g., changing memory access patterns or types of computation,
predicting execution behavior (including cross-node DSM traic) becomes signiicantly more diicult. In order to
address these irregular workloads, libHetMP includes an extension to the HetProbe scheduler called HetProbe-I.
HetProbe-I deals with irregular compute kernels by logically breaking a work sharing region into multiple smaller
work-sharing regions, each with its own probing and workload distribution decisions. Hence, HetProbe-I adapts
to irregular scenarios by periodically triggering a new evaluation over a small amount of iterations. The proiled
performance metrics are then used to recalculate the workload distribution across nodes using the mechanisms
provided by HetProbe.

In this work we make the following contributions:

• The design and implementation of libHetMP, a new OpenMP runtime that distributes threads and parallel
work across cache-incoherent heterogeneous CPU systems without programmer intervention;
• Extensions to shared memory OpenMP synchronization primitives and loop iteration schedulers to adapt
execution to heterogeneous CPUs and minimize DSM overheads;
• Measurement tools built into the runtime that monitor metrics such as data transfer costs and hardware
performance counters to make workload distribution decisions;

ACM Trans. Comput. Syst.

1:4 • Lyerly et al.

• The HetProbe loop iteration scheduler, which uses these metrics to automatically determine where to place
computation in order to minimize DSM overheads and leverage architectural diversity to achieve the best
performance;
• An evaluation of libHetMP using 10 benchmarks from 3 benchmark suites that shows up to a 4.7x speedup
when work sharing across a Xeon and ThunderX versus homogeneous execution on the Xeon. We also show
the HetProbe scheduler is able to make the right workload distribution choice in all benchmarks, including
evaluating decisions on two interconnects;
• The HetProbe-I loop iteration scheduler, which periodically generates performance proiles and redistributes
loop iterations into global and local work pools for the nodes. The performance evaluation of this novel
scheduler shows a speedup of up to 24% for a class of irregular workloads.

2 BACKGROUND

libHetMP is a multithreading runtime for OpenMP [43], a directive-based parallel programming model for C,
C++ and Fortran applications. OpenMP is widely used in high-performance computing [24][18][49] because
of its lexibility to express many diferent forms of parallel computation such as data parallelism (including
hardware-based single instruction/multiple data computation), bag-of-tasks parallelism, synchronization and
reductions [43]. OpenMP targets shared-memory systems (unlike programming models such as MPI [23] which
uses message passing or OpenCL [28] for accelerators) but has continually evolved into new contexts, such as
providing oloading directives for GPUs [43].

OpenMP speciies a set of directives that developers add to applications to parallelize execution. The compiler
is responsible for converting OpenMP directives into function calls into the OpenMP runtime, which spawns
teams of threads, partitions parallel work between threads and provides synchronization capabilities. For loop
work sharing regions as shown in Listing 1 (e.g., pragma omp for), parallel work is distributed by assigning
loop iterations to threads. The vector sum in Listing 1 shows an example of a work sharing region with regular
loop iterations ś each iteration performs the same amount of work and iterations have the same memory access
patterns (aine accesses based on the loop iteration variable). Regular work-shared loops are a common class
of data parallelism ś with predictable compute and memory access patterns, they are amenable to ine-grained
analysis and partitioning across multiple devices [35][50].
OpenMP assumes architectural uniformity and current implementations do not target heterogeneous-ISA

CPUs. In order to support execution across such CPUs, the system software (compiler, OS, runtime) must
provide a shared-memory abstraction. Even if this abstraction exists, optimizing OpenMP for heterogeneous CPU
systems requires re-designing how parallel work is assigned to CPUs in consideration of system and interconnect
performance characteristics. Before describing libHetMP, we irst describe how previous works enable execution
across heterogeneous-ISA CPUs. Throughout the work we refer to nodes as a set of single-ISA cache-coherent
processors, e.g., each of the Xeon and ThunderX CPUs is considered a node.

Heterogeneous-ISAExecution.UnlikeARM’s big.LIT-TLE architecture [21], which provides cache-coherence
across same-ISA heterogeneous cores, there exist no server-grade cache-coherent heterogeneous CPUs. Past
systems that couple together overlapping-ISA architectures (e.g., Xeon/Xeon Phi) are defunct; system designers
wishing to couple together asymmetric processors today must integrate CPUs of diferent ISAs. Thus the system
software (compiler, operating system, runtime) must handle both ISA heterogeneity and memory consistency.
Previous works [7, 19, 55] describe system software for migrating compiled shared-memory applications between
heterogeneous-ISA CPUs at runtime. While these works describe similar designs, we leverage Popcorn Linux [7]
due to its availability. Other research on ISA-heterogeneous performance focused on GPU/CPU interaction, but
in this work we concentrate on general-purpose computing applications instead of SIMD workloads.

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:5

1 in t vecsum (const int ∗ vec , s i z e _ t num) {
2 s i z e _ t i ;
3 in t sum = 0 ;
4 #pragma omp parallel for reduction(+:sum)

5 for (i = 0 ; i < num ; i ++) sum += vec [i] ;
6 return sum ;
7 }

Listing 1. OpenMP vector sum. OpenMP directives instruct the runtime to spawn threads, distribute loop iterations to
threads and combine results from each thread.

Multi-ISA Binaries. Similarly to past works [19, 55], Popcorn Linux’s compiler builds multi-ISA binaries
which are capable of cross-ISA execution. Multi-ISA binaries consist of one aligned data section and multiple
per-ISA code sections, one for each target ISA in the system. To enable cross-ISA execution, the compiler arranges
the application’s global address space to be aligned across ISAs so that pointers to globally-visible data and
functions refer to the same addresses on all nodes. Additionally, the compiler generates metadata describing
function stack layouts at equivalence points [56]. This metadata describes the locations and type information (e.g.,
pointer-type) of live values so that stack frames can be reconstructed for the destination ISA.

Thread Migration. Threads migrate between nodes atmigration points, a subset of equivalence points chosen
by the compiler or user. libHetMP adds migration points inside the OpenMP runtime to automate distributing
thread teams across nodes. To migrate between nodes, threads enter a state transformation runtime that walks the
thread’s stack and transforms it to the destination ISA’s layout. After transformation, threads pass a transformed
register set to a migration system call and are returned to normal execution on the destination CPU with the
registers (several works implement this mechanism for homogeneous-ISA [34, 38] or heterogeneous-ISA [7, 8, 30]
systems). Unlike oloading where only a statically selected region of computation is executed on the target,
transforming the stack allows threads to stay on target nodes for arbitrary lengths of time.

Page-level Distributed Shared Memory. Once threads have migrated to new nodes, they must be able to
access application data. OS-level DSMs such as those proposed by Kerrighed [38], K2 [34] and Popcorn Linux
observe remote memory accesses inside the page fault handler and migrate data pages similarly to a cache
coherence protocol. By carefully manipulating page permissions, the OS forces the application to fault when
accessing remote data. When a fault occurs, the kernel on the source (i.e., faulting) node requests the page from
the remote node that currently owns the page. The page is transferred from the remote to the source and mapped
into the application’s address space. The memory access is restarted and application threads are unaware that data
was fetched over the interconnect. In this way, data is marshaled between nodes transparently and on demand.
Note that software memory consistency would be required even for heterogeneous CPUs with (cache-incoherent)
shared memory in order to prevent lost or reordered writes due to difering memory consistency models.
Many DSM systems use a multiple-reader, single-writer protocol as shown in Figure 2. In addition to data,

nodes request access rights based on the type of memory access. If multiple nodes read data from the same
page, the protocol replicates the page with read-only permissions and all nodes can read the data in parallel. If a
thread writes to a page, the node irst invalidates all other copies of the page from other nodes and then acquires
exclusive write access. Any subsequent attempts to read or write the page on other nodes will cause a fault and
access rights must be re-acquired.

Cross-node Execution Challenges. Unlike traditional shared memory multiprocessor systems that share
data at a cache-line granularity, DSM systems share data at a page granularity due to observing memory accesses
via page faults. Additionally, the cost of bringing data over the interconnect and managing access permissions is
signiicantly higher than a traditional memory access ś rather than taking tens to hundreds of nanoseconds, page
migration takes tens of microseconds (see Section 3). These two characteristics mean that in order for a parallel
computation to beneit from leveraging multiple heterogeneous CPUs simultaneously, data accessed by threads

ACM Trans. Comput. Syst.

1:6 • Lyerly et al.

Fig. 2. DSM protocol. Pages are migrated on-demand by observing memory accesses through the page fault handler. Pages
read by threads on multiple nodes are replicated with read-only protections while only one node may have exclusive write
permissions for a page.

1 #pragma omp p a r a l l e l for

2 for (i = 0 ; i < num ; i ++) {
3 i f (i < num / 2) memory_intense_work () ;
4 e l se compute_ intense_work () ;
5 }

Listing 2. Example of an irregular workload where the two halves of iterations have diferent behavior and system
requirements.

on diferent nodes must partition cleanly between pages and there must be enough computation to amortize
DSM costs. Otherwise, the application should only execute parallel work on a single node.

Irregular workloads Naturally, not all loops exhibit the same behavior throughout all iterations and may
vary in many ways: diferent numbers of DSM-induced page faults, changing memory access patterns, stressing
diferent functional units (like loating points, integers or SIMD), etc. Listing 2 illustrates a naive example of such
a case, with a loop whose irst half of iterations are memory-intensive and second half of iterations are instead
compute-intensive. Irrespective of the source of irregularity, we refer to loops with a non-negligible degree of
behavioral changes as irregular workloads. Irregular workloads can be problematic for loop schedulers that
statically decide how to distribute work. These workloads can be especially challenging for HetProbe because
their initial proiling portrays a distorted image of the overall workload requirements. Because of their changing
behavior, these workloads can beneit from re-assessing workload distribution decisions throughout execution of
the work sharing region.

3 DESIGN

libHetMP builds on Popcorn Linux’s ability to distribute threads and transparentlymarshal data across heterogeneous-
ISA CPUs. libHetMP’s goal is to automatically determine where to place parallel computation in heterogeneous CPU

systems to maximize performance. libHetMP incorporates two new components into the OpenMP runtime. First,
it provides the mechanisms necessary to execute OpenMP-parallelized computation across heterogeneous-ISA
CPUs, including migrating threads to diferent nodes and distributing parallel work from work sharing regions

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:7

Fig. 3. libHetMP’s thread hierarchy. In this setup, libHetMP has placed 3 threads (numbered 1-12) on each node. For
synchronization, threads on a node elect a leader (green) to represent the node at the global level. Non-leader threads (red)
wait for the leader using local synchronization to avoid cross-node data accesses.

to those threads. Second, libHetMP automates work distribution decisions by measuring system performance
metrics. In particular, libHetMP analyzes DSM activity over the interconnect between CPUs and performance
counters. libHetMP implements a new loop iteration scheduler, called the HetProbe scheduler, that uses those
metrics to make work distribution decisions. Using these metrics, the HetProbe scheduler either utilizes cross-node
execution or selects a single node on which to execute. libHetMP alleviates developers from having to manually
conigure applications for each new hardware setup, e.g., new CPUs or diferent types of interconnects.

3.1 OpenMP Across Heterogeneous-ISA CPUs

In order to support existing OpenMP applications, libHetMP must be compatible with existing semantics and
therefore abstract all mechanisms behind runtime entry points. libHetMP inserts migration points when starting
thread teams in order to execute OpenMP parallel regions across nodes. After thread migration, libHetMP
internally separates runtime chores (work distribution, synchronization, performance monitoring) into per-node
and global operations in order to minimize DSM traic generated by the runtime itself. The runtime must 1)
organize and place threads across nodes to minimize cross-node communication and 2) distribute work, including
measuring application performance across and within nodes to adjust distribution decisions.

Cross-Node Execution.When starting a parallel region, libHetMP organizes threads into a thread hierarchy
to break synchronization down into per-node and global operations, signiicantly reducing the amount of cross-
node traic caused by synchronization. At application startup, libHetMP queries the system to determine each
node’s characteristics, i.e., type and number of CPUs available, and uses this information to initialize the thread
hierarchy. As threads are spawned or re-initialized, libHetMP calls the OS’s threadmigration function to physically
place threads according to the hierarchy. The runtime migrates threads to nodes based on how many threads are
executing the parallel region and how many CPUs are available on each node ś for example, in a setup containing
a 16-core Xeon and a 96-core ThunderX, libHetMP spawns and places 16 and 96 threads, respectively, for a total
of 112 threads. Internally, libHetMP initializes per-node data structures like loop iteration scheduler metadata,
barriers and counters based on the hierarchy. libHetMP also initializes global variants of these data structures for
cross-node synchronization (see below). libHetMP allows re-coniguring the thread hierarchy between parallel
regions, which is useful for dynamically adjusting parallel execution.

ACM Trans. Comput. Syst.

1:8 • Lyerly et al.

Synchronization. libHetMP uses the thread hierarchy for many types of synchronization, including barriers,
reductions and work distribution. libHetMP builds upon previous work by Lyerly et al. [36], which refactors
OpenMP execution for DSM on homogeneous clusters. Figure 3 illustrates using the thread hierarchy for
synchronization. When synchronizing, threads on each node elect a node leader to act on their behalf at the global
level and the remaining non-leader threads wait at per-node barriers. The node leaders act as representatives
for the node and communicate through global data structures using DSM. The leader/non-leader designation
signiicantly reduces cross-node communication as most threads do not touch global data (in the Xeon/Cavium
setup, only 2 threads touch global data instead 112). For example, when executing parallel reductions the irst
thread on a node to arrive is elected leader and waits for all non-leader threads to make their local data available
for reduction. Once the leader has reduced data from all threads on its node, it produces the node’s data for the
inal reduction at the global level. A global leader, elected in the same fashion, is responsible for reducing data
from all nodes.

Workload Distribution. OpenMP deines several loop iteration schedulers that afect how iterations of a work-
shared parallel loop are mapped to threads. The default loop iteration schedulers (static, dynamic) implement
several strategies with the goal of evenly partitioning work to avoid overloaded straggler threads from harming
performance. libHetMP provides the ability to distribute iterations across nodes by extending these schedulers to
account for heterogeneity and to eiciently synchronize how threads grab iterations. Due to limitations in each
(see below), libHetMP introduces the HetProbe scheduler for automatic iteration distribution in consideration of
CPU and interconnect.

libHetMP assumes each node in the system contains a set of homogeneous CPU cores with identical micro-
architecture and cache coherence. To quantify performance diferences between nodes, libHetMP deines a core
speed ratio (CSR) to rank the relative compute capabilities of individual CPU cores on one node versus another.
For example, a Xeon core with a core speed ratio of 3:1 compared to a ThunderX core means the Xeon core is
considered 3x faster than a ThunderX core and threads running on the Xeon will get 3x as many loop iterations
as threads on the ThunderX. Note that CSRs are assigned to each work sharing region, as applications may have
multiple work sharing regions that exhibit diferent performance characteristics.

Cross-node static scheduler. OpenMP’s static scheduler evenly partitions loop iterations among threads,
assigning each thread the same number of iterations. The scheduler implicitly assumes all CPUs are equal and all
loop iterations perform the same amount of work. Rather than considering all threads equal, libHetMP allows
developers to specify per-node CSRs to skew work distribution for threads on diferent nodes. The challenge,
however, is that developers must manually discover the ideal CSR for each work sharing region and hardware
coniguration through extensive proiling.

Cross-node dynamic scheduler.With OpenMP’s dynamic scheduler, threads continuously grab user-deined
batches of iterations from a global work pool using atomic operations on a global counter. This scheduler targets
work sharing regions where individual loop iterations perform varying amounts of work. libHetMP optimizes
grabbing batches using the thread hierarchy ś threads irst attempt to grab iterations from a node-local work
pool instantiated during team setup. If the local pool is empty, the thread grabbing iterations is elected leader and
transfers iterations from the global pool to the per-node pool. Because the leader represents the entire node, it
grabs a batch of iterations for each thread executing on the node. This reduces the number of threads accessing
the global pool and thus the amount of global synchronization required for work distribution.
While not traditionally meant for load balancing on heterogeneous systems, the dynamic scheduler can

load balance work distribution based on the compute capacity of CPUs in the system. However, continuous
synchronization both at the local and global level to grab batches of work can negatively impact performance,
especially with small batch sizes. Users must again proile to determine the ideal per-region and per-hardware
batch size. Non-deterministic mapping of loop iterations to threads can also cause łchurnž in the DSM layer for
applications that execute the same work sharing region multiple times. With deterministic mapping of iterations

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:9

to threads, data may settle after the irst invocation as nodes acquire the appropriate pages and permissions. The
dynamic scheduler prevents data from settling on nodes.

The main problem with the default schedulers is that users must extensively proile to ind the best workload
distribution coniguration in a large state space, i.e., determine CSRs or batch sizes for each individual work
sharing region on every new heterogeneous platform. Additionally, if cross-node execution is not beneicial for
a work sharing region due to large DSM overheads, users must proile to determine the best CPU for single-
node execution and manually reconigure the thread team (including the thread hierarchy) to only execute
work-sharing regions on the selected CPU.

3.2 The HetProbe scheduler

To avoid the tuning complexity of the default schedulers, libHetMP introduces a new heterogeneous probing or
HetProbe scheduler, for automatically coniguring execution of parallel computation. Developers only need to
specify the HetProbe scheduler like other OpenMP schedulers, e.g., adding a schedule(hetprobe) clause to
a work sharing region, and libHetMP will transparently handle distributing loop iterations to available CPUs.
Developers do not need to reason about DSM overheads or performance characteristics of individual nodes. The
HetProbe scheduler executes a small number of iterations across both nodes, called the probing period, during
which it measures per-core execution time, cross-node page faults and performance counters to analyze a work
sharing region’s behavior. The HetProbe scheduler is designed to optimize the performance of work sharing
regions with regular loops, where the behavior of one loop iteration is a good predictor for the behavior of
other iterations. The HetProbe scheduler uses the performance analysis information gathered during the probing
period to distribute the remaining iterations as described in Section 3.4.
The HetProbe scheduler must be precise when distributing iterations for the probing period in order to

accurately evaluate system performance. First, the scheduler issues a constant number of loop iterations to each
thread, regardless of node, in order to compare the execution time of equal amounts of work on each CPU. Second,
the scheduler must deterministically issue iterations, so that threads executing a work sharing region multiple
times receive the same batch of iterations across invocations to account for the aforementioned data settling
efect. If the HetProbe scheduler non-deterministically distributes probe iterations, data might unintentionally
churn and cause falsely higher DSM overheads.

libHetMP also implements a probe cache for applications that execute a work sharing regionmultiple times. This
has two beneits ś irst, it allows the runtime to reuse previously calculated statistics and workload distribution
decisions from previous probing periods to avoid probing overheads. Second, libHetMP uses multiple probing
results to smooth out measurement variation for shorter-running work sharing regions. libHetMP uses an
exponential weighted moving average for measurement statistics, which favors more recent measurements and
quickly converges on accurate values. libHetMP uses this type of average because initial probing values for
regions may be inaccurate due to the DSM layer initially replicating data across nodes whereas subsequent
executions may incur fewer DSM costs.

3.3 Extension of HetProbe for irregular workloads

Some workloads exhibit an initial behavior which is not representative of their entire execution. For instance,
an application could initially be memory-intensive setting up data structures, while the rest of the time it uses
that memory for compute-intensive operations. Based on the initial probing period, the HetProbe scheduler will
distribute iterations favoring nodes with better memory performance. In these irregular workloads (previously
described in detail in Section 2) it can be advantageous for the HetProbe scheduler to periodically re-probe so that
the work distribution can be adapted to the changing behavior. libHetMP contains an extension to the HetProbe
scheduler, called HetProbe-I, that adapts to irregular workloads by triggering a new probing period. We refer

ACM Trans. Comput. Syst.

1:10 • Lyerly et al.

to these new probing periods as reprobes. HetProbe-I uses the proiled performance metrics from reprobes to
calculate new CSRs and redistribute work among nodes.

Fig. 4. Process of regeneration of the global work queue, which requires registering iteration jumps. Phases (1), (2) and (3)
occur sequentially, and correspond to the loop start, reprobing period and resulting workload, respectively.

Figure 4 illustrates how HetProbe-I schedules a work sharing region with 100 iterations (excluding the initial
probing period). Part 1 shows the global work queue, divided using the metrics collected from the initial probing
period. In this scenario, HetProbe-I has assigned the irst 60 iterations to node A and the remaining 40 to node B.
Then in Part 2, after each node has completed a certain number of iterations, HetProbe-I triggers a reprobing
period in order to re-evaluate the distribution. Once the reprobe phase concludes, Node A has inished iterations
0 to 29 and Node B iterations 60 to 80. Finally, in Part 3, the remaining iterations not executed by any node are
joined to generate a new queue (iterations 30 to 59 and 81 to 100) called a jump. Note that HetProbe-I needs to
make sure that all iterations in between (60 to 80) are not executed again.

Hence, the two main challenges of this new scheduler are:

(1) Determine when to trigger a reprobe (Figure 4 part 2). More frequent re-probings means more ine-grained
and balanced work distribution. However, reprobes have a non-negligible impact on performance, especially
if the redistribution of iterations for the probing period is worse than the current running coniguration
(recall that probing requires executing a small number of iterations across all nodes). The most obvious
example of a performance trade-of is triggering a reprobing period when only one node is running, as it is
likely that using other nodes requires additional synchronization and DSM traic.

(2) Should HetProbe-I decide to reprobe, the scheduler must redistribute disjoint groups of work iterations,
taking into account iterations that have already been completed (Figure 4 part 3).

To address the irst challenge, HetProbe-I logically breaks the work sharing region into multiple smaller
work-sharing regions, each with its own probing and workload distribution decisions. In HetProbe, the scheduler
calculates a CSR and distributes all remaining loop iterations to nodes. HetProbe-I instead only distributes a
fraction of iterations, which forces threads to re-enter the OpenMP runtime and allows HetProbe-I to check
whether to reprobe. Currently, HetProbe-I triggers a reprobe after executing a user-deined percentage of
iterations. libHetMP includes an OpenMP environment variable OMP_HET_PTG that is used to specify after

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:11

what percentage of iterations -from the total in the work-sharing region- should the scheduler trigger a reprobe.
HetProbe-I sets this variable to ten percent by default. HetProbe-I checks this condition every time a leader
thread attempts to acquire more iterations from the node work queue. Hence, the execution low is an iterative
process consisting of the initial probe and execution, reprobing and execution with the new global queue and
jumps, reprobing again and so forth. HetProbe-I is designed in a modular fashion so that more sophisticated
methods can be applied in the future in order to determine whether or not to reprobe.
At some point, HetProbe-I determines it needs to prepare and carry out the reprobing. For this second task,

HetProbe-I leverages libHetMP’s hierarchical barriers, as the leader thread that triggers the reprobing will have
to wait for the other node(s). HetProbe-I also needs to take precautions not to execute completed iterations when
it rearranges the global work queue. In particular, when it combines the pending work of one node from iterations
i to j and from another node with iterations k to m, HetProbe-I ends up having a new global set of iterations from
i to m. In the previous example with Figure 6, this new queue would be from iterations 30 to 100 as shown in Part
3. Because OpenMP operates over continuous sets of iterations, iterations j to k (in the example, iterations 60
to 80) were already completed by one of the nodes. HetProbe-I avoids re-distributing these already completed
intervals by building discontinuous sets of work. We refer to these interval sets as jumps and deal with them by
identifying, labeling and adapting to them with modiied iteration distributions in the work dispatching process.
In this way, HetProbe-I provides threads with continuous subsets of iterations.

3.4 Workload Distribution Decisions

The HetProbe schedulers (both HetProbe and HetProbe-I) use the execution time, page faults and performance
counters measured during the probing period to determine where to execute parallel work. Speciically, the
HetProbe schedulers answer three questions:

1. Should the runtime leveragemultiple nodes for parallel execution?While coupling together multiple
CPUs provides more theoretical computational power, not all applications beneit from cross-node execution. As
mentioned in Section 2 there is a signiicant cost for on-demand data marshaling and page coherency across
nodes. To understand DSM overheads, we ran a microbenchmark that varies the number of compute operations
executed per byte of data transferred over the interconnect. Because there are no server-grade heterogeneous-ISA
CPUs integrated by point-to-point interconnects, we approximate a system using the experimental setup shown
in Table 1 and evaluated the DSM layer using two protocols, TCP/IP and RDMA.
The microbenchmark spawns one thread for every core in every node in the system. It then runs a control

loop that stresses each node (i.e., each (architecture, interconnect) pair) connected to the source node, i.e., the
Xeon, because it runs the single-threaded portion of applications. At the start of the control loop, the source
node threads initialize memory by touching all data pages to force the DSM protocol to bring all pages back to
the source node’s memory. The control loop then releases the other node’s threads (ThunderX) to begin timed
execution. Each ThunderX thread touches non-overlapping sets of pages to force the DSM protocol to transfer
them to ThunderX memory. Finally, the ThunderX threads perform varying amounts of compute operations per
page transferred. The microbenchmark calculates operations/second (incorporating the DSM costs) by timing
how long it takes to execute the loop to determine the break-even point where cross-node execution is beneicial.
Figure 5a shows the compute throughput in millions of loating point operations per second when varying

the number of compute operations per byte of data transferred over the interconnect. Figure 5b shows the
average page fault period, i.e., elapsed time between subsequent page faults. Intuitively, as threads perform more
computation per byte transferred, the computation is able to amortize the DSM costs and reach peak throughput.
As shown in Figure 5b, there are signiicant latency diferences between RDMA and TCP/IP. Page faults using
RDMA cost around 30 microseconds, whereas they cost 90 and 120 microseconds for the Xeon and Cavium

ACM Trans. Comput. Syst.

1:12 • Lyerly et al.

(a) Floating point operations per second

(b) Page fault period, i.e., microseconds between faults

Fig. 5. Performance metrics observed when varying the number of compute operations per byte of data transferred over
the interconnect. For example, a 16 on the x-axis means 16 math operations were executed per transferred byte or 65536
operations per page.

servers, respectively, with TCP/IP. Thus, the amount of computation needed to amortize DSM costs when using
TCP/IP is signiicantly higher than RDMA.

To determine if cross-node execution is beneicial, the HetProbe schedulers calculate the page fault period by
measuring execution times and number of faults. The break-even point when cross-node execution becomes
beneicial can be seen in Figure 5a when the microbenchmark is close to maximum throughput: above 512
operations/byte for RDMA, 32768 operations/byte for TCP/IP. Correlating these values to Figure 5b, the runtime

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:13

Table 1. Experimental setup

Description Xeon 2620v4 ThunderX

Vendor Intel Cavium
Cores 8 (16 HT) 96 (2 x 48)

Clock (GHz) 2.1 (3.0 boost) 2.0
LLC Cache L3 - 16MB L2 - 32MB

RAM (Channels) 32 GB (2) 128 GB (4)
Interconnect Mellanox ConnectX-4 56Gbps

uses a threshold of 100 µs/fault for RDMA and 7600 µs/fault for TCP/IP to determine whether there is enough
computation to amortize DSM costs and beneit from executing across multiple CPUs. As faulting latency drops
(e.g., if CPUs share physical memory), fewer compute operations are needed to amortize cross-node memory
access latencies. When the interconnect between CPUs changes, this microbenchmark can be re-used as a tool to
automatically determine the threshold value of when cross-node execution becomes beneicial.

2. If utilizing cross-node execution, how much work should be distributed to each node? As men-
tioned previously, during the probe period the runtime measures the execution time of a constant number of
iterations on each core in the system. The HetProbe schedulers use this information to directly calculate the core
speed ratios of each node and skew the distribution of the remaining loop iterations.

3. If not utilizing cross-node execution, on which node should the work be run? Determining on
which node an application executes best involves understanding how the application stresses the architectural
properties of each CPU. Performance counters provide insights into how applications execute and what parts of
the architecture bottleneck performance. For our setup, the ThunderX has a much higher degree of parallelism
versus the Xeon, meaning it has a much higher theoretical throughput for parallel computation. However, the
biggest challenge in utilizing all 96 cores is being able to supply data from the memory hierarchy. Although the
ThunderX uses quad-channel RAM (with twice the bandwidth of the Xeon), it only has a simple two level cache
hierarchy versus the Xeon’s much more advanced (and larger per-core) three level hierarchy. If an application
exhibits many cache misses, it is unlikely to fully utilize the 96 available cores and would be better run on the
Xeon. The HetProbe schedulers measure cache misses per thousand instructions during the probing period to
determine how much the work-sharing region stresses the cache hierarchy (users can specify any performance
counters prudent for their hardware). We experimentally determined a threshold value of three cache misses
per thousand instructions ś below the threshold and the application can take advantage of the ThunderX’s
parallelism, but above the threshold the ThunderX’s CPUs will continuously stall waiting on the cache hierarchy.
Note that the HetProbe schedulers must use performance counters and cannot simply use execution times from
the probing period to decide on a node; the probing period measures execution times with DSM overheads that
are not present when executing only on a single node.

Once a node has been chosen, the HetProbe schedulers fall back to existing OpenMP schedulers for single-node
work distribution. Currently they default to the static scheduler, but this is conigurable by the user. Additionally,
libHetMP joins threads on the unused node to avoid unnecessary cross-node synchronization overheads. For
example, if not using the ThunderX there is no reason to keep 96 threads alive simply to join at end-of-region
barriers.

Figure 6 shows an example of a work sharing region with 20000 loop iterations executing using a HetProbe
scheduler. The irst 2000 iterations are used for the probing period and each of the 20 cores across both nodes
is given an equal share of 100 iterations. Importantly, the probing period is performing useful work, albeit in
a potentially unbalanced way. After the probing period, libHetMP measures that Node A’s cores executed 100
iterations in 500µs whereas Node B’s cores executed 100 iterations in 1500µs. The HetProbe scheduler determines
that Node A’s cores are 3x faster than Node B’s cores for this work sharing region, meaning threads on Node A

ACM Trans. Comput. Syst.

1:14 • Lyerly et al.

Fig. 6. HetProbe scheduler. A small number of probe iterations are distributed at the beginning of the work-sharing region to
determine core speed ratios of nodes in the system. Using the results, the runtime decides either to run all iterations on one
of the nodes or distribute work across nodes according to the calculated core speed ratio (shown here).

should get 3x more iterations than threads on Node B to evenly distribute work (the CSR is set to 3:1 for Nodes A
and B, respectively). In this example, the HetProbe scheduler determined that cross-node execution was beneicial
(see Section 3.4). For the remaining 18000 iterations, each thread on Node A receives 1929 iterations and each
thread on Node B receives 643. Thus the HetProbe scheduler automatically determines the relative performance
of heterogeneous CPUs through online proiling and distributes the remaining work accordingly. Note that if
cross-node communication was deemed too costly, the remaining 18000 iterations would all be distributed to
either Node A or Node B.

4 IMPLEMENTATION

libHetMP is built on top of GNU libgomp, the OpenMP runtime used by gcc. It adds 6,145 lines of code, primarily
to implement the thread hierarchy (and all associated machinery), runtime measurement and dynamic work
distribution. Because Popcorn Linux’s compiler is built on clang which emits API calls the libiomp runtime,
libHetMP includes a small shim layer to forward libiomp function calls to libgomp. However, none of the ideas
presented are speciic to either OpenMP implementation. Because page faults are transparent to the application,
libHetMP reads page fault counters from a proc ile exposed by Popcorn Linux. Currently Popcorn Linux does
not support runtime performance counter collection; to work around this, we collected per work sharing region
performance counter data oline and fed it to libHetMP via environment variables to make node selection
decisions. For applications with multiple work-sharing regions, the user currently manually speciies which
region should be probed to decide whether cross-node execution is beneicial. This is an optimization to avoid
unnecessary probing, as our current benchmarks did not have diferent individual regions that beneited from
diferent work distribution decisions. We instrumented libHetMP to record the time spent in each work sharing
region and selected the longest running region as the probing region. The user instructed libHetMP to use this
region as the probing region by passing a compiler-constructed region identiier (constructed from the ilename,
containing function and line number of the work sharing directive) via environment variables. This could be

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:15

automated by libHetMP by running the application for a small period of time and querying the probe cache to
select the longest running region. We leave these engineering tasks as future work.

4.1 Implementation of HetProbe-I

The starting point of HetProbe-I is the HetProbe scheduler, from which we leverage the mechanisms to determine
the core speed ratio and abstractions such as the hierarchical barriers that guarantee node synchronization. We
apply the same primitives and abstractions as for HetProbe for setting the scheduler at runtime. HetProbe-I
difers from previous schedulers mainly in the way it dispatches work between threads, since it is there that
HetProbe-I monitors the re-probing conditions and carries out the reprobing as needed.
In the HetProbe scheduler, threads call into libHetMP in three occasions (see Figure 4). In the irst call into

the runtime, HetProbe assigns iterations intended for the probing. In the second, HetProbe stores performance
metrics and computes the CSR to distribute work between nodes. In the last invocation, HetProbe piggy-backs
on the dynamic scheduler to assign the remaining iterations from the previously calculated distribution. In
HetProbe-I we extend this third stage by checking if the reprobing conditions are fulilled and taking action if so.
Because HetProbe-I needs threads to call this function at regular intervals, it only assigns them a fraction of the
iterations that they should receive according to their CSR. This requires HetProbe-I to keep track of both the
full assigned interval, i.e., the real next and real end, and the smaller chunk distributed at every iteration, whose
chunk size is directly proportional to the computed speed ratio. For example, if a node should have iterations 0 to
30, HetProbe-I registers these as the real next and end and distributes iterations 0 to 5 on the call to the runtime,
5 to 10 on the next, and so forth. By using the CSR ratio to compute the assigned iterations, HetProbe-I makes
nodes with fewer iterations review reprobing conditions more frequently than nodes given more iterations, as
their reduced number of iterations will force them to access HetProbe-I more often, efectively reducing the
overhead of the scheduler on this stage.
In this version of HetProbe-I we trigger a reprobing every time the sum of iterations inished by all nodes

exceeds a percentage (OMP_HET_PTG) of the total number of the loop. Because this condition is reviewed
whenever a thread accesses the dispatching function, HetProbe-I could be facing three potential situations when
a reprobing is required:

• Only one node is executing work. The thread that triggered the reprobing period belongs to the node
the only node to which HetProbe assigned iterations ś cross-node execution was deemed not beneicial
according to metrics gathered during probing. HetProbe-I modiies the previous stage (second call) to cover
this case. The leader thread of the node not executing iterations will be stopped if no work is assigned,
efectively blocking all the threads on that node as they will be stalled in a hierarchical barrier. Hence,
whenever a reprobing is triggered under these circumstances, HetProbe-I only needs to resume execution
on the inactive node and assign probing iterations. It is not costly to make the stopped leader thread spin
over a global variable, since that node is not performing any other work.
• Work is running on all nodes. Because there is work executing across multiple nodes, the thread that
triggered the reprobing belongs to a node with a fraction of the iterations. The leader thread at this node
will have to wait for the other node(s) to replenish work. It is important to remark that this does not mean
that any particular architecture is likely to inish irst.
• One node does not have iterations left. HetProbe-I must also account for the less common case in which,
even though the reprobing has not been triggered, the node runs out of work. Consequently, HetProbe-I
must also stop the threads that ran out of work in case a reprobing is triggered by another node. This will
not have a negative impact on the total execution time even if the reprobing never occurs, since those
threads will have completed their work.

ACM Trans. Comput. Syst.

1:16 • Lyerly et al.

In any case, HetProbe-I must restart performance statistics and generate new global work queues. The latter
has to be done with special care to prevent the repeated execution of inished work, since HetProbe-I must
provide threads with a consecutive range of iterations. When HetProbe-I generates a new work queue combining
iterations of diferent nodes, HetProbe-I needs to label and assign work to threads in consideration of jumps.
When the work assigned to a thread in the dispatch function contains a jump, the irst half is assigned and

the thread is labeled so that it receives the second half in the next call to the function. That second part may
also contain jumps so this process could be repeated several times. Hence, HetProbe-I needs to keep track of the
aforementioned real end, the assigned end and the beginning of the jump. In the worst case, HetProbe-I will have
to manage as many jumps as triggered reprobings.

5 EVALUATION

When evaluating libHetMP we asked whether 1) is libHetMP able to eiciently leverage the compute capabilities
of asymmetric server-grade heterogeneous CPUs? 2) is libHetMP’s HetProbe scheduler able to accurately measure
runtime behavior and make sound workload distribution decisions? Speciically, can the HetProbe scheduler
accurately determine if cross-node execution is beneicial, distribute appropriate amounts of work to each node,
and select the best CPU for single-node execution? and 3) which schedulers are best suited for which types of
runtime behaviors?

5.1 Experimental Setup and Benchmarks

We evaluated libHetMP using the experimental setup in Table 1, which approximates our envisioned tightly-
coupled platform. Because no existing systems integrate heterogeneous-ISA CPUs via point-to-point connections,
we approximate one by connecting two servers with high-speed networking. Our setup includes an Intel Xeon
server with a modest number of high-powered cores and a Cavium ThunderX server with a large number of
lower-performance cores. The machines are connected via 56Gbps IniniBand, which provide low latency and
high throughput. We use the RDMA protocol for all experiments except where mentioned due to its signiicantly
lower latency. Both machines run the latest version of Popcorn Linux; the Xeon server uses Debian 8.9 while the
ThunderX server uses Ubuntu 16.04. Popcorn Linux’s compiler is built on clang/LLVM 3.7.1, and libHetMP is
built on libgomp 7.2.0.
We selected 10 benchmarks from three popular benchmarking suites ś The Seoul National University [51]

C/OpenMP versions of the NAS Parallel Benchmarks [6], PARSEC [10] and Rodinia [14]. These benchmarks
represent HPC and data mining use cases and exhibit a wide variety of computational patterns on which to
evaluate libHetMP. All benchmark results are the average of 3 runs (execution times were stable across runs). All
benchmarks were compiled with -O2 except CG and cfd, which crashed Popcorn’s compiler unless compiled
with -O0. We also used -fopenmp-use-tls to enable Linux-native TLS. For the evaluation of the loop scheduler
HetProbe-I we add four other benchmarks from SPEC OMP 2012 [39].

5.2 Work Distribution Configurations

We evaluated running benchmarks using several workload conigurations.Xeon represents running the benchmark
entirely on the Xeon ś serial phases run on a single Xeon core and work-sharing regions use the Xeon’s 16
threads. ThunderX is similar ś serial phases run on a single ThunderX core and work-sharing regions use the
ThunderX’s 96 cores. Ideal CSR executes across both CPUs ś serial phases run on a Xeon core and work-sharing
regions always split loop iterations across the Xeon and ThunderX (112 total threads) using the static scheduler.
The scheduler skews distribution using the CSRs in Table 2. The CSRs were gathered from runs with the HetProbe
scheduler and manually supplied via environment variables. Cross-Node Dynamic is identical except it uses the
hierarchy-based dynamic scheduler described in Section 3.1. We experimentally determined the best chunk size

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:17

Fig. 7. Speedup of benchmarks versus running homogeneously on Xeon (values less than one indicate slowdowns). Asterisks
mark the best workload distribution configuration for each benchmark. łCross-Node Dynamicž provides the best performance
across applications that benefit from leveraging both CPUs (blackscholes, EP-C, kmeans, lavaMD), but causes significant
slowdowns for those that do not. łHetProbež achieves similar performance to Ideal CSR and Cross-Node Dynamic for these
four applications but falls back to a single CPU for applications with significant DSM communication and hence worse
cross-node performance. For geometric mean, łOraclež is the average of the configurations marked by asterisks, i.e., what a
developer who had explored all such possible workload distribution configurations through extensive profiling would choose.

Table 2. Core speed ratios calculated by HetProbe scheduler. Used by Ideal CSR and HetProbe configurations. Without the
HetProbe scheduler, developers would have to manually determine these values via extensive profiling.

Benchmark Core speed ratio ś Xeon : ThunderX

blackscholes 3 : 1
EP-C 2.5 : 1

kmeans 1 : 1
lavaMD 3.666 : 1

for each benchmark; most benchmarks performed better with smaller sizes, i.e., iner-grained load balancing.
HetProbe is again identical except it uses the HetProbe scheduler. HetProbe uses both CPUs during the probing
period and then decides whether cross-node execution is beneicial. If so, it uses measured execution time to
calculate CSRs (Table 2) to skew loop iteration distribution for the remaining iterations. If not, it selects the best
CPU and falls back to OpenMP’s original static scheduler on a single node; threads on the not-selected node
are joined to avoid unnecessary synchronization. The probe period was conigured to use 10% of available loop
iterations. For benchmarks where cross-node execution was beneicial, probing overhead was determined by
comparing the diference in performance between Ideal CSR and HetProbe. For benchmarks where it was not
beneicial, probing overhead was determined by comparing the delta between the best single-node performance
(either Xeon or ThunderX) and HetProbe. The HetProbe scheduler probed for up to 10 invocations of a given
work-sharing region (using an exponential weighted moving average to smooth out measurements), after which
it re-used existing measurements from the probe cache. For several benchmarks, the HetProbe scheduler chose
single-node execution on the ThunderX. As a comparison point, łHetProbe (force Xeon)ž shows the same results
except forcing the HetProbe scheduler to use single-node execution on the Xeon; these results are explained
below.

ACM Trans. Comput. Syst.

1:18 • Lyerly et al.

Table 3. Baseline execution times in seconds when run on Xeon with 16 threads using the static scheduler

Benchmark Time Benchmark Time

blackscholes 85.76 kmeans 989.77
BT-C 310.08 lavaMD 104.52
cfd 76.47 lud 258.75

CG-C 71.36 SP-C 210.57
EP-C 32.00 streamcluster 67.86

5.3 Results

Table 3 shows the total benchmark execution times, including both serial and parallel phases, on the Xeon. Figure 7
shows the speedup normalized to homogeneous Xeon execution for each of the aforementioned conigurations.
The benchmarks can broadly be classiied into two categories: those that beneit from cross-node execution and
those that do not. blackscholes, EP-C, kmeans and lavaMD fall into the former category whereas the others
fall into the latter. Across benchmarks that beneit from multi-node execution, all but blackscholes achieve the
highest speedup under Cross-Node Dynamic. This is because with a granular chunk size, work is distributed
across nodes in an almost perfect balance. Additionally, due to the thread hierarchy there is signiicantly reduced
global synchronization and threads grab work from a local work pool the majority of the time. Across these
four benchmarks, Cross-Node Dynamic yields a geometric mean speedup of 2.68x. Ideal CSR is 12.5% faster for
blackscholes and close behind Cross-Node Dynamic for the other three, achieving a geometric mean speedup of
2.55x. Finally, HetProbe is slightly slower than the other two cross-node conigurations, achieving a geometric
mean speedup of 2.4x. This is because the probe period runs a constant number of iterations for all cores leading to
an initial workload imbalance. Additionally, measurement machinery (timestamps, parsing the proc ile for DSM
counters) and probe cache synchronization add extra overheads. For these four benchmarks, probing overhead
is equal to the diference between Ideal CSR and HetProbe, as they are functionally equivalent after probing.
HetProbe adds 5.2%, 5.3%, 11.5% and 2.8% overhead for blackscholes, EP-C, kmeans and lavaMD, respectively, for
a geometric mean overhead of 5.5%. This demonstrates the HetProbe scheduler provides competitive performance
with minimal overheads for benchmarks that beneit from cross-node execution.

For benchmarks that do no scale across nodes, however, the Ideal CSR and Cross-Node Dynamic conigurations
signiicantly degrade performance with geometric mean slowdowns of 3.63x and 5.89x, respectively. This is due to
DSM ś threads spend signiicant time waiting for pages from other nodes, which also forces application threads on
other nodes to be time-multiplexed with DSM workers. There is not enough computation to amortize DSM page
fault costs over the network. The Cross-Node Dynamic scheduler is exclusively worse than the Ideal CSR scheduler
due to additional work distribution synchronization caused by threads repeatedly grabbing batches of iterations.
The HetProbe scheduler, however, successfully avoids cross-node execution for these benchmarks by measuring
the page fault period and determining cross-node execution to not be beneicial (geometric mean slowdown of
39%, or 2.4% without cfd). Figure 8 shows measured page fault periods for each application; applications with a
period below 100µs were considered not proitable for cross-node execution.
For applications deemed not beneicial to execute across nodes due to high DSM overheads, the HetProbe

scheduler utilized cache misses per 1000 instructions to determine whether to execute work-sharing regions on
the Xeon or ThunderX. As shown in Figure 9, there is a clear separation between applications that beneit from
the ThunderX’s high parallelism (BT-C, cfd, lud) and those that are bottlenecked by memory accesses (CG-C,
SP-C, streamcluster). When selecting a node, the HetProbe scheduler used a threshold value of three misses
per thousand instructions, placing BT-C, cfd and lud on the ThunderX and the others on Xeon (cfd has special
behavior, see below). For the three benchmarks placed on Xeon, probing overhead is equivalent to the diference
between Xeon and HetProbe since HetProbe degrades to Xeon after probing. The probing period adds 4.8%, 6.6%
and 7.1% for CG-C, SP-C and streamcluster, respectively, for a geometric mean overhead of 6.1%. This shows

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:19

Fig. 8. Page fault periods determiningwhether cross-node execution
is beneficial. Red bars (cross-node not profitable) are below the
RDMA threshold indicated in Section 3, blue are above.

Fig. 9. Cache misses for applications not executed
across nodes. Green bars (including lud) indicate
the application was run on the ThunderX, blue
were run on the Xeon.

Fig. 10. Execution time (lines, let axis) and page fault period (bars,
right axis) for blackscholes. łHomogeneousž refers to Xeon configuration,
łTCP/IPž refers to using HetProbe over TCP/IP.

performance close to single-node execution on the Xeon, meaning the probing period has minimal impact on
performance.

Looking closer at cfd and CG-C, these applications have roughly the same performance on Xeon and ThunderX
but are vastly diferent in cache miss behavior. Even more interestingly, the HetProbe scheduler places cfd on the
ThunderX although the optimal choice would be on the Xeon. This is due to the fact that although cfd’s parallel
region runs faster on the ThunderX (74.58 seconds on Xeon, 66.79 seconds on ThunderX), it has a long serial ile
I/O phase that runs signiicantly faster on Xeon (1.83 seconds on Xeon, 13.72 seconds on the ThunderX), leading
the benchmark’s overall execution time to be faster on the Xeon. This ile I/O phase also explains the disparity in
cache misses between benchmarks ś cfd’s parallel region has a low number of cache misses, but the benchmark’s
execution time is heavily impacted by ile operations whereas CG-C does not perform ile I/O and has a large
number of cache misses.

Interestingly for BT-C, cfd and lud, executing parallel regions on the ThunderX achieved worse than expected
performance due OS limitations. Popcorn Linux’s kernel currently only supports spawning threads on the node
on which the application started, meaning one thread must remain on the Xeon even when work-sharing regions

ACM Trans. Comput. Syst.

1:20 • Lyerly et al.

execute on the ThunderX. Each of these benchmarks executes hundreds to thousands of work-sharing regions
(and their associated implicit barriers), causing signiicant cross-node synchronization. As a comparison point for
BT-C and cfd, we ran an additional experiment to force the HetProbe scheduler to select the Xeon for single-node
execution; it added 3.2% and 4.2% probing overhead, respectively. lud is an interesting case ś the HetProbe
scheduler decides cross-node execution is not proitable and runs work sharing regions on the ThunderX. The
aforementioned OS limitation impacts HetProbe’s performance enough that Ideal CSR actually achieves 20%
better performance than HetProbe (although still worse than running solely on the ThunderX). We expect that
when Popcorn Linux allows spawning threads on remote nodes, libHetMPwill be able to more eiciently leverage
both machines.
It is important to note that none of Xeon, ThunderX, Ideal CSR or Cross-Node Dynamic perform best in

all situations, clearly illustrating the need for HetProbe. As shown in Figure 7, HetProbe provides the best
performance out of all evaluated conigurations across all benchmarks with a geometric mean performance
improvement of 41% (ThunderX provides an 11% improvement). In contrast, Ideal CSR causes a slowdown of 49%
and Cross-Node Dynamic causes a 96% slowdown, highlighting the importance of communication traic when
distributing computation. As a comparison point, łOraclež shows that developers could obtain a geometric mean
speedup of 60% if they had extensively proiled all conigurations and selected the best for all benchmarks. As
Popcorn Linux matures, HetProbe will be able to more closely match the Oracle, as the aforementioned limitation
has a signiicant impact on HetProbe’s performance.

5.4 What types of applications benefit from cross-node execution?

The four applications that beneit from cross-node execution have a high enough compute to cross-node com-
munication ratio to leverage the compute resources of multiple CPUs. blackscholes has an initial data transfer
period but repeats computation on the same data, allowing it to settle on nodes (blackscholes also has a lengthy
ile I/O phase that beneits from the Xeon’s strong single-threaded performance). EP-C performs completely local
computation (including heavy use of thread-local storage) with a single inal reduction stage. lavaMD computes
particle potentials through interactions of neighbors within a radius, meaning multiple threads re-use the same
data brought across the interconnect. Similarly, kmeans alternatively updates cluster centers and cluster members
ś all threads on a node alternate between scanning the cluster member and cluster center arrays, re-using pages
brought over the interconnect.
Benchmarks that do not beneit cannot amortize data transfer costs. For example, BT-C and SP-C access

multidimensional arrays along diferent dimensions in consecutive work sharing regions, causing the DSM to
shule large amounts of data between nodes. Other benchmarks have little data locality ś CG-C and streamcluster
calculate a set of results and then access them in irregular patterns using an indirection array. This behavior
causes extensive latencies for local cache hierarchies, let alone DSM. lud’s work-sharing region sequentially
accesses an array, but does not perform enough computation per byte to amortize DSM costs. Additionally, there
is a large amount of łfalse sharingž where threads on diferent nodes write to independent parts of the same page.
False sharing can be avoided by the use of a multiple-writer protocol such as lazy-release consistency [4].

An interesting observation that arises from measuring the page fault period is that while the metric provides
a sound threshold for determining whether cross-node execution will be beneicial, it is not a good indicator
of overall performance gains. For example, while kmeans’ page fault period is slightly over the threshold (130
µs period), it beneits the most from cross-node execution out of all benchmarks. This is because it has a high
level of inter-thread data reuse. As mentioned previously, all threads scan the same array in a superstep of the
algorithm, meaning all threads reuse data brought over from a page fault (in addition to being extremely eicient
on the cache-starved ThunderX). This is in contrast to lavaMD where only a subset of threads working on
adjacent regions reuse migrated pages. libHetMP only observes DSM traic for the entire application and does

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:21

not measure the level of data reuse for migrated pages. This leads us to believe that the current thresholding
mechanism will degrade when threads executing a work sharing region have skewed page fault behavior, e.g., a
few threads cause the majority of page faults, biasing the work sharing region’s average page fault period. In
such a case libHetMP may determine there is too much communication for cross-node execution, even though it
may still be beneicial. However, because we focus on applications with regular work sharing regions, we did not
observe this skewed page fault behavior. This also highlights the importance of directly measuring the relative
performance of the CPUs to make workload distribution decisions for cross-node execution.

5.5 What applications benefit from Ideal CSR versus Cross-Node Dynamic?

Three of the four benchmarks that beneit from cross-node execution achieve the best performance with Cross-
Node Dynamic due to ine-grained load balancing. For blackscholes, however, Ideal CSR achieves better perfor-
mance. This is due to pages settling into a steady state after an initial page shule. Threads receiving the same
loop iterations across multiple invocations of the work sharing region access the same data, thus all data pages
required by threads are already mapped to the appropriate node. With Cross-Node Dynamic, however, threads
receive diferent loop iterations across separate executions, meaning pages containing results must be continually
shuled across nodes. This settling behavior is why the HetProbe scheduler deterministically distributes iterations
for the probing period.

5.6 Case Study: TCP/IP

In order to evaluate the efectiveness of the HetProbe scheduler for diferent types of interconnects, we ran
blackscholes with varying number of iterations (more iterations means more compute operations per byte since
blackscholes’ data settles after the irst iteration) using the TCP/IP protocol described in Section 3.4. Figure 10
shows the execution time when running homogeneously on the Xeon versus cross-node execution (lines) and
the page fault period of each cross-node run (bars). We use a page fault period of 7600µs to determine whether
cross-node execution will be beneicial when using TCP/IP. The results are somewhat noisy (TCP/IP tends to
have more variable latencies) but consistent with expectations ś only after the page fault period climbs above
8000µs does cross-node execution pay of. Thus we conclude using page fault periods as the determining factor
for cross-node execution is applicable for diferent types of interconnects.

5.7 Evaluation of HetProbe-I

We evaluated the HetProbe-I loop scheduler, paying special attention to the irregularity of workloads as this was
the central aspect of its design. We use the same experimental setup as on previous sections (see Table 1), with
an Intel Xeon 2620v4 at 2.1 GHz and a ThunderX Cavium at 2 GHz, relying on the RDMA protocol to establish
inter-node communication. We developed a new microbenchmark, speciically designed to evaluate performance
of heterogeneous-ISA OpenMP schedulers under workloads with irregular degrees of architectural-ainity. This
microbenchmark leverages the work sharing regions of streamcluster and BT-C, two benchmarks that achieved
their best numbers running solely on the Xeon and the ThunderX cores, respectively (see Figure 7). We also ran
several benchmarks to evaluate HetProbe-I in comparison to HetProbe, using streamcluster and BT-C as well as
blackscholes (which showed the best speedup under the Ideal CSR scheduler) and lavaMD (most beneited by
using the hierarchy-based Cross-Node Dynamic scheduler). To make our evaluation more comprehensive, we
also included benchmarks from SPEC OMP 2012 [39]. We rearranged some portions of code to address limitations
of the Popcorn compiler, without altering the benchmarks’ execution. Since the Popcorn compiler does not
currently support C++, we considered all SPEC benchmarks written in C, except for 367.imagick, as it triggers a
bug in the Popcorn compiler. All benchmarks are compiled using the same lags as in the previous evaluation of
HetProbe. We still use 10% of iterations for the initial probing period, just like HetProbe, as our experiments do

ACM Trans. Comput. Syst.

1:22 • Lyerly et al.

not demonstrate a signiicant diference in the performance of the benchmarks for either HetProbe or HetProbe-I
when using a diferent percentage.

To further test HetProbe-I, we include a microbenchmark that receives the degree of irregularity of the
workload as parameter. The source code of streamcluster and BT-C are joined, since the evaluation of HetProbe
demonstrates they will give their best performance running only on Xeon (the former) or ThunderX (the latter).
The microbenchmark combines the execution of these two benchmarks’ work sharing regions in diferent
quantities in order to generate the requested degree of irregularity. It is additionally used to generate workloads
that are best suited for the combined efort of the Xeon and ThunderX architectures by mingling iterations of
both benchmarks. For example, with a 60% degree of irregularity, six out of 10 iterations will be invocations of
the streamcluster loop and four of the BT-C loop.

Figure 11 compares the performance of HetProbe and HetProbe-I using diferent degrees of irregularity with
the microbenchmark. Because of how the microbenchmark divides iterations, it is no surprise that under no
degree of irregularity the speedup closely resembles the one of streamcluster’s, a regular workload, whereas
with 100% irregularity the overall performance is very similar to the one of BT-C, an irregular workload. As
expected, a progressive improvement in the performance of HetProbe-I compared to HetProbe can be observed
as the percentage of iterations from BT-C is increased.

Fig. 11. Speedup of the microbenchmark executing using HetProbe-I normalized to execution with HetProbe. The microbench-
mark is composed of work sharing regions from streamcluster and BT-C.

Figure 12 shows the speedup comparison between the two new loop schedulers. The benchmark with the
greatest improvement (BT-C, 24%) combines two features that are hard for HetProbe to deal with: it has one of
the highest cross-node synchronization requirements among the benchmarks, but is actually very well suited
to be executed by ThunderX (as seen in Figure 7). Hence, with HetProbe-I the initial page faults -which reduce
the ThunderX’s chances for work on the irst probing period- end up paying for themselves in the long run,

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:23

Fig. 12. Speedup of benchmarks using the HetProbe-I scheduler normalized to the HetProbe scheduler.

something HetProbe-I detects on the reprobing periods. Noticeably, the Cross-Node Dynamic scheduler is also
designed to deal with irregular workloads by having threads rate-limit themselves; threads that get assigned
computationally demanding iterations take more time, whereas threads that get lighter work can churn through
more iterations. Nonetheless, threads replenish iterations from local per-node queues generated after the initial
probing period, so it is also interesting to compare this scheduler with HetProbe-I, which regenerates the global
queues and then these local queues once the reprobing is completed and a diferent CSR is obtained.
Compared with the Cross-Node Dynamic scheduler, HetProbe-I performs over three times better on BT-C,

a benchmark on which HetProbe was already signiicantly beneicial compared to the Cross-Node Dynamic
scheduler (see Figure 7). The slight improvement of blackscholes (5%) over Ideal CSR (the scheduler with the best
performance) can be attributed to the high number of re-probing periods, which even out workload imbalances
caused by measurement error. For blackscholes, HetProbe-I also averages a 13% speedup improve over the
Cross-Node Dynamic scheduler. This is an example of a case in which the reprobing does not cause overhead,
but is instead beneicial due to blackscholes’ irregularity. Conversely, streamcluster is better suited to run on
the Xeon -we learned from the microbenchmark evaluation that it had a low degree of irregularity- so periodic
reprobing that sends iterations to the ThunderX side is always detrimental.
In conclusion, HetProbe-I can achieve signiicant performance beneits over HetProbe. HetProbe-I excels

in work sharing regions that contain a high degree of irregularity, for example a high amount of page faults
registered on the irst probing period that are not representative of the overall execution.

5.8 Limitations

There are number of ways in which libHetMP can be extended. An alternative for HetProbe-I would be to
continuously monitor page faults during the work sharing region and fall back to single node execution if the
number of page faults begins to rise. Conversely, if the number of page faults begins to drop, the HetProbe-I

ACM Trans. Comput. Syst.

1:24 • Lyerly et al.

scheduler could dynamically bring extra threads on another node online. In general, libHetMP and the HetProbe-I
scheduler could be extended to provide an even more dynamic distribution of parallel work.

libHetMP also currently focuses on achieving maximum performance but not energy eiciency. The irst-
generation ThunderX CPUs consume large amounts of power, meaning that even though cross-node execution
may provide the best performance, oftentimes the heterogeneous setup consumes more energy than running
solely on one node. Optimizing OpenMP execution for diferent eiciency metrics may yield diferent workload
distributions, especially as the system architecture (CPUs, interconnect) changes.

libHetMP could be extended to handle systems with three or more nodes. Themicrobenchmark described in Sec-
tion 3.4 can be used to determinewhen cross-node execution becomes proitable for each (architecture, interconnect)
pair attached to the system (i.e., each node). This break-even point is diferent for every node and decisions about
which nodes to use can be made independently from one another. For example, consider a system with nodes A
and B with break-even points of 100 µs/fault and 200 µs/fault, respectively. If libHetMP measured a page fault
period of 150µs/fault for a given work-sharing region, then the HetProbe scheduler could choose to distribute
work to node A but not use node B. In this way, the HetProbe scheduler can choose whether to utilize each
individual node and distribute iterations to the enabled nodes according to their relative performance in the
probing region.

Fig. 13. Percentage increase in cache misses for the evaluated benchmarks scheduled with HetProbe-I relative to the HetProbe
loop scheduler as a baseline.

In terms of potential performance degradation for HetProbe-I, the act of reprobing can be costly and
may have some degree of negative impact on other areas of the system. It is worth noting that under HetProbe-I
the overall CPU utilization will increase under certain circumstances. Intuitively, if a reprobing period triggers
a redistribution of work onto a node that was not in use before, the CPU resources on that system will begin
executing loop iterations. Furthermore, we observed an increase in the number of cache misses on all the

ACM Trans. Comput. Syst.

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:25

benchmarks evaluated. This increase can be attributed to several factors, including (1) A node that was not
working at all in the previous iteration of work distribution will have to perform the initial fetching of memory
(page faults and compulsory cache misses) and (2) The spatial locality of iterations may not be exploited by the
node on the next work distribution. As an example, picture Node A running iterations 10 to 1000 and Node B
running iterations 1000 to 1100. If Node B is asked to execute iterations 300 to 1100 after a reprobing period
-which will include jumps for what was already completed- the spatial locality from adjacent work iterations will
be lost.
Figure 13 shows the percentage increase in cache misses for each of the benchmarks in comparison with

HetProbe. The largest increase comes from streamcluster (55% more cache misses), the benchmark with which
HetProbe-I obtained the worst results with a 35% slowdown compared to HetProbe. Even though a relative
increase in cache misses is undesirable, the total number of cache misses for streamcluster is an order of magnitude
smaller than lavaMD or BT-C, which makes this increase less negative in terms of absolute numbers. Hence, there
are scenarios in which this loop scheduler does not only degrade performance, but could also potentially damage
other applications on the system that access shared levels of cache memory. From this we learn that a reinement
of the loop scheduler management of memory could potentially mitigate the overhead produced by HetProbe-I.

6 RELATED WORK

Parallel ProgrammingModels and Frameworks. Shared-memory parallel programmingmodels like OpenMP [43]
and Cilk [11] provide source code annotations to automate parallel computation, but do not support execution
across cache-incoherent, heterogeneous-ISA CPUs. MPI [23] gives developers low-level primitives to distribute
execution, manage separate physical memories and marshal memory between heterogeneous-ISA CPUs. However
for asymmetric CPUs, developers must manually assign parallel work and transfer required data to maximize per-
formance, leading to complex and verbose applications with static, non-portable workload distribution decisions.
Cluster OpenMP [25] is a now-defunct commercial product attempting to replace hierarchical MPI + OpenMP
parallelism by providing shared memory semantics using DSM on networked homogeneous machines. PGAS
frameworks like UPC [15], X10 [13] and Grappa [40] support cross-node execution and memory accesses, but do
not support sharing data across ISAs and changing workload distribution decisions in light of system charac-
teristics is cumbersome (data is not migrated between nodes for locality). Charm++ [27] is an object-oriented
approach to sharing data between (potentially distributed) processes, but does not support load balancing across
heterogeneous-ISA CPUs. Cluster frameworks like SnuCL-D [29] and OmpSs [12] provide coarse-grained work
distribution by assigning multiple independent parallel computations to individual heterogeneous processors.
They do not consider ine-grained work-sharing of a single parallel computation and require developers to
specify data movement. libHetMP automatically distributes work in consideration of platform characteristics and
leverages transparent and on-demand DSM to manage memory consistency for lexibility and programmability.

CPU/GPU Work Partitioning. Several works explore work distribution in CPU/GPU systems. Qilin [35]
is a compiler and runtime that enables CPU/GPU workload partitioning but requires developers to rewrite
computation using a new API. Unlike libHetMP, Qilin does not make distribution decisions online but must
proile multiple full executions before determining the optimal workload split. Koler et al. [31] present a machine
learning approach to determining workload distribution, but require sophisticated analyses with a custom
compiler and the machine learning model must be retrained for each new hardware coniguration. Similarly,
Grewe and O’Boyle [22] present a machine learning approach that requires per-system retraining. Scogland et
al. [50] present CPU/GPU workload distribution approaches for accelerated OpenMP. However their approach
only works for dense array-based computations and developers must manually specify data movement between
devices. All of these approaches are limited by the visible split in CPU and GPU memory and require developer

ACM Trans. Comput. Syst.

1:26 • Lyerly et al.

to marshal data. Additionally, none of these approaches provide optimized cross-node synchronization primitives
and none consider situations where cross-node execution may not be beneicial.

Single-ISA Scheduling. There are a number of schedulers designed to improve task-parallel workloads (as
opposed to data-parallel workloads targeted by libHetMP) on single-ISA heterogeneous systems, e.g., ARM
big.LITTLE [21]. The Lucky scheduler [44] measures the energy eiciency of multiprogrammed workloads
via performance counters and uses lottery scheduling to time multiple applications across big and little cores.
The WASH AMP scheduler [26] classiies threads in applications written in managed languages (e.g., Java)
using performance counters and schedules threads to remove bottlenecks (e.g., critical sections). Other works
like meeting point thread characterization [48] and X10Ergy [52] propose other means for characterizing and
accelerating individual threads on single-ISA heterogeneous platforms. All of these works focus on determining
the łcriticalž task in task-parallel workloads and placing it on the most performant core. Additionally, none deal
with cache-incoherent heterogeneous-ISA CPUs, meaning they do not consider data marshaling and cross-node
memory access costs.

7 CONCLUSION

In this work we presented libHetMP, a new OpenMP runtime for eiciently leveraging non-cache-coherent
heterogeneous-ISA CPU systems. libHetMP provides the infrastructure necessary for cross-node execution and
eiciently distributing parallel computation. libHetMP uses runtime performance measurements as inputs to the
novel HetProbe scheduler to automatically make workload distribution decisions, including whether to execute
across nodes or only on one node. The HetProbe scheduler, was shown to make sound workload distribution
decisions for ten benchmarks and two interconnects. Using the scheduler, libHetMP was able to achieve up to a
geometric mean speedup of 41% versus execution solely on Xeon, the best out of the evaluated conigurations.
Furthermore, we extend this design with a new scheduler, HetProbe-I, to address irregular workloads.

libHetMP shows that it is possible for OpenMP users to take advantage of heterogeneous-ISA CPUs for perfor-
mance gains. Currently, the interconnect between nodes is the biggest factor determining whether applications
can utilize multiple nodes for parallel computation. With cache-coherent interconnects becoming increasingly
ubiquitous (e.g., NVLink [41], CXL [17], CCIX [16], Ininity Fabric [3], OpenCAPI [42]), communication will
become less of a bottleneck when running across multiple nodes simultaneously. However, even applications
that cannot utilize multiple nodes together can select and execute on the node best suited to their application’s
characteristics. Popcorn Linux and libHetMP together provide a level of execution lexibility not available in
other execution contexts (e.g., CPU/GPU systems); there are plenty of avenues for future work in optimizing
more irregular applications.
As heterogeneous-ISA architectures become more ubiquitous, it is important that new system software like

libHetMP be able to analyze the architecture and automatically adapt application execution to it. libHetMP
provides developers the ability to eiciently leverage emerging heterogeneous CPU systems without extensive
manual coniguration and deep architectural knowledge.

Our complete implementation is available as open-source as part of the Popcorn Linux project at http://popcornlinux.org/.

ACKNOWLEDGEMENT

An earlier version of this paper was presented at [37]. This work is supported by the US Oice of Naval Research
(ONR) under grants N00014-16-1-2711, N00014-16-1-2104, and N00014-18-1-2022, and by NAVSEA/NEEC under
grant N00174-16-C-0018.

REFERENCES
[1] PCI Express Base Speciication Revision 4.0, Version 1.0, October 2017. https://pcisig.com/speciications/pciexpress/.
[2] Summit: A Supercomputer Suited for AI, June 2018. https://www.olcf.ornl.gov/wp-content/uploads/2018/06/NODE_infographic_FIN.pdf.

ACM Trans. Comput. Syst.

https://pcisig.com/specifications/pciexpress/
https://www.olcf.ornl.gov/wp-content/uploads/2018/06/NODE_infographic_FIN.pdf

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:27

[3] AMD. AMD Ininity Architecture Technology, September 2020. https://www.amd.com/en/technologies/ininity-architecture.
[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W., and Zwaenepoel, W. Treadmarks: shared memory

computing on networks of workstations. Computer 29, 2 (Feb 1996), 18ś28.
[5] Anandtech. Intel Agilex: 10nm FPGAs with PCIe 5.0, DDR5, and CXL, April 2019. https://www.anandtech.com/show/14149/intel-

agilex-10nm-fpgas-with-pcie-50-ddr5-and-cxl.
[6] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O., Lasinski,

T. A., Schreiber, R. S., et al. The NAS parallel benchmarks. The International Journal of Supercomputing Applications 5, 3 (1991), 63ś73.
[7] Barbalace, A., Lyerly, R., Jelesnianski, C., Carno, A., Chuang, H.-R., Legout, V., and Ravindran, B. Breaking the Boundaries in

Heterogeneous-ISA Datacenters. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming

Languages and Operating Systems (New York, NY, USA, 2017), ASPLOS ’17, ACM, pp. 645ś659.
[8] Barbalace, A., Sadini, M., Ansary, S., Jelesnianski, C., Ravichandran, A., Kendir, C., Murray, A., and Ravindran, B. Popcorn:

Bridging the Programmability Gap in heterogeneous-ISA Platforms. In Proceedings of the Tenth European Conference on Computer

Systems (New York, NY, USA, 2015), EuroSys ’15, ACM, pp. 29:1ś29:16.
[9] Barr, J. New ś EC2 Instances (A1) Powered by Arm-Based AWS Graviton Processors, November 2018. https://aws.amazon.com/blogs/

aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/.
[10] Bienia, C. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, January 2011.
[11] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y. Cilk: An eicient multithreaded runtime

system. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (New York, NY, USA,
1995), PPOPP ’95, ACM, pp. 207ś216.

[12] Bueno, J., Planas, J., Duran, A., Badia, R. M., Martorell, X., AyguadÃľ, E., and Labarta, J. Productive Programming of GPU
Clusters with OmpSs. In 2012 IEEE 26th International Parallel and Distributed Processing Symposium (May 2012), pp. 557ś568.

[13] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., and Sarkar, V. X10: An object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications (New York, NY, USA, 2005), OOPSLA ’05, ACM, pp. 519ś538.
[14] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H., and Skadron, K. Rodinia: A benchmark suite for heterogeneous

computing. In 2009 IEEE International Symposium on Workload Characterization (IISWC) (Oct 2009).
[15] Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-Miranda, D.

An evaluation of global address space languages: Co-array Fortran and Uniied Parallel C. In Proceedings of the Tenth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (New York, NY, USA, 2005), PPoPP ’05, ACM, pp. 36ś47.
[16] Consortium, C., et al. Cache coherent interconnect for accelerators (ccix). Online]. http://www. ccixconsortium. com (2017).
[17] CXL Consortium. Compute Express Link, September 2020. https://www.computeexpresslink.org/.
[18] Daberdaku, S. Parallel computation of voxelised protein surfaces with openmp. In Proceedings of the 6th International Workshop on

Parallelism in Bioinformatics (New York, NY, USA, 2018), PBio 2018, Association for Computing Machinery, p. 19âĂŞ29.
[19] DeVuyst, M., Venkat, A., and Tullsen, D. M. Execution Migration in a heterogeneous-ISA Chip Multiprocessor. In Proceedings of the

Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems (New York, NY, USA,
2012), ASPLOS XVII, ACM, pp. 261ś272.

[20] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and Burger, D. Dark silicon and the end of multicore scaling. In
Proceedings of the 38th Annual International Symposium on Computer Architecture (New York, NY, USA, 2011), ISCA ’11, ACM, pp. 365ś376.

[21] Greenhalgh, P. big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. ARM White paper 17 (2011).
[22] Grewe, D., and O’Boyle, M. F. P. A static task partitioning approach for heterogeneous systems using OpenCL. In Compiler Construction

(Berlin, Heidelberg, 2011), J. Knoop, Ed., Springer Berlin Heidelberg, pp. 286ś305.
[23] Gropp, W., Lusk, E., and Skjellum, A. Using MPI: portable parallel programming with the message-passing interface, vol. 1. MIT press,

1999.
[24] Gu, Y., and Mellor-Crummey, J. Dynamic data race detection for openmp programs. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage, and Analysis (2018), SC ’18, IEEE Press.
[25] Hoeflinger, J. P. Extending OpenMP to clusters. White Paper, Intel Corporation (2006).
[26] Jibaja, I., Cao, T., Blackburn, S. M., and McKinley, K. S. Portable performance on asymmetric multicore processors. In Proceedings of

the 2016 International Symposium on Code Generation and Optimization (New York, NY, USA, 2016), CGO ’16, ACM, pp. 24ś35.
[27] Kale, L. V., and Krishnan, S. CHARM++: a portable concurrent object oriented system based on C++, vol. 28. Citeseer, 1993.
[28] Khronos OpenCL Working Group. The OpenCL Speciication. Tech. rep., May 2018. https://www.khronos.org/registry/OpenCL/

specs/2.2/pdf/OpenCL_API.pdf.
[29] Kim, J., Jo, G., Jung, J., Kim, J., and Lee, J. A Distributed OpenCL Framework Using Redundant Computation and Data Replication. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (New York, NY, USA, 2016),
PLDI ’16, ACM, pp. 553ś569.

[30] Kim, S.-H., Lyerly, R., and Olivier, P. Popcorn Linux: Compiler, Operating System and Virtualization Support for Application/Thread

ACM Trans. Comput. Syst.

https://www.amd.com/en/technologies/infinity-architecture
https://www.anandtech.com/show/14149/intel-agilex-10nm-fpgas-with-pcie-50-ddr5-and-cxl
https://www.anandtech.com/show/14149/intel-agilex-10nm-fpgas-with-pcie-50-ddr5-and-cxl
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://www.computeexpresslink.org/
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf

1:28 • Lyerly et al.

Migration in Heterogeneous ISA Environments. Presented at the 2017 Linux Plumbers Conference, September 2017. http://www.
linuxplumbersconf.org/2017/ocw/proposals/4719.html.

[31] Kofler, K., Grasso, I., Cosenza, B., and Fahringer, T. An automatic input-sensitive approach for heterogeneous task partitioning. In
Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (New York, NY, USA, 2013), ICS ’13,
ACM, pp. 149ś160.

[32] Kumar, A. The New Intel Xeon Processor Scalable Family (Formerly Skylake-SP), August 2017. https://www.hotchips.org/wp-
content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf.

[33] Lepak, K., Talbot, G., White, S., Beck, N., Naffziger, S., FELLOW, S., et al. The next generation AMD enterprise server product
architecture. IEEE Hot Chips 29 (2017).

[34] Lin, F. X., Wang, Z., and Zhong, L. K2: A mobile operating system for heterogeneous coherence domains. In Proceedings of the 19th

International Conference on Architectural Support for Programming Languages and Operating Systems (New York, NY, USA, 2014), ASPLOS
’14, ACM, pp. 285ś300.

[35] Luk, C.-K., Hong, S., and Kim, H. Qilin: Exploiting parallelism on heterogeneous multiprocessors with adaptive mapping. In Proceedings

of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture (New York, NY, USA, 2009), MICRO 42, ACM, pp. 45ś55.
[36] Lyerly, R., Kim, S.-H., and Ravindran, B. libMPNode: An OpenMP Runtime For Parallel Processing Across Incoherent Domains. In

The 10th International Workshop on Programming Modesl and Applications for Multicores and Manycores (February 2019), PMAM ’19.
[37] Lyerly, R., Min, C., Rossbach, C. J., and Ravindran, B. An openmp runtime for transparent work sharing across cache-incoherent

heterogeneous nodes. In Proceedings of the 21st International Middleware Conference (New York, NY, USA, 2020), Middleware ’20,
Association for Computing Machinery, p. 415âĂŞ429.

[38] Morin, C., Lottiaux, R., Vallee, G., Gallard, P., Margery, D., Berthou, J. ., and Scherson, I. D. Kerrighed and data parallelism:
cluster computing on single system image operating systems. In 2004 IEEE International Conference on Cluster Computing (IEEE Cat.

No.04EX935) (Sept 2004), pp. 277ś286.
[39] Müller, M. S., Baron, J., Brantley, W. C., Feng, H., Hackenberg, D., Henschel, R., Jost, G., Molka, D., Parrott, C., Robichaux,

J., Shelepugin, P., van Waveren, M., Whitney, B., and Kumaran, K. Spec omp2012 Ð an application benchmark suite for parallel
systems using openmp. In OpenMP in a Heterogeneous World (Berlin, Heidelberg, 2012), B. M. Chapman, F. Massaioli, M. S. Müller, and
M. Rorro, Eds., Springer Berlin Heidelberg, pp. 223ś236.

[40] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and Oskin, M. Latency-tolerant software distributed shared memory.
In 2015 USENIX Annual Technical Conference (USENIX ATC 15) (Santa Clara, CA, 2015), USENIX Association, pp. 291ś305.

[41] NVidia. NVLink, September 2020. https://www.nvidia.com/en-us/data-center/nvlink/.
[42] OpenCAPI Consortium. OpenCAPI Consortium, September 2020. https://opencapi.org/.
[43] OpenMP Architecture Review Board. OpenMP Application Program Interface v5.0. Tech. rep., OpenMP Architecture Review Board,

November 2018. https://www.openmp.org/wp-content/uploads/OpenMP-API-Speciication-5.0.pdf.
[44] Petrucci, V., Loqes, O., and Mossé, D. Lucky scheduling for energy-eicient heterogeneous multi-core systems. In Proceedings of the

2012 USENIX Conference on Power-Aware Computing and Systems (Berkeley, CA, USA, 2012), HotPower’12, USENIX Association, pp. 7ś7.
[45] Platform, T. N. Next-Generation ThunderX2 ARM Targets Skylake Xeons, 2018. https://www.nextplatform.com/2016/06/03/next-

generation-thunderx2-arm-targets-skylake-xeons/.
[46] Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P.,

Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J.,
Xiao, P. Y., and Burger, D. A reconigurable fabric for accelerating large-scale datacenter services. Commun. ACM 59, 11 (Oct. 2016),
114ś122.

[47] ualcomm. Qualcomm snapdragon 855 mobile platform, 2019. https://www.qualcomm.com/media/documents/iles/snapdragon-855-
mobile-platform-product-brief.pdf.

[48] Rakvic, R., Cai, Q., González, J., Magklis, G., Chaparro, P., and González, A. Thread-management techniques to maximize eiciency
in multicore and simultaneous multithreaded microprocessors. ACM Trans. Archit. Code Optim. 7, 2 (Oct. 2010), 9:1ś9:25.

[49] Ratna, A. A. P., Ibrahim, I., and Purnamasari, P. D. Parallel processing design of latent semantic analysis based essay grading system
with openmp. In Proceedings of the 2017 International Conference on Computer Science and Artiicial Intelligence (New York, NY, USA,
2017), CSAI 2017, Association for Computing Machinery, p. 119âĂŞ124.

[50] Scogland, T. R. W., Feng, W., Rountree, B., and de Supinski, B. R. CoreTSAR: Core Task-Size Adapting Runtime. IEEE Transactions

on Parallel and Distributed Systems 26, 11 (Nov 2015), 2970ś2983.
[51] Seo, S., Jo, G., and Lee, J. Performance characterization of the NAS Parallel Benchmarks in OpenCL. In 2011 IEEE International

Symposium on Workload Characterization (IISWC) (Nov 2011), pp. 137ś148.
[52] Shrivastava, R., and Nandivada, V. K. Energy-eicient compilation of irregular task-parallel loops. ACM Trans. Archit. Code Optim.

14, 4 (Nov. 2017), 35:1ś35:29.
[53] Sutter, H. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s journal 30, 3 (2005), 202ś210.
[54] Sutter, H. Welcome to the jungle, August 2012. https://herbsutter.com/welcome-to-the-jungle/.

ACM Trans. Comput. Syst.

http://www.linuxplumbersconf.org/2017/ocw/proposals/4719.html
http://www.linuxplumbersconf.org/2017/ocw/proposals/4719.html
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf
https://www.nvidia.com/en-us/data-center/nvlink/
https://opencapi.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.nextplatform.com/2016/06/03/next-generation-thunderx2-arm-targets-skylake-xeons/
https://www.nextplatform.com/2016/06/03/next-generation-thunderx2-arm-targets-skylake-xeons/
https://www.qualcomm.com/media/documents/files/snapdragon-855-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-855-mobile-platform-product-brief.pdf
https://herbsutter.com/welcome-to-the-jungle/

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes • 1:29

[55] Venkat, A., and Tullsen, D. M. Harnessing ISA Diversity: Design of a heterogeneous-ISA Chip Multiprocessor. In Proceeding of the

41st Annual International Symposium on Computer Architecuture (Piscataway, NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 121ś132.
[56] von Bank, D. G., Shub, C. M., and Sebesta, R. W. A uniied model of pointwise equivalence of procedural computations. ACM Trans.

Program. Lang. Syst. 16, 6 (Nov. 1994), 1842ś1874.

ACM Trans. Comput. Syst.

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 OpenMP Across Heterogeneous-ISA CPUs
	3.2 The HetProbe scheduler
	3.3 Extension of HetProbe for irregular workloads
	3.4 Workload Distribution Decisions

	4 Implementation
	4.1 Implementation of HetProbe-I

	5 Evaluation
	5.1 Experimental Setup and Benchmarks
	5.2 Work Distribution Configurations
	5.3 Results
	5.4 What types of applications benefit from cross-node execution?
	5.5 What applications benefit from Ideal CSR versus Cross-Node Dynamic?
	5.6 Case Study: TCP/IP
	5.7 Evaluation of HetProbe-I
	5.8 Limitations

	6 Related Work
	7 Conclusion
	References

