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Abstract Presented here is a model of neural tissue in a conductive medium stim-
ulated by externally injected currents. The tissue is described as a conductively
isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the
same space, as well as the membrane that divides them, and the injection currents
are described as a pair of source and sink points. The problem is solved in three
spatial dimensions and defined in spherical coordinates (r, 8, ¢). The system of cou-
pled partial differential equations is solved by recasting the problem to be in terms
of the membrane and a monodomain, interpreted as a weighted average of the in-
tra and extracellular domains. The membrane and monodomain are defined by the
scalar Helmholtz and Laplace equations, respectively, which are both separable in
spherical coordinates. Product solutions are thus assumed and given through certain
transcendental functions. From these electrical potentials, analytic expressions for
current density are derived and from those fields the magnetic flux density is cal-
culated. Numerical examples are considered wherein the interstitial conductivity is
varied, as well as the limiting case of the problem simplifying to two dimensions due
to azimuthal independence. Finally, future modeling work is discussed.
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1 Introduction

The purpose of this paper is to model the electric potentials in and around a finite
volume of excitable tissue that result from externally applied injection current. Our
motivation toward quantitative understanding of the distributed electrophysiology of
excitable tissue is due to the emergence of magnetic resonance electrical impedance
tomography (MREIT) [1]. The contrast in MREIT—as well as in another MR tech-
nique, Electrical Properties Tomography (EPT) [2]—depends on the electrical prop-
erty distribution throughout the region of interest. Briefly, in an MREIT scan, cur-
rent is injected into an object in concert with the pulse sequence of an MRI scanner.
This current will induce a magnetic field [3] whose distribution throughout the entire
region can be captured via the phase component of the reconstructed MR images.
Electrical conductivity maps may then be constructed from the phase data using the
Laplacian of the z component of the induced magnetic field, V> B, [4, 5]. MREIT has
already shown clinical promise, e.g. lesion characterization [6], but it is the possibil-
ity of monitoring brain activity with MREIT [7] that especially motivates this study.
If MREIT is to be used to detect neural activity it is useful to estimate the influence
of MREIT imaging currents on both active and passive tissues. Therefore, we have
constructed from first principles an analytic mathematical model of tissue stimulated
by injection currents, not unlike that of an MREIT scan.

Excitable tissues are comprised of cells, discrete units through which electric sig-
nals may propagate via action potentials [8]. While many have studied and mod-
eled the behavior of individual cells in both sub- and supra-threshold conditions, it
is also very important to understand excitability behavior at the tissue level. This
approach has been particularly useful in understanding cardiac activity [9]. The bido-
main model [10], a generalization of the cable equation [11], has been employed in
this area avoiding the discrete constructs of tissue, assuming instead a continuum
of two domains, intra- and extracellular, connected by a membrane and that occupy
the same volume [12]. Each domain represents an average, then, of all its individual
components. MR imaging also necessarily involves averaging over tissues. If we seek
to image neural activity using MREIT it is convenient to use a geometrically simple
model to predict changes in these images created by neural activity.

Many authors have modeled excitable tissue with the bidomain equations, choos-
ing the coordinate system that most closely resembles the tissue geometry. In circular
cylindrical coordinates, Altman and Plonsey modeled a bundle of nerves as an infi-
nite cylinder in an infinite conducting bath, studying first the steady state [13] and
transient stimulation [14]. In the former they incrementally increased the realism of
their model, going from an isotropic monodomain to an anisotropic bidomain, while
in the latter they investigated the effect of fiber diameter on stimulation and impulse
propagation. Henriquez et al. [15—-17] and Trayanova et al. [18] investigated the mer-
its of assuming a single fiber vs. a bundle, i.e. bidomain, of fibers when modeling
an infinite cylinder of tissue excited by either a disk or a line source. They showed
that the single fiber core conductor model is not an unreasonable approximation of
the control region of a large bundle of fibers, but loses its validity toward the periph-
ery of the bundle and is entirely unsatisfactory for small bundles. Plonsey and Barr
showed in a two dimensional rectangular framework, except for special cases, the
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bidomain approach to modeling tissue electrophysiology is not a mere generaliza-
tion of one dimensional cable theory [19, 20]. They found that current flowed very
differently in isotropic tissue compared to anisotropic tissue with unequal anisotropy
ratios. Roth gave approximate analytic solutions to the problem of bisyncytia with un-
equal anisotropy ratios [21], using rectangular coordinates. His perturbation method
involved expansion in a parameter defined through the anisotropy ratios. He consid-
ered two sources: an expanding wave front that was approximated with a step func-
tion, and a point source. Trayanova et al. considered the case of bidomain tissue in a
uniform electric field, modeling the heart as a sphere of anisotropic tissue with a core
of blood [22]. The uniform field meant that they could assume azimuthal indepen-
dence, leaving only a two dimensional problem in the spherical coordinates r and 6.
Heretofore none has studied a three spatial dimension bidomain problem in spherical
coordinates.

Our present study is motivated by the need to understand the effect on MREIT
images of excitable tissue—specifically, a ganglion excised from the abdomen of a
sea slug (Aplysia californica)—affected by injection currents injected through elec-
trodes set into the boundary of its artificial sea water bath [7]. We develop a model
that is a dramatic simplification of the actual experiment but which still is novel for
its generalization to three spherical dimensions. In and of itself this model will de-
pict basic electrophysiological phenomena and can act as a standard against which
numeric simulations such as finite element models (FEM) are held, lending credi-
bility to those in concurrence. Seen in a broader context, this work can serve as the
foundation for more and more sophisticated analytic modeling, e.g. nonlinear trans-
membrane currents and mixed boundary conditions.

In this first study of three dimensional analysis of distributed neural tissue we
model the Aplysia abdominal ganglion (AG), known to be electrically coupled by
gap junctions [23], as an isotropic bidomain sphere, the artificial sea water bath as
an infinite isotropic conducting medium, and the injection currents as source as sink
points. We assume isotropic conductivity here for simplicity. However, anisotropy
may be the subject of future work, as active tissue is generally anisotropic.

2 Problem Formulation
2.1 Geometry

Let there be given a sphere of isotropic excitable tissue in a uniform isotropic infi-
nite conducting bath which also contains a point current source and a point current
sink. We shall consider this problem in terms of spherical coordinates (7, 6, @) [24].
The sphere of tissue, whose radius is » = a, has its center at the origin. The current
source and sink points are distances py+ = (4,64, ¢4) and p_ = (r—,6_, ¢_), re-
spectively, from the origin, as shown in Fig. 1. The current source and sink are in
the conducting bath, not in the tissue, i.e. a < ry, 7—. The segments Rsource and Rgink
are the respective distances from the source and sink to any field point with position
vector r = (r, 0, ¢). The angles y; and y_, drawn with a dot-dashed line in Fig. 1 are
between p4 and r, and p— and r, respectively.

@ Springer



Page 4 of 20 B.L. Schwartz et al.

Fig. 1 Sphere with radius r =a

in an infinite conducting (l"+, 0+’ ¢+)
medium with current points
source and sink at

P+ = (r+, 0+, ¢4) and
p—=(@—,0—,9-),
respectively. The dot-dashed
curves labeled as y are the
angles between the points’
position vectors and that of a
field point r = (r, 6, @)

source

2.2 Bidomain Tissue

The tissue is modeled as a bidomain: two regions—intracellular and extracellular—
that occupy the same volume along with the membrane that separates them. Any
transmembrane current must be either from the intracellular region to the extracellular
region, I,, =V - J;, or vice versa, I, = —V - J, [10]. From Ohm’s law, J = E/p,
where E is electric field strength and p is resistivity [3]. Assuming that E is quasistatic
[25] and, further, that there is no tissue capacitance, we may express E in terms of

scalar potentials, ¢, i.e. E= —V¢. Thus we arrive at the bidomain equations,
V2¢; = Inpi, (1a)
V2o = —Inpo. (1b)

where the bidomain potentials, ¢; and ¢,, are the intra- and extracellular potentials,
respectively, and p; and p, are the corresponding resistivities. Throughout this anal-
ysis we assume the membrane to be passive resistor which makes 7, depend upon
the difference between ¢; and ¢,,

I = (¢i — %)Ri, @)

where R, is the membrane resistance times unit area and S is the ratio of the mem-
brane’s surface area to volume of the cell. Equations (1a)-(1b) are coupled and must
be un-coupled to solve for ¢; and ¢, by recasting the system in terms of the trans-
membrane potential, V,,, and the monodomain potential, i [26],

Vm = ¢i - ¢09 (Sa)

Po Pi
po Lo g Py (3b)
Po+0i Potpi
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The bidomain potentials are, then, given as

Pi

¢i = Vo + ¥, (4a)
Po + Pi
o)
Go=——"—Viu + . (4b)
Po t+ i

To solve for V,,, let us subtract Eq. (1b) from Eq. (1a)
V23 — V2o = Ln(pi + po). ©)
and then insert Eq. (2),

¢i _¢a

m

V(i — ¢o) =

(pi + po), (0)

where p,, = R,,/B is the membrane resistance times unit volume. If we define a

length constant, A =/, /(pi + po), from Eq. (3a) we can immediately see that V,,
satisfies the scalar Helmholtz equation,

Vin

2
VV,,,—)L2

=0. @)
To find a relationship that only involves ¥, let us apply the Laplacian operator to
Eq. (3b):

V2= L0 vy 4 P2, ®)
Pi + Po Pi + Po

When we put our expressions from Eqs. (1a)-(1b) for V2¢; and V3¢, into the right
side of Eq. (8), the two terms on that side add to O, leaving us with the Laplace
equation through v,

V2 =0. 9)
2.3 Infinite Medium

External to the tissue the potential, ¢, is given by

Pe = Gbath + Psource + Psink; (10)

where @gource and @Psink are the fields due to the current point source and current point
sink, respectively, and ¢pam is the secondary field [27] which satisfies the Laplace
equation,

V2 paih = 0. (1)
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3 Solutions
3.1 Transmembrane Potential
The scalar Laplacian of a function f is defined as the divergence of the gradient of f

[24]

— du; \ g ou;

3
Vif=V.Vf=yg) 0 <*/—§£> (12)
i=1

where, in spherical coordinates, u1 =r, up =60, u3 =¢, g1 =1, g2 = r2, g3 =
r2sin%(6), and JE= r2sin(@), whence we arrive at the familiar expression [24]
_9%f  20f [ 1 91f | cot(®) of 1 9%f
S ror o r?9e? r2 90 r2sin®() 0¢?

V2 f (13)
If we apply Eq. (13) to Eq. (7) and assume a product solution of the transmembrane
potential V,,, = R(r)®(0)P (¢), we can use the method of separation of variables to
get three independent, linear, ordinary, second order, differential equations [24],

92R(r) 203R(r) 1 « RO =0 14
ar? roor _<ﬁ+r_2> =0 e
2o t(9)8@<9>+( v )@(9)—0 (14b)
a2 Ty sin(6) o
PP, _
g TVe@=0. (14c)

where o = u(u + 1). Equation (14a) admits two solutions, i, and k,, the modified
spherical Bessel functions of the first and second kind of order u, respectively [28].
We only use i, however, because the domain includes the origin, where k, is singu-
lar. The transmembrane potential, then, is

oo U
Vn(r,0,0) =) ) awzp(%)Y;(@,w), (15)

n=0v=—n

where Y, is the tesseral spherical harmonic [29] of degree n and order v, and ay, is
the coefficient determined from the boundary conditions.

3.2 Monodomain Potential

For the monodomain potential, let us once again assume a product solution
Y(r,0,0) =Z(r)OO)P(p). Applying Eq. (13), we separate Eq. (9) into three equa-
tions. The radial equation is [24]

PZA(r) 20%(r) L«

o o p0=0 (10
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and the equations through @ () and @ (¢) are the same as in Eqgs. (14b) and (14c),
respectively. Like Eq. (14a), Eq. (16), too, admits two solutions, r* and r~#=1 For
the sake of analyticity, clearly we must omit »—*~!, making the solution for the
monodomain potential

0o [
Y 0,0) =" > burtY.0,¢), (17)

n=0v=—pn

where by, is the a coefficient to be determined by the boundary conditions.
3.3 External Potential

The potential from the external bath also satisfies the Laplace equation, but its domain
does not include the origin, so we may immediately write its solution as

oo U
Phatn (0, 0) =Y >~ cur Y0, ), (18)

n=0v=—p

where ¢, is determined by the boundary conditions. The potentials due to the current
source and sink points with magnitude I, are given as [10]

Lo pe

=\ 19
®source 477 Roouren (192)
Iy pe
ink = — s 19b
¢s1nk 477 Rying ( )

where p, is the resistivity of the conducting bath, and Rggyrce and Rgink are the dis-
tances from their respective points to any point (r, 6, ¢) in the problem domain,
shown in Fig. 1. To satisfy the boundary conditions, @source and ¢sink must be written
in terms of r, 6, and ¢, the derivation of which can be found in the Appendix.

4 Boundary Conditions

We have three boundary conditions [30] at the tissue-bath interface, where r = a,
through which we will determine the unknown coefficients, a,,, b, and cy,. They
are continuity of external and extracellular potentials,

¢e(a?97¢)=¢0(aaev¢)v (20)

continuity of normal current between bath and interstitium,

_19¢.(r, 0, ¢) _100,(r, 0, 9)

pelfiw :puloi‘P , Q1)

ar r=a or r=a
and no intracellular normal current
a [ ’ 9,
p,—l M =0, (22)
! or
r=a
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whose solutions yield
gy = Io(=1)" e rr ) pepo(pi + p)pQu+ DT (23)

by = Io(=1)" (ryr0) 7 pepipou + D7 g !

. f(a . a
x p(xmu(x) +aipt (X)) (23b)

ey =L (=1)" ua® rypr ) peQu+ 17 g !

x (rfﬂpo(amluH( >+M(pl + Po)iy (i))

X (Y 01, 01) =Y, (O-, 9))

. fa . a
— Pe(pi + o) (/\/uu (X) +aiyq (X))

x (Y 04 00 — P Y V6 (p_))), (23¢)
where
= ((u+ Dt ™y O- o)
—QuA+ DY 04 00 (24)
and

q = Mu(pi + po) (mpe + (1 + 1)po)ip <%>

—aiyyi (X) (Mpe(pl + po) + (L + Dpi :00) (25)

completely determining all potential fields.

5 Current Densities

Current density is proportional to the negative gradient of the scalar electric potential,
J = —p~'V¢. The gradient of a function f is given as [31]

1
faul -

In spherical coordinates u; and g; are the same as in Eq. (12) and the unit vectors are
a; =r, ap =0, and a3 = ¢ which gives us
a 10 1 9
f fo. af

Vf=typrai_ 2
=" 90 T @ 00 ?

(26)

27)
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Applying Eq. (27) to Egs. (4a)-(4b) and (10) and dividing by the resistivities of their
respective domains gives us expressions for the current densities throughout our prob-
lem. They are

a A r r
. ’0’ - _ J7AY i . . T
0.0 == (15 (7) +1e0 (5))
+ ﬁbwr“—‘>yg ©@, o)r
Pi

(e L (g) B
Pot+pir "\ A Pi

x (veot(®)Y, (0, ) + f (1, v)e*"q’yly“(e, go)))ﬂ

1 by
—csc(Q)(i—i (5> 21 1)qu ©, )9, (28)
Po + pi ¥ A Pi

a AT . r ® _
Jo(r,0,¢) = (p i”p (u;m(;) +ips (X)) = buer” 1>Y,i(e,¢>r
(o 1 o
() -t
pot+pir\1)  po

x (veot(®)Y, (6, 9) + f (1, v)e*"‘pY;:H o, @))0

1 r by ,_1\.
+csc(e>< L < )— W )z Y000 (29)
Po+ pi T A\ n Po Hou ve

f-Y " (0-,9-)

c
0.0) = —15,
Je(r.0.9) (WW oy 1(

= f+(MY, (04, (P+))>Y,L)(97 @r

—< vy )(vcot(@)Y 0.9)+1e7 Y0, )0

per2TH
w3 )iy ese6)YY (6 30
- perz_,’_u +; lVCSC( ) ”,( ’(p)(ov ( )
where
/L’Li, ifr<ry_,
fr—(r)= - 31

—(u+ 1) s KRR A

Iy (g™ (g™
=i (G e~ (St 000 ) 6
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and
_ \/F(/L—U+1)\/F(M+v+2). (33)
VI =T +v+1)
Here g5 _ =min(r,ry ), g7 _ =max(r,r4 —), and I" is the gamma function [32].

6 Magnetic Flux Density

Here we summarize the theory behind our numeric calculation of the magnetic flux
density, B, due to J. Within a current-carrying volume, B may be calculated from the
Biot—Savart law [33],

/J(r)x|r—r| av', (34)

Ir—r|3

thus every point in B requires integration over the entire current-carrying volume.
Since the numerator of the integrand of Eq. (34) is a cross product the individual
components of B in cartesian coordinates are given as

J _ 5/ _] v/
B, =12 @m D)2 ROZY) gy, Gsa)

IV (=P =P+ =)

] _ / —J _ /
B, =10 / Lm0 Z IR gvayar, (3sb)
IV (=324 (v — V)P + (2 — 2)?)2
J _ / —J _ !
B.= @/ x(y—Y) y(x —x") . dx’dy/dz/. (35¢)
A I (x =22+ (= )2+ (2 —2)2)2

In an MREIT scan we are only concerned with the component of the magnetic field
that is along the axis of the bore of the MRI scanner, i.e. B;; so, we will focus on that
now but the following would apply to By and By as well. We can see that B, is the
difference of two integrals,

o Je(y =)

B, = — - dx'dy'dZ
IV (=2 (= )2+ =)
J v/
Ko o —x) dx'dy'd7.  (36)
I (a2 -yt - )
If we define the x and y components of a function G as
X
Gy=—"—r, (37a)
(x24+y2+2%)?2
Gy = 4 (37b)

3 bl
(x2+y2+72)2
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Table 1 Modeling inputs

Parameter Value

Bath resistivity, pe 0.29 2m
Intracellular resistivity, p; 0.19 2m
Membrane resistance times unit area, Ry, 0.15 2m?2
Ratio of surface area to volume, 8 20,000 m~!
Source and sink magnitude, I 1 mA
Tissue radius, a 2 mm
Point source position, p+ (5, %, 0)
Point sink position, p— 5,7,0)
Summation upper bound, p 10

then we can define B; as a difference of two convolutions [34],
Mo 1o
BZ:E(JX*Gy)—E(Jy*GX). (38)

Convolution becomes multiplication in the Fourier domain [34] thus B, finally is
calculated as

B.= Z—Ef*l{f{JxGy} — FUI, G}, (39)

where F is the Fourier transform [34].

7 Numeric Examples and Discussion

We now demonstrate our modeling with some simple examples in which we show the
effect of varying p,. Let us assume the tissue radius is a = 2 mm, the point current
source is at p4+ = (5, %, 0), and the point current sink is at p_ = (5, , 0). Plainly
said, there is a cathode 2 mm to the right of, and an anode 2 mm directly below, a
ball of tissue in an otherwise uniform ocean of artificial sea water. We choose resis-
tivities in a range known to be biologically realistic [10], specifically p, = 0.29 £2m,
pi =0.19 2m, and p,, = 0.15 £2m. The source and sink are positive and negative,
respectively, with equal magnitude /o = 1 mA. The upper bound was chosen that the
solution stabilized to 5 decimal places, i.e. u = 10. All of these inputs are summa-
rized in Table 1. In our first three examples we hold p, = pe, po = 100, po = 0.1pe,
shown in Figs. 2, 3, and 4, respectively. The figures are squares of 3 mm so as not
to include the source and sink which would obscure the behavior in and immediately
surrounding the sphere. In the top graph of each figure is plotted ¢, and ¢, where they
appear in the xy plane that includes the origin. The solid black lines are the equipo-
tentials with the shade of color between them corresponding to the magnitude. The
middle graphs show the current densities: J, outside the sphere and J; + J,, inside the
sphere. The arrows give the direction of the current while the color corresponds to the

magnitude |J| = ,/J2 + J2 + J2. It should be noted that there is a symmetry about
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Fig. 2 The top, middle, and
bottom images are plots of the
electric potential, current
density, and magnetic flux
density, respectively, in the
plane z = 0. The dashed white
line indicates the circumference
of the sphere. In the cartesian
coordinates on this graph the
current point source is at (5, 0)
and the current point sink is at
(0, —5). The ratio pe/po = 1. In
the top graph we show
extracellular potential of the
sphere of tissue amid the
external potential in the
conducting bath. There the black
lines are equipotentials and the
shade of color corresponds to
the magnitude. In the middle
graph we show the external
current density in the bath and
the sum of the intracellular and
extracellular current densities in
the sphere. The magnetic flux
density shown in the bottom
graph was calculated from the
current density field
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Fig. 3 The top, middle, and
bottom images are plots of the
electric potential, current
density, and magnetic flux
density, respectively, in the
plane z = 0. The dashed white
line indicates the circumference
of the sphere. In the cartesian
coordinates on this graph the
current point source is at (5, 0)
and the current point sink is at
(0, —5). The ratio p./po =0.1.
In the top graph we show
extracellular potential of the
sphere of tissue amid the
external potential in the
conducting bath. There the black
lines are equipotentials and the
shade of color corresponds to
the magnitude. In the middle
graph we show the external
current density in the bath and
the sum of the intracellular and
extracellular current densities in
the sphere. The magnetic flux
density shown in the bottom
graph was calculated from the
current density field
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Fig. 4 The top, middle, and
bottom images are plots of the
electric potential, current
density, and magnetic flux
density, respectively, in the
plane z = 0. The dashed white
line indicates the circumference
of the sphere. In the cartesian
coordinates on this graph the
current point source is at (5, 0)
and the current point sink is at
(0, —5). The ratio p./po = 10.
In the top graph we show the
extracellular potential of the
sphere of tissue amid the
external potential in the
conducting bath. There the black
lines are equipotentials and the
shade of color corresponds to
the magnitude. In the middle
graph we show the external
current density in the bath and
the sum of the intracellular and
extracellular current densities in
the sphere. The magnetic flux
density shown in the bottom
graph was calculated from the
current density field
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3

¥ (mm)

X (mm) X (mm)

Fig. 5 On the left is a contour plot of the extracellular potential of the sphere of tissue amid the external
potential in the conducting bath. The dashed white line indicates the circumference of the sphere. On the
right is a contour plot of the transmembrane potential within the sphere. In both graphs, the black lines are
equipotentials and the shade of color corresponds to the magnitude. In the cartesian coordinates on these
graphs the current point source is at (0, 5) and the current point sink is at (0, —5). The ratio p./po = 1

the plane depicted since it contains the source and sink points and the orthodrome
of the sphere of tissue, thus all the current is in the plane of the page, i.e. J; =0. In
the bottom graphs we show the magnetic flux density to which J,., J;, and J, give
rise. We composed a program in MATLAB (The MathWorks, Inc., Natick, MA) that
employs the fast Fourier and inverse Fourier transforms to compute B, from the sim-
ulated J data throughout a 3 mm x 3 mm x 3 mm cube whose origin is the same
as the sphere’s. The J sampling was 13 slices, evenly spaced along the z axis, each
containing 128 x 128 data points. All of these results are as expected. But for the
dashed white line, the sphere of tissue is indistinguishable from the surrounding bath
in Fig. 2. When the interstitium has one tenth the bath’s resistivity (Fig. 3) the current
can be seen to go toward the sphere resulting in a large B, at the sphere’s edge in the
fourth quadrant of the field of view. Accordingly, when the interstitium is ten times
as resistive as the bath (Fig. 4), the current flows mostly around it. In terms of the
B; field, there appears a faint glow around the sphere’s edge, surrounding a region
of relative darkness, due to this flow pattern. In both cases of p, # p. the tissue is
clearly visible in all three field types, ¢, J, and B;.

As a limiting example, let us move the source point to be directly above the tissue
such that p; = (5, 0, 0). This is an axially symmetric problem, identical to our earlier
work [35], and we get the same results, shown in Figs. 5 and 6. The white line in Fig. 5
is the horizontal axis in the plot in Fig. 6 where we have plotted ¢,, ¢;, V;,;, and ¢,
as a function of distance, along the segment joining the sink and source. The vertical
lines at y = —2 and 2 indicate the extent of the tissue where it is clear by inspection
that all the boundary conditions are satisfied. At the tissue radius ¢, (solid line) and
¢, (dashed line) are equal as are their slopes, and the slope of ¢; (dot-dashed line) is
zero. Furthermore, we can see that V,, (dotted line) is the difference between ¢; and
¢, fulfilling Eq. (3a).

In this article we set out to model the electromagnetic fields in and around a vol-
ume of neural tissue stimulated by current that is injected in close proximity to it.
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Fig. 6 The intracellular 6F ,‘f

(dot-dashed), extracellular ,,"

(solid), transmembrane (dotted), 4l a

and bath (dashed) potentials are

shown as a function of y, along S 2t 1

the white line where x =0 in E o | =T 9

Fig. 5. The vertical lines at 0 B !

y = —2 and 2 correspond to the 5} e V :

radius of the sphere, r = a, £ -2f " 1

where are also plotted the lines e Z

tangent to the curves of the —4r ,," 1

potentials in the boundary p .

conditions ~6¢] s ‘ A
-3 -2 -1 0 1 2 3

X (mm)

The geometry selected is expected in an in vitro MREIT scan, where an AG may be
submerged in a bath of artificial seawater contained in a cylindrical sample chamber
that has injection current ports on opposing sides [7]. We note that the effect of the
applied external field is to simultaneously depolarize and hyperpolarize portions of
the simulated tissue nearby the current sources. If a portion of tissue is sufficiently
depolarized to form an action potential it may propagate throughout the tissue from
these regions. It has been suggested [36] that modest depolarizations or hyperpolar-
izations caused by weak external currents applied to the skull are sufficient to excite
or inhibit neural excitability in brain structures. More complex models of the tissue
and field geometry used here may prove useful methods of exploring the mecha-
nisms of such neuromodulation techniques. In these numeric examples we have held
the source and sink points to be equidistant from the sphere of tissue, ;. = r_. This
gives the problem a symmetry about the lines y = —x in Figs. 2,3, and 4 and y =0
in Fig. 5. However, the AG is smaller than the diameter of the sample chamber; so, it
will not necessarily be directly between the ports, spoiling this axial symmetry. Thus
a complete three dimensional treatment of this type of problem is finally required.

From Eqgs. (4a)-(4b) we can see that each region, intracellular and extracellular, has
a monodomain component i that obeys the Laplace equation. Plots of this potential
produce results similar to those of Rush and Driscoll [37, 38]. They solved for the
electric potential in a brain from electrodes placed directly on a scalp, modeling the
brain, skull, and scalp as different layers of monodomain tissues, i.e. a sphere encased
in a thin shell of bone which was itself encased in a thin shell of skin. We could amend
our model to include similar surrounding layers, each with its own expressions for
¢ and J and coefficients determined from the boundary conditions. The boundary
conditions themselves would change, e.g. the interstitium would have continuity of
potential and normal current with the skull rather than with artificial sea water. Such
changes would be appropriate for a model on the scale of e.g. a dog’s head [39].

We have modeled both domains as being ohmic, i.e. their impedivities z = p are
only real valued, but z can be made complex by introducing a frequency dependence
[34]. In their extensive literature review [40] and experimental measurements [41],
Gabriel et al. show that most tissues have frequency dependent electrical properties.
More recently, Bédard et al. [42] and Bazhenov et al. [43] explored frequency depen-
dence in local field potentials. In a series of theoretical papers Bédard and Destexhe
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provide a general framework for modeling electromagnetic fields in brain tissue with-
out assuming the interstitium to be purely resistive. Absent those assumptions, they
developed a generalized formalism of current source density analysis with the goal
of relating the extracellular potential to current sources in the tissue [44], considering
monopolar sources, dipolar sources, and combinations thereof. Next they incorpo-
rated frequency dependent extracellular and intracellular impedivities, z, and z;, to
generalize the cable theory [11] for neurons embedded in a complex interstitium [45].
They showed that z, and z; have a non-trivial impact on the properties of neurons,
e.g. voltage attenuation with distance and the spectral profile of V,,. Finally, they
calculated the magnetic fields generated from a current-carrying neuron and, using
superposition, a population of neurons [46]. They showed that since the electrical
properties of neural tissue impact the transmembrane and axial currents of a neuron,
they will necessarily also impact the magnetic fields these currents create. By con-
trast, in our study we have concerned ourselves with the interaction of neural tissue
and an aphysiologic stimulus. The effects of this stimulus will naturally also depend
upon complex tissue properties, but over a larger scale determined by the stimulus
geometry. Future work should explore the impact non-ohmic impedivities have on a
tissue interactions with applied external fields.

Let us now consider possible next steps to build on this first study. As well as
modeling tissue properties as complex, it should also be possible to examine the
transient behavior of excitable tissue using a Hodgkin—Huxley-like model [47]. These
analytical models of spheres could then be validated and used to estimate the scale of
changes expected in MREIT images due to different neural activity patterns.
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Appendix

The potential due to the current point source, shown in Fig. 7, goes as the inverse of
the distance from it which is given as

Roousce = 1 = P = y/r2 + 1% — 2rry cos(r), (40)
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Fig. 7 Geometry of the point
current source at

= (r+, 0+, ¢4) in relation to b+
the origin (0, 0, 0) and a field
point r = (r, 8, ¢), with Rsource
being the distance between r

and p+ (0,0,0)

(

r.0,9.)

source

r—">10,9)

and whose inverse has the form of the generating function of the Legendre polynomial
[32], allowing us to write

1 > (gDH
=y 8 p (cosr)), @1)

>Vutl
\/rz +r2 —2rrpcos(ys)  u=0 (8)"

where P, is the Legendre polynomial of order . The spherical law of cosines [29]
lets us write ¥ in terms of 6 and ¢,

cos(y+) = cos(8) cos(64) + sin(f) sin(f+) cos(¢p — @), 42)

which, from spherical harmonic addition theorem [48], allows us to expand P, in
terms of Y /E’

47

TS Z Y20, 0)Y, " 04, 01). (43)

Pu(cos(yy) =

The analysis for a current point sink proceeds analogously. From Eqgs. (19a)-(19b), the
potentials for current points source and sink finally are given in spherical coordinates
as

w

(g)" 1 v
Gsource (7,0, ¢) —IOPeI;)U_X_: (g>—;/;,+1 2u+1 u(g QD)Y O+, 94), (44a)

2

= 1
Psink (1, 0, ) = —IO,OeZ > (6=)" 20, 9)Y, " (0-,9-). (44b)

(o™ )u+T Y,
oV, 8T 2+ 1
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