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Abstract

Introduction: Given that the nanoscale regime has been reached, atomistic simulations are being used as predictive
tools on a nanoscopic scale in nanoelectronics, materials science, and computational fluid dynamics. These
simulations are generally supported by complex and specific simulation engines that require a deep knowledge of
the engine as well as the field. The inputs required by these engines are usually described in long-text files, and their
composition is error prone. These files contain details about the corresponding materials, geometries, algorithms,
initial values, etc. The introduction of visualizations to the simulation creation process could alleviate some common
user issues with simulation creation, in particular regarding the input-text files. In other fields, visual analytics have
been used to facilitate user interaction with complex data. This work features a case study on the creation of a
nanoelectronic device simulation and provides evidence of how the use of visual analytics reduces the cognitive
complexity of defining an atomistic simulation.

Case description: NEMO5 is a tool designed to simulate the electronic properties of nanoelectronic devices on an
atomistic level. In this work we introduce NemoViz, an interactive visualization tool that enables users to define the
simulation inputs required by NEMO5. Regular NEMO5 users were exposed to NemoViz, and users’ effectiveness and
efficiency was measured while debugging the input for a simulation.

Discussion and Evaluation: The results of this work show that NemoViz reduced the time that users spent defining
the inputs of a NEMO5 simulation. When using NemoViz, Expert NEMO5 users detected errors twice as fast as when
NemoViz was not used, and non-expert NEMO5 users were able to detect errors as effectively and efficiently as expert
users.

Conclusions: These results suggest that the use of visual analytics as a simulation design process tool reduces the
cognitive load of complex simulators such as NEMO5. Users’ interaction with visualization facilitates their
understanding of output results and input descriptors, which may lead to new research codes from their widespread
user base.

Keywords: Visualization in physical sciences and engineering, Software visualization, Visualization in education,
Nanoelectronics

Introduction
Nowadays, complex simulations of a variety of pro-
cesses are extensively used in academia and indus-
try (Pedone 2009). For instance, since the 1960’s, the
drift-diffusion model complemented by the understand-
ing of electron transport in transistors have driven
work in computational electronics on the mesoscopic
scale (Lundstrom 2015) . Most recently, other models,
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such as the Non-Equilibrium Green’s Function (NEGF)
formalism to simulate quantum transport, have been
incorporated into codes to simulate phenomena on the
nanoscopic scale. Applications of nanoscopic-scale atom-
istic simulations are commonly found in nanoelectron-
ics, materials science, and computational fluid dynamics
(Lundstrom 2015).
The developers of atomistic simulators usually deal with

complex physical problems that require the use of intri-
cate mathematical models and extensive numerical solu-
tions. Commercial simulation engines are rare, and the
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development of tools in this realm is still ongoing. In
contrast, scientists often opt to develop their own simu-
lation codes and focus on modeling the physical system
as closely as possible. The code users ultimately define
their simulation parameters, usually in text files processed
by the simulator. To properly create input text files, users
need an in-depth understanding of various technical fields
(Lundstrom 2015) and their relations, which adds addi-
tional layers of user cognitive processing (Wilensky and
Resnick 1999). As a result, using text files as simulation
input restricts the number of possible users, reduces the
chances of correct simulation parameterization (Wilensky
and Resnick 1999; Hmelo-Silver and Azevedo 2006), and
generally slows down the new user learning curve.
This work integrates visual analytics to explore and

modify the text files used as inputs in a nanoelectron-
ics simulation tool. Properly-designed, interactive visual
aids allow the user to interactively explore different key
aspects of the simulation, and as consequence to rapidly
understand the simulation tool and simulation results.

Background
Simulation process models
Three simulation design process models exist in the lit-
erature. The first documented definition of a simulation
workflow model was proposed by Kruger (1970) (Krüger
1975). Kruger presented that the simulation workflow
begins with the problem definition and proceeds to the
stages of data collection and model building, valida-
tion, data analysis and interpretation, and documentation.
Allen et al. (1990) proposed a scientific simulation work-
flow designed for fluid simulations (Allen and Tildesley
2017). This model highlighted the importance of con-
ducting experiments in the real world and compared the
results of the experiments with the simulation results
using theoretical models. Most recently, Romanowska
(2015) includes coding, testing, and result replication as
part of the workflow (Romanowska 2015). This model
classified the workflow steps into three main phases: the
conceptual, technical, and dissemination phases shown in
Fig. 1.
Users face different problems for each step of this pro-

cess, and each step features specific cognitive challenges.
In the nanoelectronics field, for example, the research
question step typically begins with an understanding of
the previously published results of experimental groups
or compact models. Moreover, the data published as raw
numbers usually misses background information. There-
after, the experimental data is mapped onto a physical
model with a specific device configuration. A visualiza-
tion of the experimental results and device representation
helps users to define questions about the device’s dimen-
sions and physical properties, including temperature and
heat dissipation.

Fig. 1 Romanowska’s ideal model development sequence

It has been shown that interactive visual represen-
tations amplify the cognitive process by incorporating
external cognition (Scaife and Rogers 1996), the data is
transformed into visualizations and users change these
representations as they gain new insight. Visualizations
have been widely used as graphical user interfaces that
help users while they are running experiments as well
as analyzing and interpreting data. In fact, visualizations
can help users during the entire simulation process. The
following two sections include examples of how visualiza-
tions have been used to support the simulation process

Commercial simulation visualization
Well-knowncommercial simulator packages (e.g., Simulink)
use visualization to benefit their usability.Matlab introduced
Simulink in 1992 (Simulink Simulation and Model-Based
Design 2012) to support the coding and testing phases
of the simulation process. Simulink represents complex
blocks of code as visual boxes that can be parameterized.
The corresponding outputs are visualized with different
representations that have utility for the analysis and inter-
pretation steps as well as the technical phase. Simulink’s
simplicity led Matlab to become one of the standard tools
used in automatic-control and digital-signal processing.
Anothervisual aid example is the finite element simulation,

in which solid models are represented as polygon meshes.
For example, Comsol (COMSOL Multiphysics� Model-
ing Software 2005) included an interactive 2D/3D mesh
representation of the model that helped users through
steps 3 and 4 of the conceptual phase. Moreover, Com-
sol found that the spatially-resolved results overlapped
with the three-dimensional model helped users during the
analysis and interpretation steps.



Mejia et al. Visualization in Engineering             (2018) 6:6 Page 3 of 16

Research simulation code visualization
Modeling in relatively new research fields -particularly
research that involves the physical movements of atoms
andmolecules, or particles and atomic interactions— can-
not always be simulated by commercial engines, and new
tools are constantly being developed in conjunction with
research simulation codes, evenly on the number of atoms
that can be visualized and associated fields had seen a
challenge (Qiao et al. 2005). Often, these codes are more
concerned with solving scientific problems than their
lacking usability.
Some developers are aware of this usability problem

and have tried to address it via two approaches. The
first approach included two graphical user interface lay-
ers that helped users with parametrization in addition
to the analysis and interpretation step of the technical
phase. For instance, MAPS (MAPS platform 2009) and
Lammpsfe (Lammpsfe 2012) feature two visualization lay-
ers for LAMMPS, a well-known molecular dynamic code
developed by Sandia National Laboratories. The first visu-
alization layer is a wizard that enables users to createmod-
els; the second is a results visualization that follows the
simulation. These aids have proven so invaluable to users
that the inclusion of two visualization layers has been
commercialized as research software. ATK applies visu-
alization layers to a broad set of research codes, includ-
ing LAMMPS, ABinit, and QuantumEspresso (Atomistix
ToolKit (ATK) 2008).
Toolkits have been proposed to implement the sim-

ple two-layer graphical interface. (McLennan and Kennell
2010) and nanoHUB (Lundstrom and Klimeck 2006) pro-
vide a XML API that enables the graphical interface.
Rappture allows users to not only describe the simu-
lation models and visualize the simulation results, but
also to execute experiments during the technical phase.
For example, the Quantum Dot lab (Klimeck et al. 2006)
employs NEMO5 to calculate electrical and optical prop-
erties of quantum dots; therefore, users can run exper-
iments on different qdot sizes and materials. This tool
presents the first layer of graphical control elements to
set the simulation parameters. Then the results are dis-
played in a second layer that includes visualizations of the
electron wave functions and optical properties. A limited
number of visualizations are supported by Rappture, and
additional visualizations require significant developments
of the Rappture infrastructure (Zhao et al. 2017).
A second approach uses the rise of e-Science as a new

research practice. The importance of reproducibility for
independent verification. Steps included in the techni-
cal phase of the simulation process can be described as
scientific workflows. Scientific workflow systems such as
Kepler (Altintas et al. 2004) and Pegasus (Deelman et al.
2005) aim to simplify scientific workflow management,
provide infrastructure, and define the hierarchical models,

dataflow constraints, and model execution frameworks.
Edison (Suh et al. 2016) is a web services-based scien-
tific workflow system that aims to support technology
computer-aided design (TCAD) applications. VisTrails
(Callahan et al. 2006) integrates visualizationmodules into
its workflow system.
This research proposes a third approach based on the

successful implementation of visual analytics as a big data
analysis tools. Visual analytics can be used as a graphi-
cal user interface to guide users during simulation design.
The following chapter describes an interactive, user-
focused visualization system. The system enables users to
explore simulation inputs as visual representations. This
interactive visualization system concept has been applied
to a research simulation code called NEMO5. NEMO5 is
the fifth edition of the NanoElectronics Modeling Tool.
This simulation tool incorporates the core concepts and
experience gained from more than 20 years of develop-
ment. NEMO5 is a multi-physics simulation tool used
to design devices on an atomistic scale. NEMO5 is used
as a research and educational tool in both industry and
academia. NEMO5 powers nine of the most popular tools
on nanoHUB.org. nanoHUB is used by more than 1.4 mil-
lion users per year in approximately 172 countries (Sellier
et al. 2012).

Interactive visualization system
In this work, we propose that interactive visualization sys-
tems should be designed based on Romanowska’s (Fig. 1)
simulation process and 3-phase functional requirements.

Conceptual phase
During this first phase, users upload raw data into the
system. The data is processed and transformed into visual
representations, such as heatmap or line plots. The users
should be able to visualize the available physical models
and access documentation for each specific model. The
documentation should contain descriptive information
on the assumptions, formulas, restrictions, and possible
parameters of the physical model. Users should also be
able to explore the database via material properties and
change values.

Technical phase
Given a specific physical model and its restrictions to rep-
resent external results, users should be allowed to include
simulation inputs and process the information in order to
extract the spatial and abstract components of the simu-
lation as well as the relations between these components.
Spatial components should be visualized as 3D models
and the abstract components should be listed with their
relations. Users should be able to filter and reconfigure
each visible component. When users define a specific
experiment, the system should run the experiment and
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display the results as visual representations. These visu-
alizations allow users to interpret, analyze, and compare,
the results.

Dissemination phase
After the set of experiments are conducted and new
insights are found, the researchers should describe,
parametrize, and export the new model inputs. These
tools should be capable of running the model and visual-
izing the output results. Exposing these tools to the scien-
tific community helps to replicate the findings and enables
other researchers to explore new parameter options that
can lead to the discovery of new insights.

System Implementation
We developed NemoViz as a modular interactive visual-
ization system. The system was developed using HTML5,
Webgl, Javascript, Python, C++, and NEMO5. Users
can inspect the NEMO5 input text files (inputdecks),
explore the three-dimensional models, visualize the sim-
ulation results, generate reproducibility tools, and export
the three-dimensional models that generate high qual-
ity images. These components were designed to support
users through the simulation design process. The fol-
lowing sections will introduce the actual user interface
and examples of how users can interact with a NEMO5
simulation.

System structure
Figure 2 describes the NemoViz architecture and its util-
ity to develop new visualizations. NemoViz is based on
a Model-View-Controller MVC and client-server archi-
tectures. The client side is implemented with JavaScript;
the control elements are based on the Dojo toolkit
library (Dojo Toolkit 2008); the Webgl visualizations use
a Three.js (three.js - Javascript 3D library 2010) core; and
the D3 (Bostock 2012) library supports all other visu-
alizations. The server side is implemented via C++ and

supported by the Boost library (Karlsson 2005), and visu-
alization plugins are implemented in Python.
All user interactions with the client are captured by

a web browser as JavaScript events and passed to the
Asynchronous Javascript and XML (AJAX) controller.
This controller dispatches events in the Webgl model and
refreshes the views that need to be changed. The AJAX
controller can also demand information fromweb services
as JSON requests. All of the client’s requests are captured
in the server by the Web Services (WS) Controller.
The WS Controller completes four main tasks. The

first task is to call a NEMO5 kernel and execute small
calculations using NEMO5’s API. These calculations are
triggered by the NemoViz Model and sent to theWS Con-
troller. NEMO5’s results are returned to the Model as
well. Then, the controller receives the changes required by
the client views and notifies the AJAX controller. Instead
of calling the NEMO5 calculations, the second task exe-
cutes NEMO5 database queries and processes informa-
tion related to the NEMO5 parameters. The third task is
to report users’ interactions to the NemoViz models. For
example, if the user hides layers of information or includes
advance calculation of atoms’ positions, this information
is required by the model to be updated. The last task is to
execute the python code from a specific plugin. The WS
Controller captures the HTML representations of a visu-
alization, compresses the text, sends the text to the client,
and notifies the AJAX Controller.

User Interface
NemoViz is based on NEMO5’s input structure that con-
sist of blocks of properties. A NEMO5 simulation is
described as a text file (inputdeck), and this inputdeck is
written in a C-like format (similar to a STRUCT state-
ment). Table 1 contains a simple example of a NEMO5
inputdeck, which is divided into groups and identified by
keywords at the beginning of each curly bracket, hence-
forth this groups are going to be called Blocks. NemoViz

Fig. 2 The NemoViz system is implemented on a Model-View-Controller MVC and client-server architecture
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Table 1 NEMO5 Gallium Arsenide Band-structure calculation
inputdeck

Structure {
Material {
name = GaAs
tag = substrate
crystal_structure = zincblende
regions = (1)

}
Domain {
name = structure1
type = pseudomorphic
base_material = substrate
dimension = (20,20,20)
periodic = (true, true, true)
regions = (1)
crystal_direction1 = (1,0,0)
crystal_direction2 = (0,1,0)
crystal_direction3 = (0,0,1)

}
Geometry {
Region {

shape = cuboid
region_number = 1
min = (0,0,0)
max = (5,5,5)

}
}

}

Solvers {
solver {
name = my_schroedi
type = Schroedinger
set {

domain = structure1
active_regions = (1)
tb_basis = sp3d5sstar_SO
job_list = (assemble_H, passivate_H, calculate_band_structure)
output = (energies, eigenfunctions_VTK)
charge_model = electron_hole
automatic_threshold = true
eigen_values_solver = krylovschur
k_space_basis = cartesian
k_points = [(0,0,0)]

}
}
solver {
name = my_overlap
type = MatrixElements
set {

domain = structure1
active_regions = (1)
operator = overlap
wf_simulation = my_schroedi
output_file = matrix_elements

}
}
solver {
name = my_structure
type = Structure
set {

domain = structure1
active_atoms_only = true

}
}

}

Global {
solve = (my_structure,my_schroedi,my_overlap)
database = all.mat

}

was designed to show multiple visualizations of Blocks
and relations found in the inputdeck. Figure 3. shows an
example of an inputdeck loaded in NemoViz.
NemoViz layout consists of four main visual containers.

These containers are synchronized according to each user
action and enable additional visualizations as needed (e.g.,
if a domain is selected, the visualization details of the
crystal should be displayed). Descriptions of the four
containers are presented below.

1 Outline View: The outline view represents the
hierarchical data and defines the simulation. It allows
for viewing the inputdeck in two different ways: a
hierarchical tree structure or plain text editor. A
hierarchical tree structure is a natural way to
represent the inputdeck blocks (see Fig. 3a). Users
can collapse and expand a block by clicking on the
folder icon. Users can transition from the tree-like
view to the plain text editor using the “Input Deck
Text” mode.

2 Properties View: The properties visualization
represents the state of a block. Each block represents
a set of parameters that configure part of the
simulation. When a user selects a block, the
properties view table appears populated with the
block’s name-value pairs (see Fig. 3b). Users can edit
the table values and see the changes visualized in the
main view and the relations view visualization
containers. Also, the system alerts users about the
errors detected in the parameters of a particular block
via tooltip display. The properties view also includes
a toolbar where users can hide or display the visual
representations of the selected block and identify the
possible block parameters and documentation.

3 Main View: This container is a set of visualizations.
The main visualization is called the “workspace,”
which features post-processing visualization plugins.
Each plugin is loaded in a different container (tab)
with a unique name. The tabs can be renamed and
closed. All visualizations can be accessed by clicking
on the tab identifier name. The workspace
visualization cannot be closed.
The workspace visualization consists of
three-dimensional models that represent different
aspects of the simulation. Any block that contains
information about a spatial representation (e.g.
Regions, Domains, Boundary Conditions, Finite
Element Domains, etc.) is featured as a three-
dimensional model in the main view (see Fig. 4). All
models have an opacity level that enables users to
visually detect the overlapped elements. Traditional
zoom/pan interaction techniques are enabled so the
user can visualize the models from different points of
view. Information on the model elements is visible as
a tooltip when the mouse is nearby the element.
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Fig. 3 The NemoViz client layout consists of four main visualization containers: a the outline view of the hierarchical data structures; b the properties
view of editable options for a selected block; c the main view, a three-dimensional representation of the input-defined model; and d the relations
view, an abstract representation of a selected block and its relationship with other blocks

4 Relations View: The Relations visualization
represents a simulation block and its relations. This
visualization is a hybrid of a bottom quadrant chord
diagram (see Fig. 5) and a three-dimensional canvas.
The chord diagram is represented in the bottom
quadrant only, and displays the detected relations
between inputdeck blocks. The relations view also
represents blocks as geometrical models, a mesh, or

an atomistic structure. The user navigates the
different inputdeck blocks by clicking on the block’s
name in the chord diagram; thereafter, all other
visualizations are synchronized accordingly.

NemoViz plugins
Plugins are post-processing visualization scripts that rep-
resent data. They are mostly used to show simulation

Fig. 4 In the NemoViz main view, blocks are visualized via spatial representation. Users can filter the overlapping models as follows: a different block
types enabled for different device parts; b geometrical representation; c atomistic representation; and dmesh representation
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Fig. 5 Relations detected for an example quantum transport on a silicon nanowire. Top: Relations found in the inputdeck. Bottom: Relations
detected involving region 1

results; however, they can also be used to visualize sim-
ulation memory consumption, time tracing, or object
lifetimes. Plugin types represent a wrapper around spe-
cific python libraries. Currently, NemoViz supports five
plugin types based on the popular visualization libraries:
Bokeh, Plotly (Fig. 6a-c), Paraview (Fig. 6e), X3Dom and
HTML/D3 (Fig. 6d). Each plugin can be parametrized and
configured. Meta variables allow users to directly change
the parameters from the NemoViz client and execute the
same script with various inputs. Visualizations vary from
simple line plots or histograms to heat-maps and three
dimensional surfaces. They also include different layers of
information (e.g., contour visualizations).

Dissemination tools
NemoViz includes two main components that can
help researchers disseminate their findings. The first
component allows users to export three dimensional

models as a Threejs scene. Threejs describes all ele-
ments included in the scene as a JSON files, includ-
ing cameras, lights, and geometrical definitions. These
files can be imported into Blender using a Blender
add-on called the NemoViz loader. Blender allows
researchers to create high quality pictures of their
models..
The second component is the reproducibility exporter,

which allows researchers to define parameters to the
inputdeck and export these parameters for publication
via one of the two following options. The first option
exports the parameters as a Rappture tool that can be pub-
lished on nanoHUB.org. This tool consists of a XML file
that describes the graphical user interface and a python
script that utilizes the parameters from the graphical user
interface, creates a valid NEMO5 inputdeck, and executes
NEMO5. By default, the Rappture tool captures all the
output from the simulation as a log file, but researchers
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Fig. 6 The NemoViz plugins: a a light-emitting diode simulation with density of states represented as a heat-map with different energy values; b a
GaAs simulation with density of states mapping the Brillouin zone; c a quantum-dot simulation with eigenfunctions of the ground state represented
as 3D contours; d a transport simulation of MoS2 sheets with current flows represented as streamlines between atoms; and e a silicon
ultra-thin-body (UTB) simulation with potential fields represented as a mesh surface

can modify the python script to include a visualization as
part of the output as well.
The second option allows users to export the input-deck

as a Jupyter notebook. In this case, researchers have the

option to predefine the parameters and include visualiza-
tion plugins. The exported Jupyter notebook translates all
selected parameters as Jupyter widgets and plugins code
as functions. The Jupyter notebook also includes button
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widgets that triggers the execution of those functions.
Jupyter notebooks can be downloaded and published on
nanoHUB.org as public tools.

Case description
Here, we show how our interactive visualization tool
NemoViz facilitates the simulation design process in
NEMO5. For this purpose, we consider the case of a
scientist who is searching for materials as potential can-
didates to replace silicon in electronic devices and is
designing a simulation to help him in this search. The
ultimate goal of the simulation is to show the elec-
tronic properties of a selected material and geometry,
which are represented as energy levels and wave func-
tions. As we describe this case study we will explain
how NemoViz supports the selection of the simulation
parameters. We will describe the energy value calcu-
lations of a simple quantum dot (a cube of 5 mm,)
of Gallium-Arsenide with a sp3d5s*SO tight-binding
model.
The process of designing a simulation begins with the

conceptual phase, during which researchers pose research
questions and define their methods. The first research
question that a scientist using NEMO5 might pose is:
which material could be a potential candidate to replace
silicon? In other words, which material do I choose to
run the simulation(s), and what is the best model to
describe that material’s properties? NemoViz includes
visualizations that support this part of the conceptual
phase by helping users to explore the material databases,
sets of parameters, models, and methods available in
NEMO5. Figure 7 displays the database exploration inter-
face. The information is displayed as a treetable that
can be expanded by selecting a specific material. Users
can also query the database parameters. The calculations
required by a parameter are displayed on the screen,
which is useful because some material parameters are
defined as functions that depend on other parameters.

After defining the appropriate materials and method,
the scientist needs to choose a geometry, general solu-
tion(s), and corresponding restrictions. These steps corre-
spond to steps 3 and 4 of the conceptual phase described
in Fig. 1. In this case study, the scientist intends to simulate
a simple representation of the selected material (i.e. a box
full of atoms defined as three-dimensional, stacked unit-
cells). This structure represents a well-known quantum
mechanical problem also known as the simple quantum
dot (Klimeck et al. 2006). NEMO5 solves the particle in a
box system using the Schröedinger equation. Wave func-
tions are calculated for different energy levels, and the
solution’s eigenfunctions are described for the 3D atom
space.
All previously described details must be translated into

a NEMO5 input text file (inputdeck). Table 1 shows the
inputdeck that describes this simulation experiment. As
mentioned in the user interface section, the inputdeck is
organized in blocks. The first block of Table 1 is called
Structure, which contains information about the device
structure and materials. Additional information about
the material, atomic composition, and nonstandard mate-
rial parameters is contained in the Materials block. The
Geometry block specifies the geometric shapes of individ-
ual regions. The Domain blocks define which regions are
aggregated within a domain. In this particular example,
one material type (i.e. GaAs) is defined in the Mate-
rial block; a single region (i.e. a cuboid) is defined in
the Region block; and a single instance of the material
(Domain) is defined in the Domain block
Having the option to graphically represent the input-

deck helps users during the scaling, resolution, rules of
interaction, and parametrization steps. NemoViz helps
the scientist to understand the complexity by generating
visual representations of the blocks’ spatial information.
Figure 8 is a visualization of the inputdeck described in
Table 1. Themain view (Fig. 8a) defines three-dimensional
representations of all atoms, and a 5nm cuboid. All atoms

Fig. 7 Database explorer visualization interface, this interface allows users to explore Nemo5 material database values and their definitions
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are located in their expected spatial position. The atoms’
information is displayed and the bonds between atoms
are also visualized. This information is defined by crystal
parameters. The scientist can also change the visual rep-
resentations to display the simulation atoms only (Fig. 8b).
The inputdeck shown in Table 1 also contains defini-

tions of three simulation steps, or the so-called solvers.
The Solvers block contains information about the sim-
ulation types. Each simulation has a set of options spe-
cific to its task. In this example the scientist defines:
1) a solver for the output of the domain to a VTK file
(“my_structure” solver), 2) a solver for the Schröedinger
equation (“my_schroedi” solver); and 3) a solver for the
calculation of optical properties based on the eigenfunc-
tions of the Schröedinger equation (“my_overlap” solver).
This latter solver illustrates interrelations between solvers.
However, solvers are not only connected to other solvers;
solvers are also connected to other inputdeck blocks. For
example, “wf simulation” and “my schroedi” solvers are
related to the domain “structure1” and region number 1.
This region is also related to the domain structure1 and
the material substrate.
The aforementioned relations are detected by NemoViz

and represented in the relations view shown in Fig. 8c.

Figure 8d-e show the relations view when a domain or a
region is selected. If the user selects the domain “struc-
ture1,” the arcs connected with this block are shown and
a representation of the basic unit cell is visualized in the
upper portion of the visualization. Similarly, if the user
selects region 1, the cuboid appears and the relations of
region 1 are displayed as well (Fig. 8e).
After the parametrization of the model, the scientist

defines a set of experiments (step 7), in which each exper-
iment is a specific modification of the input deck and con-
tains a fixed set of values. NemoViz’s visual interface keeps
track of different experiment sets. This interface contains
all possible parameters required to submit the simula-
tion to the predefined computer clusters. Users can also
visualize the status of running simulations. As a result of
running the simulation described in Table 1, the electronic
band-structures are calculated for different momentum-
points, and the corresponding eigenfunctions are sampled
for all atom locations and written to the disk.
When these files need to be examined and compared,

the scientist enters the analysis and interpretation steps.
NemoViz allows the scientist to use Plotly plugins to visu-
alize the bands as traditional line plots and plugins rep-
resent the eigenvalues as three-dimensional iso-surfaces.

Fig. 8 NemoViz representations of a GaAs cuboid example. amain view of geometrical regions and atomistic structures. bmain view of the
simulation’s active atoms. c relations view of all identified block relations. d relations view showing of domain structure relations. e relations view of
region 1



Mejia et al. Visualization in Engineering             (2018) 6:6 Page 11 of 16

Figure 9 shows two plugin instances that visualize the
eigenvalues of two different energy levels. Each visual-
ization represents the different trajectories a particle can
follow in the confined box. These visualizations help the
scientist identify important energy levels that match the
experimental results.
Finally, the scientist proceeds to the Dissemination

phase. The inputdecks and plugins can be parametrized
and exported as Jupyter notebooks that describe scientific
workflows. Notebooks define the parameters required to
replicate and reproduce the results as well as options
to change some parameters predefined by the scien-
tist. These details can be shared with other scientists to
replicate the findings. The notebooks can be expanded
to include additional documentation and support differ-
ent documentation formats, including html, pdf, latex,
images, and videos.
NemoViz also supports these documentations by allow-

ing scientists to generate high quality images (see Fig. 10).
Figure 10a image was generated after loading a NemoViz
three-dimensional model into the Blender software to
render the scene. This particular image didn’t require any
modification of the Blender system before the render-
ing process; however more advanced visualizations, such
as those reported by the Nemo Group on Blue Waters
annual reports, require additional pre-/post-processing
(Fig. 10b).
This case has shown how NemoViz can be used as an

interactive visualization system to support the simulation

design process, in particular the design of atomistic sim-
ulations. It is important to clarify why step 5 (Coding and
Testing) was not mentioned in this section. Simulations
do not always require the development of new models.
Nemo 5 models are developed in C++ and Python.
Various integrated development environment software
(IDE) are available to develop the code. Nevertheless,
NemoViz includes plugins that help users to debug new
models. These plugins process NEMO5 output logs in
order to extract and visualize information such asmemory
use, object lifetime, or time tracing.

Evaluation and discussion
The evaluation of new visualizations and visualization sys-
tems is a principal challenge of the visual analytics field
(Thomas and Kielman 2009). So far, evaluation methods
are not well established. However, accuracy, utility, and
efficiency are the most accepted criteria (Zhu 2007) to
evaluate a visualization solution. We conducted two types
of assessments: 1) an informal evaluation test designed to
assess the perceived usability of NemoViz; and 2) a quan-
titative evaluation in a controlled environment to assess
NemoViz’s effectiveness and efficiency of identifying sim-
ulation input deck errors.

Informal evaluation test
First, NemoViz was assessed through an informal eval-
uation. Previous research suggests that usability studies
require groups between five and twenty users to have a

Fig. 9 3D Particle in a box simulation with electronic-wave function representations of two different energy levels and the corresponding orbital
confinements
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Fig. 10 Exported image after importing NemoViz scene into Blender.
a Basic render, atoms are colored based on the CPK convention
extended by Jmol. b Ultra Thin Body (UTB) transistor and the amount
of electric potential along the transistor

good ratio of error detection (Macefield 2009). Users also
has to be familiar with the environment that the tool is
running, in this case been able to define simulations that
involve atomistic structures. In order to fulfill this crite-
ria, this evaluation was sent to 15 users of NEMO5, 3 with
a background in Physics, 9 with a background in Electri-
cal Engineering and 3 with backgrounds in other areas of
engineering. All of them were familiar with NemoViz.
The test consisted of 5 questions designed to mea-

sure NemoViz’s usability and capacity to save user’s time,
structure spatial information from an input-deck, and
enable users to explore the inputdeck. The questions were
designed based on work of (Beck et al. 2016) and modified
for this NemoViz evaluation. The specific questions are
presented in Table 2. Nine (9) NemoViz users answered
the questions using a Likert-type scale from 1 (strongly
agree) to 5 (strongly disagree). The questionnaire, cre-
ated with the Qualtrics survey tool, was sent as an online
form. Most of the participants (57%) were expert users of
NEMO5, 29% were intermediate users, and 14% said they
just started using NEMO5.
The results from the informal evaluation test showed

that 100% (strongly agree + agree) of the participants
agree that NemoViz provides support when exploring
Nemo 5 inputdecks and captures the atomistic represen-
tation of the model defined in the NEMO5 inputdeck.
The exploration of the inputdecks is directly related to the

Table 2 Percentages of participants that answer the
questionnaire going from 1 (strongly agree) to 5 (strongly
disagree)

To what extend to you agree with
the following statements about
NemoViz

1 2 3 4 5

NemoViz supports the user well in
inspecting a NEMO5 inputdeck

100% 0% 0% 0% 0%

NemoViz structures and
summarizes the atomistic
representation of a model defined
in a NEMO5 inputdeck

43% 57% 0% 0% 0%

NemoViz structures and summarize
relations between different
elements in a NEMO5 inputdeck

43% 43% 14% 0% 0%

NemoViz is easy to use and
self-explaining

43% 43% 14% 0% 0%

NemoViz saves you time when
modifying NEMO5 inputdecks

72% 14% 14% 0% 0%

visualizations presented in the outline view of NemoViz.
Some users also found the relation view useful to explore
relationships among blocks. The representation of the
atomistic structure of the simulation is mainly shown in
the main view of NemoViz. Some characteristics of the
structure were also located in the property and relation
views.
Regarding the ability of NemoViz to summarize rela-

tions between inputdeck blocks, 86% of the participants
perceive that NemoViz accurately represents these rela-
tions (Table 2). Only 14% of the participants responded
that NemoViz does not add value to the structure and rela-
tions found in the text file of the inputdeck. Regarding
the usability, 86% of participants reported that NemoViz
was easy to use and intuitive. We hypothesize that ele-
ments such as its simple design, extensive use of visualiza-
tions, real-time synchronization of themultiple views, and
widgets contribute to the usability. These elements were
intentionally incorporated into the design of NemoViz for
this purpose.
Finally, and most importantly, a very significant number

of users (86%) reported that NemoViz helps them to save
time when modifying the inputdecks. Modifying and run-
ning the input decks are the most commonly-performed
tasks by users of any simulator tool given that a single
modification of the input parameters is equivalent to a
new experiment. The other 14% reported spending the
same amount of time modifying the NEMO5 inputdecks
using NemoViz or using a text editor. It is worth noting
that 100% of the expert users reported a decrease in the
time spent modifying inputdecks when using NemoViz.

Quantitative evaluation
The most common problem that users faced when mod-
ifying an inputdeck is the detection of errors. In other
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words, users had to debug an inputdeck. In order to deter-
mine NemoViz’s effectiveness and efficiency in debugging
inputdecks, first we needed to identify which were the
most relevant errors encountered by NEMO5 users.
The most relevant errors were identified based on the

previous experience of current NEMO5 users. These pre-
vious experience measurements were designed as a sur-
vey to ask NEMO5 users about their own perception of
debugging each type of error. Three different aspects were
measured: frequency, complexity and difficulty. NEMO5
users answered the following questions using Likert-type
scales: How often do you face this error? from 1 (never)
to 4 (very often); How difficult is the process of fixing this
error? from 1 (easy) to 4 (very difficult); and how long does
it usually take you to solve it? from 1 (few minutes) to 3
(more than an hour). Themost common input-deck errors
were classified as follows: domain sizes are not correctly
defined (structure dimension), domain positions are not
correctly defined (structure position), geometrical regions
are not properly defined (spatial definitions), crystal ori-
entation is not well defined (crystal information), missing
connections between solvers (solution-solution relation),
missing connections between domains (domain-domain
relation), missing relations between domains and solvers
(solution-structure relation), missing relations between
regions and solvers (solution-spatial relation), or incon-
sistency between the domains and geometrical regions
(spatial-structure relation). We quantified each error type
as well.
Fifteen (15) NEMO5 (not necessarily exposed to

NemoViz) users answered this new survey following the

same format as the first evaluation. The results for each
aspect were normalized and the score values (between 0
and 1) were assigned (see Fig. 11). These results show
that the most frequent errors were related to the struc-
ture definitions and relations. The most complex and
frequent errors were related to crystal information. How-
ever, these latter errors were far less common. The results
also show that errors involving relations between regions
and solutions were easily solvable.
A measurement instrument was developed based on

the error types with a high score on all aspects. Four
error types were selected from the previous thresh-
old: structure-structure relations (StrStrRel), spatial def-
initions (SDef), spatial-structure relation (SStrRel), and
structure position (StrPos). However, based on the
assumption that the most frequent errors have a larger
impact, we decided to include the structure-dimension
error (StrDim) in our evaluation. NemoViz expands the
user’s cognitive process in different ways and detecting
the inputdeck errors can be defined as two cognitive pro-
cesses: spatial representations that involve spatial cogni-
tion processes and well-defined mental models as well as
abstract representations that require new mental models
to represent the relations.
We validate the spatial representation errors by analyz-

ing users’ understanding of themain view, and the abstract
representation by users’ understanding of the relations
view. We chose a widely used quantum transport calcu-
lation of a Silicon nanowire. For each error type, the text
inputdecks were created, the corresponding errors intro-
duced, and NemoViz visualization snapshots taken. Users

Fig. 11 Normalized scores for each type of error. The results are ordered by frequency. The gray areas denote scores of 0.6 and higher in complexity,
difficulty and frequency



Mejia et al. Visualization in Engineering             (2018) 6:6 Page 14 of 16

were asked to classify the correct type of error based on a
visualization or segments of a text inputdeck. In order to
avoid biased results, the users were asked to schedule an
appointment in controlled space with a prepared desktop
to answer the survey. Before the survey was taken, users
had to take a small tutorial on how NemoViz represents
inputdecks.
The time taken by each respondent to answer each sur-

vey question and the number of correct answers were
measured. The effectiveness of users to detect errors
using either the visualization or the text was calculated
as the percentage of correct answers (accurately identified
errors) over the total number of questions. The effec-
tiveness using the visualization or text inputdecks was
compared. Similarly, the efficiency of the visualization and
text input deck was calculated as the time it took the user
to correctly identify an error.

Results
In general, the users improved their effectiveness of error
detection by 7% and were able to detect errors twice as
fast using NemoViz compared to simply analyzing the
text inputdecks. The left box plot of Fig. 12 shows the
increased average accuracy. The standard deviation dra-
matically shrank to less than 10% while using NemoViz.
The right box plot shows how the average time users took
to detect errors was cut in half when interactive visualiza-
tions were used. The standard deviation was reduced even
further.
We also analyzed data on users’ expertise and question

type. Non-expert users improved their detection times
threefold when using NemoViz (bottom right of Fig. 13

shows detection times reduced three times in average).
Expert users also showed a twofold improved detection
time when using NemoViz (bottom left of Fig. 13 shows
detection times reduced two times in average). The aver-
age times were calculated by taking the response times
of all the NemoViz, or text inputdeck, questions of all 15
subjects and finding the arithmetic mean. Detection times
for the structure-structure relations and structure dimen-
sion questions did not show any dramatic improvement
when using visualizations. However, spatial structure-
relations showed extraordinary improvements in time and
efficiency (Top of Fig. 13).
In summary, the results presented above suggest

that NemoViz enhances the cognitive process during
error detection as follows: 1) it improves user effi-
ciency and effectiveness in debugging NEMO5 input-
decks; and 2) it accelerates the learning curve of novice
users by enhancing their effectiveness to the level of
expert users.

Conclusion and future work
This work presents NemoViz as an interactive visual
analytics system for NEMO5 inputdecks and shows evi-
dence that interactive visualizations reduce the cogni-
tive load of the simulation designing process. Complex
simulation engines such as NEMO5 can be easily
adopted by end users. The results of the evaluation
tests suggest that interactive visualizations add value
to end users by saving time and facilitating the cog-
nitive processes associated with the understanding of
spatial information and relations among different simu-
lation entities. The results also suggest that during the

Fig. 12 Box plots of users’ NemoVis effectiveness and efficiency score averages and quantiles. The blue boxes show the visual input results and
orange boxes display the base input results
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Fig. 13 Comparison of expert and non-expert users. Top: Average percentage of correct answers. Bottom: Average time to correctly detect errors

task of detecting errors in an inputdeck, non-expert
users achieve a similar effectiveness as expert users if they
use NemoViz.
NemoViz not only allows users to create, load, and

visualize inputdecks in a graphical environment, but
it also graphically represents relations between input
blocks and creates three-dimensional representations of
the spatial entities of blocks (e.g. atomistic structures
with geometry descriptions). This work featured a sim-
ple case study to illustrate the power of NemoViz. More
complex inputdecks e.g., the simulations of quantum
transport in nanowires shown in Fig. 5, and complex
three-dimensional devices shown in Fig. 4 are also sup-
ported by NemoViz. A simulation of quantum transport
calculation on a Silicon nanowire was used as part of the
evaluation design.
In this work we presented a framework for model devel-

opment to identify critical functionalities in a research
code and implement visualizations as aids to support
researchers in the process of defining new simulations.
This methodological procedures can be used in any
research field, but particularly on fields where atomistic
databases or atomistic structures are critical, such as
nanoelectronics andmolecular dynamics. An specific case
of study showed how NemoViz, a visualization module,
was incorporated as an additional module to Nemo5, a
text-based research simulation code. A similar approach
can be taken by research code developers in other fields
to incorporate visualization aids in already existing sim-
ulations. The next step in the integration of NemoViz
as a visualization aid for Nemo5 is to offer it as a free
tool on Nanohub, and expect to expand its capabilities
to support additional DFT research codes LAMMPS and
QuantumEspresso.
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