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ABSTRACT: This paper proposes a simplified seismic evaluation method for the thin-walled stiffened box steel pier 
to predict its strength and ductility. In this method, two modified bilinear material models for the fiber-beam element 
are suggested to include the local buckling of the base stiffened plate. An experiment validated a shell element based 
model, which was selected for comparison with the proposed fiber-beam based model. Twelve numerical cases were 
then simulated by the shell element based model and the fiber-beam element based model, respectively, and their 
accuracies were compared with each other. Numerical results showed that the proposed pushover method, employing 
the amended bilinear kinematic material model for the fiber beam element, is of good accuracy. If the maximum 
strength is taken as the ultimate point, the bilinear material model, replacing the yield point by the buckling stress, is 
recommended. If 95 percent of the maximum strength after the peak is regarded as the ultimate point, the 
elastic-perfectly plastic material model is suggested. 
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1.  INTRODUCTION 
 
Cantilever-type steel columns of thin-walled box sections are widely used as bridge piers in urban 
area. Up to now, investigations on the strength and ductility of thin-walled steel bridge piers under 
cyclic and dynamic loading have been extensively carried out for evaluating their seismic 
performance, and a great deal of knowledge has been achieved (e.g. Usami and Ge [1], Ge et al. [2], 
Usami et al. [3], Susantha et al. [4]). The local and overall interaction buckling of the thin-walled 
stiffened steel piers is regarded as one reason for the failure during the earthquake (Galambos [5]). 
Many researchers used the finite-element (FE) based analysis to predict the hysteretic behavior and 
failure modes of the thin-walled steel members under cyclic loading (e.g. Gao et al. [6], Goto et al. 
[7]). Although the FE numerical approaches, employing the shell elements, can accurately simulate 
the buckling of the thin-walled box member, as given in the literature (Ge et al. [2]), the FE models 
included the complex element grids, whose sizes remarkably affected the results. Besides, the FE 
model building is a complicated and time-consuming process, which cannot be accepted and 
popular for normal designers in engineering practice. 
 
A relatively simplified evaluation method, instead of the time-consuming shell element based 
simulation, is very urgent in the case that the thin-walled box members are applied in the structural 
design. Sakimoto et al. [8] proposed a new stress-strain relation for the fiber-beam based simulation 
of the thin-walled box member. This average stress-strain relationship was obtained from the shell 
element based simulation and included the effect of the stiffened plate’s local buckling. Therefore, 
it exhibited a strain softening behavior and can be described as a function of a slenderness 
parameter of the stiffened plate. However, numerical results were susceptible to the size of the 
element because of its strain-softening behavior. Afterwards, a buckling element with a finite length 
was introduced in order to avoid the strain concentration in the small softening element by Ozawa 
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et al. [9]. Numerical examples confirmed that the pushover analysis with the new nonlinear beam 
element can predict the ultimate behavior of the steel piers. However, it is not easy for engineers to 
use in practical design because the proposed model equation has 36 coefficients without giving 
their values in the paper and the applicable range is limited (e.g., the width-thickness ratio 
parameter as shown later in Eq .1 is from 0.3-0.5). 
 
In this paper, taking into account the local buckling of the thin-walled steel stiffened plate, the 
characteristics of the bilinear material model was modified. First, the comparison of a shell element 
based simulation with an experiment showed the effectiveness of the shell element based model. 
Second, a simplified pushover method based on the fiber-beam element in which the material 
model included the effect of the stiffened plate’s local buckling was proposed. Furthermore, the 
predicted ultimate load-carrying capacities of the thin-walled steel box piers were compared 
between the proposed method and the shell element based simulation. 
 
 
2.   VERIFICATION OF SHELL-ELEMENT BENCHMARK MODEL 
 
2.1  Specimen Configuration 
 
A cantilever steel column with uniform square cross section, subjected to a constant axial force and 
cyclic lateral loading, was given in the literature (Nishikawa et al. [10]). As shown in Figure 1, this 
column was stiffened by both longitudinal stiffeners and diaphragms. In the present study, the test 
results of the No.4 specimen (Nishikawa et al. [10]) are employed to calibrate the shell element 
based simulation. Its geometrical dimensions and material properties are listed in Tables 1 and 2. 
 

B
=

9
00

1
3

00

1300

b

D=4@225=900

bs

ts

a-a

3
17

3

3@
90

0=
27

00

Horizontal load

h

Vertical
load

a a

t

(Unit:mm)

StiffenerFlange

 
Figure 1. Test Specimen with Box Cross Section (Nishikawa et al. [10]) 

 
Table 1. Geometrical Parameters of Specimen 

h(mm) b(mm) t(mm) bs(mm) ts(mm) Rf λ  γ/γ* α sλ  P/Py 
3403 891 9.1 80 6.2 0.56 0.26 0.89 1.0 0.63 0.122
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Table 2. Material Properties of Specimen 

σy (MPa) 
E 

(GPa) 
ν E/Est 

379 206 0.3 100 
 
In Table 1, the flange plate width-thickness ratio (Rf) and the column slenderness ratio parameter 
( λ ) are the two important parameters, which control the inelastic cyclic behavior of the steel box 
columns. The former parameter inhibits the local buckling of the flange plate, while the latter 
determines the global instability. They are given as, 
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where, t is the plate thickness, b the flange plate width = B-t (B is the width of the cross section), σy 
the yield stress,   the Poisson’s ratio, E the Young’s modulus, k the buckling coefficient of a 
stiffened plate = 4n2 (n is the number of subpanels in each stiffened plate), h the column height and 
r the radius of gyration of cross section. 
 
The stiffener’s slenderness ratio, sλ , affects the deformation capacity of stiffeners and local 

buckling mode. It can be given as (Ge et al. [2]), 
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where Ld is the distance between two adjacent diaphragms, rs the radius of gyration of T-shape 
cross-section centered on one longitudinal stiffener with its width of b/n; and Q the local buckling 
strength of a plate enclosed by two adjacent diaphragms and stiffeners. Moreover, in Table 1, γ is 
the relative flexural rigidity of one stiffener and γ* is the optimum value of γ obtained from the 
linear buckling theory; α (=Ld/B) is the aspect ratio of the flange plate between two diaphragms; 
P/Py is the magnitude of axial load; bs the width of stiffener; and ts the thickness of the stiffener. 
 
2.2  Shell Element-based Model 
 
During the 1995 Hyogoken-Nanbu earthquake, for such thin-walled steel columns, the local 
buckling occurred near the base of the columns. Therefore, as shown in Figure 2, the beam element 
is employed for the upper portion of the column, while the shell element, which can consider the 
effect of the local buckling, is used for the lower portion of the column. For the part of shell 
elements, the length from the base to the first diaphragm is divided into 9 segments and the 
subsequent same lengths are divided into 5 segments along the column length. The length and 
width of the cross section are divided into 12 segments, respectively. The longitudinal stiffener and 
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the diaphragm are also simulated with the shell elements. On the other hand, 10 beam elements are 
adopted to model the upper part of the column. Taking advantage of the symmetry of the geometry, 
the loading and the boundary of the specimen within the test plane, only half of the column is 
simulated. Besides, a stiff plate with infinite bending stiffness is assumed in the interface between 
the beam-element part and the shell-element part, where the third diaphragm is located. 
 
In this simulation, both material and geometrical nonlinearities are considered. As shown in Figure 
3(a), the bilinear elastic-plastic material model is employed to model the plastic deformation. As 
the name suggests this model used two lines to represent the stress-strain curve: the slope of the 
first line is the initial Young’s modulus, E; and the slope of the second line is the post-yield 
modulus, Est, which is set as E/100 in this study. Furthermore, the bilinear kinematic hardening is 
used as the hardening rule, as shown in Figure 3(b). 
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Figure 2. Analytical Model of Steel Box Bridge Pier 
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(a)                                  (b) 
Figure 3. Stress-strain Behavior of Steel Material 

 
2.3  Comparison between Simulation and Experiment 
 
At the beginning of the test, a constant force, P, was applied on the top of the steel column. 
Subsequently, a cyclic loading pattern controlled by the imposed lateral displacement was used to 
conduct this experiment. As shown in Figure 4, the lateral displacement history consists of 
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sequence of full reversed displacement cycles and the peak displacements are increased stepwise 
with the increment, δy, after one cycle at each displacement level. 
 
The lateral load versus lateral displacement hysteretic curve of the column obtained from the 
simulation is plotted with the test results (see Figure 5). After obtaining the load-displacement 
curve, the yield lateral load, Hy, and the yield lateral displacement, δy, will be employed to 
non-dimensionalize the curves. Here, Hy is taken as the smaller one from the following two 
equations (Usami et al. [11]), 
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where My is the yield moment of cross section, PE the Euler’s buckling loading of a cantilever 
column and Pu the ultimate strength of a centrally loaded column, which is determined from the 
following equation adopted in the Japanese specification for road bridges [12]. 
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The yield displacement, δy, is then calculated from the following equation neglecting transverse 
shear deformation: 
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It can be seen that the strengths predicted by the shell element based model at each reversal point 
are quite close to the test results, that is to say, this model can excellently reflect the steel pier with 
the thin-walled stiffened box cross section. Therefore, this shell element based approach is used as 
the benchmark model to validate the proposed fiber-beam element based method in the following 
sections. 
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Figure 4. Lateral Displacement History    Figure 5. Comparison of Hysteretic Curves 
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2.4  Numerical Cases 
 
In order to compare the shell element based model with the beam element based model (i.e., the 

fiber model), twelve numerical cases of the thin-walled stiffened box piers were analyzed. The 

main parameters considered are: flange plate width-thickness ratio Rf, column slenderness ratio λ , 

stiffener’s slenderness ratio sλ . The scope of these parameters are Rf=0.5~0.8, λ =0.3~0.5 and 

sλ =0.534~0.935, respectively. Table 2 lists geometrical properties of numerical cases and Figure 

6(a) plotted their cross sections. The material properties of these cases are σy=314MPa, E=206GPa 

and v=0.3. As shown in Figure 6(b), the same shell element based analysis method and loading 

pattern were employed in this simulation. 

 

Figure 7 shows hysteretic curves of non-dimensionalized lateral load, H/Hy, versus lateral 

displacement, δ/δy. It can be concluded that both the strength and ductility slightly decrease with 

the increase in  . On the other hand, the maximum strength obviously decreases with the increase 

in Rf. 
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Figure 6. Shell Element Based Model of Numerical Cases 

 
Table 3 Geometrical Dimensions and Parameters of Numerical Cases 

No. 
h 

(mm) 
b 

(mm) 
t 

(mm) 
bs 

(mm) 
ts 

(mm) 
Rf   γ/γ* α s  P/Py 

Hy 
(kN) 

δy 
(mm) 

S1 7025 1461 20 133 20 0.5 0.3 1.0 1.0 0.53 0.17 2242 30.2 
S2 9366 1461 20 133 20 0.5 0.4 1.0 1.0 0.53 0.13 1760 53.4 
S3 11708 1461 20 133 20 0.5 0.5 1.0 1.0 0.53 0.11 1449 83.9 
S4 8463 1753 20 140 20 0.6 0.3 1.0 1.0 0.65 0.16 2506 34.5 
S5 11284 1753 20 140 20 0.6 0.4 1.0 1.0 0.65 0.13 1967 61.1 
S6 14105 1753 20 140 20 0.6 0.5 1.0 1.0 0.65 0.10 1619 96.0 
S7 9901 2045 20 146 20 0.7 0.3 1.0 1.0 0.78 0.15 2721 38.1 
S8 13201 2045 20 146 20 0.7 0.4 1.0 1.0 0.78 0.12 2136 67.5 
S9 16501 2045 20 146 20 0.7 0.5 1.0 1.0 0.78 0.10 1759 106.1 
S10 11338 2338 20 152 20 0.8 0.3 1.0 1.0 0.93 0.14 2890 41.0 
S11 15118 2338 20 152 20 0.8 0.4 1.0 1.0 0.93 0.11 2269 72.7 
S12 18897 2338 20 152 20 0.8 0.5 1.0 1.0 0.93 0.09 1869 114.2 
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 (a) S1~S3 (Rf =0.5)                    (b) S4~S6 (Rf =0.6) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) S7~S9 (Rf =0.7)                     (d) S10~S12 (Rf =0.8) 
Figure 7. Lateral Load versus Lateral Displacement Curves 

 
3.  SIMPLIFIED SEISMIC EVALUATION METHOD 
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Figure 8. Beam Element Based Model       Figure 9. Modified Stress-strain Relationship 

 
The pushover analysis method based on the fiber-beam element is proposed to evaluate the 
hysteretic behavior of the thin-walled stiffened box piers. As shown in Figure 8, this model has 20 
elements and the part with the height of 0.7B from the base, where the local buckling occurred, was 
divided by 3. As mentioned above, the effect of the local buckling cannot be considered in the beam 
element. Therefore, further modification of the bilinear material model is suggested. 
 
As shown in Figure 9, two additional stress-strain relationships are given. Case 1 is a bilinear 
stress-strain relationship employed in the previous shell element based simulation. In case 2, the 
yield stress, σy, was replaced by the buckling stress, σcr [12], which can be determined by, 
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Because of the same initial Young’s modulus, the buckling strain, εcr, can be calculated from σcr/E. 
Furthermore, the post-yield modulus, Est, can be given by, 
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where σm and εm are the local buckling stress and strain, respectively. The local buckling stress, σm, 
can be obtained from the following empirical formula [1], 
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and the local buckling strain, εm, is defined in this study as, 
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According to the above-mentioned equations, the material parameters of Case 2 for the different Rf 
are listed in Table 4. It should be noted that in the case of Rf=0.5, calculated value from Eq. 12 is σm 
= 304.58 < σy =314 MPa. In such a case, it is assumed to be the same as Case 1. Moreover, In Case 
3, after the buckling stress point, it yields under the constant stress. 
 

Table 4. Material Parameters of Case 2 
Rf σcr(MPa) εcr(×10-3) σm(MPa) εm(×10-3) E/Est 
0.5 314 1.52 — — 100 
0.6 282.6 1.37 287.6 2.74 56.25 
0.7 251.2 1.22 270.7 2.44 12.90 
0.8 219.8 1.07 253.7 2.13 6.48 

 
 
4.  NUMERICAL COMPARISON 
 
As described before, three bilinear stress-strain relationships were employed for the fiber-beam 
elements in the pushover analysis method. Figure 10 compared the horizontal force versus the 
horizontal displacement relationships of some numerical cases. The yield lateral load, Hy, and the 
yield lateral displacement, δy, were employed to make these curves dimensionless. Besides, the 
skeletons of the hysteretic relationships of the shell element-based simulation were given together. 
It can be seen that, from Case 1 to Case 2 and then to Case 3, the force-displacement curve moved 
downward. 
 
The ultimate points were assumed as the maximum strength and 95 percent of the maximum 
strength after the peak, respectively. Moreover, the authors suggested Eqs. 14 and 15 for calculating 
the ultimate compression strain εm (strain corresponding to the maximum bending moment Mmax ) 
and εu (strain corresponding to 95%Mmax after peak) achieved by the simulation of the stiffened box 
section under the compression and bending (Zheng et al. [13]). 
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The average strain of the outmost brink center of the three elements at the base, located on the 
effective failure length, is defined as εavg. When εavg reaches εm and εu, the corresponding 
displacements are defined as the ultimate displacements, δm and δu, respectively. In terms of the 
force-displacement curve, the corresponding forces are defined as the ultimate strengths, Hm and Hu, 
respectively. The required ultimate points (δm, Hm) and (δu, Hu) are shown in Figure 10. The 
comparisons of the ultimate points between the fiber-beam based model and the shell based model 
are shown in Figures 11 and 12. 
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(c) S8                                  (d) S12 

Figure 10. Comparison of Ultimate Values 
 
Figures 11(a), 11(c) and 11(e) compare Hm. When Case 1 is used as the fiber-beam’s material model, 
the deviations of eleven cases are below 10%, but the results of the fiber-beam based model are 
relatively larger than those of the shell based model (in the dangerous side). When Case 2 is 
employed, the deviations of all cases are below 20% and the results of the fiber-beam based model 
are in the safe side. Furthermore, Case 3 seems safe in comparison with Case 2, but the deviations 
of two cases are over 20%. Figures 11(b), 11(d) and 11(f) compare δm. The deviations of twelve 
cases employing Case 1 are all below 10%. On the other hand, although the deviations exceed 20% 
for the cases using either Case 2 or Case 3, both are confirmed safe. 
 
Figures 12(a), 12(c) and 12(e) compare Hu. When Case 1 is used, the deviation of one case exceeds 
20% and the others approach the 10％ line, but the results of the fiber-beam based model are 
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relatively large and locate in the dangerous side. When Case 2 is used, the deviations of all the 
cases are below 20% and the results are slightly large. When Case 3 is used, although the deviations 
of the two models exceed 20%, the results are in the safe side. Figures 12(b), 12(d) and 12(f) 
compare δu. When Case 1 is used, the deviations of six models exceed 20% and the results are 
relatively large. When Case 2 is used, the estimation accuracy was improved and the deviations 
were below 20% for all models. The accuracy of estimation is further improved for Case 3. 
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Figure 11. Comparisons of Hm and δm 
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Figure 12. Comparisons of Hu and δu 
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From Figures 11 and 12, the results achieved by using Case 2 are optimal when the maximum 
strength is taken as the ultimate point. On the other hand, the results achieved by using Case 3 are 
optimal when the 95% of the maximum strength after peak is regarded as the ultimate point. 
 
 
5.  CONCLUSIONS 
 
The conclusions of this study can be given: (1) it’s confirmed that the shell element based model 
employing the bilinear kinematic hardening relation can effectively reflect the thin-walled stiffened 
box steel piers; (2) Strength and ductility of thin-walled stiffened box sectional steel bridge piers 
can be accurately predicted using the proposed pushover method based on the fiber-beam element. 
it is advised to adopt the modified bilinear material model (Case 2), in which the yield point is 
replaced by the buckling stress, when the maximum strength is taken as the ultimate point; and (3) 
in addition, it is advised to adopt the elastic-perfectly plastic material model (Case 3) when the 95% 
of the maximum strength after the peak is regarded as the ultimate point in the proposed method. 
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