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Abstract 

In this paper, a reinforcement learning model is proposed that can maximize the predicted binding affinity between 
a generated molecule and target proteins. The model used to generate molecules in the proposed model was the 
Stacked Conditional Variation AutoEncoder (Stack-CVAE), which acts as an agent in reinforcement learning so that 
the resulting chemical formulas have the desired chemical properties and show high binding affinity with specific 
target proteins. We generated 1000 chemical formulas using the chemical properties of sorafenib and the three target 
kinases of sorafenib. Then, we confirmed that Stack-CVAE generates more of the valid and unique chemical com-
pounds that have the desired chemical properties and predicted binding affinity better than other generative models. 
More detailed analysis for 100 of the top scoring molecules show that they are novel ones not found in existing 
chemical databases. Moreover, they reveal significantly higher predicted binding affinity score for Raf kinases than for 
other kinases. Furthermore, they are highly druggable and synthesizable.

Keywords:  De novo drug design, Reinforcement learning, Conditional Variational AutoEencoder, Sorafenib, Raf 
kinases

Background
The goal of drug discovery is to identify novel molecules 
with desired chemical or pharmacological properties. 
However, the search space for identification of such mol-
ecules is vast and discontinuous, which makes drug dis-
covery difficult and costly [1]. To address this problem, 
many computational methods have been studied [2] and 
Computer-Aided Drug Discovery (CADD), such as Vir-
tual Screening and Structure/Ligand-Based Drug Design, 
have been applied for drug discovery [3–5].

Recently, various deep generative models have been 
proposed and used to solve a variety of problems in drug 
discovery [6]. Many deep learning-based drug discovery 

studies express the chemical structure using the Simpli-
fied Molecular Input Line Entry System (SMILES) [7]. 
Models for generating SMILES expressions of chemicals 
include Recurrent Neural Network (RNN)-based models 
[8–10], Generative Adversarial Network (GAN)-based 
models [11], and AutoEncoder (AE)-based models [12–
15] and their combinations.

The RNNs and their variations are powerful genera-
tive models, especially in natural language processing. 
Because SMILES is a string of characters, it is also effec-
tive for SMILES generation. However, while RNN is 
suitable for a training set, it may have limited ability to 
generate novel chemicals that are significantly different 
from the training set [10]. For this reason, RNNs and 
their variations are often used as the generators of GAN, 
or decoders and encoders of AE. For example, Guima-
raes et al. [16] proposed a sequence-based GAN frame-
work named objective-reinforced generative adversarial 
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network (ORGAN). In this model, a CNN model was 
used as the discriminator to classify tests, and an RNN 
model with LSTM units was used as the generator.

GANs often give better results than other generation 
methods. However, a GAN has two main problems. First, 
a GAN is hard to converge and is unstable. For successful 
training of GAN-based models, a relatively large amount 
of computing and human effort is required. Another 
problem is the mode collapse problem. Generators of 
GAN-based models are trained to deceive the discrimi-
nator and cannot capture multimode distributions of real 
data [17].

Compared to GAN, an AE and its variations are rela-
tively easy to train. For drug design, the encoder and 
decoder of AEs and their variations such as VAE (Varia-
tional AutoEncoder) and CVAE (Conditional Variational 
AutoEncoder) are often implemented using RNNs and 
their variations. A SMILE string can be generated by put-
ting latent vectors made by the encoder into a decoder 
and using a predictor to measure the chemical proper-
ties [8]. A new molecule with the desired properties can 
be created by attaching conditions to the input data and 
latent vectors [9].

Meanwhile, reinforcement learning can be used to fine-
tune pre-trained models [12–14, 18–20].In ReLeaSE [13], 
the policy to select a behavior is a generation model that 
is implemented using a stack-augmented RNN (Stack-
RNN). The reward to learn policies is measured through 
the properties of the generated chemicals, and the gen-
erated model is retrained to have the desired chemical 
properties. PaccManRL [14] applied reinforcement learn-
ing to create an effective anticancer drug structure for 
given transcriptomic profiles. PaccManRL is trained to 
maximize a reward that is calculated by a drug sensitivity 
prediction model called PaccMann [15]. Olivecrona et al. 
[20] proposed a reinforcement learning model to gen-
erate drugs similar to existing drugs. This model meas-
ures the similarity between a specific drug and SMILES 
produced by the model and is trained to maximize the 
similarity. Liu et al. [18] introduced an RNN model with 
an exploration strategy. This model was trained with a 
reward that is created by a pre-trained predictor to pre-
dict whether the molecules generated are active or not.

The proposed method exploits not only the chemi-
cal properties of molecules but also the binding affinity 
between molecules and target proteins, that is, to where 
molecules should or should not bind. For a generative 
model, we designed Stack-CVAE, which applies Stack-
RNN [19] to CVAE. We can input the desired chemical 
properties such as molecular weight, LogP, and the topo-
logical polar surface area (TPSA) [21] into Stack-CVAE. 
Then reinforcement learning is used to maximize or min-
imize the binding affinity calculated using DeepPurpose 

[22], and to maximize RAscore [23] to increase the syn-
thesizability of the generated drugs.

In this study, we aimed to generate structures of a tar-
geted anticancer drug of which indications and chemi-
cal properties are equivalent to or better than those of 
sorafenib. To achieve this goal, we first pre-trained Stack-
CVAE using 1.5 million chemicals in the ChEMBL data-
base [24] with the molecular weight, LogP, and TPSA of 
sorafenib. Then reinforcement learning was performed 
to maximize the RAscore and binding affinity score to 
sorafenib target Raf kinases (A-Raf, B-Raf, and C-Raf). 
Reinforcement learning was also used to minimize the 
binding affinity to sorafenib non-target kinases (ERK-1, 
MEK-1, EGFR, HER-2, IGFR-1, c-met, PKB, PKA, CDK1, 
PKCα, PKC γ, and pim-1) [25].

We generated 1000 chemical formulas and confirmed 
that Stack-CVAE generates more of the valid and unique 
chemical compounds that have the desired chemical 
properties and predicted binding affinity than other gen-
erative models do. For more detailed analysis, we selected 
100 of the top scoring molecules from among 1000 mol-
ecules. The top 100 molecules are novel ones not found 
in existing chemical databases and have significantly 
higher binding affinity for Raf kinases. Their Druglike-
ness (DL), TPSA, and calculated LogP (cLogP) are similar 
to those of pre-existing drugs, and in silico ADME and 
toxicity profiles show that they are druggable. Further-
more, the synthetic accessibility (SA) score was compara-
ble to those of approved drugs, which shows that they are 
synthesizable.

Methods
Conditional variational autoencoder with Stack 
augmented RNN (Stack‑CVAE)
We designed a novel generative model, Stack-CVAE, that 
combines stack-RNN with CVAE to generate structural 
expressions in SMILES. Stack-CVAE is based on CVAE, 
which produces substances similar to, but not the same 
as, the substances used for training. The objective func-
tion of CVAE is as follows:

In formula (1), Q(z|X , c) and P(z|c) approximate the 
probability distributions of an encoder and a decoder, 
respectively. The term DKL is the Kullback–Leibler diver-
gence, and X and z indicate input data and latent spaces, 
respectively. Here, the term c indicates a condition vector 
that is associated with encoding and decoding.

The biggest difference between Stack-CVAE and CVAE 
is that CVAE uses regular RNN, LSTM, or GRU, and 
Stack-CVAE uses stack-augmented RNN (Stack-RNN). 
Stack-RNN is an augmented recurrent network with 
structured and growing memory. Stack-RNN has three 

(1)E[logP(z, c)]− DKL[Q(z|X , c)�P(z|c)]
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operations. The POP operation deletes an element of a 
stack; the PUSH operation adds a new element to the top 
of a stack; and the NO-OP operation does not do any-
thing. One of three operations is selected at each time 
step by a three-dimensional variable at , which is calcu-
lated using a hidden variable ht as in formula (2).

In formula (2), A is a 3×m matrix ( m is the size of the 
hidden layer) and f  is a Softmax function. We denote 
at [PUSH ] by the probability of the PUSH operation, 
at [POP] by the probability of the POP operation and 
at [NO − OP] by the probability of the NO-OP opera-
tion. The stack is stored in a vector st with size p at time t, 
and p is not fixed in order to increase the capacity of the 
model. The top element is stored in position 0 with value 
of st [0] . The PUSH operation adds a new element to the 
position 0 as in formula (3).

where D is 1×m matrix. If at [POP] is equal to 1, the top 
element is popped and all the other elements are moved 
up one position. If at [PUSH ] is 1, all elements are moved 
down one position and the new element is added to the 
top of the stack. If at [NO − OP] is 1, the stack is not 
changed. Similarly, for an element stored at a depth > 0 in 
the stack, elements in the previous stack are stored in the 
current stack as in the formula (4).

An element of a stack is propagated to the next hidden 
layer, which is calculated by formula (5).

In formula (5), P is m× k matrix, skt−1 is a top element 
of the stack of time point t-1, and k is the size of an ele-
ment. Because Stack-RNN is an RNN of which a cell has 
a stack structure, it has strength to learn longer and more 
complex data. Stack memory increases the probability of 
generating valid SMILES because RNN without a stack 
structure cannot learn ring structure or brackets. Fur-
thermore, RNN without stack structure tends to gener-
ate SMILES that are similar to the training SMILES [16]. 
Because Stack-CVAE uses Stack-RNN as its encoder, the 
proportion of valid and unique SMILES of Stack-CVAE 
can be higher than that of CVAE of which the encoder is 
an RNN, GRU, or LSTM. We used GRU as a decoder. The 
model is depicted in Fig. 1.

(2)at = f (Aht)

(3)
st [0] = at [PUSH ]σ(Dht)+ at [POP]st−1[1]+ at [NO − OP]st−1[0]

(4)
st [i] = at [PUSH ]st−1[i − 1]

+ at [POP]st−1[i + 1](i > 0)

+ at [NO − OP]st−1[i]

(5)ht = σ

(

Uxt + Rht−1 + Pskt−1

)

First, the ’<’ character, which indicates the start of a 
SMILES, is put in front of the SMILES string, and the ’>’ 
character, which indicates the end of a SMILES, is put at 
the end of a SMILES string. When input SMILES is put 
into the generation model, an embedding vector is gener-
ated and combined with a pre-produced condition vector 
to generate an input matrix. The condition vector is made 
by calculating the molecular weight, LogP, and TPSA of 
input the SMILES using RDkit [26]. The input matrix 
generated is input to the encoder of the Stack-CVAE and 
converted into a latent vector. The process for generat-
ing a latent vector is illustrated in Fig. 1a. The encoder of 
Stack-CVAE used a 3-layer Stack-RNN with 512 hidden 
nodes, a stack-width of size 50, a stack-depth of size 10, 
and a 3-layer GRU with 512 hidden nodes as a decoder. 
The cross entropy was used as the cost function of the 
reconstruct error, and a linear neural network was used 
for each output of the decoder cell.

A generated latent vector is combined with the condi-
tion vector and input to the decoder. Finally, the output 
of the decoder generates a distribution of the probability 
that each token will be selected through Softmax and the 
decoder is trained to predict a token correctly. This pro-
cess is illustrated in Fig. 1b.

After training, a new molecule can be generated using 
the generator, that is, the decoder of stack-CVAE. When 
the start token ’<’ is entered, the decoder generates a new 
token. A generated token is re-entered into a decoder and 
this process is repeated until a decoder generates an end 
token ’>’. This process is illustrated in Fig. 1c.

Reinforcement learning for drug properties
In the pre-training stage, the Stack-CVAE model learns 
the rules of SMILES given conditions such as molecular 
weight, LogP, and TPSA. Then, reinforcement learning is 
applied to the pre-trained Stack-RNN model to generate 
a new chemical compound with the desired properties. 
In reinforcement learning, an agent determines a behav-
ior according to a policy that specifies the probability of 
taking an action in a state. An environment then rewards 
an agent, and an agent is trained based on rewards. Rein-
forcement learning is performed to maximize accumu-
lated rewards returned by an environment.

In the proposed model, an agent corresponds to a 
decoder of stack-CVAE, and a policy is a probability 
distribution of a decoder of stack-CVAE to generate 
tokens. An action and a state of an agent mean creating 
one token and a generated token, respectively. When all 
actions are completed, a chemical formula in the form of 
SMILES is generated, and the reward is measured by cal-
culating the RAscore and binding affinity of the SMILES 
generated.
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More specifically, a state of a policy means the cur-
rent token. If a current token is combined with the 
latent vector z generated using a random value from a 
normal distribution with mean = 0 and sd = 1, and put 
into a decoder of stack-CVAE, then the probability dis-
tribution for the next token given the latent vector z is 
calculated. The next token is sampled according to the 
probability distribution, and this process is repeated 
until the ending character ’>’ is generated. Until then, 
the reward is zero, and an environment calculates 
reward based on two predicted properties of the gener-
ated SMILES.

The first property is the predicted Retrosynthetic 
Accessibility score (RAscore), which is calculated by a 

synthesis planning tool, AiZynthFinder [27]. RAscore 
is a coefficient indicating the synthesis possibility and 
has the value 1 if synthesis is possible, and 0 if not. The 
reward by RAscore is reward1 and is calculated by for-
mula (6).

The second property is the binding affinity of the pro-
duced SMILES to the target proteins. The binding affin-
ity was calculated using DeepPurpose. For multiple 
target proteins, binding affinities were averaged. We 
had two groups of target proteins, group A and group D. 
Group A included target proteins that should bind to the 

(6)reward1 =

{

1, if RAscore = 0

RAscore × 5+ 1, otherwise

Fig. 1  Training and generation steps: Training steps of encoder and decoder of stack-CVAE are shown in a and b, respectively. Generation of SMILES 
by a decoder of stack-CVAE is shown in c 
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generated SMILES, and group D included target proteins 
that should not bind to the generated SMILES. The aver-
aged binding affinity for group A and D is affA and affD, 
respectively. The reward by the binding affinity to group 
A is reward2 and is calculated by formula (7).

Reward by binding affinity to group D is reward3, and 
is 6, if affD < 5.5 and 1, otherwise. The entire reward is a 
sum of reward1, reward2, and reward3.

A decoder of stack-CVAE is trained to increase the 
reward and decrease loss, which is calculated by formula 
(8).

In formula (8), T  means the length of the generated 
SMILES string, and y is the probability that the (t + 1) th 
token appears. Discount reward is reward multiplied by a 
discount rate, which we set to 0.1. The overall reinforce-
ment learning process is illustrated in Fig. 2.

Results and discussion
Model performance
The Stack-CVAE model was trained with 1,499,939 
SMILES data collected from the ChEMBL database. The 
length of the SMILES strings was limited to < 100, and 
molecular weight was limited to between 150 and 500. 
After pre-training, we generated 10,000 SMILES strings 
and found 6,463 SMILES strings among them that were 
valid.

In this study, we generated SMILES that show not only 
specific binding to Raf kinases, but also have properties that 
are equivalent to or better than those of sorafenib, a Raf 
kinase inhibitor. Sorafenib is a multikinase inhibitor and is 
known to inhibit Raf as well as other kinases [25, 28–31]. 
Recent studies show that sorafenib has inhibitory activity 

(7)reward2 =

{

(affA− 4)2 + 1, if affA > 5
1, otherwise

(8)Loss = −

T−1
∑

t=0

log
(

y
)

× discount reward

on more than 99 kinases at clinically relevant concentra-
tions [32, 33]. This property may not only reduce the ther-
apeutic efficacy of sorafenib, but could also cause toxicity 
due to increased drug use. Therefore, it is crucial to develop 
therapeutic drugs that can only target Raf kinases (i.e., on-
target) rather than non-Raf kinases (i.e., off-target). To this 
end, we used a Stack-CVAE model to make Raf kinase-
specific SMILES. We used three Raf kinases (A-Raf, B-Raf, 
and C-Raf) as sorafenib targets and ten non-Raf kinases 
(ERK-1, MEK-1, EGFR, HER-2, IGFR-1, c-met, PKB, PKA, 
CDK1, PKCα, PKCγ, and pim-1) as non-sorafenib targets.

Because Stack-CVAE is based on CVAE and Stack-RNN, 
we performed reinforcement learning and compared 
results using pre-trained Stack-CVAE, CVAE, and Stack-
RNN as a policy. We also used SSVAE [34] and cRNN 
[35] as a policy for a comparison test. Figure 3 shows that 
loss and reward of three generation models decreases and 
increases, respectively, as training epochs increase.

After reinforcement learning with 500 epochs, we gen-
erated 1000 SMILES strings for Stack-CVAE, CVAE, and 
Stack-RNN. The results are summarized in Table 1, which 
shows that, although Stack-RNN has higher probability of 
valid molecules, Stack-CVAE has much higher probability 
of valid and unique molecules than other algorithms do. 
Moreover, we can see that Stack-RNN generates molecules 
that are the same as the training molecules.

Stack-CVAE can generate a greater number of valid and 
diverse molecules. However, diverse molecules would be 
meaningless if they do not show the desired properties. 
To show the proportion of molecules that show desired 
properties, we calculated the number of SMILES strings 
of which binding affinity to on-targets and off-targets, 
RAscore, molecular weight, logP, and TPSA values fell 
within 10% range of those of sorafenib (among the valid 
and unique SMILES not in training data for Stack-CVAE, 
SSVAE, cRNN, CVAE, and StackRNN). Table 2 shows the 
summarized results. Compared to CVAE, Stack-CVAE has 
higher probability of generating molecules with the desired 
properties, except for on-target binding affinity. SSVAE and 
cRNN show higher probability on RAscore, LogP, Molecu-
lar Weight and/or TPSA compared to Stack-CVAE, but the 
number of molecules is far less than that of Stack-CVAE.

Quantitative and qualitative analysis of the top 100 scoring 
molecules
We scored 1000 molecules according to the formula (9).

where mw, logP, and TPSA are 0–1 scaled differences 
of molecular weights, logP, and TPSA of sorafenib and 
generated molecules, respectively. The items bindA and 

(9)

score =
1

(0.3×
mw+logP+TPSA

3 + 0.7× bindA+1−bindD+1−RAscore
3 )

Fig. 2  Pipeline of the reinforcement learning model for novel 
molecule generation
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bindD are 0–1 scaled values of an average binding affinity 
between a generated molecule and on-target and off-tar-
get proteins, respectively. Molecules with high scores are 
likely to have more chemical properties similar to those 
of sorafenib. We selected 100 of the top scoring mole-
cules and performed more detailed analysis. The top 100 
molecules are shown in Additional file 1: Fig. S1.

First, we checked the novelty of the top 100 molecules. 
Figure  4a and b show that the top 100 molecules are 

Fig. 3  Loss and reward graphs of different generative models: Loss and Rewards graphs of stack-CVAE (a), CVAE (b), SSVAE(c), stack-RNN (d) and 
cRNN (e)

Table 1  Proportion of valid and unique molecules

% of 
valid 
SMILES

% of valid and 
unique SMILES

% of valid and unique 
SMILES not in training 
data

Stack-CVAE (%) 98.1 81.1 81.1

CVAE (%) 98.1 39.9 39.9

SSVAE (%) 98.8 16.6 16.6

Stack-RNN (%) 100 1.5 1.2

cRNN (%) 99.7 25.2 25.2

Table 2  Molecules having desired properties among valid and unique SMILES not in training data

Stack-CVAE SSVAE cRNN CVAE Stack-RNN

Binding Affinity on on-target proteins 652 (80.39%) 133 (80.12%) 145(57.54%) 368 (92.23%) 11 (91.67%)

Binding Affinity on off-target proteins 810 (99.88%) 139 (83.73%) 236(93.65%) 392 (98.25%) 12 (100%)

RAscore 566 (69.79%) 158 (95.18%) 248(98.41%) 198 (49.62%) 1 (8.33%)

Molecular Weight 532 (65.60%) 147 (88.55%) 198(78.57%) 134 (33.58%) 0 (0%)

LogP 623 (76.82%) 129 (77.71%) 180(71.43%) 238 (59.65%) 0 (0%)

TPSA 594 (73.24%) 138 (83.13%) 194(76.98%) 278 (69.67%) 0 (0%)
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dissimilar to sorafenib and 1,585 FDA-approved drugs, 
respectively. We also checked that the top 100 molecules 
did not overlap with 9,309 DrugBank [36] drugs and 
1,585 FDA-approved drugs within the similarity limit of 
90%. All drug data were downloaded from DataWarrior 
5.5.0 [37].

Next, we verified whether the top 100 molecules are 
specific to Raf kinases (Group A) only. Figure 5b shows 
that, even though sequence and structure homology of 
the kinase domains are high, the binding of the top 100 
molecules is specific to Raf kinases, but not to other 
kinases (Group B and D). Group B kinases are known 
to be inhibited by sorafenib. However, the top 100 mol-
ecules show higher binding affinity to Raf kinases than 
that of Group B kinases. This result was further con-
firmed by structure-based molecular docking analysis, 
which showed that the top 100 molecules exhibit more 
favorable interaction with B-RAF (Group A) than with 
Group B or Group D (Fig.  5c). Taken together, these 
results indicate that the proposed model can signifi-
cantly reduce off-target drug interaction.

We also found out whether the top 100 molecules 
are druggable. Figure  6a, b and c show that Druglike-
ness (DL), topological polar surface area  (TPSA), and 
calculated logP (cLogP) of the top 100 molecules are 
comparable to those of pre-existing DrugBank and 
FDA-approved drugs.

We evaluated whether the top 100 molecules have 
more desirable ADME (Absorption, Distribution, 
Metabolism, and Excretion) profiles when compared 
with FDA-approved drugs using ADMETlab2.0 [42]. 
Among 23 classified models, seven representative 
models were included in Fig.  7. The overall ADME 
profile of the top 100 molecules shows similarity to 
FDA-approved drugs. Specifically, the top 100 mole-
cules have distribution and excretion profiles similar to 
those of FDA-approved drugs. Furthermore, their eval-
uation scores for distribution and excretion are excel-
lent (Fig. 7b and d). On the other hand, the evaluation 
score for absorption and metabolism is moderate and 
slightly poor, respectively (Fig. 7a and 7c).

We also performed in silico toxicity profiling analysis. 
Toxicity data of chemical molecules were obtained from 
Gadaleta et  al. [43]. Figure  8a shows that the chemical 
acute toxicity of the top 100 molecules was a little higher 
than non-toxic drugs and FDA-approved drugs, but still 
very much lower than toxic drugs. Figure  8b shows in 
silico pharmacological profiling and assessment of the 
potential interaction for 64 toxicity off-targets, and we 
can observe that the profiles of the top 100 molecules are 
similar to non-toxic drugs rather than to toxic drugs. In 
silico pharmacological profiles were created by ToxPro-
filer [44]. Figures  6, 7, and 8 all show that the top 100 
molecules are highly druggable.

Fig. 4  Novelty of the top 100 molecules: Structures of the top 100 scoring molecules are not similar to that of sorafenib (a) and FDA-approved 
drugs (b), within a similarity limit of 95%. The top 100 scoring molecules do not overlap DrugBank and FDA-approved drugs within a similarity limit 
of 90% (see c). All analyses were performed using DataWarrior 5.5.0
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Finally, we checked whether the top 100 molecules 
are synthesizable. Figure  9a shows that the Synthetic 
Accessibility (SA) scores of the top 100 molecules 
are slightly higher than those of DrugBank drugs and 

FDA-approved drugs; nevertheless, the SA scores of 
the top 100 molecules exist within the acceptable range 
based upon previous publications [46]. Drugs for com-
parison were selected according to their molecular 

Fig. 5  Binding specificity of the top 100 molecules: List of kinase proteins used for study is shown in a. Binding of the top 100 molecules is specific 
to Raf kinases, but not to other kinases (see b). Binding specificity is confirmed by molecular docking [38, 39] (see c). Box and Violin plots are drawn 
by BoxPlotR [40] and PlotsOfData [41], respectively

Fig. 6  Comparison of druggability: Distribution of Druglikeness (a), Topological polar surface area (TPSA) (b), and Calculated logP (c) of DrugBank 
drugs, FDA-approved drugs, and the top 100 molecules. Violin plot drawn by PlotsOfData
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weight (300 < MW < 600). Figure  9b shows that 19, 56, 
and 15 drugs among the top 100 molecules can be syn-
thesized in 2, 3, and 4 steps, respectively, through solved 
retrosynthetic pathways [47]. Further analysis shows 

that the top 100 molecules with fewer steps have good 
RA scores (Fig. 9c). Taken together, these results suggest 
that 90 out of 100 molecules can be synthesized using 
chemical reactions.

Fig. 7  In silico ADME profiles: Profiles of Absorption (a), Distribution (b), Metabolism (c), and Excretion (d). Violin plot drawn by PlotsOfData

Fig. 8  In silico toxicity profiles: Acute oral toxicity (median lethal death, LD50) prediction was calculated by Xu et al. [45] (see a). In silico 
pharmacological profiling and assessment of the potential for off-target interactions of drugs are shown in b. Heatmap and violin plot are drawn by 
PlotsOfData and ToxProfiler, respectively
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Conclusions
For this study, we proposed a reinforcement learning 
model that could maximize the predicted binding affin-
ity between a generated molecule and target proteins, 
while existing methods mainly consider the chemical 
properties of the created molecules. The agent of the 
proposed reinforcement learning model is Stack-CVAE, 
and policy is a probability distribution of the decoder of 
stack-CVAE. The rewards are measured using the syn-
thesizability of the generated molecules and the bind-
ing affinity between the generated molecules and the 
target proteins, and the model is trained to increase the 
rewards.

After the model was trained, we generated 1000 
chemical formulas using chemical properties and the 
three Raf target proteins of sorafenib. The proportion 
of valid and unique chemical compounds of Stack-
CVAE is higher than that of other generative models. 
The proportion of chemical compounds that have the 
desired chemical properties (such as molecular weight, 
logP, TPSA, and RAscore) and higher binding affinity 
of Stack-CVAE is also higher. Further quantitative and 
qualitative analysis of the top 100 scoring molecules 
shows that they are novel and have higher binding affin-
ity for Raf proteins than for other proteins. This 100 of 
the top scoring molecules are also highly druggable and 
synthesizable.
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