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We present the solution of Klein Gordon equation with new generalized Morse-like potential using SUSYQM
formalism. We obtained approximately the energy eigenvalues and the corresponding wave function in a
closed form for any arbitrary / state. We computed the numerical results for some selected diatomic molecules.
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Introduction

In quantum mechanics, the study of exact solutions of
relativistic and non-relativistic equation with different
potentials plays a significant role in Physics.!”> The bound
state solution of Klein Gordon equation (KGE) is of great
important in nuclear and high energy physics.® Klein Gordon
equation is a relativistic wave equation that describes spin-
zero particles. It contains of two major objects, the vector
potential V(r) and the scalar potential S(7). In D-dimension,
the Klein Gordon equation’ is written as
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where E,; is the energy and m is rest mass.”® However,
different authors have adopted several techniques to obtain
the exact or approximate solutions of KGE with various
potential interactions. These techniques include asymptotic
iteration method (AIM),’ the Nikiforov-Uvarov method
(NU),'® supersymmetric quantum mechanices,'' and others.
Amongst the potentials studied with these techniques are the
Manning-Rosen Potential,'>'* Hulthen Potential,'*'*> Eckart-
type Potential,'*!” Wood-Saxon Potential,'®'* Poschl-Teller
Potential.** Many contributions from different authors shows
that the analytical solution of KGE are possible only in the s-
wave case (/=0) while for /%0, it is solved by using
suitable approximation scheme.?'”> The Morse Potential is
one of the known potentials model used in describing
diatomic molecules. It given as
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Where D, is the dissociation energy, ry is the equilibrium

internuclear distance and a is a parameter controlling the
width of potential well.”* Nevertheless, several authors have
done investigations with this potential, Berkdemir investi-
gated Pseudospin symmetry in relativistic Morse potential
including the spin-orbit coupling,®® Jia er al. studied Equi-
valence of the deformed Rosen-Morse Potential energy
model and Tietz potential energy model,>* Zarezadeh et al.
investigated the solution of the Schrodinger wave equation
for a particular form of Morse Potential using Laplace
transform,” Erkol er al. studied the Exact solutions for a
Hamiltonian with Morse Potential and Dirac Delta shell
interactions.”®

In this work, we introduced a novel potential and call it the
New Generalized Morse-like potential (NGMP) model re-
cently proposed by Ikot et al.*’ having the same behaviours
as MP, attractive radial potential and Deng-Fan potential
models. It is defined as
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Figure 1. Behavior of potentials for a=0.01 fm™, a=1,b=-2,¢
=1,d=-1,D,=-0.8 fm™".
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where a, b, ¢, d, are constant coefficients and the term in the
bracket is the Mobius square potential proposed recently
(see Fig. 1).

The purpose of our work is to investigate the Solution of
Klein Gordon equation for some diatomic molecules with
NGMP using Supersymmetry Quantum mechanics.

Klein-Gordon in D-dimension

The Klein-Gordon equation in higher dimension for spheri-
cally symmetric potential reads,?>>

~Ap W1, Q2p) = {[E,. = V() = [m+S()} W17, Q2p)
(4)

Where E,;, m, V(r) and S(r) are the relativistic energy ,rest
mass, the repulsive vector potential and the attractive scalar
potential respectively and Ap is defined as
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The total wave function in D-dimension is written as,
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The term A,z)(Q D)/ /¥ is the generalization of the centrifugal
term for the higher dimensional space. The eigenvalues of
AZD(Q p) are defined by the relation,

ANQp)Y](Qp) = I(I+ D-2)Y'(Qy) ™)

Where Y;'(Qp),R,, and [ represent the hyperspherical
harmonics, the hyperradial wave function and the orbital
angular momentum quantum number respectively.

o (D-1)
Now substituting ansatz R, (r)=r 2 F,(r) for the
wave function into Eq. (4) yields,
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Solutions of the Radial Klein-Gordon Equation
in D-dimension

Now considering equal scalar and vector potentials as the
NGMP, S(r) = V(r) in Eq. (7), we obtain the second order
Schrodinger-like equation For equal scalar and vector potentials
V(r) = S(r), substituting Eqn. (3) into Eqn. (1), we have

2 —ar~ 2
[% + B = 2(E,+mD,1 ([ )
dr c+de
_(DF2[+1)(D+2/+3)
4r°

[ =0 ©)

Cecilia N. Isonguyo et al.

10|
{1

ol
] ll — — 1P

6 + . C2Pe?™

w |l

114

o 1

0_ T T 1
0 2 4 6 8 10

Figure 2. The centrifugal term (1//%) and its approximation for
a=001fm, c=1,d=-1.

The good approximation for the centrifugal term is given

as,28
ce—ar 2
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where ¢ =—d, Eq. (10) gives a good approximation for the
centrifugal term (see in Fig. (2)). When performing a power
series expansion and setting a—>0 gives the desired
suggested by Greene and Aldrich.”

Now, Substituting Eq. (10 ) into (9) we have,
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Furthermore, we can rewrite Eq. (11) as follows:
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To be able to solve Eq. (12), we have to solve the associated
Riccati equation

WA (r) T W'(r) =V, (r) — Eou, (18)
for which we propose a solution of the form
O P —— (19)
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Substituting Eq. (19) into Eq. (18), we get
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Solving Eq. (20), we obtain the following three set of
parameters
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Now based on Eq. A.2, we can obtain the supersymmetric
partner potentials as,
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Therefore, it is shown that V() and V,, (r) are shape
invariant, satisfying the shape-invariant condition

Vi, po) = V(r, p) + R(p1), (25)

with gy =fand p is a function of py, i.e p;= (o)) = p, + da
Therefore, p, = p, + (£%2) . Thus, we can see that the shape
invariance holds via a mapping of the form f—f+ @‘3.
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From Eq. (A.5), we have
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The energy eigenvalues can be obtained as follows
Ey=Eu+Eqy, (27)
where,
2.2 2.2
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By substituting Egs. (23) and (28) into Eq. (27), We have
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More explicitly, we obtain the energy equation for the Klein
Gordon equation with NGMP as

EZ
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Furthermore, in order to calculate the radial wave function
we used the coordinate transform, s = ¢"*" in Eq. (12) to get,
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The corresponding radial wave function is obtain from Eq.
(33) as follows,
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where N,y is the normalization constant

In order to test for the accuracy of our work, we use the
potential parameters given in Ref. [30] Table 1 to compute
the energy eigen values for some diatomic molecules of HF>,
Na, I, H> and O; as shown in Tables 2-16, where we have
chosen 7 =1 in our calculation.

Conclusion

In this work, we solve the Klein Gordon Equation for
NGMP with proper approximation to the centrifugal term
using the SUSQM technique. We obtain explicitly, the
bound state energy eigenvalues and the corresponding wave
function in a closed form. We employed the Aldrich and
Greene approximation scheme® to deal with centrifugal
term in d-dimension. However, one may find the improved
approximation scheme in Ref. [31,32] for comparison.
Finally, we computed the energy eigenvalues of our work
numerically in order to check the accuracy of our results and
our result may find many applications in molecular and
chemical physics. As compared to the one reported by Chen
et al.*® in D-dimension
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