
DOI: 10.4018/ijismd.315025

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Design Methodology for Modeling
Flexible Business Processes
Imen Ben Said, University of Sfax, Tunisia*

Mohamed Amine Chaabane, MIRACL, ISAAS, University of Sfax, Tunisia

Rafik Bouaziz, MIRACL, FSEGS, University of Sfax, Tunisia

 https://orcid.org/0000-0001-5398-462X

ABSTRACT

Business process flexibility is a major challenge since it is crucial to consider the current environment,
which is becoming very fluctuating, and to adapt processes accordingly. To deal with this issue,
version-based approach is recognized as a key notion. This approach allows defining several versions
for each process to take into account the significant changes occurring to this process while keeping
track of updates. Several contributions have proposed solutions based on versions to deal with process
flexibility. However, to the authors’ knowledge, none of them offered a version derivation approach
under a design methodology to help designers to model and handle versions of processes. So, this
paper recommends a design methodology based on versions, including a derivation approach to create
new versions based on previously modeled ones.

KeywoRDS
Alternative, Approach, BPMN, Business Process, Context Awareness, Derivation, Editor, Elolution, Flexibility,
Methodology, Versions

1. INTRoDUCTIoN

Nowadays organization’s business environments become more and more complex, dynamic, and
evolving due to internal and external factors such as economic changes, technologic innovations and
sanitary conditions. So, disturbances can affect their business routines, requiring Business Processes
(BP) capable of adapting to frequent changes. Thus, for surviving in such environment, organizations
have to face an important issue in Business Process Management (BPM) area; it’s about the Business
Process Flexibility (Barba et al., 2021; Jemal et al., 2018; van Eck et al., 2015).

Business Process flexibility is defined as the ability of a business process to accommodate
organizational, functional and/or operational changes occurring in its operating environment (Chaâbane
et al., 2010). In order to feature this requirement, several taxonomies have been proposed in the

https://orcid.org/0000-0001-5398-462X

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

2

literature. The more suitable one is given in (Reichert & Weber, 2012). This taxonomy highlights
two different times when process flexibility is considered: flexibility at design-time, which refers
to foreseeable changes that can be taken into account in modeled process schema, and flexibility at
run-time, which refers to unforeseeable changes occurring during process executions. In addition,
this taxonomy identifies four needs of flexibility: (i) variability, for representing a process differently,
depending on the context of its execution, (ii) adaptation, for handling occasional situations or
exceptions which have not been necessarily foreseen in process schema, (iii) evolution, for handling
changes in processes, which require occasional or permanent modifications in their schema, and (iv)
looseness, for handling processes whose schema are not known a priori and which correspond to
non-repeatable, unpredictable, and emergent processes.

To address process flexibility in BPM, several contributions have recommended (i) variant-
based approach (Aysolmaz et al., 2017; Hallerbach et al., 2010; Milani et al., 2016; Natschläger et
al., 2016; Reichert et al., 2015; Rosa et al., 2009; Tealeb et al., 2014), which recommends reuses a
set of variants of the process components (i.e., the process itself, its sub-processes and its tasks), each
variant being convenient to a given context, and (ii) version-based approach (Chaâbane et al., 2010;
Chaâbane et al., 2020; Ekanayake et al., 2011; Ellouze et al., 2017; Ellouze et al., 2016; Lassoued
et al., 2016; Zhao & Liu, 2013), which is an extension of the variant-based as it allows using a set
of alternative versions (equivalent to variants), on the one hand, and defining consecutive versions
of the process (following evolutions of some versions), on the other hand. A version corresponds
to one of the significant states that a process component (the process itself, or its sub-processes or
tasks) may have during its life cycle (Chaâbane et al., 2010). In fact, evolution and versioning are
related not only to the ability to perform updates on a process, a sub-process or a task model, but also
to the ability to keep track of these updates. This is why we adopt the version-based approach. The
latter consists in the specification of several schema versions of each process to take into account
the significant changes occurred in that process and its components (i.e., activities, information and
resources involved in its execution). Each new version must be defined by derivation from previous
one forming a derivation hierarchy. The notion of version has been recognized as a key notion to deal
with flexibility issue (Reichert & Weber, 2012).

However, designers also need an appropriate methodology to model business processes based on
versions to better address flexibility. But Existing contributions recommending versioning for process
flexibility have mainly focused on the first component of a design methodology, i.e., a language that
defines a specific notation for expressing models. Some of them have introduced versioning models
(Ekanayake et al., 2011) and graphs, e.g., Versioned Preserving directed Graph VPG (Zhao & Liu,
2013). Others have proposed specific meta-models supporting the modeling of versions (Chaâbane
et al., 2010; Ellouze et al., 2016; Lassoued et al., 2016). Moreover, these contributions did not take
into account the contextual dimension of processes in order to characterize the situations in which
instances of processes are executed (Nurcan & Edme, 2005; Saidani et al., 2015). We believe it is
important to compensate for these drawbacks.

So this paper provides a comprehensive methodology, with three components, for the design and
implementation of versions of processes models. This methodology includes a derivation approach
to help designers to manage versions supporting flexible processes. In the first component, we start
by presenting the BPMN4V-context meta-model proposed in (Chaâbane et al., 2020) which is an
extension of BPMN meta-model (OMG, 2014) integrating versions and their context. We then show
how to use the notation (i.e., language) related to this meta-model to model versions and their contexts.
The second component of this methodology is a build process composed of a set of steps that help
BPM designers to derive new versions from existing ones. In fact, when there is a need of derivation,
it is important to retrieve the most appropriate versions that can be the source of this derivation.
The build process aims to help designers to efficiently perform version derivation. Finally, the third
component provides a tool for modeling and deriving versions of process models, according to the
BPMN4V-context notation and the build process.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

3

Accordingly, this paper is organized as follows. Section 2 provides a study of related work: state-of-
the-art for BP flexibility; variant and version based approaches. Section 3 introduces the fundamental
ideas and the origin of the proposed design methodology: derivation approach and BPMN4V-context
meta-model. As for section 4, it is dedicated to the three components of this methodology: notation to
model versions and their contexts in accordance with BPMN4V-context meta-model; build process
for building versions and deriving new versions from existing ones; design tool features. Section 5
presents a proof of concept based on a case study used to illustrate the paper contributions. Section
6 presents BPMN4V-context Architect, the tool implementing the proposed notation and the build
process according to the derivation approach. Finally, Section 7 concludes the paper and gives some
directions for future work.

2. ReLATeD woRKS

In this paper we deal with BP flexibility at design-time which consists on handling processes changes
in accordance with context variation. Particularly, we present, in this section, some definitions related
to context-awareness in BPM area literature, and we examine the most popular techniques addressing
flexibility.

If some contributions addressed the modeling of versions in BPM, they considered especially the
behavioral, organizational and informational dimensions, which respectively concern the definition
of the activities of a process with their synchronization, the involved resources in the realization of
these activities and the data they produce or consume. However, to address process modeling in a
comprehensive way, it is not enough to just consider these three dimensions; it is necessary to also
take into account the contextual dimension of processes in order to characterize the situations in which
instances of processes are executed (Nurcan & Edme, 2005; Saidani et al., 2015).

Context-awareness has been deeply investigated in BPM area; according to (Rosemann & Recker,
2006), process context is defined as “the minimum set of elements containing all relevant information
that impact the design and execution of a process”. To classify these context elements, four types of
context are distinguished in (Rosemann et al., 2008): (i) the Immediate context, which covers elements
on process components, namely context of activities, events and resources, (ii) the Internal context,
which includes elements on the internal environment of an organization that impacts its processes, (iii)
the External context, which encompass elements relating to external stakeholders of the organization,
and (iv) the Environmental context, which contains elements related to external factors.

To address process flexibility in BPM, mainly two main types of approaches have been proposed
in literature: the variant-based approach and the version-based approach. A variant is an adjustment
of a basic process model to requirements, whether expected or unexpected, of process contexts.
Therefore, several existing works (Aysolmaz et al., 2017; Hallerbach et al., 2010; Natschläger et al.,
2016; Reichert et al., 2015; Rosa et al., 2009; Tealeb et al., 2014) around the variant technique propose
a set of configurations to this basic process using adaptation patterns (Hallerbach et al., 2010). For
instance, the variant-based approach recommended in (Rosa et al., 2009) allows the modeling of
several variants for fragments or tasks, each variant being convenient to a given context. However, only
one fragment schema is kept for each variant and there is no track of the different changes performed
to each variant (none of these works supports traceability). In fact, flexibility is not related only to
the ability to perform updates on process, sub-process or task schema, but also to the ability to keep
track of these updates.

Other works have adopted version-based approach that consists on the specification of business
process changes through different versions. A version corresponds to one of the significant states a
process may have during its life cycle. Each new version must be defined by derivation from previous
one forming a derivation hierarchy. The notion of version has been recognized as a key notion to deal
with flexibility issue. First, using versions allows keeping track of process evolution. This ensures
not only process traceability but also the storage of previously modeled versions in order to promote

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

4

their reuse in similar context. Second, versions are appropriate to deal with process evolution, process
adaptation and process variability, which are the main process flexibility needs in BPM (Reichert
& Weber, 2012). Finally, handling versions of process schema facilitates the migration of instances
from an initial schema version to a final one, allowing if the migration is not possible, two different
instances of a same process to run according to two different schema versions (Zhao & Liu, 2013).
As consequence, we advocate in this paper a version-based approach to deal with business process
flexibility.

To confirm this choice, let’s present in what follows the most pertinent literature works that also
recommend a version-based approach to deal with process flexibility. These works have addressed
the modeling of processes in BPM in accordance with the version-based approach (e.g., (Chaâbane
et al., 2010; Chaâbane et al., 2020; Ekanayake et al., 2011; Ellouze et al., 2017; Ellouze et al., 2016;
Zhao & Liu, 2013)). In (Ekanayake et al., 2011) and (Zhao & Liu, 2013), authors have introduced
specific versioning models that support the modeling of versions for concepts relevant to the behavioral
dimension of processes only. As for (Chaâbane et al., 2010) and (Ellouze et al., 2016), authors have
proposed their own meta-models to support versions modeling considering mainly the behavioral,
informational and organizational dimensions, and partially the contextual dimension. Unfortunately,
the proposed meta-models are not likely to be used by BPM practitioners since they are not based on
standards. To overcome these drawbacks, the BPMN4V-context meta-model proposed in (Chaâbane
et al., 2020) extends the BPMN2.0 standard to integrate (i) version modeling capability and (ii)
contextual information for versions use; BPMN4V-context supports the definition of versions of
processes as well as the context of each version.

We give in Table 1 an evaluation of the existing contributions in accordance with the versioning
approach to consider flexible processes at design-time. This evaluation is based on the following
criteria:

• Dimensions: this criterion specifies whether (or not) the examined work supports the behavioral,
informational, organizational, and/or contextual dimensions in versions modeling.

• Standard: this criterion checks if the proposed solution is based on a standard or not.
• Derivation process: this criterion verifies whether (or not) the examined work proposes a set of

steps for deducing new versions from existing ones.
• Implementation: this criterion specifies if there is a tool that implements the recommended

solution or not.

Table 1. Comparison of existing works advocating version approch to deal with flexible processes

Works Criteria Ekanayake et
al. (2011)

Zhao and
Liu (2013)

Chaâbane et
al. (2010)

Ellouze et
al. (2016)

Chaâbane et
al. (2020)

Dimensions behavioural + + + + +

informational - - + + +

organizational - - + + +

contextual - - +/- +/- +

Standard + - - - +

Derivation process - - - - -

Implementation - - - - -

Legend: (+) means that the feature is supported, (-) means that the feature is not supported, and (+/–) means that the feature is partially supported.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

5

As indicated in Table 1, we note that the behavior dimension is evoked by all the examined
works in order to capture changes related to a process, i.e., the activities and the events that make up
this process, and the way of their coordination. The authors of (Chaâbane et al., 2010; Ellouze et al.,
2016) also considered the informational and organizational dimensions to track changes related to
the manipulated data and the involved resources. In addition, they partially addressed the contextual
dimension; they did not consider all types of contextual information to describe process context in a
comprehensive way. The authors of (Chaâbane et al., 2020) overcame these weaknesses; they have
proposed an extension to BPMN notation to consider versions modeling with respect to the behavioral,
informational, organizational and contextual dimensions. We believe that this contribution is interesting
since BPMN is a standard promoted by the OMG and is more used by the BPM community than
specific ad-hoc notations. However, in (Chaâbane et al., 2020) authors have just proposed the
BPMN4V-context meta-model without defining how we can use it as part of a comprehensive design
methodology. Moreover, some other contributions recommending versioning for process flexibility
have mainly focused on the first components of a design methodology: introduction of versioning
models (Ekanayake et al., 2011) and graphs, e.g., Versioned Preserving directed Graph VPG (Zhao
& Liu, 2013). Others have proposed specific meta-models supporting the modeling of versions
(Chaâbane et al., 2010; Ellouze et al., 2016; Lassoued et al., 2016).

The work presented in this paper aims at overcoming the drawbacks of existing works. It
recommends a comprehensive design methodology, called METHOD4BPVC, allowing the support
of flexible BP at design-time while advocating a derivation approach.

3. FUNDAMeNTAL IDeAS AND oRIGIN oF THe
MeTHoDoLoGIe MeTHoD4BPVC

METHOD4BPVC is the design methodology we propose for modeling BP versions and their contexts.
It is dedicated to help design versions of BP models using a derivation approach to create new versions
based on previous modeled ones in accordance with the BPMN4V-Context meta-model we proposed
in (Chaâbane et al., 2020) as an extension of the BPMN2.0 meta-model.

The methodology METHOD4BPVC is composed of three components as shown in Figure 1.
For the first component, we propose a notation (i.e., a design language) conforming to the

BPMN4V-Context meta-model (Chaâbane et al., 2020). This notation, entitled BPMN4V-Context
notation, is useful since it is based on BPMN standards, and it allows modeling versions of processes
taking into account all process dimensions.

Regarding the second component, it provides a build process that helps BPM designers to
efficiently derive versions of processes modeled according to BPMN4V-Context notation. This
process is composed of five steps allowing version derivation.

Finally, the third component of this methodology is an appropriate tool which offers visual editor
and wizards for modeling and managing versions with respect to the BPMN4V-Context notation and
following the build process. This tool is called BPMN4V-Context Architect.

As the notation of METHOD4BPVC is to be defined in accordance with the BPMN4V-Context
meta-model (Chaâbane et al., 2020) while including a derivation approach, we briefly present here
after this approach and this meta-model.

3.1 Derivation approach:
METHOD4BPVC includes a derivation approach to support BP flexibility at design-time. This
approach is based mainly on the notion of version and the notion of context. More precisely, it
advocates that versions make it possible to follow the BP changes, on the one hand, and to define an
appropriate version for each specific situation/context, on the other hand. Figure 2 illustrates versions
of a process named P. These versions are linked by a derivation link; they form a derivation hierarchy.
Two types of derivation have been proposed: alternative derivation, for creating versions that can

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

6

be alternatively used, and evolution derivation, for evolving the process model from one version to
another. The definition of every new version is done by derivation from a previous one (except the
first version of the process, which is created from scratch – e.g., P. V1): such versions are called
derived versions. Of course, several versions may be derived from the same previous one: they can
be alternative versions (e.g., P.V1.1, P.V1.2 …) or evolution versions (e.g., P.V2).

Thus, we adopt the versioning pattern proposed in (Ben Said et al., 2016) (see Figure 3) making
some classes of BPMN2.0 meta-model able to support version modeling. The underlying idea is
to allow modeling, for each versionable concept of the BPMN meta-model, both entities and their
corresponding versions. A versionable concept is a concept for which it is important to track its
changes by handling versions. Each versionable concept is described as a class, called “Versionable”.
A Versionable class is associated to a new class, called “Version_of_Versionable”, whose instances
are versions of the Versionable class, and two relationships: (i) the “is_version_of” composition,
which links each instance of the Versionable class with its corresponding instances of the Version of
Versionable class, (ii) the “derived-From relationship, which supports the version derivation hierarchy
modeling. This latter relationship is reflexive; the semantics of both relationship sides are: a version
(SV) succeeds another one in the derivation hierarchy and a version (PV) precedes another one in
the derivation hierarchy. Moreover, this relationship includes the link attribute “type” used to specify
the type of derivation (derivation for alternative or derivation for evolution).

3.2 BPMN4V-Context meta-model (Chaâbane et al., 2020):
BPMN4V-Context extends the BPMN2.0 meta-model by (i) a versioning pattern making some
BPMN2.0 meta-model classes able to support version modeling and (ii) some context meta-classes
for considering version contexts. The resulting meta-model, given in Figure 4, defines the necessary
concepts for supporting versions of process models and their contexts. In this figure, white rectangles
and links correspond to meta-classes and meta-relationships of BPMN2.0, grey rectangles and blue
links correspond to meta-classes and meta-relationships involving versions following the introduction
of the versioning pattern, and red and green rectangles and links represent meta-classes and meta-
relationships used to support context.

More precisely, the versioning pattern allows defining versionable concepts (e.g., process, sub-
process, activity, etc.) in the BPMN4V-Context meta-model, and storing both the entities and their
corresponding versions (see right part of Figure 4). A versionable concept is a concept for which it is

Figure 1. Design methodology components

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

7

important to track its changes by handling versions. BPMN4V-Context provides seven meta-classes
to deal with versions of concepts: Process, Sub Process, Event, Task, ItemAwareElement, Resource,
and ResourceRole. Each Versionable meta-class (e.g., Process) is associated to a new meta-class
whose instances are versions of this Versionable meta-class (e.g., Version of Process).

A new version of a versionable concept is defined according to changes occurring to it: these
changes may correspond to the adding of new information (property or relationship) or to the
modification or the deletion of an existing one. For instance, we create a new version of a process
model when there are changes in the involved activities and events or in their coordination (using
patterns for changes in gateways and sequence flow).

Regarding context modeling, the BPMN4V-Context meta-model includes the meta-class Context
Container which defines an aggregation of a set of context elements (see left part of Figure 4). Each
instance of the Context Element meta-class corresponds to a contextual information characterizing
a situation, and to which a condition is defined. A context nature is associated to each context

Figure 2. Versions to Model Process flexibility

Figure 3. Versioning pattern

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

8

element through the meta-class Context Nature. This nature can be immediate, internal, external,
or environmental, according to the taxonomy given in (Rosemann & Recker, 2006). In addition, a
context element refers to the dimension to which it belongs to, through the specialization of Context
Element. Thus, an instance of Context Element can be an instance of: (i) Goal Element, i.e., an element
describing the objective to be achieved (e.g., objective of quality, cost or quantity); such type of a
context element belong to the contextual dimension of processes; (ii) Behavioral Element, i.e., an
element related to the behavioral dimension of processes (e.g., activity execution mode or activity
duration); (iii) Resource Element, i.e., an element related to the organizational dimension of processes
(e.g., availability of a resource or experience of a human performer), and (iv) Data Element, i.e., an
element related to the informational dimension of processes (e.g., data type or data structure).

Let’s explain now the meta-relationships between versionnable concepts and context concepts.
An instance of Context Container is associated to each instance of Process. Versionable components
of a process are linked to one or several context elements of its corresponding context container. In
addition, conditions for these context elements are to be defined. More precisely:

• The meta-class Context Goal allows linking Goal Element (a sub-meta-class of Context Element),
on the one hand, and Version of Process, Sub Process, Event, Task, ItemAwareElement, Resource
or ResourceRole meta-classes, on the other hand, while specifying a goal condition as a Boolean
expression.

• Regarding behavioral, data and resource elements, the meta-relationships between Context
Element, on the one hand, and Context of Flow Node Assignment, Context of Data Assignment
and Context of Resource Assignment, on the other hand, allow specifying assignment conditions,
as Boolean expressions, for linking instances of these meta-classes.

These conditions define for each process version the situation in which versions of tasks and
events, versions of resources and resource roles and versions of data involved in this process have
to be used.

4. NoTATIoN, BUILD PRoCeSS AND DeSIGN TooL
FeATUReS oF THe MeTHoDoLoGy MeTHoD4BPVC

This section is dedicated to the three components of this METHOD4BPVC: notation to model versions
and their contexts in accordance with BPMN4V-context meta-model; build process for building
versions and deriving new versions from existing ones; design tool features.

a. Modeling process version notation based on the BPMN4V-Context meta-model

It is important to provide designers with an appropriate notation for expressing versions of
processes models and their contexts. The notation we propose here is named BPMN4V-context notation.
It contains a set of concepts, a set of models and a set of use rules; concepts are used to build models
while respecting use rules. This notation includes the standard BPMN2.0 notation and enriches it by
the elements relating to versions and contexts. We present in the following these specific elements.

Specific concepts:

• Concept of Version applied to seven BPMN concepts: Process, Sub Process, Event, Task,
ItemAwareElement, Resource and ResourceRole. Therefore, the designer can define multiple
versions of constituents to better ensure the flexibility of BP.

• Concept of Version Derivation dealing with process evolution, process adaptation and process
variability while keeping track of changes with a hierarchical derivation tree.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

9

• Concept of Derivation Type specifying if a version is an evolution or an alternative of a previous
version.

• Concepts of version properties: versionId, versionCreationDate, versionCreator and
versionDerivedFrom which correspond respectively to the id of a version, its creation date, the
name of its creator and the version from which it is derived.

• Concept of Context that considers the necessary information, represented as context elements,
used to describe the situation in which a version can be used.

• Concept of Goal that specify the purpose of the creation of a version via a set of goal elements.
• Concept of Context Assignment that makes an alliance between a version and the contextual

information describing conditions of use of this version.

Specific models:

• Version of Process Model which is an enriched BPMN2.0 model composed of a set of standard
BPMN constituents and new versionable constituents (i.e., Versions of tasks, Versions of sub-
processes and Versions of events) linked with specific coordination pattern (Gateways and
sequenceFlows).

• Context Model associated to each process. This model contains all context elements used to
describe the context of this process. Thus, any context element used in the description of the
context of a process must be a part of its context model.

Specific rules:

• Each versionable constituent (e.g., process, task and event) can have some versions, but each
version is linked to one and only one versionable constituent.

Figure 4. BPMN4V-context meta-model (Chaâbane et al., 2020)

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

10

• A version has unique id.
• Only the first concept version has a derivationSource property value equals to nil.
• Two versions of the same versionable constituent must have different context and as consequence

different definitions. For instance, the context of two versions of the same task must be defined
using different context elements values. This implies that these two versions must be different
either in their type or in the involved versions of ResourceRoles, or in the consumed/produced
ItemAwareElements.

• A version of task is an activity that may have a context goal within a process version or a sub-
process version according to a goal element

• A version of ResourceRole can be assigned to a particular version of task only if assignment
conditions (defined using context elements) are checked.

Graphically, we decorate versionable concepts with this icon . For instance, version of start
event will be presented by the following sheep in the BPMN4V-context notation. The version
icon is not applicable for a non versionable concept such as Gateways or sequenceFlows. Moreover,
we add versions properties (versionID, versionCreationDate, derivationSource, versionType) of each
versionnable concepts. We present in Figure 5 an example of an abstract version of process modeled
according to BPMN4V-context notation. In this example we present versionable constituents (tasks and
events) along with context elements describe context of these constituents. As for context model, it
contains all context elements used in the definition of the context of the presented version of process.

b. Build process

To define a new version in a multi-version environment where several versions co-exist, it is
important to ask the following questions: “Why a version is derived from a specific previous one?
This new version is an alternative or an evolution?”. Therefore, when there is a need of derivation, it
is crucial to help BPM designers to retrieve the most appropriate version to be the source of derivation
and the type of this derivation in order to have a comprehensive derivation hierarchy of versions that
mark their evolutions. This should only be envisaged if each version is linked to its context.

To reply to these questions, we propose the build process, given in Figure 6, that include five
steps. The main objective sought for this process is to help BPM designers in the derivation of versions
since we believe that a version could not be properly derived from whatever other one.

Figure 5. Example of an abstract version of process model modeled using BPMN4V-context notation

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

11

In the first step of the build process, the BPM designer proceeds to the modelling of the first
versions of BP processes according to BPMN4V-context notation. The creation of the other versions
is done by derivation using the flowing steps.

In the second step, specifies a query based on the contextual elements describing the current
situation. This query is used for querying the Versions-Database to retrieve the most appropriate
versions that can be suitable for the specified context. We note that Versions-Database, which
implements the BPMN4V-context meta-model, contains the versions previously modeled as instances
of this meta-model. To retrieve versions, we propose a set of algorithms allowing comparisons between
the user context (specified in the query) and the contexts of versions stored in Versions-Database.
The result of this step is a set of versions sorted in descending order (from the version that has the
closest context).

In the third step, the BPM designer selects from the retrieved versions the most appropriate one
to be the derivation source.

The fourth step allows notifying the derivation type: alternative derivation or evolution derivation.
It is based on the analysis of the context elements expressed in the definition of the current situation
given by the designer in step 1.

The fifth step consists on creating a new version by derivation from the version specified in step
3 and using the derivation type identified in step 4.

1. Derivation source retrieving

Figure 6. Build process

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

12

This step aims to select candidate versions that can be the source of derivation for a specific
new version. First, BPM designer defines a query containing a set of context elements that describe
the context of the current situation requiring derivation. Candidate versions for derivation can be
identified by comparing the query context with contexts of existing versions (i.e., previously modeled
versions stored in BPMN4V-context DataBase). To retrieve candidate versions for derivation, we
propose two algorithms: selectDerivationSource (Algorithm 1) and contextCompare (Algorithm 2).
Algorithm 1
selectDerivationSource (userContext: Context, p: Process):
Version_of_Process[]
Local score:Integer
 candidateVersions:Version_of_Process[]
Begin
List<Version_of_Process> versionsList= p.getVersions()
 If versionsList.size()==1 //case of the first version
derivation
 candidateVersions.setItem(versionsList.
getItem())
 else
 For each v in versionsList //context compare
to find source
 score=
ContextCompare(userContext,v.getContext())
 sort(candidateVersions, score,v)
 End for
 Endif
return candidateVersions
End

The parameters of selectDerivationSource algorithm are: (i) userContext which corresponds to
a set of elements that describe the context specified by the designer, and (ii) the process p that needs
derivation of one of its versions. First, it stores in versionsList all versions of p using the getVersions()
function.

If versionList contains just one version, this later has to be considered as the source of
derivation since there are no comparisons to do. But if versionList contains two or more versions,
selectDerivationSource algorithm compares the context of each of these versions of the process p
(given by the getContext() function) with the userContext using the contextCompare() function.
This later returns a score marking the degree of similarity between these two contexts. Then, the
selectDerivationSource algorithm call the sort function for an orderly insertion in the candidateVersions
list of this version among the versions already selected of the process p according to their scores.
Finally, selectDerivationSource returns candidateVersions list sorted form the version with the highest
score to version with the lowest one.

Regarding, the contextCompare algorithm, given below, it allows comparing two different
contexts, each one is specified with a set of context elements (parameters). This algorithm compares
the parameters names and values, and calculates a comparison score: 1 point is added to this score
for each context element with the same name and the same value; 0.5 is added to the score for each
context element with the same name but different values; otherwise, the score is not incremented.
To do so, contextCompare algorithm uses the following functions:

• getParameters(): returns the set of parameters of a particular context.
• getParamName(): returns the name of a specific parameter.
• getParamValue(): returns the value of a specific parameter.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

13

• Verif(prv1, prv2): returns true if the parameter value prv1 satisfies the condition related to the
parameter value prv2, else it returns false.

Algorithm 2
ContextCompare(Context c1, Context c2): Integer
Local score: Integer
Begin
score=0
List<Parameter> lp1=c1.getParameters()
List<Parameter> lp2=c2.getParameters()
For each p1 in lp1
 For each p2 in lp2
 //compare context elements names and values and calculate
score
 If p1.getParamName()==p2.getParamName()
 If verif(p1.getParamValue(),p2.getParaValue())
 score=score+1
 Exit for
 else
 score=score+0.5
 Exit for
 End if
 End if
 End for
End for
return score
End

2. Specifying the type of derivation

As indicated before, in the second step of the proposed derivation process, BPM designer selects
from the returned candidate versions (of step 1) one version to be the source of the derivation. We
denote vs this version. The third step of the recommended build process consists on identifying the
type of derivation (evolution or alternative). In fact, when a new version vd has to be derived from
vs, we have to consider the following question: “is vd an evolution of vs or an alternative?”. In order
to reply to that question, we propose the selectDerivationType algorithm given below.

According to this algorithm, the type of derivation depends on (i) the contextual information that
triggers the change from one version (vs) to another (vd), and (ii) the type of this change (temporary/
permanent).

If the contextual information that triggers the need of derivation comes from immediate context
or environment context, the type of derivation is alternative. This is because changes coming from
immediate context (e.g. resource unavailability) or environment context (e.g., inundation) lead to
occasional situations that directly impact the process definition on short-term. Generally, these changes
require the creation of alternative versions used in infrequently situations.

However, if the contextual information that triggers the change from one version to another
comes from Internal context or External context, we have to verify the type of change (temporary or
permanent). In the case of, the change is temporary the type of derivation is alternative, otherwise
when the change is permanent the derivation type is evolution. In fact, contextual information
coming from Internal context (e.g., business goals) or External context (e.g., customer requirements)
corresponds to strategic information that require decision-making at short-time or long-time. Thus,

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

14

we recommend the creation of an alternative version when there are temporary changes causing the
derivation need and an evolution version if these changes are permanent.
Algorithm 3
String selectDerivationType (Version vs, Version vd,
ContextElement trigger, String changeType)
Begin
List Imc = getAllImmediateContextElements()
List Inc = getAllInternalContextElements()
List Exc = getAllExternalContextElements()
List Enc = getAllExternalContextElements()
If trigger ∊ Imc or trigger ∊ Enc then
 return “alternative” // vd is an alternative of vs
 Else
if trigger ∊ Inc or trigger ∊ Exc then
 if changeType =”temporary” then
 return “alternative” // vd is an alternative of vs
 else
 return “evolution” // vd is an evolution of
vs
 End if
 End if
 End if
End

3. Derivation

Derivation is the final step in the proposed build process which aim to create a derived version
based on the results given by previous steps of this process mainly the version source of derivation
and the derivation type. To better illustrate this step, we present below Derive algorithm. In this later
we start by making a copy of the version source of derivation vs using clone() function. The cloned
version, stored in vd variable, has initially the same definition as vs. Then, the algorithm proceeds to
the update of the derived version according to its type. For instance, if the derived version is a version
of process, the algorithm allows (i) the update of its activities and/or its events and (ii) the update of
its coordination pattern used to link these activities and events. Algorithms of Update operations on
versions are detailed in (Weber et al., 2008)[33]. The update of vd has to be repeated until there is
difference between the definitions of vd and vs. This can be done using checkDifference(version1,
version2) function which return true if two versions have the same definition and false otherwise.
Finally, vd has to be related to the derivation hierarchy of vs using the function bind(derivedVersion,
derivationType). Under this function vd will be linked to vs using the derivationType that can be
“evolution” or “alternative”.
Algorithm 4
Version Derive (Version vs, String Type)
Local Version vd
Begin
 vd=vs.clone()
 do
 Begin
 Swith (vd)
 case: vd isInstanceOf Version_of_Process
 Begin

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

15

 vd.updateActivities()
 vd.updateEvents()
 vd.updatePatterns()
 End
 case: vd isInstanceOf Version_of_Task
 Begin
 vd.updateResourceRoles()
 vd.updateItems()
 End
 case: vd isInstanceOf Version_of_Event
 Begin
 vd.updateType()
 vd.updateInformation()
End
 case: vd isInstanceOf Version_of_Resource
 vd.updateParameters()
 case: vd isInstanceOf Version_of_ResourceRole
 Begin
 vd.updateType()
 vd.updateResource()
End
 case: vd isInstanceOf Version_of_ItemAwareElement
 Begin
 vd.updateType()
 vd.updateStructure()
End
End
 While (!(ckeckDifference(vs, vd)))
 vs.bind(vd, type)
 Return vd
End

c. Design tool features

Regarding the third component of the METHOD4BPVC, it corresponds to a software tool
ensuring two main functions. It:

1- provides a modeler that helps BP designers to define version process models and context models
according to the BPMN4V-Context Notation and respects the defined rules,

2- automates the proposed build process through the implementation of its algorithms.

5. PRooF oF CoNCePT: THe KITCHeN-MAKING CASe STUDy

To better illustrate the proposed METHOD4BPVC, and specially its build process, we introduce in
this section the kitchen-making (KM) case study. This case study supports the construction of kitchens
and takes place within “IPEA Cuisine”, a company providing specialized and integrated services in
the interior design filed. Initially, IPEA Cuisine manufactures and installs standard and personalized
kitchens. However, it does not provide painting service. For this reason, it has a subcontract with “Uni
Paint”, a company that provides professional printing services, to paint the manufactured kitchens.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

16

More precisely, the first version of KM process (KM.v1), presented in Figure 7, consists of six
activities: Kitchen design, Machining and manufacturing, Truck loading, Assembly of accessories,
Kitchen installation and Quality checking. First, a IPEA Cuisine designer prepares a kitchen plan
describing dimensions and colors. Then, it proceeds to the manufacturing of plates that make up
the kitchen. As IPEA Cuisine was not able to provide painting service, the adopted strategy was to
subcontract painting plates. For this reason, IPEA Cuisine has to transport plates for painting using
its own trucks to the Uni Paint company. After receiving painted plates, it proceeds to accessories
assembly. In the next activity, workers of IPEA Cuisine install the kitchen in the client house.
Finally, a design engineer from IPEA Cuisine controls kitchen making and Installation. The event
that deficiencies are identified in kitchen manufacturing and installation is repeated. Context of the
first version of KM process is defined using the following context elements:

• IPEA Cuisine strategy (from Internal context) = Painting subcontracting
• IPEA Cuisine Vehicle availability (from Immediate context) = available
• Engineer availability (from Immediate context) = available

The second version of KM process (KM.v2) is used when IPEA Cuisine trucks are not available.
For not wasting time, Uni Paint company can ensure plates transport if one of its vehicles is available.
Thus, the context of the second version of KM process is defined as follow:

• IPEA Cuisine strategy (from Internal context) = Painting subcontracting
• IPEA Cuisine Vehicle availability (from Immediate context) = Not available
• Uni Paint Vehicle availability (from Immediate context) = available
• Engineer availability (from Immediate context) = available

According to the selectDerivationSource algorithm, KM.v2 is derived from KM.v1, since it
represents the second version that has to be derived from the first one. Likewise in accordance with
this algorithm, this version is alternative since the change is triggered by “Vehicle availability” context
element which is an element from immediate context.

When both IPEA Cuisine and Uni Paint trucks are not available, IPEA Cuisine contacts a
trucking company to transport plates to Uni Paint company. Thus, a third version of KM process
(KM.v3) has to be defined by derivation from KM.v1 or KM.v2. To do so, we have to use
selectDerivationSource algorithm to identify the most suitable version that can be the source of
derivation of KM.v3. This algorithm compares context of KM.v3 with contexts of KM.v1 and

Figure 7. The first version of KM process model

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

17

KM.v2 and calculates scores that represent similarity degrees between these contexts. Let us remind
that an elementary score takes 1 point if the considered versions have the same context element
with the same value; it takes 0.5 point when these versions have the same context element but with
different values; otherwise, it takes 0 point.

Table 2, presented below, gives the context of KM.v3 and explains how calculate scores of KM.v1
and KM.v2. For example, the context element “IPEA Cuisine Vehicle availability” takes 0.5 point
for KM.v1 since it is used in both versions (i.e., KM.v1 and KM.v3) with different values. Whereas
this element takes 1 point for KM.v2 as it has the same value in KM.v2 and KM.v3.

According to Table 2, KM.v3 has to be derived from KM.v2 as it has the highest score. According
to the selectDerivationType algorithm, this version is alternative since the change is also triggered by
“Vehicle availability” context element which is an element from immediate context. Figure 8 shows
the definition of the third version of KM process.

Regarding the kitchen control, IPEA Cuisine requires that the design engineer performs quality
checking as indicated in KM.v1 version. But since this engineer should receive continuing further
training, he becomes temporary unavailable. In order to avoid delay kitchen delivery, an IPEA Cuisine
worker that has more than 10 years’ experience can replace the engineer and perform the control
activity. Thus, a new version (KM.v4) has to be defined.

The context of KM.v4 version can be defined using the following context elements:

Table 2. Result of the comparison of the context of KM.v3 against those of KM.v1 and KM.v2

KM.v3 context KM.v1 KM.v2

IPEA Cuisine strategy= Painting subcontracting 1 1

IPEA Cuisine Vehicle availability = Not available 0.5 1

Uni Paint Vehicle availability = Not available 0 0.5

Engineer availability= available 1 1

Total Score 2.5 3.5

Figure 8. The third version of KM process model

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

18

• IPEA Cuisine strategy (from Internal context) = Painting subcontracting
• IPEA Cuisine Vehicle availability (from Immediate context) = available
• Design Engineer availability (from Immediate context) = Not available
• IPEA Cuisine Worker = available
• Worker experience > 10 years

To be defined, KM.v4 has to be derived from a previous version of KM process (i.e., from
KM.v1, KM.v2 or KM.v3). Table3, presented below, gives results given by the selectDerivationSource
algorithm corresponding to a comparison of the context of KM.v4 version with those of KM.v1,
KM.v2 and KM.v3 versions. In accordance with this table, KM.v4 has to be derived from KM.v1,
and it is alternative since the change is triggered by “Engineer availability” context element which
is an element from immediate context.

With the emergence of the use of melamine in kitchen manufacturing, IPEA Cuisine changes its
strategy of work and decides to adopt this technique in its factories. Since kitchens manufactured with
melamine do not require to be painted, IPEA Cuisine no longer subcontracts painting. Therefore, a
new version of KM process model (KM.v5) is derived. Context of KM.v5 version is defined as follow:

• IPEA Cuisine strategy (from Internal context) = Produce kitchen with melamine
• Design Engineer availability (from Immediate context) = available

Table 4, given below, summarizes the scores given by selectDerivationSource algorithm.
According to this table, the designer can choose from KM.v1, KM.v2 or KM.v3 to derive KM.v5.
Also, this version is an evolution one since the change is permanent and it is triggered by “Strategy”
context element which is an element from internal context.

Referring to build process steps, the derivation hierarchy of all versions of KM process model,
shown in Figure 9, illustrates relationships between versions as well as their derivation type.

6. BPMN4V-CoNTeXT ARCHITeCT

BPMN4V-context Architect is a visual modeling and design tool based on the BPMN4V-context
notation. The platform, implemented using MVC pattern, supports modeling and handling versions
of business process models with respect to the BPMN4V-context meta-model and the build process.
Figure 10 shows the architecture of this tool.

The view part of BPMN4V-context Architect offers two kinds of interfaces: (i) BPMN4V-context
Forms, that gives a set of Graphical User Interfaces (GUI) allowing the retrieve and derivation of
versions, and (ii) BPMN4V-context Modeler, which is an editor for creating and handling versions
in accordance with BPMN4V-context notation.

Table 3. Result of the comparison of the context of KM.v4 against those of KM.v1, KM.v2 and KM.v3

KM.v1 KM.v2 KM.v3

KM.v4 2.5 2 2

Table 4. Result of the comparison of the context of KM.v5 against those of those of KM.v1, KM.v2, KM.v3 and KM.v4

KM.v1 KM.v2 KM.v3 KM.v4

KM.v5 1.5 1.5 1.5 1

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

19

The model part of BPMN4V-context Architect manages the BPMN4V-context database, which
implements the BPMN4V-context meta-model, that stores all versions modeled using the view part. It
is an XML database that contains the descriptions of previously modeled versions of process models
as well as their contexts.

The controller component of BPMN4V-context Architect has the following functions: (i) it checks
whether versions of process models are or not well modeled with respect to the BPMN4V-context
notation, (ii) it ensures the insertion, update and deletion of versions in/from the BPMN4V-context
database and (iii) it ensures the build process by applying the selectDerivationSource algorithm.

We detail in the next sub sections how BPMN designers can take advantage of BPMN4V-context
Modeler and Forms to create and derive versions of process models.

a. BPMN4V-context Modeler Overview

BPMN4V-context Modeler is implemented as an extension of the already existing Eclipse BPMN
Modeler plug-in. It extends this later by integrating new widgets showing versions details. Figure 11
below is a screenshot visualizing the first version of the KM process model created with this editor.

The central part of the screenshot (part Œ) is the drawing canvas which provides multiple tabs,
each one being used to model and display a separate version of a process model. To highlight the
notion of version, we decorate shapes of versionable concepts (i.e., process tab name, activity shape

Figure 9. Derivation hierarchy of versions of the KM process Model

Figure 10. Architecture of BPMN4-Context Architect

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

20

and the event shape) with the following icon . This icon is used to mark that any element shown in
the drawing canvas is a version. The right part of Figure 11 (part ❷) represents the Tool Palette, which
contains tools that can be dragged onto the drawing canvas to add BPMN4V-context concepts.

The bottom part (part Ž) of the Figure 11 gives an Eclipse property tab, named “Context
Information”, that defines the context of the first version of the KM process model. This property
tab concerns versions of processes as well as other versionable concepts. It shows the list of
context elements and conditions that define the context of the activated version in the drawing
canvas. Particularly, this list contains the name, value, nature (i.e., immediate, internal, external or
environmental context) and type (i.e., Goal, Behavioral, Data or Resource) of each context element
used in the definition of the context of the selected version. Buttons above allow adding, deleting,
moving or editing context elements. In the right part of this property tab, the user can either introduce
a new context element and condition by defining its name, value, type, and nature, or edit an existing
one. Once the version of a process model is designed and its context is well defined in the Context
Information tab, the user can save it using the save button of the editor; as result, the version is inserted
in the BPMN4V-context database.

The left parts of the Figure 11 (parts❷, ❷ and ‘) correspond to new Eclipse views showing versions
details. More precisely, we have defined three Eclipse views which are Version Data View, List of
Hierarchy View and Activities View.

The Versions Data View indicates properties (name, version id, version state and version details)
of the active version of the process model shown in the drawing canvas.

For example, the Versions Data View presented in Figure 11 part ❷ indicates that the active version,
identified by KM.v1, corresponds to the first version of the KM process model. In addition, this view
details each sub-process, task and event that make up the considered version.

The Hierarchy View provides a hierarchical tree-oriented view representing the derivation
hierarchy of the active versionable concept (e.g., Process or Task) of the drawing canvas. In Figure11
part ❷, the Hierarchy View shows the derivation hierarchy of the KM process since the active versionable
concept is this process.

The List of Activities View, presented in Figure 11 part ‘, displays all the previously modeled tasks
and their corresponding versions. This view allows designers to reuse previously modeled versions
by dragging and dropping them into the drawing canvas.

Figure 11. BPMN4V-context Modeler overview

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

21

Finally, BPMN4V-context Modeler provides the “Handel versions” contextual menu to perform
derivation of versions as shown in Figure 11 part ’. This menu holds for each versionable concept of
the BPMN4V-context notation and implements derivation algorithms.

b. Modeling versions of the KM process model

The first version of the KM process model is created from scratch using the palette (for adding
new component) or the List of Activities View (for integrating existing versions). The drawing canvas
of Figure 11 contains the result of the creation of KM.v1.

The second version of KM process model is directly derived from the first one since there is no
comparison to do. This derivation is performed using the derive command of the Handle versions
context menu and it results in the creation of a new tab that contains a copy of the derived version.
More precisely, when the designer derives KM.v1, a new tab named KM.v2 appears in the drawing
canvas, initially having the same definition of KM.v1. The designer should then make changes to
KM.v2 by adding, modifying and/or removing some components (such as tasks, events, etc.) according
to the specification of the second version of the KM process model described in section 5.

The other versions of the KM process model are created by derivation from previous versions.
So, it is crucial to retrieve the most suitable version that has to be the source of derivation. For
instance, for modeling the third version KM.v3, it is necessary to decide if this version has to be
derived from KM.v1 or from KM.v2, and if it is an alternative version or an evolution one. To do
so, we propose Drive GUI, presented in Figure 12, for deriving versions. This GUI implements the
derivation process and helps the designer to (i) choose the appropriate version as source of derivation,
(ii) select a particular version, (iii) identify the type of this derivation (alternative or evolution) and
(iv) perform the derivation.

When a designer uses Derive GUI to derive a version of a process model, it has to define the
situation that leads to the derivation of this new version by specifying the concerned context elements
and their values. In this definition the designer has to highlight the more pertinent context element
that triggers the derivation need. This later is used by the selectDerivationType algorithm in order
to decide the derivation type. Then, the designer should click on the Execute button to trigger the
selectDerivationSource algorithm and display the list of “Candidate versions for derivation” containing
the retrieved versions. The user can select a version from this list and click on the Visualize button
to show its schema using BPMN4V-context modeler. Finally, the user clicks on Derive button to
derive the selected version.

For instance, in Figure 12 the current situation presented corresponds to the case when both
IPEA Cuisine and Uni Paint trucks are not available. This situation leads to the creation of the third
version KM.v3, which is an alternative version derived from KM.v2, as shown in the Candidate
versions for derivation list of Figure 12. When the user select KM.v2 and click on Derive button, a
new tab named KM.v3 appears in the drawing canvas of BPMN4V-context Modeler. KM.v3 has the
same definition as KM.v2 until changed to be validated.

7. CoNCLUSIoN

Business Processes flexibility continue to be a major challenge since it is crucial to consider the
current environment, which is becoming very fluctuating, and to adapt processes accordingly. Faced
with this challenge, several literature contributions have recommended versioning (Chaâbane et al.,
2010; Ekanayake et al., 2011; Ellouze et al., 2016; Lassoued et al., 2016; Zhao & Liu, 2013) as a key
notion to deal with process flexibility issue. However, to our knowledge, none of them offered a design
methodology to help designers define and handle model versions for processes. Thus, the contribution
we have proposed in this paper to solve the process adaptation issue is twofold: a design methodology
combined with a derivation approach to properly address process flexibility at design-time.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

22

The proposed design methodology, entitled METHOD4BPVC, has three components: (i) a
notation to model process versions, (ii) a build process for deducing versions of process models and
(iii) a tool implementing the proposed notation and build process.

The richness and effectiveness of this notation come from the fact that it is based on the
proposed meta-model in (Chaâbane et al., 2020), named BPMN4V-context, which is an extension
of BPMN2.0 meta-model enriching its concepts, models and construction rules to be able to define
and manage versions of process models and their contexts. This solution benefits from two factors.
First, it is based on BPMN2.0 which is the de facto standard for modeling processes, and therefore
can be easily applied for multiple domains and applications. Second it overcomes the weakness of
BPMN2.0 by supporting the context awareness, which is an important dimension to be considered
in process modeling since it represents a bridge between processes and their environments, and thus
ensures their efficiency and their applicability.

As for the derivation approach, it has allowed us to provide a context-based build process that
helps designers to define, derive, and implement model versions in order to ensure the flexibility of
processes. Indeed, the versioning makes it possible to (i) follow the evolutions of process models by
defining versions for each significant change, (ii) reuse, if necessary, these versions to suit the current
context, and (iii) consider process evolution, process adaptation and process variability, which are
the main process flexibility needs as proposed in (Reichert & Weber, 2012).

Finally, BPMN4V-context Architect is a specific tool for modeling and deriving versions of
process models. It helps designers to define solutions ensuring the context awareness and thus the
process flexibility.

However, the contribution of this paper has limitations that we plan to overcome in our future
work as follows. On the one hand, the paper focuses only on private processes, i.e., business processes
that hold in one organization. But it is also necessary to examine flexibility of collaborative processes,
i.e., processes that involve several organizations. On the other hand, the proposed solution focuses
only on flexibility at design-time. Nevertheless, it is crucial to deal with flexibility at run-time to
support changes that occur on running processes. This can be achieved by defining an adaptation
engine that takes advantages of the versions of each considered process model, and that interoperates
with multiple execution engines (Song et al., 2019).

Figure 12. GUI for BP derivation

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

23

ReFeReNCeS

André, P., & Vailly, A. (2001). Conception des systèmes d’information-Panorama des méthodes et des techniques.
Eyrolles.

Aysolmaz, B., Schunselaar, D.M., Reijers, H.A., & Yaldiz, A. (2017). Selecting a process variant modeling
approach: guidelines and application. International Journal of Software & Systems Modeling, 18(2), 1155-1178.

Barba, I., Jiménez-Ramírez, A., Reichert, M., Del Valle, C., & Weber, B. (2021). Flexible runtime support
of business processes under rolling planning horizons. Expert Systems with Applications, 177(11), 114857.
doi:10.1016/j.eswa.2021.114857

Ben Said, I., Chaâbane, M. A., Andonoff, E., & Bouaziz, R. (2018). BPMN4VC-modeller: Easy-handling of
versions of collaborative processes using adaptation patterns. International Journal of Information Systems and
Change Management, 10(2), 140–189. doi:10.1504/IJISCM.2018.094604

Ben Said, I., Chaâbane, M. A., Bouaziz, R., & Andonoff, E. (2016). A Version-based Approach to Address
Flexibility of BPMN Collaborations and Choreographies. Proceedings of the 13th International Joint Conference
on e-Business and Telecommunications, 31-42.

Chaâbane, M.A., Andonoff, E., Bouaziz, R., & Bouzguenda L. (2010). Modélisation multidimensionnelle des
versions de processus. Journal on Ingénierie des Systèmes d’Information, 15(5), 89–114.

Chaâbane, M. A., Ben Said, I., Ellouze, F., Bouaziz, R., & Andonoff, E. (2020). A context-based approach for
modelling and querying versions of BPMN processes. International Journal of Business Process Integration
and Management, 10(1), 62-86.

Ekanayake, C., La Rosa, M., Ter Hofstede, A. H., & Fauvet, M. C. (2011). Fragment-based version management
for repositories of business process models. International Conferences OTM Confederated On the Move to
Meaningful Internet Systems, 20–37. doi:10.1007/978-3-642-25109-2_3

Ellouze, F., Chaâbane, M.A., Andonoff, E., & Bouaziz, R. (2017). Onto-vP.2M: a new approach to model and
manage collaborative process versions using contexts and ontologies. International Journal of e-Collaboration,
13(3), 39–62.

Ellouze, F., Chaabane, M. A., Bouaziz, R., & Andonoff, E. (2016). Addressing inter-organisational process
flexibility using versions: the VP2M approach. Proceedings of the International Conference on Research
Challenges in Information Science, 1–12. doi:10.1109/RCIS.2016.7549280

Hallerbach, A., Bauer, T., & Reichert, M. (2008). Context-based Configuration of Process Variants. ICEIS
Workshop on Technologies for Context-Aware Business Process Management, 31-40.

Hallerbach, A., Bauer, T., & Reichert, M. (2010). Configuration and Management of Process Variants. Handbook
on Business Process Management, 237-255.

Jemal, L., Saidani, O., & Nurcan, S. (2018). Flexibility in Business Process Modeling to Deal with Context-
Awareness in Business Process Reengineering Projects. Proceedings of the 19th International Conference
International Conference on Business Process Modeling, Development and Support BPMDS, 35-48.

Lassoued, Y., Bouzguenda, L., & Mahmoud, T. (2016). Context-aware business process versions management.
International Journal of e-Collaboration, 12(3), 7–33.

Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., & Mylopoulos, J. (2006). On Goal-based Variability Acquisition
and Analysis. Proceedings of the International Conference on Requirements Engineering, 76–85.

Milani, F.P., Dumas, M., Ahmed, N., & Matulevičius, R. (2016). Modelling families of business process variants:
A decomposition driven method. International Journal of Information Systems, 56, 55-72.

Natschläger, C., Geist, V., Illibauer, C., & Hutter, R. (2016). Modelling business process variants using graph
transformation rules. Proceedings of the 4th international Conference on Model-Driven Engineering and Software
Development (MODELSWARD), 65-74.

Nurcan, S., & Edme, M. H. (2005). Intention Driven Modelling for Flexible Workflow Applications. International
Journal on Software Process, Improvement, and Practice, 10(4), 363–377. doi:10.1002/spip.240

http://dx.doi.org/10.1016/j.eswa.2021.114857
http://dx.doi.org/10.1504/IJISCM.2018.094604
http://dx.doi.org/10.1007/978-3-642-25109-2_3
http://dx.doi.org/10.1109/RCIS.2016.7549280
http://dx.doi.org/10.1002/spip.240

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

24

OMG. (2014). Business Process Model and Notation (BPMN 2.0). http://www.omg.org/spec/BPMN/2.0

Reichert, M., Hallerbach, A., & Bauer, T. (2015). Lifecycle Management of Business Process Variants. Handbook
on Business Process Management. doi:10.1007/978-3-642-45100-3_11

Reichert, M., & Weber, B. (2012). Enabling Flexibility in Process-Aware Information Systems: Challenges,
Methods, Technologies. Springer. doi:10.1007/978-3-642-30409-5

Rosa, M. L., Dumas, M., & Hofstede, A. H. (2009). Modeling Business Process Variability for Design-Time
Configuration. Handbook of Research on Business Process Modeling, 204-228. doi:10.4018/978-1-60566-
288-6.ch009

Rosemann, M., & Recker, J. (2006). Context-aware Process Design Exploring the Extrinsic Drivers for Process
Flexibility. Proceedings of the international Conference on Business Process Modeling, Development and
Support CAiSE, 149-158.

Rosemann, M., Recker, J., & Flender, C. (2008). Contextualisation of business processes. International Journal
of Business Process Integration and Management, 3(1), 47–60.

Saidani, O., & Nurcan, S. (2009). Context-Awareness for Adequate Business Process Modelling. Proceedings
of the International Conference on Research Challenges in Information Science, 177–186.

Saidani, O., Rolland, C., & Nurcan, S. (2015). Towards a generic context model for BPM. Proceedings of Hawaii
Conference on System Sciences, 4120–4129. doi:10.1109/HICSS.2015.494

Santos, E., Pimentel, J., Castro, J., Sánchez, J., & Pastor, O. (2010) Configuring the Variability of Business
Process Models Using Non-Functional Requirements. Proceedings of the international Conference on Business
Process Modeling, Development and Support CAiSE, 274–286.

Song J., Weifang Z., & Yiran J. (2019). Design of Workflow Engine Based on Relational Structures. International
Journal of Advanced Pervasive and Ubiquitous Computing, 11(4), 34-43.

Tealeb, A., Awad, A., & Galal-Edeen, G. H. (2014). Context-Based Variant Generation of Business Process
Models. Proceedings of the international Conference on Enterprise, Business-Process and Information Systems
Modeling BMMDS/EMMSAD, 363-377.

van Eck, M., Sidorova, N., & van der Aalst, W. (2015). KPI-based Activity Planning for People Working in
Flexible Processes. Proceedings International Conference on Advanced Information Systems Engineering co-
located, 97-104.

Viknesh A., & Yoke Kin W. (2020). Distinguishing approach, methodology, method, procedure and technique
in process systems engineering. International Journal on Clean Technologies and Environmental Policy, 22(3),
547–555.

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change support features - Enhancing
flexibility in process-aware information systems. International Journal of Data & Knowledge Engineering
Data, 66(3), 438-466.

Zhao, X, & Liu, C. (2013). Version management for business process schema evolution. International Journal
of Information Systems, 38(8), 1046–1069.

http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1007/978-3-642-45100-3_11
http://dx.doi.org/10.1007/978-3-642-30409-5
http://dx.doi.org/10.4018/978-1-60566-288-6.ch009
http://dx.doi.org/10.4018/978-1-60566-288-6.ch009
http://dx.doi.org/10.1109/HICSS.2015.494

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

25

Imen Ben Said received her PhD in Computer Science from the University of Sfax and University of Toulouse
1 Capitole in 2017. Since 2009, she was a teacher/researcher at the Faculty of Economics and Management,
University of Sfax. She is a Member of the MIRACL Laboratory. Her research concerns are information systems
modelling and business process management (BPM). Currently, her works are directed towards the flexibility of
business processes using the version notion.

Mohamed Amine Chaâbane received a PhD degree from University of Toulouse, France in 2012. He is an associate
professor at Higher Institute of Business Administration, University of Sfax – Tunisia and member of MIR@CL
(Multimedia, InfoRmation systems and Advanced Computing Laboratory). His research interests focus on Business
Process Management field. He is working on topics related to Business Process Modeling, Process Flexibility,
Context of Process and Self-Adaptation of Process.

Rafik Bouaziz is full professor on computer science at the Faculty of Economic Sciences and Management of Sfax
University, Tunisia. He was the president of this University during August 2014 – December 2017, and the director
of its doctoral school of economy, management and computer science during December 2011 – July 2014. His
PhD has dealt with temporal data management and historical record of data in Information Systems. The subject
of his accreditation to supervise research was “A contribution for the control of versioning of data and schema in
advanced information systems”. Currently, his main research topics of interest are temporal databases, real-time
databases, information systems engineering, ontologies, data warehousing and workflows. Between 1979 and
1986, he was a consulting Engineer in the organization and computer science and a head of the department of
computer science at CEGOS-Tunisia.

