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Abstract

This paper deals with the Ulam-Hyers stability of a quadratic functional equation
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using direct and fixed point methods in fuzzy normed space.
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1. INTRODUCTION

One of the most interesting questions in the theory of functional analysis concerning
the Ulam stability problem of functional equations is as follows: when is it true that
a mapping satisfying a functional equation approximately must be close to an exact
solution of the given functional equation?
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In 1940, Ulam [29] posed the famous Ulam stability problem. In 1941, Hyers [12]
solved the well-known Ulam stability problem for additive mappings subject to the
Hyers condition on approximately additive mappings. He gave rise to the stability
theory for functional equations. In 1950, Aoki [2] generalized Hyers’ theorem for
approximately additive functions. In 1978, Rassias [25] provided a generalized version
of Hyers for approximately linear mappings. In addition, Rassias [24, 27] generalized
the Hyers stability result by introducing two weaker conditions controlled by a product
of different powers of norms and a mixed product-sum of powers of norms, respectively.

The functional equation

f (x+ y) + f (x− y) = 2f (x) + 2f (y) (1.1)

is said to be quadratic functional equation because the quadratic function f(x) = ax2

is a solution of the functional equation (1.1).

This paper established the Ulam-Hyers stability of a quadratic functional equation

q

(
x− y + z

2

)
=

1

2
(q(x− z) + q(x− y))− 1

4
q(z − y) (1.2)

using the direct and fixed point methods in fuzzy normed space.

2. PRELIMINARIES

A.K. Katsaras [17] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms on
a vector space from various points of view [11, 19, 35]. In particular, T. Bag and S.K.
Samanta [6], following S.C. Cheng and J.N. Mordeson [8], gave an idea of fuzzy norm
in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type
[18]. They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [7].

We use the definition of fuzzy normed spaces given in [6] and [22, 23, 24, 25].

Definition 2.1. Let X be a real linear space. A function N : X × R → [0, 1](the
so-called fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and all
s, t ∈ R,
(F1) N(x, c) = 0 for c ≤ 0;

(F2) x = 0 if and only if N(x, c) = 1 for all c > 0;

(F3) N(cx, t) = N
(
x, t

|c|

)
if c ̸= 0;

(F4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
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(F5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1;

(F6) for x ̸= 0, N(x, ·) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(X, t)

as the truth-value of the statement the norm of x is less than or equal to the real number
t’.

Example 2.2. Let (X, || · ||) be a normed linear space. Then

N (x, t) =


t

t+ ∥x∥
, t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X .

Definition 2.3. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X .
Then xn is said to be convergent if there exists x ∈ X such that lim

n→∞
N(xn − x, t) = 1

for all t > 0. In that case, x is called the limit of the sequence xn and we denote it by
N − lim

n→∞
xn = x.

Definition 2.4. A sequence xn in X is called Cauchy if for each ϵ > 0 and each t > 0

there exists n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p−xn, t) > 1− ϵ.

Definition 2.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed space is called a fuzzy Banach space.

Definition 2.6. A mapping f : X → Y between fuzzy normed spaces X and Y is
continuous at a point x0 if for each sequence {xn} covering to x0 in X , the sequence
f{xn} converges to f(x0) . If f is continuous at each point of x0 ∈ X then f is said to
be continuous on X.

The stability of various functional equations in fuzzy normed spaces were investigated
in [3, 4, 15, 21, 22, 23, 24, 25, 29, 32].

Hereafter throughout this paper, assume that X, (Z,N ′) and (Y,N ′) are linear space,
fuzzy normed space and fuzzy Banach space, respectively. We use the following
abbreviation for a given function f : X → Y by

Dq(x, y, z) = q

(
x− y + z

2

)
− 1

2
(q(x− z) + q(x− y)) +

1

4
q(z − y)

for all x, y, z ∈ X .
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3. FUZZY STABILITY RESULTS: DIRECT METHOD

Now, we investigate the generalized Ulam-Hyers stability of the functional equation
(1.2) in fuzzy normed space using direct method.

Theorem 3.1. Let ς ∈ {−1, 1} be fixed and let ϑ : X3 → Z be a mapping with
0 <

(
d
4

)ς
< 1

N (ϑ (2ςx, 2ςy, 2ςz) , r) ≥ N (dςϑ (x, y, z) , r) (3.1)

for all x, y, z ∈ X and all d > 0 and

lim
n→∞

N ′ (ϑ (2ςnx, 2ςny, 2ςnz) , 4ςnr) = 1 (3.2)

for all x, y, z ∈ X and all r > 0. Suppose that a mapping q : X → Y satisfies the
inequality

N (Dq (x, y, z) , r) ≥ N ′ (ϑ (x, y, z) , r) (3.3)

for all x, y, z ∈ X and all r > 0. Then the limit

Q(z) = N − lim
n→∞

q (2nςz)

4nς
(3.4)

exists for all z ∈ X and all r > 0 and the mapping Q : X → Y is a unique quadratic
mapping satisfying (1.2) and

N (q(z)−Q(z), r) ≥ N ′ (ϑ(0,−z, z), r|4− d|) (3.5)

for all z ∈ X and all r > 0.

Proof. First assume ς = 1. Replacing (x, y, z) by (0,−z, z) in (3.3), we get

N (q(2z)− 4q(z), r) ≥ N ′ (ϑ(0,−z, z), r) (3.6)

for all z ∈ X and all r > 0. Replacing z by 2nz in (3.6), we obtain

N

(
q(2n+1z)

22
− q(2nz),

r

22

)
≥ N ′ (ϑ(0,−2nz, 2nz, r) (3.7)

for all z ∈ X and all r > 0. Using (3.1), (F3) in (3.7), we arrive

N

(
q(2n+1z)

22
− q(2nz),

r

4

)
≥ N ′

(
ϑ(0,−z, z,

r

dn

)
(3.8)
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for all z ∈ X and all r > 0. It is easy to verify from (3.8), that

N

(
q(2n+1z)

22(n+1)
− q(2nz)

22n
,

r

22 · 22n

)
≥ N ′

(
ϑ(0,−z, z),

r

dn

)
(3.9)

holds for all z ∈ X and all r > 0. Replacing r by dnr in (3.9), we get

N

(
q(2n+1z)

22(n+1)
− q(2nz)

22n
,

dn r

22(n+1)

)
≥ N ′ (ϑ(0,−z, z), r) (3.10)

for all z ∈ X and all r > 0. It is easy to see that

q(2nz)

22n
− q(z) =

n−1∑
i=0

[
q(2i+1z)

22(i+1)
− q(2ix)

22i

]
(3.11)

for all z ∈ X . From equations (3.10) and (3.11), we have

N

(
q(2nz)

22n
− q(z),

n−1∑
i=0

di r

22(i+1)

)

≥ min
n−1⋃
i=0

{
q(2i+1z)

22(i+1)
− q(2iz)

22i
,

di r

22(i+1)

}

≥ min
n−1⋃
i=0

{N ′ (ϑ(0,−z, z), r)}

≥ N ′ (ϑ(0,−z, z), r) (3.12)

for all z ∈ X and all r > 0. Replacing z by 2mz in (3.12) and using (3.1), (F3), we
obtain

N

(
q(2n+mz)

22(n+m)
− q(2mz)

22m
,
n−1∑
i=0

di r

22(i+m)

)
≥ N ′

(
ϑ(0,−z, z),

r

dm

)
(3.13)

for all z ∈ X and all r > 0 and all m,n ≥ 0. Replacing r by dmr in (3.13), we get

N

(
q(2n+mz)

22(n+m)
− q(2mz)

22m
,

m+n−1∑
i=m

di r

22i

)
≥ N ′ (ϑ(0,−z, z), r) (3.14)

for all z ∈ X and all r > 0 and all m,n ≥ 0. Using (F3) in (3.14), we obtain

N

(
q(2n+mz)

22(n+m)
− q(2mz)

22m
, r

)
≥ N ′

(
ϑ(0,−z, z),

r∑m+n−1
i=m

di

22(i+1)

)
(3.15)

for all z ∈ X and all r > 0 and all m,n ≥ 0. Since 0 < d < 22 and
n∑

i=0

(
d

22

)i

< ∞,

the cauchy criterion for convergence and (F5) implies that
{
q(2nz)

22n

}
is a Cauchy
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sequence in (Y,N). Since (Y,N) is a fuzzy Banach space, this sequence converges to
some point Q(z) ∈ Y . So one can define the mapping Q : X → Y by

Q(z) = N − lim
n→∞

q(2nz)

22n

for all z ∈ X. Letting m = 0 in (3.15), we get

N

(
q(2nz)

22n
− q(z), r

)
≥ N ′

ϑ(0,−z, z),
r

n−1∑
i=0

di

22i

 (3.16)

for all z ∈ X and all r > 0. Letting n → ∞ in (3.16) and using (F6), we arrive

N (q(z)−Q(z), r) ≥ N ′ (ϑ(0,−z, z), r(22 − d)
)

for all z ∈ X and all r > 0. To prove Q satisfies the functional equation (1.2), replacing
(x, y, z) by (2nx, 2ny, 2nz) in (3.3), respectively , we obtain

N

(
1

2n
Dq(2

nx, 2ny, 2nz), r

)
≥ N ′ (ϑ(2nx, 2ny, 2nz), 22nr) (3.17)

for all r > 0 and all x, y, z ∈ X . Now,

N

(
Q

(
x− y + z

2

)
− 1

2
(Q(x− z) +Q(x− y)) +

1

4
Q(z − y), r

)
≥ min

{
N

(
Q

(
x− y + z

2

)
− 1

22n
q

(
2n
(
x− y + z

2

))
,
r

5

)
,

N

(
−1

2
Q(x− z) +

1

22n2
q (2n (x− z)) ,

r

5

)
,

N

(
−1

2
Q(x− y) +

1

22n2
q (2n (x− y)) ,

r

5

)
,

N

(
1

4
Q(z − y)− 1

22n4
q (2n (z − y)) ,

r

5

)
,

N

(
1

22n
q

(
2n
(
x− y + z

2

))
− 1

22n2
q (2n (x− z))

− 1

22n2
q (2n (x− y)) +

1

22n4
q (2n (z − y)) ,

r

5

)}
(3.18)

for all x, y, z ∈ X and all r > 0. Using (3.17) and (F5) in (3.18), we arrive

N

(
Q

(
x− y + z

2

)
− 1

2
(Q(x− z) +Q(x− y)) +

1

4
Q(z − y), r

)
≥ min

{
1, 1, 1, 1, N ′ (ϑ(2nx, 2ny, 2nz), 22nr)}

≥ N ′ (ϑ(2nx, 2ny, 2nz), 22nr) (3.19)
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for all x, y, z ∈ X and all r > 0. Letting n → ∞ in (3.19) and using (3.2), we see that

N

(
Q

(
x− y + z

2

)
− 1

2
(Q(x− z) +Q(x− y)) +

1

4
Q(z − y), r

)
= 1 (3.20)

for all x, y, z ∈ X and all r > 0. Using (F2) in the above inequality gives

Q

(
x− y + z

2

)
=

1

2
(Q(x− z) +Q(x− y))− 1

4
Q(z − y)

for all x, y, z ∈ X . Hence, Q satisfies the quadratic functional equation (1.2). In order
to prove Q(z) is unique, let Q′(z) be another quadratic functional equation satisfying
(1.2) and (3.5). Hence,

N(Q(z)−Q′(z), r) = N

(
Q(2nz)

22n
− Q′(2nz)

22n
, r

)
≥ min

{
N

(
Q(2nz)

22n
− q(2nz)

22n
,
r

2

)
, N

(
q(2nz)

22n
− Q′(2nz)

22n
,
r

2

)}
≥ N ′

(
ϑ(0,−2nz, 2nz),

r 22n(22 − d)

2

)
≥ N ′

(
ϑ(0,−z, z),

r 22n(22 − d)

2dn

)
for all z ∈ X and all r > 0. Since

lim
n→∞

r 22n(22 − d)

2dn
= ∞,

we obtain

lim
n→∞

N ′
(
ϑ(0,−z, z),

r 22n(22 − d)

2dn

)
= 1.

Thus
N(Q(z)−Q′(z), r) = 1

for all z ∈ X and all r > 0, hence Q(z) = Q′(z). Therefore Q(z) is unique.

For ς = −1, we can prove the result by a similar method. This completes the proof of
the theorem.

From Theorem 3.1, we obtain the following corollaries concerning the Ulam-Hyers
stability for the functional equation (1.2).

Corollary 3.2. Suppose that a mapping q : X → Y satisfies the inequality

N (Dq(x, y, z), r)

≥


N ′ (ϵ, r) ,

N ′ (ϵ {||x||s + ||y||s + ||z||s} , r) , s ̸= 2;
N ′ (ϵ {||x||s||y||s||z||s + (||x||3s + ||y||3s + ||z||3s)} , r) , s ̸= 2

3
;

(3.21)
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for all x, y, z ∈ X and all r > 0, where ϵ, s are constants. Then there exists a unique
quadratic mapping Q : X → Y such that

N (q(z)−Q(z), r) ≥


N ′ (ϵ, 3r),

N ′ (2ϵ||z||s, r|22 − 2s|
)
,

N ′ (2ϵ||z||3s, r|22 − 23s|
) (3.22)

for all z ∈ X and all r > 0.

4. FUZZY STABILITY RESULTS: FIXED POINT METHOD

In this section, the authors present the generalized Ulam-Hyers stability of the
functional equation (1.2) in fuzzy normed space using fixed point method.

Now we will recall the fundamental results in fixed point theory.

Theorem 4.1. (Banach’s contraction principle) Let (X, d) be a complete metric space
and consider a mapping T : X → X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T (x∗);

(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞T nx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(T nx, x∗) ≤ 1
1−L

d(T nx, T n+1x), ∀ n ≥ 0,∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L

d(x, x∗), ∀ x ∈ X.

Theorem 4.2. [20](The alternative of fixed point) Suppose that for a complete
generalized metric space (X, d) and a strictly contractive mapping T : X → X with
Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(T nx, T n+1x) = ∞ ∀ n ≥ 0,

or
(B2) there exists a natural number n0 such that:
(i) d(T nx, T n+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (T nx) is convergent to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(T n0x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L
d(y, Ty) for all y ∈ Y.
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In order to prove the stability results we define the following:
δi is a constant such that

δi =

{
2 if i = 1,
1
2

if i = 0

and Ω is the set such that

Ω = {g | g : X → Y, g(0) = 0} .

Theorem 4.3. Let q : X → Y be a mapping for which there exist a mapping
ϑ : X3 → Z with the condition

lim
n→∞

N ′ (ϑ (µn
i x, µ

n
i y, µ

n
i z) , µ

2n
i r
)
= 1 (4.1)

forall x, y, z ∈ X, r > 0 and satisfying the functional inequality

N (Dq(x, y, z), r) ≥ N ′ (ϑ(x, y, z), r) (4.2)

forall x, y, z ∈ X, r > 0. If there exists L = L(i) > 0 such that the function

z → γ(z) = ϑ
(
0,−z

2
,
z

2

)
,

has the property

N ′
(
Lγ(µiz)

µ2
i

, r

)
= N ′ (γ(z), r) , ∀ z ∈ X, r > 0. (4.3)

Then there exists unique quadratic mapping Q : X → Y satisfying the functional
equation (1.2) and

N (q(z)−Q(z), r) ≥ N ′
(

L1−i

1− L
γ(z), r

)
∀ z ∈ X, r > 0. (4.4)

Proof. Let d be a general metric on Ω, such that

d(g, h) = inf {K ∈ (0,∞)|N (g(z)− h(z), r) ≥ N ′ (ς(z), Kr) , z ∈ X, r > 0} .

It is easy to see that (Ω, d) is complete. Define T : Ω → Ω by Tg(z) =
1

δ2i
g(δiz), for

all z ∈ X. For g, h ∈ Ω, we have d(g, h) ≤ K

⇒ N (g(z)− h(z), r) ≥ N ′ (Kγ(z), r) , ∀z ∈ X, r > 0

⇒ N

(
g(δiz)

δ2i
− h(δiz)

δ2i
, r

)
≥ N ′ (Kγ(δiz), δ

2
i r
)
, ∀z ∈ X, r > 0

⇒ N (Tg(z)− Th(z), r) ≥ N ′ (KLγ(z), r) , ∀z ∈ X, r > 0

⇒ d (Tg(z), Th(z)) ≤ KL, ∀z ∈ X

⇒ d (Tg, Th) ≤ Ld(g, h) (4.5)
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for all g, h ∈ Ω. There fore T is strictly contractive mapping on Ω with Lipschitz
constant L. Replacing (x, y, z) by (0,−z, z) in (4.2), we get

N (q(2z)− 4q(z), r) ≥ N ′ (ϑ(0,−z, z), r) (4.6)

for all z ∈ X, r > 0. Using (F3) in (4.6), we arrive

N

(
q(2z)

22
− q(z), r

)
≥ N ′ (ϑ(0,−z, z), 22r

)
(4.7)

for all z ∈ X, r > 0 with the help of (4.3) when i = 0, it follows from (4.7), we get

⇒ N

(
q(2z)

22
− q(z), r

)
≥ N ′ (Lγ(z), r)

⇒ d(Tq, q) ≤ L = L1 = L1−i. (4.8)

Replacing z by z
2

in (4.6), we obtain

N
(
q(z)− 22q

(z
2

)
, r
)
≥ N ′

(
ϑ
(
0,−z

2
,
z

2

)
, r
)

(4.9)

for all z ∈ X, r > 0 with the help of (4.3) when i = 1, it follows from (4.9), we get

⇒ N
(
q(z)− 22q

(z
2

)
, r
)
≥ N ′ (γ(z), r)

⇒ d(q, T q) ≤ 1 = L0 = L1−i. (4.10)

Then from (4.8) and (4.10), we can conclude

d(q, T q) ≤ L1−i < ∞.

Now from the fixed point alternative in both cases, it follows that there exists a fixed
point Q of T in Ω such that

Q(z) = N − lim
k→∞

q(2kz)

22k
, ∀z ∈ X, r > 0. (4.11)

Replacing (x, y, z) by (δix, δiy, δiz) in (4.2), we arrive

N

(
1

δ2ni
Dq(δix, δiy, δiz), r

)
≥ N ′ (ϑ(δix, δiy, δiz), δ2ni r

)
(4.12)

for all r > 0 and all x, y, z ∈ X

By proceeding the same procedure as in the Theorem 3.1, we can prove the mapping,
Q : X → Y satisfies the functional equation (1.2).
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By fixed point alternative, since Q is unique fixed point of T in the set

∆ = {q ∈ Ω|d(q,Q) < ∞} ,

therefore Q is a uniqe function such that

N (q(z)−Q(z), r) ≥ N ′ (Kγ(z), r) (4.13)

for all z ∈ X, r > 0 and K > 0. Again using the fixed point alternative, we obtain

d(q,Q) ≤ 1

1− L
d(q, T q)

⇒ d(q,Q) ≤ L1−i

1− L

⇒ N (q(z)−Q(z), r) ≥ N ′
(

L1−i

1− L
γ(z), r

)
(4.14)

for all z ∈ X and r > 0. This completes the proof of the theorem.

From Theorem 4.3, we obtain the following corollary concerning the stability for the
functional equation (1.2).

Corollary 4.4. Suppose that a mapping q : X → Y satisfies the inequality

N (Dq(x, y, z), r)

≥


N ′ (ϵ, r) ,

N ′ (ϵ {||x||s + ||y||s + ||z||s} , r) , s ̸= 2;
N ′ (ϵ {||x||s||y||s||z||s + (||x||3s + ||y||3s + ||z||3s)} , r) , s ̸= 2

3
;

(4.15)

for all x, y, z ∈ X and all r > 0, where ϵ, s are constants. Then there exists a unique
quadratic mapping Q : X → Y such that

N (q(z)−Q(z), r) ≥


N ′ (ϵ, 3r),

N ′ (2ϵ||z||s, |22 − 2s|r
)
,

N ′ (2ϵ||z||3s, |22 − 23s|r
) (4.16)

for all z ∈ X and all r > 0.

Proof. Setting

ϑ(x, y, z) =


ϵ,

ϵ (||x||s + ||y||s + ||z||s) ,
ϵ {||x||s||y||s||z||s + ||x||3s + ||y||3s + ||z||3s}
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for all x, y, z ∈ X . Then,

N ′ (ϑ(δni x, δni y, δni z), δ2ni r
)

=



N ′
(

ϵ

δ2ni
, r

)
,

N ′
(

ϵ

δ2ni
(||δni x||s + ||δni y||s + ||δni z||s) , r

)
,

N ′
(

ϵ

δ2ni

{
||δni x||s||δni y||s + ||δni z||s + ||µn

i x||3s + ||µn
i y||3s + ||µn

i z||3s
}
, r

)
,

=


→ 1 as n → ∞,

→ 1 as n → ∞,

→ 1 as n → ∞.

Thus, (4.1) is holds. But we have γ(z) = ϑ
(
0,

z

2
,
z

2

)
has the property

N ′
(
L
1

δ2i
γ(δiz), r

)
≥ N ′ (γ(z), r) ∀ z ∈ X, r > 0.

Hence

N ′ (γ(z), r) = N ′
(
ϑ
(
0,

z

2
,
z

2

)
, r
)
=


N ′ (ϵ, r),

N ′ (ϵ21−s||z||s, r
)
,

N ′ (ϵ21−3s||z||3s, r
)
.

Now,

N ′
(

1

δ2i
γ(δiz), r

)
=



N ′
(

ϵ

δ2i
, r

)
,

N ′
(

ϵ

δ2i

(
2

2s

)
||δiz||s, r

)
,

N ′
(

ϵ

δ2i

(
2

23s

)
||δiz||3s, r

)
,

=



N ′ (δ−2
i γ(x), r

)
,

N ′ (δs−2
i γ(z), r

)
,

N ′ (δ3s−2
i γ(z), r

)
for all z ∈ X and all r > 0. Hence the inequality (4.3) holds either, L = 2s−2 for s < 2

if i = 0 and L = 22−s for s > 0 if i = 1.
Case 1: L = 2s−2 for s < 2 if i = 0

N (q(z)−Q(z), r) ≥ N ′
(
ϵ

(
2s−2

1− 2s−2

)
γ(z), r

)
= N ′

(
2ϵ||z||s, r

22 − 2s

)
.

Case 2: L = 22−s for s > 2 if i = 1

N (q(z)−Q(z), r) ≥ N ′
(
ϵ

(
1

1− 22−s

)
γ(z), r

)
= N ′

(
2ϵ||z||s, r

2s − 22

)
.

Similarly, the inequality (4.3) holds either, L = 2−2 if i = 0 and L = 22 if i = 1 for
condition (i) and also the inequality (4.3) holds either L = 23s−2 for s < 2

3
if i = 0 and

L = 22−3s for s > 2
3

if i = 1 for condition (iii). Hence the proof is complete.
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