Stability of a Quadratic Functional Equation

S. Karthikeyan¹, G. Ganapathy², P. Palani³, M. Suresh⁴ and S. Jaikumar⁵

¹Department of Mathematics, R.M.K. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India. ¹

^{2,4}Department of Mathematics, R.M.D. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India.

^{3,5}Department of Mathematics, Sri Vidya Mandir Arts and Science College, Uthangarai- 636 902, Tamil Nadu, India.

Abstract

This paper deals with the Ulam-Hyers stability of a quadratic functional equation

$$q\left(x - \frac{y+z}{2}\right) = \frac{1}{2}\left(q(x-z) + q(x-y)\right) - \frac{1}{4}q(z-y)$$

using direct and fixed point methods in fuzzy normed space.

Keywords and phrase: : Fuzzy normed space, Quadratic functional equation, Generalized Hyers-Ulam-Rassias stability, Fixed point method

2010 Mathematics Subject Classification: 39B52, 39B82, 26E50, 46S50

1. INTRODUCTION

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability problem of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? In 1940, Ulam [29] posed the famous Ulam stability problem. In 1941, Hyers [12] solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. He gave rise to the stability theory for functional equations. In 1950, Aoki [2] generalized Hyers' theorem for approximately additive functions. In 1978, Rassias [25] provided a generalized version of Hyers for approximately linear mappings. In addition, Rassias [24, 27] generalized the Hyers stability result by introducing two weaker conditions controlled by a product of different powers of norms and a mixed product-sum of powers of norms, respectively.

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is said to be quadratic functional equation because the quadratic function $f(x) = ax^2$ is a solution of the functional equation (1.1).

This paper established the Ulam-Hyers stability of a quadratic functional equation

$$q\left(x - \frac{y+z}{2}\right) = \frac{1}{2}\left(q(x-z) + q(x-y)\right) - \frac{1}{4}q(z-y)$$
(1.2)

using the direct and fixed point methods in fuzzy normed space.

PRELIMINARIES 2.

A.K. Katsaras [17] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [11, 19, 35]. In particular, T. Bag and S.K. Samanta [6], following S.C. Cheng and J.N. Mordeson [8], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [18]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [7].

We use the definition of fuzzy normed spaces given in [6] and [22, 23, 24, 25].

Definition 2.1. Let X be a real linear space. A function $N : X \times \mathbb{R} \to [0, 1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

- (F1) N(x,c) = 0 for c < 0;
- (F2) x = 0 if and only if N(x, c) = 1 for all c > 0;
- $\begin{array}{ll} (F3) & N(cx,t) = N\left(x,\frac{t}{|c|}\right) \text{ if } c \neq 0; \\ (F4) & N(x+y,s+t) \geq \min\{N(x,s),N(y,t)\}; \end{array}$

Stability of a quadratic functional equation...

 $\begin{array}{ll} (F5) & N(x,\cdot) \text{ is a non-decreasing function on } \mathbb{R} \text{ and } \lim_{t\to\infty} N(x,t)=1;\\ (F6) & \text{ for } x\neq 0, N(x,\cdot) \text{ is (upper semi) continuous on } \mathbb{R}. \end{array}$

The pair (X, N) is called a fuzzy normed linear space. One may regard N(X, t) as the truth-value of the statement the norm of x is less than or equal to the real number t'.

Example 2.2. Let $(X, || \cdot ||)$ be a normed linear space. Then

$$N(x,t) = \begin{cases} \frac{t}{t+\|x\|}, & t > 0, \ x \in X, \\ 0, & t \le 0, \ x \in X \end{cases}$$

is a fuzzy norm on X.

Definition 2.3. Let (X, N) be a fuzzy normed linear space. Let x_n be a sequence in X. Then x_n is said to be convergent if there exists $x \in X$ such that $\lim_{n \to \infty} N(x_n - x, t) = 1$ for all t > 0. In that case, x is called the limit of the sequence x_n and we denote it by $N - \lim_{n \to \infty} x_n = x$.

Definition 2.4. A sequence x_n in X is called Cauchy if for each $\epsilon > 0$ and each t > 0there exists n_0 such that for all $n \ge n_0$ and all p > 0, we have $N(x_{n+p} - x_n, t) > 1 - \epsilon$.

Definition 2.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 2.6. A mapping $f : X \to Y$ between fuzzy normed spaces X and Y is continuous at a point x_0 if for each sequence $\{x_n\}$ covering to x_0 in X, the sequence $f\{x_n\}$ converges to $f(x_0)$. If f is continuous at each point of $x_0 \in X$ then f is said to be continuous on X.

The stability of various functional equations in fuzzy normed spaces were investigated in [3, 4, 15, 21, 22, 23, 24, 25, 29, 32].

Hereafter throughout this paper, assume that X, (Z, N') and (Y, N') are linear space, fuzzy normed space and fuzzy Banach space, respectively. We use the following abbreviation for a given function $f: X \to Y$ by

$$D_q(x, y, z) = q\left(x - \frac{y+z}{2}\right) - \frac{1}{2}\left(q(x-z) + q(x-y)\right) + \frac{1}{4}q(z-y)$$

for all $x, y, z \in X$.

3. FUZZY STABILITY RESULTS: DIRECT METHOD

Now, we investigate the generalized Ulam-Hyers stability of the functional equation (1.2) in fuzzy normed space using direct method.

Theorem 3.1. Let $\varsigma \in \{-1,1\}$ be fixed and let $\vartheta : X^3 \to Z$ be a mapping with $0 < \left(\frac{d}{4}\right)^{\varsigma} < 1$

$$N\left(\vartheta\left(2^{\varsigma}x, 2^{\varsigma}y, 2^{\varsigma}z\right), r\right) \ge N\left(d^{\varsigma}\vartheta\left(x, y, z\right), r\right)$$
(3.1)

for all $x, y, z \in X$ and all d > 0 and

$$\lim_{n \to \infty} N'\left(\vartheta\left(2^{\varsigma n}x, 2^{\varsigma n}y, 2^{\varsigma n}z\right), 4^{\varsigma n}r\right) = 1$$
(3.2)

for all $x, y, z \in X$ and all r > 0. Suppose that a mapping $q : X \to Y$ satisfies the inequality

$$N\left(D_q\left(x, y, z\right), r\right) \ge N'\left(\vartheta\left(x, y, z\right), r\right)$$
(3.3)

for all $x, y, z \in X$ and all r > 0. Then the limit

$$Q(z) = N - \lim_{n \to \infty} \frac{q\left(2^{n\varsigma}z\right)}{4^{n\varsigma}}$$
(3.4)

exists for all $z \in X$ and all r > 0 and the mapping $Q : X \to Y$ is a unique quadratic mapping satisfying (1.2) and

$$N(q(z) - Q(z), r) \ge N'(\vartheta(0, -z, z), r|4 - d|)$$
(3.5)

for all $z \in X$ and all r > 0.

Proof. First assume $\varsigma = 1$. Replacing (x, y, z) by (0, -z, z) in (3.3), we get

$$N(q(2z) - 4q(z), r) \ge N'(\vartheta(0, -z, z), r)$$
(3.6)

for all $z \in X$ and all r > 0. Replacing z by $2^n z$ in (3.6), we obtain

$$N\left(\frac{q(2^{n+1}z)}{2^2} - q(2^n z), \frac{r}{2^2}\right) \ge N'\left(\vartheta(0, -2^n z, 2^n z, r)\right)$$
(3.7)

for all $z \in X$ and all r > 0. Using (3.1), (F3) in (3.7), we arrive

$$N\left(\frac{q(2^{n+1}z)}{2^2} - q(2^n z), \frac{r}{4}\right) \ge N'\left(\vartheta(0, -z, z, \frac{r}{d^n}\right)$$
(3.8)

Stability of a quadratic functional equation...

for all $z \in X$ and all r > 0. It is easy to verify from (3.8), that

$$N\left(\frac{q(2^{n+1}z)}{2^{2(n+1)}} - \frac{q(2^nz)}{2^{2n}}, \frac{r}{2^2 \cdot 2^{2n}}\right) \ge N'\left(\vartheta(0, -z, z), \frac{r}{d^n}\right)$$
(3.9)

holds for all $z \in X$ and all r > 0. Replacing r by $d^n r$ in (3.9), we get

$$N\left(\frac{q(2^{n+1}z)}{2^{2(n+1)}} - \frac{q(2^nz)}{2^{2n}}, \frac{d^n r}{2^{2(n+1)}}\right) \ge N'\left(\vartheta(0, -z, z), r\right)$$
(3.10)

for all $z \in X$ and all r > 0. It is easy to see that

$$\frac{q(2^n z)}{2^{2n}} - q(z) = \sum_{i=0}^{n-1} \left[\frac{q(2^{i+1}z)}{2^{2(i+1)}} - \frac{q(2^i x)}{2^{2i}} \right]$$
(3.11)

for all $z \in X$. From equations (3.10) and (3.11), we have

$$N\left(\frac{q(2^{n}z)}{2^{2n}} - q(z), \sum_{i=0}^{n-1} \frac{d^{i}r}{2^{2(i+1)}}\right)$$

$$\geq \min \bigcup_{i=0}^{n-1} \left\{ \frac{q(2^{i+1}z)}{2^{2(i+1)}} - \frac{q(2^{i}z)}{2^{2i}}, \frac{d^{i}r}{2^{2(i+1)}} \right\}$$

$$\geq \min \bigcup_{i=0}^{n-1} \left\{ N'\left(\vartheta(0, -z, z), r\right) \right\}$$

$$\geq N'\left(\vartheta(0, -z, z), r\right)$$
(3.12)

for all $z \in X$ and all r > 0. Replacing z by $2^m z$ in (3.12) and using (3.1), (F3), we obtain

$$N\left(\frac{q(2^{n+m}z)}{2^{2(n+m)}} - \frac{q(2^{m}z)}{2^{2m}}, \sum_{i=0}^{n-1} \frac{d^{i}r}{2^{2(i+m)}}\right) \ge N'\left(\vartheta(0, -z, z), \frac{r}{d^{m}}\right)$$
(3.13)

for all $z \in X$ and all r > 0 and all $m, n \ge 0$. Replacing r by $d^m r$ in (3.13), we get

$$N\left(\frac{q(2^{n+m}z)}{2^{2(n+m)}} - \frac{q(2^mz)}{2^{2m}}, \sum_{i=m}^{m+n-1} \frac{d^i r}{2^{2i}}\right) \ge N'\left(\vartheta(0, -z, z), r\right)$$
(3.14)

for all $z \in X$ and all r > 0 and all $m, n \ge 0$. Using (F3) in (3.14), we obtain

$$N\left(\frac{q(2^{n+m}z)}{2^{2(n+m)}} - \frac{q(2^{m}z)}{2^{2m}}, r\right) \ge N'\left(\vartheta(0, -z, z), \frac{r}{\sum_{i=m}^{m+n-1} \frac{d^{i}}{2^{2(i+1)}}}\right)$$
(3.15)

for all $z \in X$ and all r > 0 and all $m, n \ge 0$. Since $0 < d < 2^2$ and $\sum_{i=0}^{n} \left(\frac{d}{2^2}\right)^i < \infty$, the cauchy criterion for convergence and (F5) implies that $\left\{\frac{q(2^n z)}{2^{2n}}\right\}$ is a Cauchy

sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point $Q(z) \in Y$. So one can define the mapping $Q: X \to Y$ by

$$Q(z) = N - \lim_{n \to \infty} \frac{q(2^n z)}{2^{2n}}$$

,

for all $z \in X$. Letting m = 0 in (3.15), we get

$$N\left(\frac{q(2^{n}z)}{2^{2n}} - q(z), r\right) \ge N' \left(\vartheta(0, -z, z), \frac{r}{\sum_{i=0}^{n-1} \frac{d^{i}}{2^{2i}}}\right)$$
(3.16)

for all $z \in X$ and all r > 0. Letting $n \to \infty$ in (3.16) and using (F6), we arrive

$$N\left(q(z) - Q(z), r\right) \ge N'\left(\vartheta(0, -z, z), r(2^2 - d)\right)$$

for all $z \in X$ and all r > 0. To prove Q satisfies the functional equation (1.2), replacing (x, y, z) by $(2^n x, 2^n y, 2^n z)$ in (3.3), respectively, we obtain

$$N\left(\frac{1}{2^{n}}D_{q}(2^{n}x,2^{n}y,2^{n}z),r\right) \ge N'\left(\vartheta(2^{n}x,2^{n}y,2^{n}z),2^{2n}r\right)$$
(3.17)

for all r > 0 and all $x, y, z \in X$. Now,

$$N\left(Q\left(x-\frac{y+z}{2}\right)-\frac{1}{2}\left(Q(x-z)+Q(x-y)\right)+\frac{1}{4}Q(z-y),r\right)$$

$$\geq \min\left\{N\left(Q\left(x-\frac{y+z}{2}\right)-\frac{1}{2^{2n}}q\left(2^{n}\left(x-\frac{y+z}{2}\right)\right),\frac{r}{5}\right),$$

$$N\left(-\frac{1}{2}Q(x-z)+\frac{1}{2^{2n}2}q\left(2^{n}\left(x-z\right)\right),\frac{r}{5}\right),$$

$$N\left(-\frac{1}{2}Q(x-y)+\frac{1}{2^{2n}2}q\left(2^{n}\left(x-y\right)\right),\frac{r}{5}\right),$$

$$N\left(\frac{1}{4}Q(z-y)-\frac{1}{2^{2n}4}q\left(2^{n}\left(z-y\right)\right),\frac{r}{5}\right),$$

$$N\left(\frac{1}{2^{2n}}q\left(2^{n}\left(x-\frac{y+z}{2}\right)\right)-\frac{1}{2^{2n}2}q\left(2^{n}\left(x-z\right)\right)-\frac{1}{2^{2n}2}q\left(2^{n}\left(x-z\right)\right),\frac{r}{5}\right)\right\}$$

$$(3.18)$$

for all $x, y, z \in X$ and all r > 0. Using (3.17) and (F5) in (3.18), we arrive

$$N\left(Q\left(x-\frac{y+z}{2}\right) - \frac{1}{2}\left(Q(x-z) + Q(x-y)\right) + \frac{1}{4}Q(z-y), r\right)$$

$$\geq \min\left\{1, 1, 1, 1, N'\left(\vartheta(2^{n}x, 2^{n}y, 2^{n}z), 2^{2n}r\right)\right\}$$

$$\geq N'\left(\vartheta(2^{n}x, 2^{n}y, 2^{n}z), 2^{2n}r\right)$$
(3.19)

1172

Stability of a quadratic functional equation...

for all $x, y, z \in X$ and all r > 0. Letting $n \to \infty$ in (3.19) and using (3.2), we see that

$$N\left(Q\left(x-\frac{y+z}{2}\right)-\frac{1}{2}\left(Q(x-z)+Q(x-y)\right)+\frac{1}{4}Q(z-y),r\right)=1$$
 (3.20)

for all $x, y, z \in X$ and all r > 0. Using (F2) in the above inequality gives

$$Q\left(x - \frac{y+z}{2}\right) = \frac{1}{2}\left(Q(x-z) + Q(x-y)\right) - \frac{1}{4}Q(z-y)$$

for all $x, y, z \in X$. Hence, Q satisfies the quadratic functional equation (1.2). In order to prove Q(z) is unique, let Q'(z) be another quadratic functional equation satisfying (1.2) and (3.5). Hence,

$$\begin{split} N(Q(z) - Q'(z), r) &= N\left(\frac{Q(2^n z)}{2^{2n}} - \frac{Q'(2^n z)}{2^{2n}}, r\right) \\ &\geq \min\left\{N\left(\frac{Q(2^n z)}{2^{2n}} - \frac{q(2^n z)}{2^{2n}}, \frac{r}{2}\right), N\left(\frac{q(2^n z)}{2^{2n}} - \frac{Q'(2^n z)}{2^{2n}}, \frac{r}{2}\right)\right\} \\ &\geq N'\left(\vartheta(0, -2^n z, 2^n z), \frac{r}{2^{2n}(2^2 - d)}{2}\right) \\ &\geq N'\left(\vartheta(0, -z, z), \frac{r}{2^{2n}(2^2 - d)}{2d^n}\right) \end{split}$$

for all $z \in X$ and all r > 0. Since

$$\lim_{n \to \infty} \frac{r \ 2^{2n}(2^2 - d)}{2d^n} = \infty,$$

we obtain

$$\lim_{n \to \infty} N'\left(\vartheta(0, -z, z), \frac{r \, 2^{2n}(2^2 - d)}{2d^n}\right) = 1.$$

Thus

$$N(Q(z) - Q'(z), r) = 1$$

for all $z \in X$ and all r > 0, hence Q(z) = Q'(z). Therefore Q(z) is unique.

For $\varsigma = -1$, we can prove the result by a similar method. This completes the proof of the theorem.

From Theorem 3.1, we obtain the following corollaries concerning the Ulam-Hyers stability for the functional equation (1.2).

Corollary 3.2. Suppose that a mapping $q: X \to Y$ satisfies the inequality

$$N\left(D_{q}(x, y, z), r\right) \\ \geq \begin{cases} N'\left(\epsilon, r\right), & s \neq 2; \\ N'\left(\epsilon\left\{||x||^{s} + ||y||^{s} + ||z||^{s}\right\}, r\right), & s \neq 2; \\ N'\left(\epsilon\left\{||x||^{s} ||y||^{s} ||z||^{s} + (||x||^{3s} + ||y||^{3s} + ||z||^{3s})\right\}, r\right), & s \neq \frac{2}{3}; \end{cases}$$
(3.21)

for all $x, y, z \in X$ and all r > 0, where ϵ, s are constants. Then there exists a unique quadratic mapping $Q : X \to Y$ such that

$$N(q(z) - Q(z), r) \ge \begin{cases} N'(\epsilon, 3r), \\ N'(2\epsilon ||z||^{s}, r|2^{2} - 2^{s}|), \\ N'(2\epsilon ||z||^{3s}, r|2^{2} - 2^{3s}|) \end{cases}$$
(3.22)

for all $z \in X$ and all r > 0.

4. FUZZY STABILITY RESULTS: FIXED POINT METHOD

In this section, the authors present the generalized Ulam-Hyers stability of the functional equation (1.2) in fuzzy normed space using fixed point method.

Now we will recall the fundamental results in fixed point theory.

Theorem 4.1. (Banach's contraction principle) Let (X, d) be a complete metric space and consider a mapping $T : X \to X$ which is strictly contractive mapping, that is

- (A1) $d(Tx, Ty) \leq Ld(x, y)$ for some (Lipschitz constant) L < 1. Then, (i) The mapping T has one and only fixed point $x^* = T(x^*)$; (ii) The fixed point for each given element x^* is globally attractive, that is
- (A2) $\lim_{n\to\infty} T^n x = x^*$, for any starting point $x \in X$; (iii) One has the following estimation inequalities:
- (A3) $d(T^n x, x^*) \leq \frac{1}{1-L} d(T^n x, T^{n+1} x), \forall n \geq 0, \forall x \in X;$

(A4) $d(x, x^*) \leq \frac{1}{1-L} d(x, x^*), \forall x \in X.$

Theorem 4.2. [20](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T : X \to X$ with Lipschitz constant L. Then, for each given element $x \in X$, either (B1) $d(T^nx, T^{n+1}x) = \infty \quad \forall n \ge 0$, or (B2) there exists a natural number n_0 such that:

(i) $d(T^n x, T^{n+1} x) < \infty$ for all $n \ge n_0$;

- (*ii*)*The sequence* $(T^n x)$ *is convergent to a fixed point* y^* *of* T
- (*iii*) y^* is the unique fixed point of T in the set $Y = \{y \in X : d(T^{n_0}x, y) < \infty\};$
- $(iv) d(y^*, y) \leq \frac{1}{1-L} d(y, Ty)$ for all $y \in Y$.

In order to prove the stability results we define the following:

 δ_i is a constant such that

$$\delta_i = \begin{cases} 2 & if \quad i = 1, \\ \frac{1}{2} & if \quad i = 0 \end{cases}$$

and Ω is the set such that

$$\Omega = \{g \mid g : X \to Y, g(0) = 0\}$$

Theorem 4.3. Let $q : X \to Y$ be a mapping for which there exist a mapping $\vartheta : X^3 \to Z$ with the condition

$$\lim_{n \to \infty} N' \left(\vartheta \left(\mu_i^n x, \mu_i^n y, \mu_i^n z \right), \mu_i^{2n} r \right) = 1$$
(4.1)

for all $x, y, z \in X, r > 0$ and satisfying the functional inequality

$$N\left(D_q(x, y, z), r\right) \ge N'\left(\vartheta(x, y, z), r\right) \tag{4.2}$$

for all $x, y, z \in X, r > 0$. If there exists L = L(i) > 0 such that the function

$$z \to \gamma(z) = \vartheta\left(0, -\frac{z}{2}, \frac{z}{2}\right),$$

has the property

$$N'\left(\frac{L\gamma(\mu_i z)}{\mu_i^2}, r\right) = N'\left(\gamma(z), r\right), \ \forall \ z \in X, r > 0.$$
(4.3)

Then there exists unique quadratic mapping $Q : X \to Y$ satisfying the functional equation (1.2) and

$$N\left(q(z) - Q(z), r\right) \ge N'\left(\frac{L^{1-i}}{1-L}\gamma(z), r\right) \ \forall \ z \in X, r > 0.$$

$$(4.4)$$

Proof. Let d be a general metric on Ω , such that

$$d(g,h) = \inf \left\{ K \in (0,\infty) | N(g(z) - h(z), r) \ge N'(\varsigma(z), Kr), z \in X, r > 0 \right\}.$$

It is easy to see that (Ω, d) is complete. Define $T : \Omega \to \Omega$ by $Tg(z) = \frac{1}{\delta_i^2}g(\delta_i z)$, for all $z \in X$. For $g, h \in \Omega$, we have $d(g, h) \leq K$

$$\Rightarrow \qquad N\left(g(z) - h(z), r\right) \ge N'\left(K\gamma(z), r\right), \ \forall z \in X, r > 0 \Rightarrow \qquad N\left(\frac{g(\delta_i z)}{\delta_i^2} - \frac{h(\delta_i z)}{\delta_i^2}, r\right) \ge N'\left(K\gamma(\delta_i z), \delta_i^2 r\right), \ \forall z \in X, r > 0 \Rightarrow \qquad N\left(Tg(z) - Th(z), r\right) \ge N'\left(KL\gamma(z), r\right), \ \forall z \in X, r > 0 \Rightarrow \qquad d\left(Tg(z), Th(z)\right) \le KL, \ \forall z \in X \Rightarrow \qquad d\left(Tg, Th\right) \le Ld(g, h)$$

$$(4.5)$$

for all $g, h \in \Omega$. There fore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x, y, z) by (0, -z, z) in (4.2), we get

$$N(q(2z) - 4q(z), r) \ge N'(\vartheta(0, -z, z), r)$$
(4.6)

for all $z \in X, r > 0$. Using (F3) in (4.6), we arrive

$$N\left(\frac{q(2z)}{2^2} - q(z), r\right) \ge N'\left(\vartheta(0, -z, z), 2^2 r\right)$$

$$(4.7)$$

for all $z \in X, r > 0$ with the help of (4.3) when i = 0, it follows from (4.7), we get

$$\Rightarrow \qquad N\left(\frac{q(2z)}{2^2} - q(z), r\right) \ge N'\left(L\gamma(z), r\right)$$
$$\Rightarrow \qquad d(Tq, q) \le L = L^1 = L^{1-i}. \tag{4.8}$$

Replacing z by $\frac{z}{2}$ in (4.6), we obtain

$$N\left(q(z) - 2^{2}q\left(\frac{z}{2}\right), r\right) \ge N'\left(\vartheta\left(0, -\frac{z}{2}, \frac{z}{2}\right), r\right)$$
(4.9)

for all $z \in X$, r > 0 with the help of (4.3) when i = 1, it follows from (4.9), we get

$$\Rightarrow N\left(q(z) - 2^2 q\left(\frac{z}{2}\right), r\right) \ge N'\left(\gamma(z), r\right)$$
$$\Rightarrow d(q, Tq) \le 1 = L^0 = L^{1-i}.$$
(4.10)

Then from (4.8) and (4.10), we can conclude

$$d(q, Tq) \le L^{1-i} < \infty.$$

Now from the fixed point alternative in both cases, it follows that there exists a fixed point Q of T in Ω such that

$$Q(z) = N - \lim_{k \to \infty} \frac{q(2^k z)}{2^{2k}}, \qquad \forall z \in X, r > 0.$$
(4.11)

Replacing (x, y, z) by $(\delta_i x, \delta_i y, \delta_i z)$ in (4.2), we arrive

$$N\left(\frac{1}{\delta_i^{2n}}D_q(\delta_i x, \delta_i y, \delta_i z), r\right) \ge N'\left(\vartheta(\delta_i x, \delta_i y, \delta_i z), \delta_i^{2n} r\right)$$
(4.12)

for all r > 0 and all $x, y, z \in X$

By proceeding the same procedure as in the Theorem 3.1, we can prove the mapping, $Q: X \to Y$ satisfies the functional equation (1.2).

By fixed point alternative, since Q is unique fixed point of T in the set

$$\Delta = \left\{ q \in \Omega | d(q, Q) < \infty \right\},\$$

therefore Q is a unique function such that

$$N(q(z) - Q(z), r) \ge N'(K\gamma(z), r)$$

$$(4.13)$$

for all $z \in X, r > 0$ and K > 0. Again using the fixed point alternative, we obtain

$$d(q,Q) \leq \frac{1}{1-L}d(q,Tq)$$

$$\Rightarrow \quad d(q,Q) \leq \frac{L^{1-i}}{1-L}$$

$$\Rightarrow \quad N(q(z) - Q(z),r) \geq N'\left(\frac{L^{1-i}}{1-L}\gamma(z),r\right)$$
(4.14)

for all $z \in X$ and r > 0. This completes the proof of the theorem.

From Theorem 4.3, we obtain the following corollary concerning the stability for the functional equation (1.2).

Corollary 4.4. Suppose that a mapping $q: X \to Y$ satisfies the inequality

$$N\left(D_{q}(x, y, z), r\right) \\ \geq \begin{cases} N'\left(\epsilon, r\right), & s \neq 2; \\ N'\left(\epsilon \left\{ ||x||^{s} + ||y||^{s} + ||z||^{s} \right\}, r\right), & s \neq 2; \\ N'\left(\epsilon \left\{ ||x||^{s} ||y||^{s} ||z||^{s} + (||x||^{3s} + ||y||^{3s} + ||z||^{3s}) \right\}, r\right), & s \neq \frac{2}{3}; \end{cases}$$

$$(4.15)$$

for all $x, y, z \in X$ and all r > 0, where ϵ, s are constants. Then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$N(q(z) - Q(z), r) \ge \begin{cases} N'(\epsilon, 3r), \\ N'(2\epsilon ||z||^{s}, |2^{2} - 2^{s}|r), \\ N'(2\epsilon ||z||^{3s}, |2^{2} - 2^{3s}|r) \end{cases}$$
(4.16)

for all $z \in X$ and all r > 0.

Proof. Setting

$$\vartheta(x, y, z) = \begin{cases} \epsilon, \\ \epsilon \left(||x||^{s} + ||y||^{s} + ||z||^{s} \right), \\ \epsilon \left\{ ||x||^{s} ||y||^{s} ||z||^{s} + ||x||^{3s} + ||y||^{3s} + ||z||^{3s} \right\} \end{cases}$$

$$\begin{split} \text{for all } x, y, z \in X. \text{ Then,} \\ N' \left(\vartheta(\delta_i^n x, \delta_i^n y, \delta_i^n z), \delta_i^{2n} r \right) \\ &= \begin{cases} N' \left(\frac{\epsilon}{\delta_i^{2n}}, r \right), \\ N' \left(\frac{\epsilon}{\delta_i^{2n}} (||\delta_i^n x||^s + ||\delta_i^n y||^s + ||\delta_i^n z||^s), r \right), \\ N' \left(\frac{\epsilon}{\delta_i^{2n}} \{ ||\delta_i^n x||^s ||\delta_i^n y||^s + ||\delta_i^n z||^s + ||\mu_i^n x||^{3s} + ||\mu_i^n y||^{3s} + ||\mu_i^n z||^{3s} \}, r \right), \\ &= \begin{cases} \rightarrow 1 \text{ as } n \rightarrow \infty, \\ \rightarrow 1 \text{ as } n \rightarrow \infty, \\ \rightarrow 1 \text{ as } n \rightarrow \infty. \end{cases} \end{aligned}$$

Thus, (4.1) is holds. But we have $\gamma(z) = \vartheta\left(0, \frac{z}{2}, \frac{z}{2}\right)$ has the property

$$N'\left(L\frac{1}{\delta_i^2}\gamma(\delta_i z), r\right) \ge N'\left(\gamma(z), r\right) \ \forall \ z \in X, r > 0.$$

Hence

$$N'(\gamma(z), r) = N'\left(\vartheta\left(0, \frac{z}{2}, \frac{z}{2}\right), r\right) = \begin{cases} N'(\epsilon, r), \\ N'(\epsilon 2^{1-s} ||z||^{s}, r), \\ N'(\epsilon 2^{1-3s} ||z||^{3s}, r). \end{cases}$$

Now,

$$N'\left(\frac{1}{\delta_i^2}\gamma(\delta_i z), r\right) = \begin{cases} N'\left(\frac{\epsilon}{\delta_i^2}, r\right), \\ N'\left(\frac{\epsilon}{\delta_i^2}\left(\frac{2}{2^s}\right)||\delta_i z||^s, r\right), \\ N'\left(\frac{\epsilon}{\delta_i^2}\left(\frac{2}{2^{3s}}\right)||\delta_i z||^{3s}, r\right), \end{cases} = \begin{cases} N'\left(\delta_i^{s-2}\gamma(x), r\right), \\ N'\left(\delta_i^{s-2}\gamma(z), r\right), \\ N'\left(\delta_i^{3s-2}\gamma(z), r\right), \end{cases}$$

for all $z \in X$ and all r > 0. Hence the inequality (4.3) holds either, $L = 2^{s-2}$ for s < 2if i = 0 and $L = 2^{2-s}$ for s > 0 if i = 1.

Case 1: $L = 2^{s-2}$ for s < 2 if i = 0

$$N(q(z) - Q(z), r) \ge N'\left(\epsilon\left(\frac{2^{s-2}}{1 - 2^{s-2}}\right)\gamma(z), r\right) = N'\left(2\epsilon||z||^s, \frac{r}{2^2 - 2^s}\right).$$

Case 2: $L = 2^{2-s}$ for s > 2 if i = 1

$$N\left(q(z) - Q(z), r\right) \ge N'\left(\epsilon\left(\frac{1}{1 - 2^{2-s}}\right)\gamma(z), r\right) = N'\left(2\epsilon||z||^s, \frac{r}{2^s - 2^2}\right).$$

Similarly, the inequality (4.3) holds either, $L = 2^{-2}$ if i = 0 and $L = 2^2$ if i = 1 for condition (i) and also the inequality (4.3) holds either $L = 2^{3s-2}$ for $s < \frac{2}{3}$ if i = 0 and $L = 2^{2-3s}$ for $s > \frac{2}{3}$ if i = 1 for condition (iii). Hence the proof is complete.

REFERENCES

- [1] J. Aczel and J. Dhombres, *Functional Equations in Several Variables*, Cambridge Univ, Press, 1989.
- [2] **T. Aoki**, *On the stability of the linear transformation in Banach spaces*, J. Math. Soc. Japan, 2 (1950), 64-66.
- [3] M. Arunkumar, G. Vijayanandhraj and S. Ramamoorthi, Stability of a Euler-Lagrange quadratic functional equation In Fuzzy Normed Spaces, Inter. J. of Math. Sci. and Engg. Appls. (IJMSEA), Vol. 4, No. IV, Oct 2010.
- [4] M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of Applied Mathematics, Vol 41, No. 2, (2010), 83-94.
- [5] C. Baak and M. S. Moslenian, On the stability of a orthogonally cubic functional equations, Kyungpook Math. J., 47 (2007), 69-76.
- [6] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687-705.
- [7] **T. Bag and S.K. Samanta**, *Fuzzy bounded linear operators*, Fuzzy Sets and Systems 151 (2005) 513-547.
- [8] S.C. Cheng and J.N. Mordeson, *Fuzzy linear operator and fuzzy normed linear spaces*, Bull. Calcutta Math. Soc. 86 (1994) 429-436.
- [9] **H. Y. Chu and D. S. Kang**, *On the stability of an n*-*dimensional cubic functional equation*, J. Math. Anal. Appl., 325 No. 1 (2007), 595-607.
- [10] **S. Czerwik**, *Functional Equations and Inequalities in Several Variables*, World Scientific, River Edge, NJ, 2002.
- [11] C. Felbin, *Finite dimensional fuzzy normed linear space*, Fuzzy Sets and Systems 48 (1992) 239-248.
- [12] **P. Gavruta**, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- [13] **D.H. Hyers**, *On the stability of the linear functional equation*, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
- [14] **D.H. Hyers, G. Isac and Th.M. Rassias**, *Stability of functional equations in several variables*, Birkhauser, Basel, 1998.
- [15] Sun-Young Jang, Jung Rye Lee, Choonkil Park and Dong Yun Shin, Fuzzy Stability of Jensen-Type Quadratic Functional Equations, Abstract and Applied Analysis, Volume 2009, Article ID 535678, 17 pages, doi:10.1155/2009/535678.

- [16] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [17] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12 (1984), 143-154.
- [18] **I. Kramosil and J. Michalek**, *Fuzzy metric and statistical metric spaces*, Kybernetica 11 (1975) 326-334.
- [19] S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994) 207-217.
- [20] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. Vol.126, no.74 (1968), 305-309.
- [21] **D. Mihet**, *The fixed point method for fuzzy stability of the Jensen functional equation*, Fuzzy Sets and Systems 160, (2009), 1663 -1667.
- [22] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159, no. 6, (2008), 720-729.
- [23] A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Vol. 159, no. 6, (2008), 730-738.
- [24] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Information Sciences, Vol. 178, no. 19, (2008), 3791-3798.
- [25] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results in Mathematics, Vol. 52, no. 1-2, (2008), 161-177.
- [26] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
- [27] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108, (1984) 445-446.
- [28] **J. M. Rassias**, *Solution of the Ulam stability problem for the cubic mapping*, Glasnik Mathematica, Vol. 36(56) (2001), 63-72.
- [29] J. M. Rassias, M. Arunkumar and S. Karthikeyan, Stability of a quadratic functional equation originating from sum of the medians of a triangle in fuzzy ternary Banach algebras: Direct and fixed point methods, Int. J. Math. Appl. 3 (2015), no. 4A, 45–64.
- [30] **Th.M. Rassias**, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.

- [31] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
- [32] K.Ravi, M. Arunkumar and P. Narasimman, *Fuzzy stability of a Additive functional equation*, International Journal of Mathematical Sciences, Autumn 2011 Vol.9, No. S11, 88-105.
- [33] **P. K. Sahoo**, *On a functional equation characterizing polynomials of degree three*, Bul. Inst. Math. Acd. Sin, 32 (1), 2004.
- [34] **S.M. Ulam**, *Problems in Modern Mathematics*, Science Editions, Wiley, NewYork, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).
- [35] J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems 133 (2003) 389-399.