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Abstract: This paper gives the first quantitative bounds for the inverse theorem for the
Gowers U4-norm over Fn

p when p = 2,3. We build upon earlier work of Gowers and
Milićević who solved the corresponding problem for p≥ 5. Our proof has two main steps:
symmetrization and integration of low-characteristic trilinear forms. We are able to solve the
integration problem for all k-linear forms, but the symmetrization problem we are only able
to solve for trilinear forms. We pose several open problems about symmetrization of low-
characteristic k-linear forms whose resolution, combined with recent work of Gowers and
Milićević, would give quantitative bounds for the inverse theorem for the Gowers Uk+1-norm
over Fn

p for all k, p.

1 Introduction

A central problem in additive combinatorics is to understand the inverse theory of the Gowers uniformity
norms. Given a 1-bounded function f : G→ C with large Gowers uniformity norm where G is a finite
abelian group, the goal is to show that f must correlate with some structured object.

This inverse problem has primarily received attention in the cases that G is a cyclic group of prime
order or a vector space over a finite field. For G = Z/NZ the inverse problem was solved by Green, Tao,
and Ziegler [9, 10] and the structured objects require the theory of nilsequences to describe. For vector
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JONATHAN TIDOR

spaces over finite fields the situation is known to be somewhat simpler. For p≥ k, a 1-bounded function
f : Fn

p→ C has large Uk+1-norm if and only if it correlates with a (classical) polynomial phase function,
i.e., e2πiP(x)/p for a polynomial P : Fn

p→ Fp of degree at most k, as shown by Bergelson, Tao, and Ziegler
[2, 17] (see also [3] for a discussion of the p = k case). For p < k, one needs the theory of non-classical
polynomials to describe the structured objects [18].

The original proofs of these inverse theorems give extremely bad or even ineffective quantitative
bounds. Recently Manners proved quantitative bounds for the Uk+1-inverse theorem over Z/NZ [14]
and Gowers and Milićević proved quantitative bounds for the Uk+1-inverse theorem over Fn

p when p > k
[5, 6].

The goal of this paper is to build upon the work of Gowers and Milićević to give quantitative bounds
for the U4-inverse theorem over Fn

p in the low-characteristic regime p = 2,3. Our proof has two main
steps: symmetrization and integration of low-characteristic trilinear forms. We are able to solve the
integration problem for all k-linear forms, but the symmetrization problem we are only able to solve for
trilinear forms.

1.1 Statement of main result

In this paper we always use V to denote a finite-dimensional Fp-vector space and we write ω = e2πi/p.
Given a function f : V → C and a shift h ∈ V , we write ∂h f (x) = f (x+ h) f (x) for the multiplicative
derivative.

Definition 1.1. Given a function f : V → C and d ≥ 2, the Gowers uniformity norm ‖ f‖Ud is defined
by

‖ f‖2d

Ud = Ex,h1,...,hd∈V (∂h1 · · ·∂hd f )(x).

This definition has many useful properties, including being a well-defined norm for all d ≥ 2. Another
useful property is the inductive formula ‖ f‖2d

Ud = Eh‖∂h f‖2d−1

Ud−1 . See [18, Lemma B.1] for more properties
and references about the Gowers uniformity norms.

Consider a function f : V → G where G is an abelian group. Given a shift h ∈V , we write ∆h f (x) =
f (x+h)− f (x) for the additive derivative. It follows from the definition of the Gowers uniformity norm
that a 1-bounded function f : V → C satisfies ‖ f‖Ud ≤ 1 with equality if and only if f = e2πiP where
P : V → R/Z satisfies ∆h1∆h2 · · ·∆hd P(x) = 0.

Definition 1.2. A non-classical polynomial of degree at most k is a map P : V → R/Z that satisfies

(∆h1 · · ·∆hk+1P)(x) = 0

for all h1, . . . ,hk+1,x ∈V . We write Poly6k(V →R/Z) for the set of non-classical polynomials of degree
at most k.

A classical polynomial is a map P : V → Fp satisfying the same definition. Thus we use Poly6k(V →
Fp) to denote the set of classical polynomials of degree at most k. In this paper we commonly abuse
notation to identify Fp with {0,1/p, . . . ,(p−1)/p} ⊂ R/Z when convenient. In this way we consider
Poly6k(V → Fp) to be a subset of Poly6k(V → R/Z).
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Theorem 1.3. Fix a prime p and δ > 0. There exists an ε > 0 satisfying

1/ε = exp
(

exp
(

exp
(

Op

(
log(1/δ )O(1)

))))
such that the following holds. Let V be a finite-dimensional Fp-vector space. Given a function f : V → C
satisfying ‖ f‖∞ ≤ 1 and ‖ f‖U4 > δ , there exists a non-classical cubic polynomial P∈ Poly63(V →R/Z)
such that ∣∣∣Ex∈V f (x)e−2πiP(x)

∣∣∣≥ ε.

Furthermore, if p≥ 3, the polynomial can be taken to be classical.

This theorem was proved with ineffective bounds by Tao and Ziegler [18, Theorem 1.10] and with
effective bounds for p≥ 5 by Gowers and Milićević [6, Theorem 7]. The bounds we prove are of the
same shape as Gowers and Milićević’s result.

1.2 Proof strategy

We start by summarizing the Gowers-Milićević proof of the U4-inverse theorem for p ≥ 5 and then
explain where the difficulties arise when p < 5.

We are given a function f : Fn
p→ C which is 1-bounded and satisfies ‖ f‖U4 > δ . By expanding the

definition of the U4-norm and applying the U2-inverse theorem, this implies

δ
16 < ‖ f‖16

U4 = Ea,b‖∂a∂b f‖4
U2 ≤ Ea,b‖∂̂a∂b f‖2

∞.

By an application of Markov’s inequality, this implies that there is a fairly dense set A⊂V 2 and a function
φ : A→V such that |∂̂a∂b f (φ(a,b))| is large for each (a,b) ∈ A.

One can show that the function φ has some weak bilinearity properties. The main bulk of the work
done by Gowers and Milićević is to show that this local bilinearity can be upgraded to some global
structure. Namely, they prove that φ agrees with a biaffine map Φ : V 2→V on a fairly dense set. This
immediately implies that there is a triaffine form T : V 3→ Fp that satisfies∣∣∣Ea,b,c,x∂a∂b∂c f (x)ωT (a,b,c)

∣∣∣≥ η . (1.1)

This part of the proof has no assumptions on the characteristic p.
To finish the proof, we would like to find a cubic polynomial P such that ‖ f ωP‖U3 is large. From this

point we would be able to conclude by a single application of the U3-inverse theorem. We expand

‖ f ω
P‖8

U3 = Ea,b,c,x∂a∂b∂c f (x)ω∆a∆b∆cP(x).

Thus the object ∆a∆b∆cP(x) naturally appears. We call this object the total derivative of P. The total
derivative of P clearly does not depend on x so we will just write ∆a∆b∆cP from now on. Furthermore,
∆a∆b∆cP is symmetric and trilinear in a,b,c.

Thus our next step is to massage Eq. (1.1) to turn the triaffine form T into a symmetric trilinear form.
For simplicity of exposition, let us assume that T is a trilinear. (The parts of T that are not trilinear can
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often be removed by an appropriate application of the Cauchy-Schwarz inequality.) We will first explain
the argument in the p≥ 5 case.

Symmetrization: We start with an argument based on an idea of Green and Tao. By several applications
of the Cauchy-Schwarz inequality, Eq. (1.1) implies that T (a,b,c) is “close” to T (b,a,c), more precisely,
we can prove that the map (a,b,c) 7→ T (a,b,c)−T (b,a,c) has bounded rank, and similarly for all other
permutations of a,b,c.1

To conclude the symmetrization step, we define

S(a,b,c) =
1
6
(T (a,b,c)+T (a,c,b)+T (b,a,c)+T (b,c,a)+T (c,a,b)+T (c,b,a)) . (1.2)

Clearly S is a symmetric trilinear form. Furthermore, by the Green-Tao argument, we know that
rank(T −S)�η 1.

Integration: We now integrate the symmetric trilinear form S to a cubic polynomial P. Namely, define

P(x) =
1
6

S(x,x,x). (1.3)

One can easily check that ∆a∆b∆cP = S(a,b,c).
Starting from Eq. (1.1), with some involved but not particularly interesting additional inequalities, we

can conclude that ‖ f ωP‖U3 �η 1. Applying the U3-inverse theorem lets us complete the proof.

1.3 Low characteristic

Now we explain the difficulties that appear in characteristic p < 5. Fortunately the bulk of the proof,
up to Eq. (1.1), works in arbitrary characteristic. The Green-Tao argument also goes through, showing
that T is close to each of its permutations. However, the remainder of the symmetrization step and the
integration step, which were essentially trivial in high characteristic, fail badly when p < 5. In particular,
Eq. (1.2) and Eq. (1.3) both involve dividing by 6.

For p ≥ 5 we have the convenient characterization that S satisfies S(a,b,c) = ∆a∆b∆cP for some
cubic polynomial P if and only if S is a symmetric trilinear form. However, this is no longer the case in
low characteristic.

Following Tao and Ziegler, we define a classical symmetric trilinear form to be a trilinear form
S : V 3→ Fp that satisfies S(a,b,c) = ∆a∆b∆cP for some classical cubic polynomial P. As part of their
proof of the inverse theorem Tao and Ziegler characterized classical symmetric k-linear forms for all
k. In the same vein, we define a non-classical symmetric trilinear form to be S : V 3→ Fp that satisfies
S(a,b,c) = ∆a∆b∆cP for some non-classical cubic polynomial P. One problem we solve in this paper is
the characterization of non-classical symmetric k-linear forms for all k.

As a special case, we will show that if S is a symmetric trilinear form and also has some further
symmetries which will be defined in Section 3, then we can integrate S to a non-classical cubic polynomial
P (i.e., ∆a∆b∆cP = S(a,b,c)). We are able to characterize non-classical symmetric k-linear forms for all
k, which solves the integration problem necessary for the Uk+1-inverse theorem for all k.

1See Section 2 for the definition of tensor rank that we use in this paper.
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For the symmetrization problem, we have a trilinear form T which we know is close in rank to all
of its permutations. We wish to find, for p = 2, an non-classical symmetric trilinear form S such that
rank(T −S)� 1 and, for p = 3, a classical symmetric trilinear S such that rank(T −S)� 1.

Even the problem of finding a symmetric k-linear S that is close to T is quite hard and we do not know
how to solve it for general k. When k = 3, the hypothesis that T is close to all of its permutations implies
that there is a subspace U ≤ V of bounded codimension so that T |U is symmetric. This lets us easily
find a symmetric trilinear S′ such that rank(T −S′)� 1. For p = 3, turning S′ into a classical symmetric
trilinear form is easy. For p = 2, we need to turn S′ into a non-classical symmetric trilinear form which
takes some more work, but we are able to do so.

Structure of paper. We give the necessary preliminaries in Section 2. We solve the integration problem
for all k in Section 3 and the symmetrization problem for k = 3 in Section 4. We combine these tools to
prove our main result in Section 5. In Section 6 we give some conjectures.

2 Preliminaries

We gave a local definition of non-classical polynomials in Section 1. There is an equivalent global
definition known. (Also see [18, Lemma 1.7] for some more basic facts about non-classical polynomials.)

Lemma 2.1 ([18, Lemma 1.7(iii)]). P : Fn
p→ R/Z is a non-classical polynomial of degree at most k if

and only if it can be expressed in the form

P(x1, . . . ,xn) = α + ∑
0≤i1 ,...,in<p, j≥0:

0<i1+···+in≤k− j(p−1)

ci1,...,in, j|x1|i1 · · · |xn|in
p j+1 (mod 1),

for some α ∈ R/Z and coefficients ci1,...,in, j ∈ {0, . . . , p− 1} where | · | is the standard map Fp →
{0, . . . , p−1}. Furthermore, this representation is unique.

For a tuple (h1, . . . ,hk)∈V k and a subset I⊆ [k], we use the notation hI to denote the tuple (hi)i∈I ∈V I .

Definition 2.2. Given a k-linear form T : V k→ Fp we use two different notions for the rank of T .
The analytic rank of T , denoted arank(T ), is defined by the equation

p−arank(T ) = Eh1,...,hk∈V ω
T (h1,...,hk).

The partition rank of T , denote prank(T ), is the length of the shortest decomposition of T as
a sum of partition rank 1 forms. We define T : V k → Fp to have partition rank 1 if we can write
T (h1, . . . ,hk) =R(hI)S(h[k]\I) where R : V I→Fp and S : V [k]\I→Fp are multilinear forms and /0 6= I ( [k].

These definitions of rank enjoy many useful properties. One which will be important to us is the
subadditivity of rank. Obviously prank(S+T )≤ prank(S)+prank(T ). For analytic rank, we also have
arank(S+T )≤ arank(S)+ arank(T ), but the proof is more subtle [12, Theorem 1.5].

For k = 2, the partition rank and analytic rank coincide and both are equal to the usual notion of
matrix rank. For general k we have the following bounds.
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Theorem 2.3. There are constants Cp,k and Dk such that for a k-linear form T : V k→ Fp we have the
bounds

arank(T )≤ prank(T )≤Cp,k arank(T )Dk .

The lower bound is due to Lovett [12] and the upper bound was proved independently by Milićević
[15] and Janzer [11]. Note that a recent result of Cohen and Moshkovitz and independently Adiprasito,
Kazhdan, and Ziegler improves the upper bound to linear when k = 3 and p > 2 [4, 1].

One simple property of rank that we use multiple times through the argument is the following.

Lemma 2.4. Let T : V k→ Fp be a k-linear form and let U ≤V be a subspace such that T |U ≡ 0. Then
prank(T )≤ k · codimU.

Proof. Write n = dimV and r = codimU . Pick linearly independent linear forms α1, . . . ,αn : V → Fp

such that αi|U ≡ 0 for 1 ≤ i ≤ r. (In other words α1, . . . ,αn is a dual basis for V and αr+1, . . . ,αn is a
dual basis for U .) The tensor T can be expressed in these coordinates as

T (x1, . . . ,xk) = ∑
1≤i1,...,ik≤n

Ti1,...,ik αi1(x1) · · ·αik(xk)

for some coefficients Ti1,...,ik ∈ Fp satisfying Ti1,...,ik = 0 if i1, . . . , ik > r.
Now one can easily group the above expression into the sum of kr terms, each of partition rank 1.

Explicitly,

T (x1, . . . ,xk) =
k

∑
j=1

r

∑
`=1

α`(x j)β j,`(x[k]\ j)

where

β j,`(x[k]\ j) = ∑
r<i1 ,...,i j−1≤n
1≤i j+1 ,...,in≤n

Ti1,...,i j−1,`,i j+1,...,ik αi1(x1), . . . ,αi j−1(x j−1)αi j+1(x j+1) · · ·αik(xk).

3 Non-classical symmetric multilinear forms

In this section we define non-classical symmetric multilinear forms (nCSM for short) and classical
symmetric multilinear forms (CSM for short) as multilinear forms with additional symmetry properties.
Then we will show that these objects are exactly the total derivatives of non-classical polynomials and
classical polynomials respectively.

Definition 3.1. A non-classical symmetric multilinear form is a map T : V k→ Fp that is:

• (multilinear) fixing all the variables but one, the map hi 7→ T (h1, . . . ,hk) is a linear map;

• (symmetric) T (h1, . . . ,hk) is invariant under permutations of the k variables h1, . . . ,hk;

• (non-classical) T (h1, . . . ,h1,h2, . . . ,hk−p+1) = T (h1,h2, . . . ,h2,h3, . . . ,hk−p+1) where the variable
h1 appears p times in the first expression and h2 appears p times in the second expression.
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We write nCSMk(V ) for the space of non-classical symmetric multilinear forms T : V k→ Fp.
A classical symmetric multilinear form additionally satisfies:

• (classical) T (h1, . . . ,h1,h2, . . . ,hk−p+1) = 0 where the variable h1 appears p times in the left-hand
side.

We write CSMk(V ) for the space of classical symmetric multilinear forms T : V k→ Fp.

Note that the classical condition is stronger than the non-classical condition, so CSMk(V ) ⊆
nCSMk(V ). For k ≤ p the non-classical condition is vacuous while for k < p the classical condition is
vacuous. In their proof of the inverse theorem Tao and Ziegler introduced classical symmetric multilinear
forms and (implicitly) non-classical symmetric multilinear forms [18].

Definition 3.2. For P∈ Poly6k(V →R/Z), define the total derivative of P to be the map dkP : V k→ Fp

defined by
dkP(h1, . . . ,hk) = (∆h1 · · ·∆hk P)(0).

The right-hand side of this equation lies in {0,1/p, . . . ,(p−1)/p} ⊂ R/Z which we identify with Fp;
furthermore dkP(h1, . . . ,hk) = (∆h1 · · ·∆hk P)(x) for all h1, . . . ,hk,x ∈V .2

Tao and Ziegler prove that the total derivatives of classical polynomials are exactly CSMs.

Proposition 3.3 ([18, Lemma 4.5]). For k≥ 1 and a classical polynomial P ∈ Poly6k(V → Fp), the total
derivative dkP lies in CSMk(V ). Furthermore this map is surjective. In other words, we have the short
exact sequence

0→ Poly6k−1(V → Fp)→ Poly6k(V → Fp)
dk

−→ CSMk(V )→ 0.

They also show that the total derivative of a non-classical polynomial is an nCSM.

Proposition 3.4 ([18, Eq. (4.1)]). For P ∈ Poly6k(V →R/Z), the total derivative dkP lies in nCSMk(V ).

Our integration result gives the implication in the opposite implication.

Proposition 3.5 (Integrating nCSMs). For k ≥ 1 and T ∈ nCSMk(V ), there exists a non-classical
polynomial P ∈ Poly6k(V → R/Z) such that dkP = T . In other words, we have the short exact sequence

0→ Poly6k−1(V → R/Z)→ Poly6k(V → R/Z) dk

−→ nCSMk(V )→ 0.

Proof. First note that ker(dk)=Poly6k−1(V→R/Z) since ∆h1 · · ·∆hk P is identically zero for all h1, . . . ,hk
if and only if P is a non-classical polynomial of degree at most k−1.

2One way to see these facts is to notice that ∆h2 · · ·∆hk P ∈ Poly61(V → R/Z). By Lemma 2.1 this expression is of the form
α + c1|x1|/p+ · · ·+ cn|xn|/p (mod 1). Applying ∆h1 , we see that ∆h1 · · ·∆hk P(x) = (h1,1c1 + · · ·+h1,ncn)/p is independent
of x and lies in the set {0,1/p, . . . ,(p−1)/p}.
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We show that dk is surjective in an inexplicit manner. First define Poly6k(V → R/Z) to be the
quotient of Poly6k(V → R/Z) under the equivalence relation P ∼ P+α for α ∈ R/Z. Note that for
k ≥ 1, the total derivative dk acts on this quotient space. We will prove that

|Poly6k(V → R/Z)|
|Poly6k−1(V → R/Z)|

= |nCSMk(V )|. (3.1)

This suffices to complete the proof.
Choose an isomorphism V ∼= Fn

p. By Lemma 2.1, we see that |Poly6k(V → R/Z)| = pC′k where
C′k is defined to be the number of tuples (i1, . . . , in, j) where i1, . . . , in ∈ {0, . . . , p−1} and j ≥ 0 satisfy
0 < i1 + · · ·+ in ≤ k− j(p−1). Then the left-hand side of Eq. (3.1) is pC′k−C′k−1 . Define Ck =C′k−C′k−1.
We can easily see that Ck is the number of tuples (i1, . . . , in, j) where i1, . . . , in ∈ {0, . . . , p− 1} and
0≤ j ≤ (k−1)/(p−1) satisfy i1 + · · ·+ in = k− j(p−1).

Now we compute |nCSMk(V )|. Clearly any multilinear form T : V k→ Fp can be expressed uniquely
as

T (x1, . . . ,xk) = ∑
j1,..., jk∈[n]

c j1,..., jk x1, j1 · · ·xk, jk

where c j1,..., jk ∈ Fp. For a tuple jjj = ( j1, . . . , jk), define i( jjj) = (i1, . . . , in) such that i` is the number of
j1, . . . , jk which are equal to `. With this notation, we can say that a multilinear form T is symmetric if
and only if c jjj1

= c jjj2
whenever i( jjj1) = i( jjj2).

Finally define i′( jjj) = (i′1, . . . , i
′
n) where i′` = 0 if i` = 0 and otherwise i′` ∈ {1, . . . , p− 1} satisfies

i′` ≡ i` (mod p−1). We can see that a multilinear form T is an nCSM if and only if c jjj1
= c jjj2

whenever
i′( jjj1) = i′( jjj2). Thus |nCSMk(V )|= pDk where Dk is the number of tuples iii′ ∈ {0, . . . , p−1}n such that
there exists jjj ∈ [n]k such that iii′ = i′( jjj). Clearly the only constraint on such a tuple iii′ ∈ {0, . . . , p−1}n is
that s = i′1 + · · ·+ i′n satisfies 0 < s≤ n and s≡ n (mod p−1). Thus we see that Ck = Dk, proving the
desired result.

4 Symmetrization in low characteristic

For a k-linear form T : V k→ Fp and a permutation π ∈Sk, write Tπ : V k→ Fp for

Tπ(x1, . . . ,xk) = T (xπ(1), . . . ,xπ(k)).

We have one tool that lets us show that forms are close to symmetric. The following result is based
on an idea of Green and Tao.

Lemma 4.1 (cf. [7, Lemma 2.8]). Let A : V 2→ Fp be a bilinear form. Let b1,b2,b3 : V →C be arbitrary
1-bounded functions. If ∣∣∣Eu,v∈V b1(u)b2(v)b3(u+ v)ωA(u,v)

∣∣∣≥ δ ,

then
p−arank(A−A(12)) = Eu,vω

A(u,v)−A(v,u) ≥ δ
8.
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Proof. By an application of the Cauchy-Schwarz inequality and the 1-boundedness of b2, we have

δ
2 ≤ Eu,u′,v∈V b1(u)b1(u′)b3(u+ v)b3(u′+ v)ωA(u−u′,v).

We make the change of variables u′′ = u+u′+ v. Rearranging, we obtain

δ
2 ≤ Eu,u′,u′′b1(u)b1(u′)b3(u′′−u′)b3(u′′−u)ωA(u−u′,u′′−u−u′)

= Eu,u′,u′′
(

b1(u)b3(u′′−u)ωA(u,u′′−u)
)(

b1(u′)b3(u′′−u′)ωA(−u′,u′′−u′)
)

ω
A(u′,u)−A(u,u′).

Write B = A− A(12). By first averaging over u′′ and then choosing b′1,b
′
2 : V → C appropriate

1-bounded functions, the above inequality becomes

δ
2 ≤

∣∣∣Eu,u′b′1(u)b
′
2(u
′)ωB(u,u′)

∣∣∣ .
By two more applications of the Cauchy-Schwarz inequality, we conclude

δ
8 ≤ Eu,v,u′,v′ω

B(u−v,u′−v′) = Eu,u′ω
B(u,u′) = p−arank(B).

Corollary 4.2. Let T : V 3→ Fp be a trilinear form and let b1, . . . ,b7 : V → C be 1-bounded functions
such that ∣∣∣Ex,y,z∈V b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)(−1)T (x,y,z)

∣∣∣≥ δ .

Then we have arank(T −Tπ)≤ 16logp(1/δ ) for all π ∈S3.

Proof. Suppose π = (12). By the triangle inequality, we see that there exists a function δ : V → [0,1]
and 1-bounded functions b1,z,b2,z,b3,z : V → C such that∣∣∣Ex,yb1,z(x)b2,z(y)b3,z(x+ y)ωT (x,y,z)

∣∣∣≥ δ (z)

for all z ∈V and additionally Ez∈V δ (z)≥ δ .
By Lemma 4.1 for all z ∈V ,

Ex,yω
T (x,y,z)−T (y,x,z) ≥ δ (z)8.

Averaging over z and applying convexity,

p−arank(T−T(12)) = Ex,y,zω
T (x,y,z)−T (y,x,z) ≥ Ezδ (z)8 ≥ δ

8,

so arank(T −T (12)) ≤ 8logp(1/δ ). The same holds for all transpositions. Since every permutation
in S3 can be written as the product of at most two transpositions, we conclude by the subadditivity of
analytic rank.

Proposition 4.3. Let T : V 3 → Fp be a trilinear form. Suppose that T is close to symmetric in the
sense that prank(T −Tπ) ≤ r for all permutations π ∈ S3. Then there exists a subspace U ≤ V with
codimU ≤ 5r such that T |U : U3→ Fp is a symmetric trilinear form.
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Proof. By definition, there exists a partition rank decomposition of each T −Tπ (for π ∈S3 \{id}) as
the sum of at most r terms, each of which is the product of a linear form and a bilinear form. Let U be the
subspace of V where all of the linear forms involved in this decomposition vanish. Since there are at most
5r linear forms in this decomposition, we have the desired bound on the codimension of U . Furthermore,
since (T −Tπ)|U is identically zero for each π ∈S3, we see that T |U is symmetric.

Remark. This result immediately implies that there exists a symmetric trilinear form S : V 3→ Fp with
prank(T − S) ≤ 15r. To see this, pick an arbitrary decomposition V = U ⊕W . Then define S by
S(u1 +w1,u2 +w2,u3 +w3) = T |U(u1,u2,u3) for all u1,u2,u3 ∈U and w1,w2,w3 ∈W . Since T |U is a
symmetric trilinear form it follows that S is a symmetric trilinear form. By Lemma 2.4, we have the
bound prank(T −S)≤ 15r.

Proposition 4.3 easily handles the initial symmetrization step. To complete the symmetrization, we
need to find some R ∈ nCSM3(V ) such that prank(T −R) is small. For p≥ 5 this is trivial, since every
symmetric trilinear form is an nCSM and actually a CSM.

For p = 3 every symmetric trilinear form is also an nCSM though not necessarily a CSM. We note
however, that for p = 3 every nCSM is close to a CSM. This allows us to prove the U4-inverse theorem
over Fn

3 with classical polynomials.

Proposition 4.4. Let T : V 3 → F3 be a symmetric trilinear form. Then there exists a codimension 1
subspace U ≤V such that T |U ∈ CSM3(U).

Proof. The only additional condition that T needs to satisfy to be a CSM is T (x,x,x) = 0. Thus if U is
any subspace of V such that T (x,x,x) = 0 for all x ∈U , we would have T |U ∈ CSM3(U).

Consider the map x 7→ T (x,x,x) ∈ F3. Because T is a symmetric trilinear form, this map is linear.
Indeed, T (x + y,x + y,x + y) = T (x,x,x) + 3T (x,x,y) + 3T (x,y,y) + T (y,y,y) = T (x,x,x) + T (y,y,y).
Defining U to be the codimension 1 subspace on which T (x,x,x) vanishes, we have the desired conclusion.

Applying Proposition 4.3, Proposition 4.4, and Lemma 2.4 we conclude the following.

Corollary 4.5. Fix p ≥ 3. Let T : V 3→ Fp be a trilinear form that satisfies prank(T −Tπ) ≤ r for all
permutations π ∈S3. Then there exists S ∈ CSM3(V ) such that prank(T −S)≤ 15r+3.

For p = 2 the situation is more complicated. It is known, due to examples of Green and Tao [8] and
Lovett, Meshulam, and Samorodnitsky [13] that classical polynomials are not sufficient for the U4-inverse
theorem over F2. This means that we will not be able to find a CSM that is close to T . However the
following argument shows that T is close to an nCSM.

Proposition 4.6. Let T : V 3→ F2 be a symmetric trilinear form. Suppose there are 1-bounded functions
b1, . . . ,b7 : V → C such that∣∣∣Ex,y,z∈V b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)(−1)T (x,y,z)

∣∣∣≥ δ .

Then there exists a subspace U ≤V satisfying codimU ≤ 8log2(1/δ ) such that T |U ∈ nCSM3(U).
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Proof. Make the change of variables z = x+w. Then the hypothesis becomes

δ ≤
∣∣∣Ex,y,w∈V b1(x)b2(y)b3(x+w)b4(x+ y)b5(w)b6(x+ y+w)b7(y+w)(−1)T (x,x,y)+T (x,y,w)

∣∣∣
=
∣∣∣Ewb5(w)Ex,y(b1(x)b3(x+w))(b2(y)b7(y+w))(b4(x+ y)b6(x+ y+w))(−1)T (x,x,y)+T (x,y,w)

∣∣∣ .
By averaging (and the 1-boundedness of b5), there exists w0 ∈V such that

δ ≤
∣∣∣Ex,y(b1(x)b3(x+w0))(b2(y)b7(y+w0))(b4(x+ y)b6(x+ y+w0))(−1)T (x,x,y)+T (x,y,w0)

∣∣∣ .
Consider the map A : V 2→ F2 defined by A(x,y) = T (x,x,y)+T (x,y,w0). We claim that A is bilinear.

Using the symmetry and trilinearity of T ,

A(x+ x′,y) = T (x+ x′,x+ x′,y)+T (x+ x′,y,w0)

= T (x,x,y)+2T (x,x′,y)+T (x′,x′,y)+T (x,y,w0)+T (x′,y,w0)

= A(x,y)+A(x′,y).

Similarly,

A(x,y+ y′) = T (x,x,y+ y′)+T (x,y+ y′,w0)

= T (x,x,y)+T (x,x,y′)+T (x,y,w0)+T (x,y′,w0)

= A(x,y)+A(x,y′).

Since A is bilinear, we can apply Lemma 4.1 to conclude that

δ
8 ≤ Ex,y(−1)A(x,y)−A(y,x).

Note that

A(x,y)−A(y,x) = T (x,x,y)+T (x,y,w0)−T (y,y,x)−T (y,x,w0) = T (x,x,y)−T (x,y,y)

by the symmetry of T .
Define B : V 2 → F2 by B(x,y) = T (x,x,y)−T (x,y,y). Note that B is bilinear. (This can be seen

since B(x,y) = A(x,y)−A(y,x) or by direct computation.) We have shown that arankB≤ 8log2(1/δ ).
Let U be the nullspace of B.3 This satisfies codimU = prankB = arankB ≤ 8log2(1/δ ). Furthermore
B(x,y) = 0 for all x,y ∈U , which implies that T |U is an nCSM.

This essentially implies the desired symmetrization result. To put the result in the form we need, we
use the following application of the Cauchy-Schwarz inequality which will also appear again later in the
paper.

3For the purpose of the following argument we could take U to either be the left or right nullspace of B, though since B is
antisymmetric its left and right nullspaces agree.
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Lemma 4.7. Let φ : V 3→ Fp be a triaffine form. Suppose there are 1-bounded functions b1, . . . ,b7 : V →
C such that ∣∣∣Ex,y,z∈V b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)ωφ(x,y,z)

∣∣∣≥ δ .

Let T : V 3→ Fp be the trilinear part of φ . Then there exist 1-bounded functions b′1, . . . ,b
′
7 : V → C such

that ∣∣∣Ex,y,z∈V b′1(x)b
′
2(y)b

′
3(z)b

′
4(x+ y)b′5(x+ z)b′6(y+ z)b′7(x+ y+ z)ωT (x,y,z)

∣∣∣≥ δ
8.

Proof. This result follows from three applications of the Cauchy-Schwarz inequality, one in each variable.
We have

δ
2 ≤

∣∣∣Ey,zb2(y)b3(z)b6(y+ z)Exb1(x)b4(x+ y)b5(x+ z)b7(x+ y+ z)ωφ(x,y,z)
∣∣∣2

≤
(
Ey,z |b2(y)b3(z)b6(y+ z)|2

)
·
(
Ex,x′,y,zb1(x)b1(x′)b4(x+ y)b4(x′+ y)b5(x+ z)b5(x′+ z)

· b7(x+ y+ z)b7(x′+ y+ z)ωφ(x,y,z)−φ(x′,y,z)
)
.

The 1-boundedness of b2,b3,b6 lets us remove the first term.
The next application of the Cauchy-Schwarz inequality gives

δ
4 ≤ Ex,x′,y,y′,zb4(x+ y)b4(x′+ y)b4(x+ y′)b4(x′+ y′)b7(x+ y+ z)b7(x′+ y+ z)

·b7(x+ y′+ z)b7(x′+ y′+ z)ωφ(x,y,z)−φ(x′,y,z)−φ(x,y′,z)+φ(x′,y′,z).

The third gives

δ
8 ≤ Ex,x′,y,y′,z,z′b7(x+ y+ z)b7(x′+ y+ z)b7(x+ y′+ z)b7(x′+ y′+ z)

·b7(x+ y+ z′)b7(x′+ y+ z′)b7(x+ y′+ z′)b7(x′+ y′+ z′)

·ωφ(x,y,z)−φ(x′,y,z)−φ(x,y′,z)+φ(x′,y′,z)−φ(x,y,z′)+φ(x′,y,z′)+φ(x,y′,z′)−φ(x′,y′,z′).

Since T is defined to be the trilinear part of the triaffine form φ , the exponent in the last term is equal
to T (x− x′,y− y′,z− z′). Applying a change of variables and averaging, we can find x0,y0,z0 such that

δ
8 ≤ Ex,y,zb7(x+ y+ z+ x0 + y0 + z0)b7(y+ z+ x0 + y0 + z0)b7(x+ z+ x0 + y0 + z0)b7(z+ x0 + y0 + z0)

·b7(x+ y+ x0 + y0 + z0)b7(y+ x0 + y0 + z0)b7(x+ x0 + y0 + z0)b7(x0 + y0 + z0)ω
T (x,y,z).

This expression is of the desired form, completing the proof.

Corollary 4.8. Let T : V 3→ F2 be a trilinear form and let b1, . . . ,b7 : V → C be 1-bounded functions
such that ∣∣∣Ex,y,z∈V b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)(−1)T (x,y,z)

∣∣∣≥ δ .

Then there exists S ∈ nCSM3(V ) such that prank(T −S)≤ 432log2(1/δ ).
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Proof. By Corollary 4.2, we have that arank(T −Tπ) ≤ 16log2(1/δ ) for all π ∈ S3. Then applying
Proposition 4.3, there exists a subspace U ≤V with codimU ≤ 80log2(1/δ ) such that T |U : U3→ F2 is
a symmetric trilinear form.

By averaging, there exist cosets x0 +U,y0 +U,z0 +U such that

δ ≤

∣∣∣∣∣∣Ex∈x0+U
y∈y0+U
z∈z0+U

b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)(−1)T (x,y,z)

∣∣∣∣∣∣
=
∣∣∣Ex,y,z∈U b′1(x)b

′
2(y)b

′
3(z)b

′
4(x+ y)b′5(x+ z)b′6(y+ z)b′7(x+ y+ z)(−1)T (x0+x,y0+y,z0+z)

∣∣∣ .
Now by Lemma 4.7, this implies that

δ
8 ≤

∣∣∣Ex,y,z∈U b′′1(x)b
′′
2(y)b

′′
3(z)b

′′
4(x+ y)b′′5(x+ z)b′′6(y+ z)b′′7(x+ y+ z)(−1)T (x,y,z)

∣∣∣ .
We can now apply Proposition 4.6 to find a subspace W ≤U such that codimV W ≤ 144log2(1/δ )

and such that T |W ∈ nCSM3(W ). To conclude, all that remains is to extend T |W to an nCSM on
all of V . To do this we first pick an arbitrary decomposition V = W ⊕W ′. For w1,w2,w3 ∈W and
w′1,w

′
2,w

′
3 ∈W ′ define S(w1 +w′1,w2 +w′2,w3 +w′3) = T |W (w1,w2,w3). Clearly S ∈ nCSM3(V ) and

prank(T −S)≤ 3codimV W ≤ 432log2(1/δ ) by Lemma 2.4.

5 Proof of main theorem

We now have the tools to prove the main theorem. We first record the result of Gowers and Milićević that
we require. This result can be found at the beginning of Section 10 of [5] and its proof takes up the bulk
of that paper.

Theorem 5.1 ([5]). Fix a prime p and δ > 0. There exists

ε =
(

exp
(

exp
(

exp
(

Op

(
log(1/δ )O(1)

)))))−1

such that the following holds. Let V be a finite-dimensional Fp-vector space. Given a function f : V → C
satisfying ‖ f‖∞ ≤ 1 and ‖ f‖U4 > δ , there exists a triaffine form φ : V 3→ Fp such that∣∣∣Ex,h1,h2,h3∈V (∂h1∂h2∂h3 f )(x)ωφ(h1,h2,h3)

∣∣∣≥ ε. (5.1)

Proof of Theorem 1.3. Applying Theorem 5.1, we find a triaffine form φ : V 3→ Fp such that∣∣∣Ex,h1,h2,h3∈V (∂h1∂h2∂h3 f )(x)ωφ(h1,h2,h3)
∣∣∣≥ ε.

Let T be the trilinear part of φ . First average over x and expand out the derivative to conclude that
there exist 1-bounded functions b1, . . . ,b7 : V → C such that∣∣∣Ex,y,z∈V b1(x)b2(y)b3(z)b4(x+ y)b5(x+ z)b6(y+ z)b7(x+ y+ z)ωφ(x,y,z)

∣∣∣≥ ε.
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Then applying Lemma 4.7 and then Corollary 4.2, we see that arank(T −Tπ) ≤ 128logp(1/ε) for all
π ∈S3. By Theorem 2.3, we conclude that prank(T −Tπ)≤ Op(logp(1/ε)O(1)) for all π ∈S3.

Now for p ≥ 3, we can apply Corollary 4.5 to find S ∈ CSM3(V ) such that prank(T − S) ≤
Op(logp(1/ε)O(1)). Then by Proposition 3.3, there exists a classical cubic polynomial P ∈ Poly63(V →
Fp) such that d3P = S. For p = 2, we apply Corollary 4.8 to find S ∈ nCSM3(V ) such that prank(T −
S) ≤ Op(logp(1/ε)O(1)). Then by Proposition 3.5, there exists a non-classical cubic polynomial P ∈
Poly63(V → R/Z) such that d3P = S.

In either case we define r = max{prank(T −S), logp(1/ε)} satisfying r ≤ Op(logp(1/ε)O(1)). We
have a decomposition T − S = ∑

r
i=1 γi where each γi : V 3→ Fp is the product of a linear form in one

of the variables with a bilinear form in the other two variables. Write Γ : V 3 → F2r
p for the list of 2r

linear and bilinear forms that factor the γi’s. For example, if γ1(x,y,z) = α(x)β (y,z), then we define
Γ1(x,y,z) = α(x) and Γ2(x,y,z) = β (y,z).

Define g = f ωP. Note that (∂h1∂h2∂h3g)(x) = (∂h1∂h2∂h3 f )(x)ωS(h1,h2,h3). The inequality we started
with can now be written as∣∣∣Ex,h1,h2,h3b(h1,h2,h3)ω

∑
r
i=1 γi(h1,h2,h3)(∂h1∂h2∂h3g)(x)

∣∣∣≥ ε

where b(h1,h2,h3) is a product of linear and bilinear phase functions. We first remove the middle term.
By averaging, there exists c ∈ F2r

p such that

|Ex,h1,h2,h3b(h1,h2,h3)1(Γ(h1,h2,h3) = c)(∂h1∂h2∂h3g)(x)| ≥ ε p−2r. (5.2)

Now by Fourier analysis, we can write

1(Γ(h1,h2,h3) = c) = Eξ∈F2r
p

ω
(Γ(h1,h2,h3)−c)·ξ .

Plugging this expression into Eq. (5.2), by averaging again, there exists ξ0 ∈ F2r
p such that∣∣∣Ex,h1,h2,h3b(h1,h2,h3)ω

(Γ(h1,h2,h3)−c)·ξ0(∂h1∂h2∂h3g)(x)
∣∣∣≥ ε p−2r.

Since Γ is a list of linear and bilinear forms, the middle term, ω(Γ(h1,h2,h3)−c)·ξ0 , is a product of linear and
bilinear phase functions. Thus we conclude that∣∣Ex,h1,h2,h3b′(h1,h2,h3)(∂h1∂h2∂h3g)(x)

∣∣≥ ε p−2r,

where b′ is a product of linear and bilinear phase functions.
Write

b′(h1,h2,h3) = ω
β1(h2,h3)+β2(h1,h3)+β3(h1,h2)+α1(h1)+α2(h2)+α3(h3).

By averaging, there exist x,h1 ∈V such that∣∣Eh2,h3b′(h1,h2,h3)(∂h1∂h2∂h3g)(x)
∣∣≥ ε p−2r.

Expanding this out, we see that this inequality is of the correct form to apply Lemma 4.1 which then
implies that arank(β1− (β1)(12))≤ 8(2r+ logp(1/ε))≤ 24r. The same is true of β2,β3.
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The next step is to find β ′1,β
′
2,β

′
3 ∈ nCSM2(V ) such that prank(βi−β ′i ) ≤ 48r. First note that for

bilinear forms we have arank(βi) = prank(βi). Thus there is a subspace U ≤V of codimension at most
24r such that βi− (βi)(12) vanishes on U ×U . This is the only condition we need to imply that βi|U is
an nCSM. Extending βi|U to β ′i ∈ nCSM2(V ) arbitrarily, we have prank(βi−β ′i )≤ 48r by Lemma 2.4.
Finally, by Proposition 3.3, there exist non-classical quadratic polynomials Qi ∈ Poly62(V → R/Z) such
that d2Qi = β ′i .

We repeat the same averaging and Fourier analysis argument from above to conclude that∣∣∣Ex,h1,h2,h3b′′(h1,h2,h3)ω
β ′1(h2,h3)+β ′2(h1,h3)+β ′3(h1,h2)(∂h1∂h2∂h3g)(x)

∣∣∣≥ ε p−290r,

where b′′(h1,h2,h3) is a product just of linear phase functions, say b′′(h1,h2,h3) = ωL1(h1)+L2(h2)+L3(h3).
Now define

g000 = f ω
P,

g001 = f ω
P+Q1 ,

g010 = f ω
P+Q2 ,

g011 = f ω
P+Q1+Q2+L3 ,

g100 = f ω
P+Q3 ,

g101 = f ω
P+Q1+Q3+L2 ,

g110 = f ω
P+Q2+Q3+L1 ,

g111 = f ω
P+Q1+Q2+Q3+L1+L2+L3 .

One can verify that the inequality above can be rewritten as∣∣∣Ex,h1,h2,h3g000(x)g001(x+h1)g010(x+h2)g011(x+h1 +h2)g100(x+h3)

·g101(x+h1 +h3)g110(x+h2 +h3)g111(x+h1 +h2 +h3)
∣∣∣≥ ε p−290r.

The left-hand side is in the correct form to apply the Gowers-Cauchy-Schwarz inequality [18, Lemma
B.1.(iv)], which implies that ‖ f ωP‖U3 ≥ ε p−290r ≥ p−Op(logp(1/ε)O(1)). Finishing with a single application
of the U3-inverse theorem, we prove the desired result.

6 Concluding remarks

The symmetrization results in this paper are very specific to trilinear forms. We pose the following
conjecture, which seems surprisingly difficult and may be of independent interest.

Conjecture 6.1. Let T : V k → Fp be a k-linear form. Suppose that T is close to symmetric in the
sense that prank(T −Tπ)≤ r for all permutations π ∈Sk. Then there exists a symmetric k-linear form
S : V k→ Fp such that prank(S−T )≤ r′ where r′ is a polynomial function of r.
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Note that this conjecture is only interesting if p≤ k, since for p > k, the symmetric form S = 1
k! ∑π Tπ

can easily be seen to satisfy prank(S−T )≤ k!r.
Combined with the recent work of Gowers and Milićević [6], Conjecture 6.1 is the missing ingredient

which would suffice to give quantitative bounds on the U p+1-inverse theorem. For the Uk+1-inverse
theorem with k > p there is additional symmetrization necessary to produce a non-classical symmetric
multilinear form from a symmetric form.

Conjecture 6.2. Let T : V k→ Fp be a k-linear form. Suppose that T satisfies∣∣∣∣∣Ex1,...,xk ∏
I⊆[k]

bI

(
∑
i∈I

xi

)
ω

T (x1,...,xk)

∣∣∣∣∣≥ ε

for some 1-bounded functions bI : V → C. Then there exists S ∈ nCSMk(V ) such that prank(S−T )≤ r′

where r′ is a polynomial function of log(1/ε).

Combined with the work of Gowers and Milićević and this paper’s integration result, Proposition 3.5,
this result would give quantitative bounds on the Uk+1-inverse theorem over Fn

p for all k, p.

Remark. After the first version of this paper appeared on arXiv, Milićević gave a counterexample
disproving Conjecture 6.1 in the case of k = 4 and p = 2 [16]. It remains an interesting question to
determine for which pairs (k, p) Conjecture 6.1 holds as well as to determine the validity of Conjecture 6.2.
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