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Abstract: We propose a nonlinear difference-in-differences (DiD) method to estimate multivariate counter-
factual distributions in classical treatment and control study designs with observational data. Our approach
sheds a new light on existing approaches like the changes-in-changes estimator and the classical semipara-
metric DiD estimator, and it also generalizes them to settings with multivariate heterogeneity in the outcomes.
The main benefit of this extension is that it allows for arbitrary dependence between the coordinates of vector
potential outcomes and includes higher-dimensional unobservables, something that existing methods cannot
provide in general. We demonstrate its utility on both synthetic and real data. In particular, we revisit the
classical Card & Krueger dataset, which reports fast food restaurant employment before and after a minimum
wage increase. A reanalysis with our methodology suggests that these restaurants substitute full-time labor
with part-time labor on aggregate in response to a minimum wage increase. This treatment effect requires
estimation of the multivariate counterfactual distribution, an object beyond the scope of classical causal
estimators previously applied to this data.
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1 Introduction

Difference-in-differences (DiD) estimators are among the most widely used approaches to estimate causal
effects of discrete treatment interventions in observational data [1–4]. The classical setting we considered in
this article is one in which the researcher observes the outcomes of interest in a group of treated units and a
corresponding control group of untreated units over time, i.e., a binary treatment setting.1 At one fixed point in
time, the treatment group undergoes an intervention and stays treated thereafter. The fundamental problem
consists of isolating the causal effect of this intervention from the existing natural trend that the treatment
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group undergoes irrespectively. The method of DiD achieves this under the assumption that the units in the
control group have the same fundamental trend as the treated units would have without intervention. Under
this assumption, the difference of the average outcome of the treated group between preintervention and
postintervention periods net the difference of the control groups average outcomes preintervention and
postintervention manages to isolate the true average causal effect of the intervention.

The arguably two most fundamental methods for estimating causal effects in this setting are the classical
method of DiD [1,2,5] as described earlier and its generalization beyond average and aggregate effects, the
changes-in-changes (CiC) estimator [6].

DiD is a linear approach designed to estimate average (or aggregate) causal effects [1,7] over all units
within a group. This method can be proved to correctly identify counterfactuals under the “parallel trends”
assumption [1,8,9] under which the average natural trend is assumed to be the same across both the control
and treatment groups. This idea has been used in many areas of science where capturing the average treat-
ment effect is sufficient to formulate informative causal conclusions. Recent applications include quantifying
the effect of public health measures in response to COVID-19 [10] and estimating how irrigation farmers adapt
their watering to fixed usage limits [11].

The classical linear DiD estimator only provides estimates of average and aggregate treatment effects. This
can be limiting in many settings where treatment heterogeneity is important, i.e., where different units can
react differently to the same level of intervention. The CiC estimator [6] addresses this issue for univariate
outcomes. It extends the fundamental idea of the DiD estimator by estimating changes in the entire probability
distribution of the respective units within a group. This permits the estimation of the entire counterfactual law
of the treated units had they not received the treatment, hence allowing for a general form of heterogeneity in
their response to treatment. The cost is a slightly stricter assumption on the evolution of the unobservable
distribution as we specify below.

In its current form, the CiC estimator is only applicable in settings with univariate outcomes, as it relies
heavily on the definition of quantile functions. This can be restrictive for modern applications where the
outcomes of interest are often multivariate. Examples range from A/B testing in digital marketing campaigns
where outcomes are a combination of features such as click-through rate, time-per-page, and so on, to
measuring intervention effects such as gene knock down on a population of cells measured in high-dimen-
sional gene space. In principle, the CiC estimator may be extended to higher dimensions through tensorization,
which estimates treatment effects independently for each coordinate, but this solution fails to capture correla-
tions that are often important in causal discovery. We demonstrate a simple linear setting with synthetic data
where this is the case in Section 4.1.

Our contribution.We recast the CiC estimator using tools from the theory of optimal transportation. This
perspective allows us to extend this methodology to handle multivariate observables after introducing novel
structural assumptions on the natural trend underlying both treatment and control groups. In particular, we
note that the causal model proposed in Athey and Imbens [6] readily implies that both populations, treatment
and control, evolve between pretreatment and posttreatment periods via optimal transport maps (Theorem 2);
our methodology relies on a natural higher-dimensional extension of this via optimal transport theory. In fact,
we show that if the corresponding functions mapping the unobservables to the potential outcomes are
cyclically comonotone, then the counterfactual distributions and causal effects can be estimated from data.
In particular, this allows for the unobservable variables to be of the same dimension as the dimension of the
outcome variables and not just univariate.

The counterfactual distributions can be estimated consistently from data using recent results from sta-
tistical optimal transport and implemented efficiently using recent advances in computational optimal trans-
port [12]. We demonstrate the benefits of this extension by comparing it to the simple multivariate extension of
the CiC estimator on both artificial and real data. As illustrated in Section 4.1, a tensorized version of CiC can be
inconsistent and even estimate opposite correlation structures in the multivariate distribution of counter-
factual outcomes. We also revisit the classical dataset of Card and Krueger [13], which has sparked an intense
debate about the effects of raising the minimum wage on employment. Our ability to jointly handle the
number of part-time and full-time workers as a bivariate outcome reveals an interesting substitution effect
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from the perspective of labor economics: When the minimum wage is raised, restaurants increase full-time
labor and decrease part-time labor, suggesting a substitution effect.

2 The causal model behind the CiC estimator

2.1 The CiC model

We recall in this section the general causal model on which the classical DiD and CiC estimators are built, and
which our model extends. See Figure 1 for illustration.

We first formalize a stochastic model for an experimental design in which two groups are measured
before and after some intervention. Sampled from a larger population, each unit i in a realized experiment is
characterized by four vector potential outcomes, their level of treatment received, and a set of time points at
which potential outcomes were observed. This model includes randomized control trials with noncompliance
and general observational studies. Adapting the notation of Athey and Imbens [6], we define an indicator
random variable Gi for a unit’s adopted treatment arm as well as random vectors Yi C; ,0 and Yi C; ,1 to model unit
i’s potential control group preintervention and postintervention outcomes observable when =G 0i ; likewise
Yi T; ,0 andYi T; ,1 are the unit’s observable potential outcomes when =G 1.i These potential outcomes are assumed
to lie in a subspace of ,

d� and each unit has indicator random variables Ti,0 and Ti,1 denoting whether an
outcome was observed in each study period.

We assume that each potential outcome vector is generated by a deterministic function of a latent random
vector also in .

d� While any given unit’s latent vector may change over time, the population distribution of
continuous latent variables is time invariant. Furthermore, these latent distributions can differ arbitrarily
between control and treatment arms. We denote this latent distribution ν for controls and ⋆ν for treated.

Therefore, we write for control units the latent random vectors =U ν t~ , 0, 1i t

d

, and treated ⋆U ν~i t

d

, . We can
think of Ui t, as capturing all of the intrinsic and unobservable characteristics of unit i, such as an employee’s
skills and motivation, which influence the outcome of interest at time t, for instance, their salary. This
assumption may be less appropriate in settings where external shocks could change the latent distributions
over time. For instance, in a study measuring individuals’ opinion of the economy, a latent distribution of
intrinsic perception reasonably shifts over time. Our model can accommodate exogenous noise through the
assumption that latent Ui t, is the additive perturbation of a unit’s time invariant baseline latent state μ

i
by a

stationary noise process εi t, . Correlation between these two terms is allowed as long as the distribution of

Figure 1: Illustration of various maps in the space of measures. An arrow indicates a pushforward map between two measures; for
example =Y Y#C C,1 ,0

p� � . The maps hj are the “production functions” linking the unobservables ν and ν* to the potential outcomes. A
dashed arrow indicates a map from a measure to itself.

Y
T ,1

†� is the counterfactual outcome measure of the treated units had they not
received treatment. p is the natural trend map and T is map from an observed outcome to its counterfactual. The observable data is
drawn from the four boxed measures.
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realized latent variables is time invariant within each treatment arm. These latent variable assumptions are
general enough to include many forms of mechanistic structure researchers may know about their population.

As Figure 1 illustrates, three global production functions h0, h1, and ⋆
h1 characterize the evolution of both

treatment arms over time. At =t 0, the treatment arms are assumed to have identical factors influencing the
translation of a latent variable to observed potential outcome and thus share h0. For controls, h1 describes any
changes due the natural trend over evolving time. For treated units, ⋆

h1 captures both drift over time and the
causal effect of interest. If ∘ −

h h1 0

1( ) exists, it describes exactly how any given control group unit evolves over
time with a fixed latent state. We can therefore obtain a counterfactual outcome distribution with this function
under an assumption that the treatment arm units would have evolved in the absence of treatment just as
controls do. It is notable that this proposed model does not rely on additional information from observed
covariates. As such, it does not require classical unconfoundedness assumptions. However, the question about
the assignment mechanism in these DiD setups is a delicate one, see, for instance, studies by Ghanem et al. [14]
and Marx et al. [15].

As units in the same treatment arm share a latent variable distribution, we define random vectors with the

population distribution such thatY Y~i C

d

C; ,0 ,0 for all units such that =G 0i . The random vectorsYC ,1,YT ,0, andYT ,1

are defined similarly for observations adopting the appropriate treatment arms. Each population-distributed
random variable of potential outcomes induces a measure or law, which we will utilize in application of
results from optimal transport theory. We adopt the notation YG T,

� for this measure. The action of each
production function can be described as a pushforward of measure. For example, we write = h νY 0#C ,0

� and
= ⋆ ⋆h νY 1#T ,1

� . We make an assumption that both YC ,0
� and YT ,0

� are absolutely continuous with respect to
Lebesgue measure. In Section 3.1, we discuss possible changes to our assumptions, which would allow our
methodology to handle discrete outcomes at the cost of point identification of the counterfactual distribution.
We note that the discrete case in general does not allow for point identification, which is already evident in the
univariate setting, where Athey and Imbens [6] provide bounds on discrete counterfactuals. Our optimal
transport framework illuminates this issue even further.

In addition, assuming that h0 is invertible, we have = −
ν h YC0

1
# ,0( ) so that

= ∘ ≕−
h h .Y Y Y1 0

1
# #C C C,1 ,0 ,0

p� � �( ) (1)

In the sequel, we will propose a class of production functions such that the multivariate counterfactual
distribution for the treated, distributed as a random variable YT ,1

† , can be identified as follows:

≔ .Y Y# T T,0 ,1

†p � � (2)

A consistent estimator for p and hence this counterfactual pushforward is presented utilizing optimal
transport. Figure 1 shows that the production function ⋆

h1 , which generates postintervention outcomes for the
treated, does not need to be specified to recover the map p and its counterfactual pushforward YT ,1

† . As
discussed in Section 3.2, further assumptions on ⋆

h1 enable the treatment effect map T to be consistently
estimated and allow for the estimation of nonlinear treatment effects.

2.2 Modeling the control group time trend

Given two measures YC ,0
� and YC ,1

� which can be estimated from control group data preintervention and
postintervention, there exist infinitely many maps p such that =Y Y#C C,1 ,0

p� � (1) holds. To identify a unique
such map p, one must make additional assumptions on the causal model.

Recall that the source of randomness in the proposed causal model are latent random vectors Ui t, , which
can be thought of as summarizing a unit’s intrinsic characteristics. If we not only assume that the distribution
ν of control group latent vectors is time invariant but further that the latent variables are constant over time
(i.e., =U Ui i,0 ,1 for all control units i), then we have =Y Yi C i C; ,1 ; ,0p( ); this map can be estimated via multivariate
regression from independent copies of the pair Y Y,C C,0 ,1( ). In many practical applications, pairs of potential
outcomes Y Y,i C i C; ,0 ; ,1( ) are observed, but in general, the assumption that =U Ui i,0 ,1 for all control units is more
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tenuous. Moreover, this setup leaves out an important class of problems where the units in the control group
can differ between =t 0 and =t 1. A canonical example arises in genomics where in single-cell RNA-Seq data
each unit corresponds to a cell. Measuring the gene expression levels of a cell is a destructive process, and as a
result, a given cell may be only measured once. Therefore, coupled potential outcomes of the form Y Y,i C i T; ,0 ; ,1( )

are not available. Instead, one observes independent copies of YC ,0 as well as independent copies of YC ,1. While
difficult, this problem can be solved at the cost of additional assumptions on the natural trend p. This problem
is sometimes referred to as uncoupled regression, and it arises in various applications, far beyond the genomics
example described earlier [see, e.g., 16–18].

In a setting with uncoupled scalar data, the map p is unique when it is monotone with known mono-
tonicity (either increasing or decreasing). The CiC estimator enforces this by assuming both production func-
tions, and therefore, ∘ −

h h1 0

1 are monotone increasing. In fact, the unique monotone increasing function p

such that =Y Y#C C,1 ,0
p� � is given by ∘−

F F1

1
0, where Ft denotes the cumulative distribution function (CDF) of YC t,

for =t 0, 1. Estimation of p from data and plugging that estimator into equation (2) to yield an estimated
counterfactual measure is the key idea of the CiC estimator. As previously noted, this estimator can be
extended to multivariate outcomes through tensorization, which applies it independently to each coordinate.
Joint structure between the coordinates is incompatible with the scalar distribution and quantile functions
used in the estimator, as well as with the assumption of scalar production functions.

Recently, in the univariate setting, other approaches for modeling the control group time trend have been
proposed, which generalize the “parallel trends” assumption to allow for general heterogeneity. These models
in general make stronger or less interpretable assumptions than the monotone production functions of Athey
and Imbens [6]. Callaway and Li [19] directly assume that the copulas between YC ,0

� and YT ,0
� as well as YT ,0

� and

YT ,1

†� are the same; Roth and Sant’Anna [8] assume that the pointwise differences between the corresponding
cumulative distribution functions are equal, i.e., that − = − ⋆

F x F x F x F x1 0 1

†

0( ) ( ) ( ) ( ) for all ∈x � ; Bonhomme
and Sauder [20] restrict the heterogeneity of the model to be additively separable and assume that the
pointwise differences between the corresponding logarithms of the characteristic functions are equal. In
the next section, we introduce cyclical comonotonicity, a natural extension of the monotonicity requirement
in the study by Athey and Imbens [6] to multivariate settings, and hence, the multivariate notion of parallel
trends closest to the framework of that work.

In the following section, we show that under the CiC model, the univariate natural trend map p is unique,
and therefore identifiable as an optimal transport map between YC ,0

� and YC ,1
� . We leverage this insight to

identify unique natural trend maps in higher dimensions under the same model. In particular, we propose an
assumption of cyclically comonotonicity, a multivariate notion of monotonicity between the production func-
tions, which extends the CiC estimator’s assumption of monotone increasing production functions.

3 Higher dimensional CiC

3.1 An optimal transport extension of the CiC estimator

Identifiability of the causal model presented in the previous section hinges on the uniqueness of the monotone
increasing map p such that =Y Y# C C,0 ,1

p � � . This uniqueness follows from a fundamental result in the theory of
optimal transportation known as Brenier’s theorem.

Theorem 1. [Brenier, 21] Let P and Q be two probability measures defined over d� such that P is absolutely
continuous with respect to the Lebesgue measure. Then, among all maps →T :

d d� � such that =Q T P# , there is
a unique one, called the Brenier map denoted T̄ , which is the gradient of a convex function. Furthermore, T̄ is an
optimal transport map in the following sense.
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Let Γ denote the set of joint probability distributions of ∈ ×X Y,
d d� �( ) such that X P~ and Y Q~ , then

the optimal transport problem

∫ −
∈

x y γ x yinf d ,
γ Γ

2‖ ‖ ( ) (3)

admits a unique solution γ̄ such that X Y γ, ~ ¯( ) if and only if X P~ and =Y T X¯( ), P-almost surely.

For =d 1, a mapT is the gradient of a convex function if and only if it is nondecreasing. The quantile map
∘−

F FY Y
1

C C,1 ,0
has the appropriate domain and range measures and is nondecreasing by the properties of CDFs;

therefore, it is the unique optimal transport solution.
Theorem 1 demonstrates that the structural properties of the univariate CiC model can be extended to

higher dimensions by leveraging the theory of optimal transportation. In particular, the Brenier map is unique
and hence identifiable between pairs of sufficiently regular measures in d� . We therefore introduce regularity
assumptions on the production functions ⋅ ⋅h , in the model, which imply that the optimal drift is the Brenier
map between YC ,0

� and YC ,1
� . The counterfactual distribution YT ,1

†� in Figure 1 can be identified by first esti-
mating the unique natural trend p between the observable measures YC ,0

� and YC ,1
� in the control group and

then applying that transformation to the treatment group preintervention potential outcome measure .YT ,0
�

For our main result, we assume that all four the potential outcome measures ⋅ ⋅Y ,
� and the counterfactual

measure YT ,1

†� are absolutely continuous with respect to the Lebesgue measure. This assumption for preinter-
vention measures is needed to apply Theorem 1, and for the postintervention measures, it helps enable
identification. To satisfy technical assumptions on the regularity of the optimal transport problem that often
arise in classical results [22], we enforce through Assumption 1 that measures are supported on convex sets.
Furthermore, if the support ⋆

K0
of YT ,0

� is not contained in the support K0 of YC ,0
� , one cannot infer the

counterfactual distribution YT ,1

†� at the parts of ⋆
K0 that fall outside K0 without extrapolation via structural

assumptions. This restriction on the supports is a standard assumption that prevents the need for extrapola-
tion [6]. We summarize our structural assumptions as follows:

Assumption 1. The observable measures YC t,
� , YT t,

� , =t 0, 1, and the counterfactual measure YT ,1

†� are supported
on proper convex subsets Kt , ⋆

Kt , and K1

† of d� and are absolutely continuous with respect to Lebesgue
measure. Moreover, ⊂⋆

K K0 0.

When p is an optimal transport map, Theorem 1 implies that p is the gradient of a convex function. Recall
that in higher dimensions, gradients of convex functions from →d� � are cyclically monotone [23, Theorem
24.8]. A map →T :

d d� � is cyclically monotone if for any positive integer m and any cycle ≡+u u u u,…, ,m m1 1 1

in its domain, it holds

∑ − ≥
=

+u T u T u, 0.

i

m

i i i

1

1⟨ ( ) ( )⟩ (4)

Therefore, the natural trend map is identifiable when it is cyclically monotone. For =m 2, equation (4)
reduces to the simple notion of multivariate monotonicity defined as follows:

− − ≥u u T u T u, 0.1 2 1 2⟨ ( ) ( )⟩ (5)

Furthermore, in the univariate case, these two definitions are equivalent; in the CiC model, this implies that
the monotone map ∘ −

h h1 0

1 is also cyclically monotone, which explains why the assumption of monotonicity of
the functions h in the unobservable is sufficient.

In the context of our latent model, the monotonicity assumption on the production functions for the CiC
estimator implies that larger values of the unobservable latent variable correspond to strictly larger potential
outcomes. This is a common assumption in economic models [24–26], but can be restrictive in some settings.
For instance, consider a classroom experiment where the treatment variable is class size and the outcomes of
interest are standardized test scores before the intervention and 5 years after. Monotone production functions
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imply that individuals with higher unobserved abilityU will receive strictly higher test scores. Specifically, the
assumption of being able to rank individuals in terms of one univariate unobservableU is a strong restriction.

A careful inspection of the data generating process reveals that monotone assumptions on the production
functions allow the latent variable to be entirely abstracted away. This actually follows from the weaker
notion of comonotonicity such that →h h, :

d d
0 1 � � are comonotone if − − ≥h x h y h x h y, 00 0 1 1⟨ ( ) ( ) ( ) ( )⟩ for

all ∈x y,
d� . Note that with an identity production function, comonotonicity reduces to classical monotonicity.

To get a sense of the strength of this relaxation, consider univariate differentiable functions. In this case,
comonotonicity implies locally that their derivatives ′ ⋅ ′ ≥h h 00 1 have the same sign and furthermore imposes
additional global constraints. As a concrete example, if h0 is a polynomial production function and h1 its
pointwise scaling by some >γ 0, then this pair of functions is comonotone because they have the same sign
between all zeros, and hence, the same signed difference between any pair of points. This example emphasizes
that h0 and h1 need not be individually monotone themselves.

We have now seen that that the monotone production functions assumption in Athey and Imbens [6]
implies that the natural trend is cyclically monotone, which enables identification of the counterfactual.
Furthermore, the production functions are comonotone, which allows the model to include general latent
space distributions. However, these two functional assumptions only collapse to monotonicity in the scalar
case. To extend their model to higher dimensions, we propose an assumption of cyclically comonotone
production functions, which achieves both these desired properties.

Definition 1. Two production functions h0 and h1 are cyclically comonotone if for any positive integer m and
any cycle =+u u u u,…, ,m m1 1 1 in their common domain, it holds

∑ − ≥
=

+h u h u h u, 0.

i

m

i i i

1

0 1 1 1⟨ ( ) ( ) ( )⟩ (6)

Just as cyclical monotonicity collapses to monotonicity when =m 2, cyclical comonotonicity collapses to
comonotonicity in that case. Whenever h0 has an inverse −

h0

1, condition (6) implies the map = ∘ −
h h1 0

1p is also
cyclically monotone. This result is shown in the proof of Theorem 2, which we will state shortly. By Theorem 1,
p is the unique Brenier map such that =Y Y#C C,1 ,0

p� � .
Cyclical comonotonicity is one of the several concepts to extend comonotonicity to higher dimensions. One

set of extensions imposes a total ordering on the outcome space; however, these imply that the copula of
outcomes preintervention and postintervention are identical, a strong assumption on the causal model. Note
that the tensorized CiC assumes this shared copula structure. More recently, optimal transportation theory has
been used to propose other multivariate notions of comonotonicity. A particular contribution is μ-comonoto-
nicity from Ekeland et al. [27]. Similar to our model, the authors assume a latent variable and production
functions mapping it to potential outcomes. Both production functions h0 and h1 are assumed to have optimal
transport structure, as they lie in the graph of a gradient of a convex function. In general, the composition of
optimal transport maps, such as ∘ −

h h1 0

1, is not an optimal transport map, except in special circumstances [28].
Puccetti and Scarsini [29] provide an overview of these ideas.

Cyclical monotonicity is a natural extension of monotonicity to multivariate settings with many uses in
economic theory and mechanism design [30,31], econometrics [32,33], and statistics [34]. Cyclical comonotoni-
city is even weaker than this, as it does not imply that each production function itself is cyclically monotone,
which makes it a natural and weak extension of the monotonicity assumption in the univariate setting. In
particular, it is weaker than the assumption that individuals can be ranked in terms of a univariate unobser-
vable variable (ability in the classroom example) and that this ranking persists in the observed outcome
distribution. We argue that this makes it a more natural assumption than the monotonicity assumption of
the CiC estimator in practical settings. Examples of cyclic monotonicity in causal inference have been high-
lighted by Chernozhukov et al. [33], Shi et al. [32], and Gunsilius [35], among many others. More fundamentally,
Rochet [31] shows that the maximizer of quasi-linear utility functions is cyclically monotone. For a concise
survey, we refer to the study by Galichon [36].

From a practical perspective, cyclical comonotonicity is an important weakening of cyclic monotonicity in
that it allows for unobservables of general dimension in practice. Allowing for multivariate unobserved
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heterogeneity in general causal models has been a long-standing challenge: in most models, the unobservable
Ui t, is required to be univariate [6,24,26]. By relying on the concept of cyclical comonotonicity, we can relax this
assumption by only requiring that the unobservable is of the same dimension as the observable variable. Note
that even this can be relaxed by using recent advances in optimal transport theory [37]. The cost of this
relaxation is a more complicated model and definitions from geometric measure theory like the area and
coarea formula, which is why we focus on the simpler setting of unobservables of the same dimension in this
article.

3.1.1 Discrete outcome distributions

Mirroring the univariate setting [6], our methodology does not guarantee a point identified-counterfactual
distribution when outcomes are discrete valued. Theorem 1 guarantees a unique control group natural trend
with optimal transport structure when the measure of preintervention outcomes is absolutely continuous with
respect to the Lebesgue measure. Indeed, unique optimal transport maps between discrete measures need not
exist. For illustration, consider transporting a measure distributed on vertices of the unit square with equi-
probability at each main diagonal vertex to a one with equiprobability at the antidiagonal vertices. With
respect to squared distance, it is equivalent to transport the mass between vertical and horizontal pairs of
vertices. Furthermore, it is admissible to split mass and transport 0.25 probability mass from each main
diagonal vertex to each antidiagonal vertex. This solution with fractional structure is an example of a non-
deterministic optimal transport plan (cf. deterministic optimal transport maps), which can be interpreted as a
probabilistic assignment rule. Discrete-valued optimal transport problems often have a minimum cost
achieved by multiple probabilistic plans but no deterministic maps. This reality implies that point-identifica-
tion in the discrete case need not be possible in general without restrictive further assumptions.

This optimal transport view hence also explains the lack of point-identification in the univariate setting,
matching the conclusions of Athey and Imbens [6]. The extension of CiC to discrete outcomes in that setting
provides bounds on the counterfactual outcome distribution due to the same challenges described earlier.
Their estimator for that case is heavily dependent on notions of quantile functions without a direct multi-
variate extension. Identification only becomes possible with additional assumptions about conditional inde-
pendence and exogenous covariates, which the authors admit are restrictive. In the discrete multivariate
setting, similar partial identification results are possible through carefully application of recent developments
in optimal transport theory. For example, Auricchio and Veneroni [38] bound the supremum cost of moving
any single point mass in pℓ -cost transport problems. With one possible counterfactual distribution identified
by a solution to the minimization, uniform bounds can then be found by applying the aforementioned bound
on the possible pointwise deviation. Pointidentification can also be reestablished in a similar manner to the
univariate setting by introducing additional information from covariates under strong assumptions. The focus
of this article is to introduce an optimal transport framework for pointidentification, which is why we focus on
the case of absolutely continuous measures throughout.

3.2 Identification of causal effects in the multivariate setting

On the basis of the extensions of the causal model introduced in the previous sections, we can formally state
the identification result for the counterfactual distribution of the treated units had they not received
treatment.

Theorem 2. Consider the causal model depicted in Figure 1. Let Assumption 1 hold. Moreover, assume that the
production function h0 has a well-defined inverse and that h0 and h1 are cyclically comonotone in the sense of (6).
Then there exists a unique map →⋆

K K: 0 1

†p . It is the Brenier map from YC ,0
� to YC ,1

� . The counterfactual
distribution YT ,1

†� of the treated unit had it not received treatment is then identified via =Y Y#
T T,1

†
,0

p� � .
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The proof of Theorem 2 is presented in Appendix A.1. Another potential quantity of interest is the actual
counterfactual random variable YT ,1

† . Identifying this quantity requires more structure in the model. Indeed,
in the setup of the causal model represented in Figure 1, we only have that =Y Y#C C,1 ,0

p� � but not necessarily

that =Y YC C,1 ,0p( ) because we do not assume2 that =U Ui i,0 ,1 for all units. However, assuming that both h1

† and h1

are cyclically comonotone allows to identifyYT ,1

† , which follows from the fact that →⋆
T K K: 1 1

† will be identified
for the fixed unobservable Ui,1 for treated units.

Corollary 1. Consider the setting and assumptions from Theorem 2. If the production function h1 has a well-
defined inverse and ⋆

h1 and h1 are cyclically comonotone, then there exists a unique map →⋆
K K: 1 1

†T such that
=Y Y#

T T,1

†
,1

T� � . T is the Brenier map from YT ,1
� to YT ,1

†� . YT ,1

† is then identified via =Y T YT T,1

†

,1( ).

The assumption that h1 and ⋆
h1 are cyclically comonotone can be hard to satisfy in practice, which is why

the main parameter of interest is the counterfactual law YT ,1

†� and not the random variable YT ,1

† . It is worth

noting that having cyclically comonotone pairs ⋆
h1 and h1 as well as h0 and h1 does not necessarily imply ⋆

h1 and
h0 are cyclically comonotone.

In general, the assumptions of our model match those in Athey and Imbens [6] when outcomes are scalar
and extend their structure in higher dimensional cases. Our production function setup illustrated in Figure 1
exactly matches that of CiC. In the scalar case, our assumption of comonotone production functions reduces to
monotone production functions; although this is weaker than CiC’s requirement that h0 and h1 are strictly
monotone, the requirement of Theorem 2 that h0 has a well-defined inverse restricts that preintervention
production function to be strictly monotone as well. In one dimension, a strictly monotone and a weakly
monotone production function pair remains cyclically comonotone, so our model does provides a relaxation of
the control group outcome generation process. Here, it is the assumption that h0 has an inverse, which forces
the production functions to be themselves monotone, as contrasted by our previous example of two positively
proportional polynomials being comonotone. In higher dimensions, however, the invertibility of h0 does not
imply that both h0 and h1 are themselves cyclically monotone. If this were the case, then both production
functions would be optimal transport maps, which can be seen by considering cyclical monotonicity as the
special case of cyclical comonotonicity when h0 is the identity. This is precisely the notion μ-comonotonicity
introduced by Ekeland et al. [27].

For the latent distributions, our extension retains the time invariance within groups assumption of CiC.
While we do not make the same assumption of nested latent supports ⊂⋆ν ν as Athey and Imbens [6], our
assumption that ⊂⋆

K K0 0 is equivalent. To see why note that both treatment arm share the same preinterven-
tion production function h0. Our assumption that the support sets are convex is an additional requirement not
needed for CiC but necessary to apply theoretical results about multivariate optimal transport. Athey and
Imbens [6] allow for an additional case with discrete latent distributions, but our assumption that h0 is
invertible with a continuous co-domain implies that the latent variable measures must be continuous.

3.2.1 Examples of functionals that can be analyzed with the proposed method

One of the advantages of the method is to deal with multivariate outcome distributions. Many functionals of
interest in different areas of the (social) sciences are based on the information of the joint distribution of
several outcomes of interest, from social inequality [39–41] to risk management [42,43] to decision theory [44],
to name a few.



2 We note in passing that if we were to assume that =U Ui i,0 ,1 for all units, we could, in fact, test the assumption that the natural
trend p, and hence the production functions h h,0 1, are monotone increasing from independent copies of paired data of the form
X Y,0 1( ). We would do so by checking if there exists an increasing functionp that indeed interpolates these points. In practice, such a
function seldom exists and allowing a time variable Ui t, accounts for deviations from this ideal situation.
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More generally, the proposed estimator provides consistent estimates of functionals that fundamentally
rely on the copula structure of the outcome distributions. Examples of this are multivariate stochastic dom-
inance [45], multivariate risk [46], and functionals that encompass interrelation between random variables
such as mutual information or correlation. We say that a distribution F dominates another distribution G in
the α-th order, written as ≿F G if ≤D x D xα

F
α
G( ) ( ), where

∫≡ = −D x F x D D t tand d ,
F

α

S x

α1 1( ) ( ) ( )

( )

with ≔ ∈ ≤+S x y y x:
d�( ) { }, see the study by García-Gómez et al. [45] for details. An example of a multivariate

risk measure is the multivariate lower-orthant value-at-risk at level ∈α 0, 1[ ] of a multivariate increasing
function G, which is defined as follows [46]:

= ∂ ∈ ≥G x G x αVaR : ,α
d�( ) { ( ) }

where ∂A denotes the boundary of the set A. An analogous definition holds for the upper-orthant counterpart.
The mutual information I X Y,( ) of two random variables X and Y is defined as follows [47]:

= ⊗I X Y P P P, KL ,X Y X Y,( ) ( ∣∣ )

where KL is the Kullback–Leibler divergence and ⊗P PX Y is the independence coupling.
The aforementioned examples are only a short list of potentially interesting functionals one can analyze

using the proposed method. All of these functionals rely on the information of the corresponding copula
structure, which cannot be identified with a tensorized version of the CiC estimator unless in the limited
setting of completely independent coordinates described previously.

3.3 Estimation from observed data

In practice, we only observe observations from each of the four distributions , ,Y Y YC C T,0 ,1 ,0
� � � , and YT ,1

� . To
distinguish between population measures and empirical measures, we define the corresponding empirical
measures of YC ,0

� as μ̂
n0,
, of YC ,1

� as μ̂
l1,
, and of YT ,0

� as ⋆
μ̂

m0,
with corresponding sample sizes n l m, , . We denote

the estimator of the counterfactual YT ,1

†� by μ̂
m1,

† . Estimating Brenier maps from data is a subject of intense
activity both from theoretical and practical angles [48–57]. Further details about estimating Brenier maps from
data can be found in Appendix B. In this section, we state propositions about the consistency of the estimated
counterfactual distribution and its rate of convergence in expected Wasserstein distance to the population
distribution. The 2-Wasserstein distance between measures μ and ν, which we denote asW μ ν,2( ), is the square
root of the infimum transportation cost (3) between the two measures. Proofs of these propositions are
deferred to Appendix A.

The observations form empirical measures μ̂
n0,
, ⋆

μ̂
m0,
, and μ̂

l1,
with n, m, and l denoting the respective

sample sizes. These samples are assumed to be mutually independent. An estimator for the natural trend, p̂ is a
minimizer ofW μ μˆ , ˆ

n l2 0, 1,
( ). A plug-in estimator for the counterfactual distribution is given by ⋆ˆ μ# ˆ

m0,
p . However, p̂

is nontrivially defined only on the support of μ̂
n0,
. Therefore, in practice, we project ⋆

μ̂
m0,
onto the support of

μ̂
n0,
through one-nearest neighbor Euclidean matching, itself a 2-Wasserstein optimal transport problem. The

“rounded” measure of treatment outcomes preintervention is denoted ⋆
μ̃

m0,
. This leads to our proposed esti-

mator for the counterfactual distribution: ≕⋆ μˆ ˆμ m# ˜ 1,

†

m0,
p .

Under the assumptions on population measures stated in Assumption 1, the Wasserstein distance between
the estimated and population counterfactual distribution converges uniformly to zero. This enables a consis-
tency statement about that distance converging to probability to zero, as well as a stronger statement about the
Wasserstein distance of the estimated and population natural trend maps.
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Proposition 1. Under the conditions of Assumption 1,

∫ − =
→∞ ⋆

x x xlimsup ˆ ˜ d 0.

m n
K

Y

min ,

T

0

,0
p p �‖ ( ) ( )‖ ( )

( )

Furthermore, the squared 2-Wasserstein distance of the empirical natural trend map, ⋆
W μ μˆ , ˆ

m m2

2

0, 1,

†( ), converges

in probability to the distance from preintervention samples to their population counterfactual, ( )⋆
W μ̂ ,

m Y2

2

0, T ,1

†� .

Under mild further assumptions, we show that the expected 2-Wasserstein distance between the popula-
tion and estimated counterfactual measures converges to 0 at a O m nmin , d

1

( ( ) ) rate.

Assumption 2. The convex support K0 is compact, and in addition, the Radon–Nikodym derivative ≔f
d

d

YT

YC

,0

,0

�

�
of

⋆
μ

0
with respect to μ

0
is bounded.

Combining these assumptions with those previously stated for consistency under Assumption 1 yields the
following claim.

Proposition 2. The expected 2-Wasserstein distance between μ̂
m1,

† and YT ,1

†� converges to 0 at a O m nmin , d

1

( ( ) ),
that is,

=W μ O m nˆ , min , .
m Y, , 2 1,

†

YC YT YC T

d

,0 ,0 ,1 ,1

†

1

� �� � � ( ) ( ( ) )

Obtaining the large sample distribution of optimal transport maps is largely an open problem. However,
rates of convergence are known [50,57], which enables inference on these functionals through subsampling
methods. Under mild assumptions (e.g., those in [58–60]), subsampling theory provides confidence regions and
hypothesis tests with strong asymptotic guarantees. Even if the rate of convergence for the functional is
unknown, that rate may still be estimated.

4 Numerical experiment and application to the Card and Krueger
dataset

In this section, we demonstrate the performance of the optimal transport-based estimator with two numerical
experiments and apply it to a classical causal inference dataset.

4.1 A stylized example

We first present a simple simulation experiment, which demonstrates that improper modeling of dependency
between coordinates of multivariate outcomes can lead to highly biased estimates. In particular, our proposed
method manages to estimate the correct bivariate counterfactual distributions, while the multivariate exten-
sion of the CiC estimator through tensorization does not. Consider the following set of linear production
functions in which map latent vectors in 2� to outcomes without intervention in 2� :

= ⎡
⎣

⎤
⎦ = ⎡

⎣
−

−
⎤
⎦h u

α

α
u h u

α

α
u

1

1
and

1

1
.0 1( ) ( )

These production functions are a cyclically comonotone but not element-wise monotone as required for
the CiC estimator. Choosing beta distributions as the laws of the latent variables, we generate n = 3,000
independent outcomes from the control population before and after the intervention, as well as from the
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treatment group before the intervention and its unobserved counterfactual. Further details about the imple-
mentation can be found in Appendix C.1.

The recovered marginals in Figure 2 and the kernel density estimator (KDE) of the counterfactual joint
distribution in Figure 3 demonstrate that our methodology estimates the true counterfactual distribution
almost exactly, while the CiC estimator cannot. Notably, the CiC estimator recovers a joint distribution with
a mirrored dependence structure.

As previously noted, the tensorized CiC estimates counterfactuals under the strong assumption that the
copula of outcomes preintervention and postintervention are identical. Each coordinate of the potential out-
comes vectors is assumed to be a monotone increasing function of the latent random vector’s corresponding
coordinate. When there are interactions between latent coordinates during potential outcome generation, the
multivariate CiC will not identify counterfactual distributions. We believe that proper accounting for correla-
tion structures contributes to our seemingly novel substitution result when reanalyzing the classical minimum
wage data from Card and Krueger [13] in Section 4.3.

4.2 Numerical experiment in higher dimensions

In the following numerical experiment, we consider the performance of our estimator against the multivariate
tensorized CiC estimator as the dimensionality of the observations grows. Optimal transport’s strong recovery
of higher-dimensional joint distributions, illustrated by Figure 4, distinguishes it.

Figure 2: Recovery of counterfactual marginals by OT and CiC. (a) First marginal and (b) second marginal.

Figure 3: KDE plots of the distribution of counterfactual outcomes for the treatment group. The first covariate increases along the
horizontal axis and the second along the vertical. KDE bandwidth = 0.5. (a) True CF, (b) OT estimate, and (c) CiC estimate.
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Recall from Theorem 1 that optimal transport maps can be characterized as the gradients of convex
functions. Consider the function = −f x y x y,

2 1( ) , which is convex when >y 0. As the sum of convex functions
is convex, summing f evaluated at multiple pairs of coordinates in a random vector constructs a convex
function from d� to � . Formally, we consider a class convex functions = ∑ =

−
g x θ x x; i

p

i i1

2 1

1 2
( ) ( ) ( ), where ∈ ++x

d� ,
x i( ) represents the i th coordinate of x , and ∈i dj [[ ]] for ∈j 1, 2{ }; the parameter θ contains the p pairs of
indices to be compared. The gradient of g is straightforward to compute. In this simulation, we specify h0 to be
the identity and h1 to be ∇g . There are d coordinate pairs randomly selected each run. Both treatment arms
have =n 3,000 units drawn from beta latent distributions. Further implementation details can be found in
Appendix C.2.

Our experiment is designed to quantify how well the two methods estimate a joint counterfactual dis-
tribution. For computational reasons, we focus on randomly selected pair-wise coordinate interactions. To this
end, we construct the eCDF of the true counterfactual, its optimal transport estimate, and its CiC estimate over
a uniform mesh of 10,000 points. We compute the mean absolute difference between the true and estimated
eCDFs over each point in the mesh and have 20 runs per trial. As demonstrated in Figure 4, our proposed
method better estimates the quantiles of a plane in the outcome space. Table 1 shows that optimal transport
has a mean absolute difference consistently smaller than CiC with a smaller standard deviation as well. Our
method’s monotone increasing loss likely occurs due to the curse of dimensionality and the difficulty of
matching vectors in very high dimensions with only 3,000 samples. Regardless, optimal transport still has
substantially smaller MAD and standard deviation than CiC when =d 100.

Figure 4: True and estimated eCDF quantiles for counterfactual treatment individuals, =D 50.

Table 1:Mean absolute deviation of the estimated counterfactual CDF to the true one. eCDFs are evaluated over one randomly selected
plane per run

Dimension 2 10 20 50 100

OT MAD 0.0006 0.0017 0.0019 0.0033 0.0037
st. dev. 0.0003 0.0011 0.0016 0.0027 0.0055
CiC MAD 0.0083 0.0104 0.0092 0.0088 0.0090
st. dev. 0.0055 0.0078 0.0074 0.0073 0.0125
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4.3 Revisiting the Card and Krueger dataset

On April 1, 1992, New Jersey raised its minimum wage from the Federal level of $4.25 per hour to $5.05 per
hour. Card and Krueger [13] (CK henceforth) investigated the effect this increase had on employment in fast
food restaurants with a case–control experimental design, taking the bordering region of eastern Pennsyl-
vania, where the minimum wage remained at $4.25, as a control group. The original study employs the
standard DiD estimator to conclude that the higher minimum wage led to increased employment in New
Jersey restaurants. This result spawned much debate within the economics community about the effect of
minimum wage policies on employment (e.g., Neumark and Wascher [61], Dube et al. [62], Meer and West [63],
Neumark et al. [64], and the references therein).

The treatment effect of interest in CK and many subsequent reevaluations is the change in full-time
equivalent employees (FTE), which is defined via = +FTE FT 0.5PT , where FT (PT) is the number of full-
time (part-time) employees [61,65]. We use the proposed multivariate extension of the CiC estimator to estimate
a bivariate treatment effect in terms of full- and part-time employees, hence fully dissecting the causal effect of
raising the minimum wage on these subgroups.

We analyze the number of full- and part-time employees as drawn from an underlying continuous
distribution. In the original CK data, “there are 28 records that report fractional full-time employees (the
fraction is always one-half), 29 records that report fractional numbers of part-time employees, and one record
that reports a fractional number of managers” [66]. These partial observations could represent ambiguity in
the classification of a worker as full- or part-time (Alan Krueger via interview reported in by Ehrenberg et al.
[66]). As the restaurant employee responding to the phone interview was not necessarily the same at both
measurements, Neumark and Wascher [61] argue, “there is no reason to believe that the responses in the first
and second waves are based on the same ‘definition’ of employment.” Therefore, these fractional observations
can also be considered a degree of belief statement. As discussed earlier, deterministic optimal transport maps
are the unique solution in the continuous case while the discrete case also admits probabilistic optimal
transport plans as solutions. In practice, we use a linear program implemented in the Python package POT

which finds a deterministic plan, matching the structure of our theoretical results.
The original CK study finds a positive average treatment effect of 2.76 FTE jobs added in the treatment

group compared to the control group, a result reproduced by Neumark and Wascher [61] using different
methodology. Neumark and Wascher [61] also compute an average treatment effect in full- and part-time jobs
with separate regressions and find treatment effects of 3.16 gained full-time jobs and 0.60 lost part-time jobs.
These classical contributions only focus on aggregate outcomes over all restaurants, irrespective of the size of
the respective restaurant. An exception is Ropponen [67] who reanalyzes the data with the CiC estimator,
taking into account the heterogeneity in the size of the fast-food restaurants. He finds the average treatment
effect bounded in [0.90, 1.70]. Ropponen also notes in New Jersey that large restaurants preintervention
(measured in FTE employees) have a negative treatment effect, while small restaurants preintervention
have a positive treatment effect. Our analysis recovers this trend for both FT and PT employees in New Jersey.
As we also generate counterfactual controls, we find an opposite trend for Pennsylvania restaurants. This
opposite trend is intriguing and worth exploring further as it does not seem to be explained by substitution
effects of employees moving across the state line to find jobs (Table 2).

The previously discussed subsampling approach to inference was applied to generate symmetric 95 %
confidence intervals around each point estimate. The only interval to contain zero is for the DiD treatment
effect on part-time employment. Furthermore, we run subsampled hypothesis tests to check whether the point

Table 2: Estimated average treatment effect on full- and part-time employment by method with subsampled 95% confidence intervals

OT CiC DiD

ATE FT 3.07 (2.00, 4.67) 2.61 (0.40,3.45) 3.45 (3.05,5.46)
ATE PT − − −1.79 3.43, 0.33( ) − − −1.52 3.46, 0.51( ) − −1.00 2.07, 1.15( )
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estimates are significantly different across estimators. Of the four tests between optimal transport to an
alternative, only the difference in treatment effect on part-time employment estimated with CiC was not
significantly different from zero at the =p 0.05 level. For both the confidence intervals and hypothesis tests,
we use a block size of 300 and 10,000 replications.

The average treatment effects estimated using the OT and CiC counterfactual distributions depend only on
the marginals, not the full joint structure. However, as illustrated in Figure A3 in Appendix, the strong copula
assumptions between preintervention and postintervention periods for CiC can lead to markedly different
estimated marginals. That structure implies restaurants with the largest preintervention full/part-time
employment will also have the largest counterfactual full/part-time employment. The wider tails of the CiC
treatment effect marginals compared to OT suggest that additional joint structure in this setting leads to
counterfactuals with less variance from the observed potential outcome.

The proposed multivariate extension of the CiC estimator allows us to jointly estimate the effects on full-
and part-time employment while accounting for the heterogeneity in restaurant size. For the results in this
section, restaurants are represented in 2� by our outcomes of interest, the number of full- and part-time
employees. In Appendix, we provide an additional experiment with restaurants represented as higher dimen-
sional vectors including additional measurements about wages, prices, and operations. We discard 19 units
with missing outcomes, leaving 76 control and 315 treatment restaurants. The transport plans for both groups
are solved with a linear program, and we apply nearest neighbor matching between treatment and control
preintervention samples to calculate counterfactual outcomes.

Our optimal transport analysis suggests that fast food restaurants responded to an increased minimum
wage by substituting full-time employees for part-time ones with a net gain of FTEs. Our results seem to
indicate that the negative effect on part-time employees is more pronounced than previously estimated. The
quantile plot in Figure 5 suggests this effect applies throughout the distribution of restaurants, not just the
mean: fixing the number of full-time employees, counterfactual quantiles tend to have more part-time
employees than treatment group quantiles at the same level; likewise fixing the number of part-time
employees, treatment group quantiles tend to have more full-time employees. In their original paper, CK
suggest that restaurants may respond to higher labor costs with more full-time employees because they tend to
be older, more skilled, and more productive, thus a better investment of capital. Furthermore, the univariate
methods may underestimate the number of part-time employees lost, a conclusion supported by the higher
dimensional analysis in Table A3 in Appendix.

Figure 5: Postintervention quantile curves for observed treatment group units and their counterfactuals.
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5 Discussion

We have introduced a general method based on optimal transport theory for causal inference in observational
treatment and control study designs. It combines two desirable properties: it is designed for multivariate
settings while at the same time capturing the heterogeneity in treatment response of individuals. In particular,
it complements both the classical DiD estimator, which is applicable in multivariate settings but only captures
average effects, and the CiC estimator [6], which allows for general treatment heterogeneity but is only
applicable in univariate settings.

Showcasing the utility of the proposed method, we revisit the classical Card and Krueger dataset by
decomposing the treatment effects for full-and part-time employees. We find that fast-food restaurants
responded to an increased minimum wage by substituting full-time employees for part-time employees,
even when accounting for restaurant size. This provides a novel insight by dissecting the relationship between
full- and part-time employees while accounting for the heterogeneity in restaurant size. More generally, since
our proposed method is able to consider multivariate outcomes, it can help uncover interesting causal effects
and nonlinear relations in a wide array of applications.
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Appendix

A Proofs of stated results

For compactness and clarity, we use a different notation for measures in these proofs than in the main text.
For control group outcomes, YC ,0

� is equivalent here to μ
0
and YC ,1

� is equivalent to μ
1
. For the treated, YT ,0

� is

equivalent to ⋆
μ

0
and YT ,1

� is equivalent to ⋆
μ

1
. The counterfactual measure YT ,1

†� has μ
1

† as its counterpart.

A.1 Proof of Theorem 2

Proof. The cyclically comonotonicity assumption reads as follows:

∑ − ≤
=

+h u h u h u, 0

i

m

i i i

1

0 1 1 1⟨ ( ) ( ) ( )⟩

for all ∈m �. Define =y h u
i i0( ) and =+ +y h u

i i1 0 1( ) so that

∑ ∘ − ∘ ≤
=

−
+

−
y h h y h h y, 0

i

m

i i i

1

1 0

1

1 1 0

1⟨ ( ) ( )⟩

for all x y,0 0
in the image of h0. This means that the function = ∘ −

h h1 0

1p is cyclically monotone in the sense of
(4). By [23, Theorem 24.8], and this is equivalent to p being the gradient of a convex function and hence the
unique Brenier map from μ

0
to μ

1
. Moreover, by Assumption 1 ⊂K K*

0 0, so that we can apply the mapp to ⋆
μ

0
to

identify μ
1

†. □

A.2 Proof of Proposition 1

Proof. The main result to enable a consistency statement for μ̂
m1,

† will be the uniform convergence for optimal
maps presented in Theorem 1.1 of the study by Segers [68]. This states that with the Euclidean norm

− →
→∞ ∈ ∈

ylim sup sup 0.
n x K y

x

ˆ

#

x0 0 # 0

0
p

p
‖ ‖{ }

{ }

In other words, the pushforward of singletons under p̂ converges uniformly to their population pushfor-
ward under p. The aforementioned statement holds by case (b) of that theorem, and its assumptions are
justified as follows. Both the empirical source measure μ̂

n0,
and target measure μ̂

l1,
converge weakly in

probability to their population distributions [69]. The Brenier map p is the unique coupling with cyclically
monotone support between μ

0
and μ

1
. Finally, both p̂ and p are maximally cyclically monotone functions on

the nonempty supports of their respective coupling measures by results in Rockafellar [70].
For finite n, the preimage of p̂ will not contain all possible singletons in ⊂⋆

K K0 0. Instead, we generate
counterfactuals by rounding treatment samples ⋆

x0
to their nearest neighbor in the control pre-image, ⋆

x̃0
, and

using ⋆ˆ x# ˜
0

p { } as the counterfactual estimator. We wish to show

− →
→∞ ∈ ∈⋆ ⋆ ⋆

⋆ylim sup sup 0.
n x K y

x

ˆ

#

x0 0 # ˜
0

0
p

p
‖ ‖{ }

{ }

The exchange of ⋆
x0 for x0 in the aforementioned statement follows because the set � of all closed balls on

d� is a Vapnik-Chervonenkis class with VC dimension +d 2 [71,72, p. 833]. Therefore, with ⋅σ( ) indicating the
Borel σ -algebra and ⋅ �‖ ‖ denoting the supremum of the Euclidean distance evaluated over the set of closed
balls,

− → → ∞
∈

μ μ nsup ˆ 0, .

μ K σ K

n

,

0, 0

0 0 0

�
�

�‖ ‖
( ( ))
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This implies for sufficiently large n the empirical μ̂
n0,
will contain a sample from all closed balls. It follows

that for any >ε 0, ⋆
x̃0 , the nearest neighbor of ⋆

x0 must be an element of ⋆
B xε 0( ).

We now consider

∫ ∫ ∫− ≤
⎡

⎣
⎢
⎢

− + −
⎤

⎦
⎥
⎥→∞

⋆

→∞

⋆ ⋆

⋆ ⋆ ⋆
x x μ x x x μ x x x μ xlimsup ˆ ˜ d limsup ˆ ˜ ˜ d ˜ d .

m n
K

m n
K K

min ,

0

min ,

0 0

0 0 0

p p p p p p‖ ( ) ( )‖ ( ) ‖ ( ) ( )‖ ( ) ‖ ( ) ( )‖ ( )
( ) ( )

The first integral must converge to 0 in the limit supremum because of the uniform convergence for
optimal maps stated earlier. The second integral involves a Brenier map p from ⋆

μ
0
to μ

1

†, which is ⋆
μ

0
-Lipschitz

almost everywhere. This implies ∫ ∫− ≤ − ≤ −⋆ ⋆
⋆ ⋆ ⋆x x μ x C x x μ x C x x˜ d ˜ d sup ˜

K K K0 0
0 0 0

p p‖ ( ) ( )‖ ( ) ‖ ‖ ( ) ‖ ‖ for some

Lipschitz constant < +∞C . We have already shown that in a sufficiently large sample, all nearest neighbor
matches x̃ will be arbitrarily close to x . Therefore, the limit supremum of this integral is bounded byCε for any

>ε 0. It follows that

∫ − =
→∞

⋆

⋆
x x μ xlimsup ˆ ˜ d 0.

m n
K

min ,

0

0

p p‖ ( ) ( )‖ ( )
( )

This integral also upper bounds ∫ ∫− − −⋆ ⋆
⋆ ⋆x x μ x x x μ xˆ ˜ d d

K K0 0
0 0

p p∣ ‖ ( ) ‖ ( ) ‖ ( ) ‖ ( )∣ by the reverse triangle

inequality, so this absolute difference must also converge to zero in the limsup. The sequence of empirical
⋆

μ̂
m0,
converge weakly in probability to ⋆

μ
0
. Segers’ theorem implies uniform convergence, so

∫ − ≤ − ⋅ →⋆ ⋆ ⋆

⋆
x x μ x C x x μ Kˆ ˜ ˆ d sup ˆ ˜ ˆ 0.
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m m0, 0, 0
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p p‖ ( ) ‖ ( ) ‖ ( ) ‖ ( )

Hölder’s inequality and the triangle inequality gives
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‖ ( ) ‖ [ ]( ) ‖ ( ) ‖ ( )

so we have convergence in probability of ∫ − ⋆
⋆ x x μ xˆ ˜ ˆ d

K m0,
0

p‖ ( ) ‖ ( ) to ∫ − ⋆
⋆ x x μ xˆ ˜ d

K 0
0

p‖ ( ) ‖ ( ). By combining these
results, we can state that for all >ε 0,

∫ ∫
⎛

⎝
⎜⎜ − − − >

⎞

⎠
⎟⎟ →⋆ ⋆

⋆ ⋆
x x μ x x x μ x εlim ˆ ˜ ˆ d d 0.

m n
K

m

K
min ,

0, 0

0 0

p p� ‖ ( ) ‖ ( ) ‖ ( ) ‖ ( )
( )

□

A.3 Proof of Proposition 2

Proof. We wish to bound the risk between the true and estimated counterfactual outcome distributions with
respect to the 2-Wasserstein metric: ⋆ ⋆W , ˆμ μ2 # # ˜

m0 0,
p p� ( ). We will show this quantity is

−
O n d

1

( ). Note that this

expectation is jointly over ⋆
μ

0
, control measure μ

0
onto whose sampled support we project, and μ

1
through

estimating p̂. The assumed mutual independence between all samples will sometimes allow us to marginalize
out distributions from an expectation; the distributions that we jointly take expectations over will be noted in
that operator’s subscript.
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By applying the triangle inequality, we have

≤ +⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆W W W, ˆ , , ˆ .μ μ μ μ μ μ μ μ μ μ μ μ μ μ, , 2 # # ˜ , 2 # # ˜ , , 2 # ˜ # ˜
m m m m0 1 0 0 0, 0 0 0 0, 0 0 1 0, 0,

p p p p p p� � �( ) ( ) ( ) (A1)

Consider first ⋆ ⋆ ⋆W ,μ μ μ μ, 2 # # ˜
m0 0 0 0,

p p� ( ). We will bound the expected Wasserstein distance from ⋆
μ

0
to its

projection on the controls’ support ⋆
μ̃

m0,
. Then we will show this convergence rate does not change under

pushforward of both measures by p.
We have ≤ +⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆W μ μ W μ μ W μ μ, ˜ , ˆ ˆ , ˜μ μ m μ m μ μ m m, 2 0 0, 2 0 0, , 2 0, 0,0 0 0 0 0

� � �( ) ( ) ( ) again by the triangle inequality. The
first term ⋆ ⋆⋆W μ μ, ˆμ m2 0 0,0

� ( ) is the expected distance between the true distribution and its i.i.d sample; we have

an
−

O m d

1

( ) upper-bound e.g. from Fournier and Guillin [73]. The second term is the expected Wasserstein

distance between sample ⋆
μ̂

m0,
and its nearest neighbor match in the support of μ̂

n0,
.

The distributions of these empirical measures for a fixed sample size are denoted σ n0, , ⋆
σ m0, , and σ l1, ,

respectively. We can express the joint expectation ⋆ ⋆⋆W μ μˆ , ˜μ μ m m, 2 0, 0,0 0
� ( ) as the marginalized integral over the

treatment group’s sampling distribution ∫ ⋆ ⋆ ⋆ ⋆
⋆ W μ μ σ μˆ , ˜ ˆ

μ μ m m m mˆ
2 0, 0, 0, 0,

m0,
0

� ( ) ( ). We wish to show that for fixed ⋆
μ̂

m0,
,

=⋆ ⋆ −
W μ μ O nˆ , ˜μ m m2 0, 0,

d
0

1

� ( ) ( ), which will allow us to conclude =⋆ ⋆⋆
−

W μ μ O nˆ , ˜μ μ m m, 2 0, 0,
d

0 0

1

� ( ) ( ).

Lemma 3.1 from Canas and Rosasco [74] states = −W μ π μ x S, S μ2

2 2�( ) ‖ ‖ , where πS is the nearest neighbor
projection onto set S . In words, squared Euclidean nearest neighbor matching solves an optimal transport
problem. Let =S μsupp ˆ

n0,
. This formulation allows us to express ∫ ⋆ ⋆ ⋆ ⋆

⋆ W μ μ σ μˆ , ˜ ˆ
μ μ m m m mˆ 2

2

0, 0, 0, 0,
m0,

0
� ( ) ( ) as

∫ − ⋆ ⋆
⋆ ⋆ x S σ μ̂

μ μ μ m mˆ
ˆ

2
0, 0,

m
m

0,
0 0,

� � ‖ ‖ ( ). Replacing ⋆
μ̂

m0,
� with a summation yields ∫ ∑ −=

⋆ ⋆
⋆ x S σ μ̂

μ m i

m

μ i m mˆ

1

1
2

0, 0,
m0,

0
� ‖ ‖ ( ).

Lemma 1 given by Abadie and Imbens [75] provides bounds on the matching discrepancy between fixed point
z and potential matches drawn i.i.d from a distribution with compact, convex, and bounded support. By
denoting the discrepancy vector to the nearest neighbor U1, they find = −U O nμ 1

3
d

0

3

� ‖ ‖ ( ). Applying the Lyapu-

nov’s inequality yields = −U O nμ 1
2

d
0

2

� ‖ ‖ ( ). Thus, have =⋆ ⋆ −W μ μ O nˆ , ˜μ m m2

2

0, 0,
d

0

2

� ( ) ( ). From Jensen’s

≥ =⋆ ⋆ ⋆ ⋆ −
W μ μ W μ μ O nˆ , ˜ ˆ , ˜μ m m μ m m2

2

0, 0, 2 0, 0,
d

0

1

2

0

1

� �( ( )) ( ) ( ). Integrating this bound over the sampling distribution does
not change it. Therefore, we can conclude by summing the two triangle inequality rates to yield

=⋆ ⋆⋆W μ μ O m nˆ , ˜ min ,μ μ m m, 2 0, 0,
d

0 0

1

� ( ) ( ( ) ). Results to shortly follow will show this rate holds for the pushforward
⋆ ⋆ ⋆W ,μ μ μ μ, 2 # # ˜

m0 0 0 0,
p p� ( ) as well.

Now we turn our attention to the rate of convergence for ⋆ ⋆ ⋆W , ˆμ μ μ μ μ, , 2 # ˜ # ˜
m m0 0 1 0, 0,

p p� ( ). We once again appeal to
the triangle inequality to upper bound this expectation. Note that
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p p p p p p p p� � � �( ) ( ) ( ) ( ) (A2)

To show the first and third terms are O m nmin , d

1

( ( ) ), it is sufficient to show the rate of converge between
two measures does not change under pushforward via an optimal transport map. Recall that optimal transport
maps are twice differentiable almost everywhere, which implies they are also Lipschitz almost everywhere.

Let r denote the rounding optimal transport map from ⋆
μ

0
to ⋆

μ̃
m0,
. For all x in the support ⋆

μ
0
, we have

∘ − ≤ −x x K x xp r p r‖ ( ) ( )‖ ‖ ( ) ‖ for some Lipschitz constant K . Integrating both sides over ⋆
μ

0
preserves this

inequality and yields ≤ ⋆ ⋆⋆ ⋆W KW μ μ, ˜ ,μ μ m2 # ˜ # 2 0, 0m0, 0
p p( ) ( ). It follows =⋆ ⋆ ⋆W O m n, min ,μ μ μ μ, 2 # ˜ #

m

d
0 0 0, 0

1

p p� ( ) ( ( ) ).

Adapting this argument with p̂ instead of p shows that =⋆ ⋆ ⋆W O m nˆ , ˆ min ,μ μ μ μ μ, , 2 # ˜ # ˜
m

d
0 0 1 0 0,

1

p p� ( ) ( ( ) ) as well.

It remains to show =⋆ ⋆ ⋆
−

W O n, ˆμ μ μ μ μ, , 2 # #
d

0 0 1 0 0

1

p p� ( ) ( ). The Radon–Nikodym derivative f for ⋆
μ

0
with respect to

μ
0
exists and is bounded by assumption. From the definition of a push forward, we see that ⋆ ⋆W , ˆμ μ2 # #

0 0
p p( ) can

be expressed as ∫ −x x f x μ xˆ d
K 0

0

p p‖ ( ) ( )‖ ( ) ( ). It is well known that ∫ − = −
x x μ x O nˆ d

K 0
d

0

1

p p‖ ( ) ( )‖ ( ) ( ); see e.g.

Manole and Niles-Weed [53]. Let C equal the upper bound of f .

Clearly ∫ ∫− ≤ − = −
x x f x μ x C x x μ x O nˆ d ˆ d

K K0 0
d

0 0

1
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We have shown each term of equation (A2) converges at a rate of O m nmin , d

1

( ( ) ). Therefore,

=⋆ ⋆ ⋆W O m n, ˆ min ,μ μ μ μ μ, , 2 # ˜ # ˜
m m

d
0 0 1 0, 0,

1

p p� ( ) ( ( ) ). Both terms on the right-hand side of equation (A1) converges at a

rate of O m nmin , d

1

( ( ) ), so =⋆ W μ μ O m n, ˆ min ,μ μ μ m, , 2 1

†

1,

†
d

0 0 1

1

� ( ) ( ( ) ) as desired. □

B Calculating optimal transport couplings from data

This section outlines how to estimate optimal transport couplings from sampled data and provides references
to supporting theory. Given n samples from measure μ and m samples from measure ν, both supported on d� ,
the objective is to estimate the Brenier map T̄ such that =ν T μ#̄ . The Brenier map’s definition is given by (3).

In practice, the measures μ and ν are replaced by their empirical analogues, denoted ≔ ∑ =μ δˆ
n i

n

X

1

1 i
and

≔ ∑ =ν δˆ
m j

m

Y

1

1 j
, which are discrete uniform distributions over their samples.3 The transport cost between obser-

vations can be summarized by the matrix ∈ ≥
×

C
n m

0� , where = c μ i ν jC ˆ , ˆi j, ( [ ] [ ]), which is defined with respect to
a cost function × ↦ ∞c x y, : 0,

d d� �( ) [ ). Theorem 1 holds under the squared Euclidean distance:
= −c x y x y,

2( ) ‖ ‖ , which corresponds to the 2-Wasserstein distance between measures. A nonnegative trans-
port matrix T, which moves the atoms of μ̂ to ν̂ is the object to optimize over. We enforce the recovery of
marginals in the following discrete analog of equation (3)’s optimization:

∑ = =
∈

⊺

≥
×

n mT C T Tmin s.t. and .

i j

i j i j m n n m
T

,

, ,
n m

0

� � � �
�

(A3)

Here, n� denotes the length n vector with all entries equal to 1. Noting that (A3) can be reformulated as a
linear program, it is common to apply algorithms from that domain, which yield bijective maps when =n m

and sparse plans otherwise. Another approach is to add an entropic penalty term to (A3), which relaxes the
problem and enables computation through Sinkhorn’s algorithm [12,76]. Sinkhorn-based approaches
add the penalty term λH T( ) to (A3), where H T( ) is the matrix entropy of T and positive tuning parameter λ

controls the sparsity of T. For large choices of λ, the optimal solution will be driven toward the naive coupling
given by the outer-product of marginals; for small λ, sparse solutions more akin to the unregularized problem
are found. Without loss of generality assuming ≥n m, the runtime of linear programming approaches is
generally O n nlog

3( ( )), while Sinkhorn can achieve −O n ε2 3( ) if we wish to bound the error of our discretized
Wasserstein distance by ε [77].

Our methodology involves first estimating p̂ from control group observations and then using that estimate
to pushforward ⋆

μ
0
. Representing p̂ as a matrix, we can recover its pushforward of μ̂

0
through n μT ˆ

1
. As it is

unlikely that the supports of the empirical measures μ̂
0
and ⋆

μ̂
0
have a large intersection, we must extrapolate

p̂’s behavior on ⋆
μ̂

0
. A common approach is using nearest neighbors [78]. Counterfactual treatment outcomes

are generated by matching each treatment unit preintervention to the nearest control and then pushing
forward along the transport plan between observed control distributions. Neural network-based approaches
to learn maps have also been proposed [79,80], and representation results help support this direction of active
research [81].

To compute optimal transport maps in this article, we use a linear programming method ot.lp.emd from
the Python package Python Optimal Transport[82]. These maps are then extrapolated into optimal transport
plans with Euclidean nearest neighbor matching. In our simulations, the control and treatment groups pre-
intervention have almost complete overlap of sampled support, justifying this technique. All numerical
experiments in this article are written and run in Python 3. Replication code is available in Appendix of
this article.



3 For any measurable set A, δ Ax( ) denotes the Dirac measure, which is 1 if ∈x A and 0 otherwise.
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C Numerical experiments

In this section, we provide implementation details for results computed in Sections 4.1 and 4.2.

C.1 Implementation details for numerical experiment in Section 4.1

We consider n = 3,000 units in 2� for each treatment arm. Samples of latent variables are drawn from the
distribution ν at =t 0 and =t 1, mirroring the setup discussed in Section 2.2. Draws from ⋆ν are fixed across
time for counterfactual validation purposes. For controls, ν’s first coordinate is distributed according to

3, 2Beta( ) and second to 2, 3Beta( ); for treatments, ⋆ν ’s first coordinate is distributed according to 2, 3Beta( )

and second to 3, 2Beta( ).
Recall that we consider the following set of production functions that are cyclically comonotone:

= ⎡
⎣

⎤
⎦ = ⎡

⎣
−

−
⎤
⎦h u

α

α
u h u

α

α
u

1

1
and

1

1
.0 1( ) ( )

In our simulations, the α parameter of the production functions is fixed at 0.5. The proof of their cyclically
comonotone relationship when ∈α 0, 1∣ ∣ ( ) follows.

Proof.We begin by simplifying the inner product terms contained in the definition of cyclical comonotonicity
(6). We have

− = ⎡
⎣

⎤
⎦

⎡
⎣

−
−

⎤
⎦ −+ +h u h u h u

α

α
u

α

α
u u,

1

1
,

1

1
.i i i i i i0 1 1 1 1⟨ ( ) ( ) ( )⟩ ( )

After expansion and simplification, this reduces to − − +α u u u1 ,i i i
2

1( ) ⟨ ⟩. Substituting this into the definition
of (6), we now wish to show − ∑ − ≥= +α u u u1 , 0i

m

i i i
2

1 1( ) ⟨ )⟩ for all m. Our restriction of ∈α 0, 1∣ ∣ ( ) ensures
− α1

2( ) is always positive, and this summation is equivalent to the identity map being cyclically monotone in
the sense of (4). The identity map is the gradient of a convex function, u0.5 2

2∣∣ ∣∣ , completing our proof. □

By using these production functions, we generate n independent samples from each of the distributions
μ μ,

0 1
and ⋆

μ
0
, as well as samples from the true counterfactual distribution μ

1

† for validation purposes.

Figure A1: Quantiles of the eCDF for the bivaraite experiment over a uniform mesh with 10,000 points.
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To estimate the transport map p, we first compute an optimal plan using observed data and round it to an
optimal transport map. This map is only defined on the data from μ

0
. To predict counterfactuals treatment on

data from ⋆
μ

0
, we employ nearest neighbor interpolation. Since the Beta distribution is supported on 0, 1[ ] for

all parameter choices, μ
0
and ⋆

μ
0
have identical support in this example, and this naive extrapolation technique

performs sufficiently well. In particular, it shows that the OT-based estimator remains close to the true
counterfactual distribution while naive tensorization of CiC may depart significantly.

We also compute the eCDF for our 3,000 true counterfactual observations and the counterfactuals gen-
erated by the two methods over a uniform mesh of 10,000 points. Figure A1 visually demonstrates that OT
almost perfectly recovers the eCDF, and Table A1 quantifies this result. The mean absolute difference over each
mesh point is an order of magnitude smaller for OT and has a smaller standard deviation.

C.2 Implementation details for numerical experiment in Section 4.2

Recall that we consider a class convex functions indexed by θ, where = ∑ =
−

g x θ x x; i

p

i i1

2 1

1 2
( ) ( ) ( ). Here, ∈ ++x

d� , x i( )

represents the i th coordinate of x , ∈i dj [[ ]] for ∈j 1, 2{ }, and the parameter θ contains the p pairs of indices
to be compared.

It is well known the that function = ∕f x y2 is convex when >y 0. Furthermore, the sum of convex
functions remains convex. Therefore, the functions g x θ;( ) are convex. In our numerical experiment, we
sample θ randomly in each run to contain d coordinate–pair interactions, matching the dimension of the latent
vectors.

In our experiment, we define h0 as the identity and = ∇h g1 . Therefore, cyclical comonotonicity (6) is
equivalent to the cyclical monotonicity (4) of g . As g is convex, ∇g is an optimal transport map and therefore
cyclically monotone.

The d coordinate pairs randomly selected from a uniform distribution on d1,[ ]. As these results only hold
for strictly positive latent vectors, we sample both latent distributions from 2, 3Beta( ). Both treatment arms
have =n 3,000 units.

The implementation of our experiment is otherwise identical to that described in Appendix C.1; we
generate data for the four relevant distributions and compute transport plans with nearest neighbor extra-
polation. The eCDF and MAD computation is also the same.

D Additional CK experiment

We begin by presenting an additional figure from our bivariate CK analysis in Section 4.3. Figure A2 demon-
strates a negative correlation between the change in full-time employees after the intervention and the change
in part-time employees. This suggests that fast food restaurants substituted full-time employees for part-
time ones.

For our reanalysis of the CK data on the minimum wage and fast food employment, we use the original
dataset provided by David Card on his website. It contains survey information, collected via telephone, for 410
fast food restaurants across four fast-food chains. We remove 19 restaurants with missing outcome observa-
tions. Of the remaining, 76 are in the control region of northeastern Pennsylvania and 315 are in New Jersey. In

Table A1: Recovery of eCDF by method over 20 runs

MAD OT MAD CiC

Mean 0.008 0.089
st. dev. 0.002 0.003
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addition to the two employment outcomes of interest, a number of other observations about a restaurant’s
wages, prices, and operations were collected. Our optimal transport methodology allows us to estimate treat-
ment effects more richly with potential outcomes including nonemployment time varying restaurant char-
acteristics. We emphasize that this experiment is presented to illustrate the applicability of our method in
higher dimensions. Our variable selection is not data driven and the ratio of covariate to units is low.

We select a representative subset of 10 numerical covariates, listed in Table A2, and remove any restau-
rant with a missing entry for any of these covariates. This leaves a final sample of 52 controls and 200
treatments. The full dataset has 15 numerical covariates but including all 15 leads to a small sample size
due to missing data. The covariates we do not include add little additional information, such as the price of
fries (we include the price of entrees and sodas), have high rates of missingness, or have a different distribu-
tion in the subsample with complete data than the entire survey population. Unlike the outcome-only analysis
presented in Section 4.3, the included covariates have different scales. Thus, we standardize each to zero mean
and unit standard deviation. The dataset also includes categorical data such as the fast-food chain, which we
do not include because the Euclidean distance between restaurants would depend on how these are encoded.

Instead of presenting results conditional on some set of covariates, we present aggregate results over
subsets of all subsets of potential outcome vectors including both employment outcomes and 2, 3, or 4 other
covariates. The positive results of this experiment are included in Table A3. The sign of our two estimates

Figure A2: Distribution of unit-level treatment effect estimates, demonstrating a negative correlation between change in full-time and
part-time employees.

Figure A3: Recovery of counterfactual marginals by OT and CiC. (a) Full-time employment and (b) part-time employment.
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never change in this experiment. Furthermore, addings covariates leads to optimal transport estimators with
smaller estimated full-time ATE and larger part-time ATE on aggregate. In future work with more tests for
covariate selection and further sensitivity analysis, we hope stronger claims about the estimates’ magnitude
can be made.

Table A2: Outcomes and covariates included in our analysis

Covariate name Description

EMPFT Number of full-time employees
EMPPT Number of part-time employees
PCTAFF Percent of employees affected by new minimum wage
NMGRS Number of managers
INCTIME Months until usual first raise
PENTREE Price of an entrÃľe with tax
PSODA Price of a soda with tax
NREGS Number of cash registers in the restaurant
OPEN Hour of opening
HRSOPEN Number of hours open per day

Table A3: Summary statistics of higher dimensional subsets for the CK ATE

TE FT TE PT

Mean 1.56 −1.97

st. dev. 0.38 0.56
Min 0.69 −3.59

Max 2.63 −0.78
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