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Abstract. In this note we present an alternative proof of a theorem of Gun-
nells, which states that the Steinberg module of Sp2n(Q) is a cyclic Sp2n(Z)-
module, generated by integral apartment classes.

1. Introduction

Consider the vector space Q2n equipped with the standard symplectic form ω,
i.e. the skew-symmetric, non-degenerate bilinear form which on the standard basis
{e⃗1, f⃗1, . . . , e⃗n, f⃗n} evaluates as

ω(e⃗i, e⃗j) = ω(f⃗i, f⃗j) = 0 for i, j ∈ {1, . . . , n},

ω(e⃗i, f⃗j) = 0 for i ̸= j ∈ {1, . . . , n},

ω(e⃗i, f⃗i) = −ω(f⃗i, e⃗i) = 1 for i ∈ {1, . . . , n}.

The symplectic group Sp2n(Q) is the group of Q-linear automorphisms of Q2n that
preserve ω. Restricting to Z2n, we obtain the symplectic module (Z2n, ω) and the
integral symplectic group Sp2n(Z). We may use the standard basis to identify
Sp2n(Q) and Sp2n(Z) with 2n× 2n-matrix groups.

This work concerns the symplectic Steinberg module Stωn , an important Sp2n(Z)-
representation (the rational dualizing module of Sp2n(Z) [BS73]) that can be con-
structed as follows: A subspace V ⊆ Q2n is called isotropic if ω|V is zero. The
Tits building of type Cn over Q is the poset Tω

n of all nontrivial proper isotropic
subspaces V of (Q2n, ω) ordered by the inclusion of subspaces. This poset admits
a natural Sp2n(Z)-action because symplectic matrices map isotropic subspaces to
isotropic subspaces. A theorem of Solomon–Tits [Sol69] implies that Tω

n ≃
∨

Sn−1

has the homotopy type of a bouquet of (n − 1)-spheres. The Steinberg module of
Sp2n(Q) is the Sp2n(Z)-module that arises as the reduced top-degree homology of
the symplectic Tits building,

Stωn := H̃n−1(T
ω
n ;Z).

The goal of this work is to give an alternative proof of a theorem of Gunnells
[Gun00, 4.11. Theorem], which shows that Stωn is a cyclic Sp2n(Z)-module and
describes an explicit set of generators for Stωn .
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Theorem 1.1 (Gunnells). There exists an Sp2n(Z)-equivariant surjection

[−] : Z[Sp2n(Z)] ↠ Stωn

for all n ≥ 1 such that the set of generators of Stωn given by {[M ] : M ∈ Sp2n(Z)}
is equal to the set of integral apartment classes (see Definition 4.2).

Theorem 1.1 is the special case O = Z of Gunnells’ result [Gun00, 4.11 Theorem],
which allows any Euclidean ring of integers O of a number field K/Q.

Our primary interest in Stωn stems from applications to the study of the rational
cohomology of Sp2n(Z): Using ideas contained in [BS73; CFP19], Gunnells’ gen-
erating set for Stωn can be used to prove that the rational cohomology of Sp2n(Z)
vanishes in its virtual cohomological dimension vcdn = n2,

Hn2

(Sp2n(Z);Q) = 0

if n ≥ 1 (see Brück–Patzt–Sroka [Sro21, Chapter 5] or, for a more general version,
Brück–Santos Rego–Sroka [BSS22]). In a sequel that is joint work with Peter Patzt
[BPS23], we build on the techniques developed in this note to determine the re-
lations between all integral apartment classes, i.e. between the generators of Stωn
appearing in Theorem 1.1. This yields a presentation of the symplectic Steinberg
module Stωn for n ≥ 1. We use this presentation to prove that the rational coho-
mology of Sp2n(Z) vanishes one degree below its virtual cohomological dimension,

Hn2−1(Sp2n(Z);Q) = 0

if n ≥ 2 (see Brück–Patzt–Sroka [BPS23] for n ≥ 3; and Igusa [Igu62], Hain [Hai02]
and Hulek-Tommasi [HT12] for n ≤ 4).

Our motivation for writing the present note is threefold: Gunnells’ algorithmic
strategy of proof for Theorem 1.1 in [Gun00] was inspired by work of Ash–Rudolph
for special linear groups [AR79]. Our first aim here is to implement an idea of
Putman [Put21] and present a new, more geometric argument in the style of recent
work on special linear groups [CFP19; CP17]. In fact, our strategy to study integral
symplectic groups relies on and uses results obtained in [CFP19; CP17]. This idea
is also prominent in the sequel [BPS23], which relies on results contained in [CFP19;
CP17; Brü+22]. Our second aim is to develop and showcase some of the techniques
used in [BPS23] at a simpler example. Our approach to Theorem 1.1 requires
to show that a certain simplicial complex IAn is highly connected. The difficult
parts of this connectivity calculation have been carried out by Putman in [Put09].
However, Putman informed us that [Put09] contains small gaps. Our third aim in
this article is to explain how these can be filled.

Outline. Section 2 introduces a new poset, the restricted Tits building Tω
n (W ),

and studies its connectivity properties. This poset is a variant of the symplectic
Tits building Tω

n defined above. In Section 3, we define the complex Iσ,δ
n , which

Putman introduced in [Put09], and the complex IAn, which we use in our proof of
Gunnells’ theorem. We show that Putman’s connectivity results for Iσ,δ

n imply that
IAn is highly connected as well. Furthermore, we explain how one can combine
connectivity results obtained by Church–Putman [CP17] with our results about
the restricted Tits building to give an alternative proof of the first steps of Put-
man’s connectivity calculation for Iσ,δ

n . This fixes the gaps in Putman’s argument
(see Remark 3.6 and Remark 3.7). In Section 4, we define the integral apartment
class map appearing in Gunnells’ theorem. Section 5 contains the new proof of
Theorem 1.1.

Acknowledgments. This article is based on Chapter 5 of Sroka’s PhD Thesis
[Sro21] written at the University of Copenhagen. Essentially, all results presented
here are contained in [Sro21]. It is a pleasure to thank Andrew Putman for posing
the question that led to this work [Put20] and for sharing his idea for a new proof
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of Gunnells’ theorem [Put21]. We thank Peter Patzt for helpful discussions and
comments, and the department of the University of Copenhagen for the excellent
working conditions. RJS would like to thank his PhD advisor Nathalie Wahl for
many fruitful and clarifying conversations about [Sro21, Chapter 5]. We thank the
anonymous referee for their careful reading and helpful suggestions.

2. The restricted Tits building

This section introduces and studies a new poset, the restricted Tits building
Tω
n (W ). In the next section, we use this poset to fix gaps in an argument contained

in [Put09]. The results for Tω
n (W ) presented here are also used in the sequel to this

work [BPS23]. We assume that n ≥ 1 throughout this section.
Recall that the symplectic Tits building Tω

n is the poset of nontrivial isotropic
subspaces of Q2n ordered by inclusion of subspaces. The order complex of this poset,
which we also denote by Tω

n (Q), is an ordered simplicial complex with k-simplices
given by the following set of flags

{V0 ⊊ · · · ⊊ Vk : 0 ̸= Vi ⊊ Q2n isotropic subspace}.
This complex has dimension n − 1 and the i-th face of a k-simplex is obtained by
omitting the i-th isotropic subspace Vi of the flag.

Definition 2.1. We define

W =
〈
e⃗1, f⃗1 . . . , e⃗n−1, f⃗n−1, e⃗n

〉
Q
⊆ Q2n

to be the subspace of Q2n spanned by all standard basis vectors apart from fn.
We denote by Tω

n (W ) the subposet of the symplectic Tits building Tω
n consisting

of isotropic subspaces V ∈ Tω
n that are contained in W .

Recall from [Qui78, p.116-117] that a poset P is Cohen–Macaulay of dimension
d if the associated order complex P is d-spherical, i.e. d-dimensional and homotopy
equivalent to a wedge of d-spheres, and the link of each k-simplex in P is (d−k−1)-
spherical. The main result of this section is the following theorem.

Theorem 2.2. Tω
n (W ) is a contractible Cohen–Macaulay poset of dimension n−1.

For any subspace H ⊆ Q2n, let

H⊥ = {v⃗ ∈ Q2n : ω(v⃗, h⃗) = 0 for all h⃗ ∈ H}
denote the symplectic complement of H in Q2n. The following two observations
are the main ingredients of the proof of Theorem 2.2.

Lemma 2.3. If V ∈ Tω
n (W ), then ⟨e⃗n⟩Q + V ∈ Tω

n (W ).

Proof. Observe that W ⊆ ⟨e⃗n⟩⊥Q , hence V ⊆ ⟨e⃗n⟩⊥Q . It follows that ⟨e⃗n⟩Q + V ⊆ W

is isotropic. Hence, ⟨e⃗n⟩Q + V ∈ Tω
n (W ). □

Given a poset P , the upper link P>x and the lower link P<x of an element x ∈ P
are the subposets of P containing all elements y ∈ P that satisfy y > x and y < x
respectively. The interval (x, z) between two elements x ≤ z ∈ P is the subposet
of P consisting of all y ∈ P that satisfy x < y < z. The next observation concerns
certain upper links in Tω

n (W ) and is similar to Lemma 4.2 of Sprehn–Wahl [SW20].

Lemma 2.4. If ⟨e⃗n⟩Q ⊆ Q ∈ Tω
n (W ), then

Tω
n (W )>Q

∼= Tω(⟨e⃗n, f⃗n⟩⊥Q )>Q∩⟨e⃗n,f⃗n⟩⊥Q
.

For the case Q = ⟨e⃗n⟩Q, we set Tω(⟨e⃗n, f⃗n⟩⊥Q )>Q∩⟨e⃗n,f⃗n⟩⊥Q
:= Tω(⟨e⃗n, f⃗n⟩⊥Q ).



4 BENJAMIN BRÜCK AND ROBIN J. SROKA

Proof. Note that any V ∈ Tω
n (W )>Q admits a direct sum decomposition V =

⟨e⃗n⟩Q ⊕ (V ∩ ⟨e⃗n, f⃗n⟩⊥Q ). The poset maps

Tω
n (W )>Q → Tω(⟨e⃗n, f⃗n⟩⊥Q )>Q∩⟨e⃗n,f⃗n⟩⊥Q

: V 7→ V ∩ ⟨e⃗n, f⃗n⟩⊥Q
and

Tω(⟨e⃗n, f⃗n⟩⊥Q )>Q∩⟨e⃗n,f⃗n⟩⊥Q
→ Tω

n (W )>Q : V 7→ ⟨e⃗n⟩Q ⊕ V

are therefore inverses of each other. □

Lemma 2.5. Tω
n (W ) is contractible.

Proof. The poset map

f : Tω
n (W ) → Tω

n (W ) : V 7→ ⟨e⃗n⟩Q + V

is well-defined by Lemma 2.3 and satisfies V ⊆ f(V ). It follows from [Qui78, §1.5]
that Tω

n (W ) is homotopy equivalent to im(f) and that im(f) is contractible using
the cone point ⟨e⃗n⟩Q. □

Lemma 2.6. Tω
n (W ) is a Cohen–Macaulay poset of dimension n− 1.

Proof. This proof uses the characterization of Cohen–Macaulay posets given in
[Qui78, Proposition 8.6.]: Let Q′ ⊆ Q ∈ Tω

n (W ). We need to see that the lower
link Tω

n (W )<Q is (dimQ−2)-spherical, the interval (Q′, Q) is (dimQ−dimQ′−2)-
spherical and the upper link Tω

n (W )>Q is (n− dimQ− 1)-spherical.
Connectivity of the lower link and the interval: Note that Tω

n (W )<Q is the poset
of nontrivial proper subspaces of Q. This is exactly a Tits building T (Q) of type
Adim(Q)−1, which is known to be a Cohen–Macaulay poset of dimension (dimQ−2)
(see [Sol69] and [Bro89, IV.5 Remark 2]). Therefore, Tω

n (W )<Q is (dimQ − 2)-
spherical and (Q′, Q) is ((dimQ − 2) − (dimQ′ − 1) − 1) = (dimQ − dimQ′ − 2)-
spherical.

Connectivity of the upper link: We consider two cases.
1. Assume that ⟨e⃗n⟩Q ̸⊆ Q. Then ⟨e⃗n⟩Q + Q ∈ Tω

n (W )>Q is a cone point of
the image of the monotone poset map f : V 7→ ⟨e⃗n⟩Q + V on Tω

n (W )>Q. It
follows from [Qui78, §1.5] that Tω

n (W )>Q is contractible and in particular
(n− dimQ− 1)-spherical.

2. Assume that ⟨e⃗n⟩Q ⊆ Q. Then Lemma 2.4 yields the identification

Tω
n (W )>Q

∼= Tω(⟨e⃗n, f⃗n⟩⊥Q )>Q∩⟨e⃗n,f⃗n⟩⊥Q
.

But Tω(⟨e⃗n, f⃗n⟩⊥Q ) is Cohen–Macaulay of dimension (n− 2) (see [Sol69] and
[Bro89, IV.5 Remark 2]). Therefore, Tω

n (W )>Q∩⟨e⃗n,f⃗n⟩⊥Q
is spherical of di-

mension

(n− 2)− (dim(Q ∩ ⟨e⃗n, f⃗n⟩⊥Q )− 1)− 1 = n− dimQ− 1. □

3. Putman’s connectivity results revisited and the complex IAm
n

This section introduces the simplicial complex IAn that plays a key role in our
proof of Gunnells’ Theorem 1.1. The simplicial complex IAn contains a subcomplex
Iσ,δ
n ↪→ IAn, which has been studied by Putman in [Put09]. The goal of this section

is twofold. After defining simplicial complexes related to Iσ,δ
n and IAn, we outline

the strategy that Putman used in [Put09] to prove that Iσ,δ
n is highly connected.

Our first goal is to give alternative proofs for the first steps of Putman’s argument,
filling gaps in [Put09] (see Remark 3.6 and Remark 3.7). For this, we combine
the results for the restricted Tits building Tω

n (W ) obtained in the last section with
connectivity calculations of Church–Putman [CP17]. Our second goal is to show
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that the complex IAn can be constructed from Iσ,δ
n by attaching simplices along

highly connected links. As a consequence, Putman’s connectivity result for Iσ,δ
n

implies that IAn is highly connected as well. The high-connectivity of IAn and the
link structure of IAn are exactly the properties that make the induction argument
in the proof of Gunnells’ theorem in Section 5 work.

Notation. Throughout this subsection, we assume that m,n ∈ N denote natu-
ral numbers satisfying m + n ≥ 1. We consider Z2(m+n) ⊂ Q2(m+n) equipped
with the standard symplectic form ω and denote its standard symplectic basis by
{e⃗1, f⃗1, . . . , e⃗m+n, f⃗m+n}. Given a primitive vector v⃗ ∈ Z2(m+n), we write v = ⟨v⃗⟩Z
for the rank-1 summand it spans in Z2(m+n). Similarly, given a rank-1 summand
v of Z2(m+n), we write v⃗ for some choice of primitive vector in v. Note that there
are exactly two such choices, the other one being −v⃗.

Definition 3.1. Let Vm+n be the set

Vm+n := {v ⊆ Z2(m+n) : v is a rank-1 summand of Z2(m+n)}.
A subset ∆ = {v0, . . . , vk} ⊂ Vm+n of k + 1 lines in Z2(m+n) is called

• a standard simplex if ⟨v⃗i : 0 ≤ i ≤ k⟩Z is an isotropic rank-(k+1) summand
of Z2(m+n);

• a 2-additive simplex if v⃗0 = ±v⃗1 ± v⃗2 and ∆ \ {v0} is a standard (k − 1)-
simplex;

• a σ simplex if ω(v⃗k, v⃗k−1) = ±1, ω(v⃗k, v⃗i) = 0 for 0 ≤ i ≤ k− 2 and ∆ \ {vk}
is a standard (k − 1)-simplex;

• a mixed simplex if ∆ \ {v0} is a σ simplex, ∆ \ {vk} is a 2-additive simplex
and ω(v0, vk) = 0.

Definition 3.2. The simplicial complexes Im+n, Iδ
m+n, I

σ,δ
m+n and IAm+n have

Vm+n as their vertex set and
• the simplices of Im+n are all standard;
• the simplices of Iδ

m+n are all either standard or 2-additive;
• the simplices of Iσ,δ

m+n are all either standard, 2-additive or σ;
• the simplices of IAm+n are all either standard, 2-additive, σ or mixed.

Definition 3.3. Let Xm+n denote the complex Im+n, Iδ
m+n, I

σ,δ
m+n or IAm+n. We

define Xm
n to be the full subcomplex of LinkXm+n

({e1, . . . , em}) on the vertex set
of lines v ∈ LinkXm+n

({e1, . . . , em}) satisfying the following:
1. v⃗ /∈ ⟨e⃗1, . . . , e⃗m⟩Z.
2. For 1 ≤ i ≤ m, we have ω(e⃗i, v⃗) = 0, i.e. there are no σ edges between v and

the vertices of {e1, . . . , em}.

Definition 3.4. Let W = ⟨e⃗1, f⃗1, . . . , e⃗m+n−1, f⃗m+n−1, e⃗m+n⟩Q ⊆ Q2(m+n) be as
in Section 2. We write Im

n (W ) and Iδ,m
n (W ) for the full subcomplexes of Im

n and
Iδ,m
n , respectively, on the set of vertices contained in W .

The complexes Im
n (W ), Im

n , Iδ,m
n , Iδ,m

n (W ) and Iσ,δ,m
n have been defined and

studied by Putman [Put09, Section 6]. The next theorem lists the five steps of
Putman’s proof that Iσ,δ,m

n is spherical.

Theorem 3.5 (Putman, [Put09, Proposition 6.13 and 6.11]). Let m ≥ 0 and n ≥ 1,
then:

1. Im
n (W ) is (n− 2)-connected.

2. Im
n is (n− 2)-connected.

3. Iδ,m
n (W ) is (n− 1)-connected.

4. Iδ,m
n ↪→ Iσ,δ,m

n is the zero map on πk for 0 ≤ k ≤ n− 1.
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5. Iσ,δ,m
n is n-dimensional and (n− 1)-connected.1

Putman made us aware that the proof of [Put09, Proposition 6.13] contains some
small gaps. They occur in the proof of Item 1 and Item 3 of Theorem 3.5, and are
explained in the next remark.

Remark 3.6. [Put09, Proofs of Proposition 6.13.1 and 6.13.3] assert – without proof
– that certain isomorphisms of simplicial complexes exist, but it is seems unclear
why this would be the case. Using the notation of [Put09], the claims are as follows.

1. [Put09, Page 632. Proof of Proposition 6.13, first conclusion, third para-
graph.] asserts that linkL∆k,W (g)

(ϕ(∆′)) ∼= Lk+m′,W (g).
2. [Put09, Page 634. Proof of Proposition 6.13, third conclusion. Step 1.]

asserts that link
L∆k,W

δ (g)
(ϕ(t)) ∼= Lk+(m′−1),W (g). [Put09, Page 634. Proof

of Proposition 6.13, third conclusion. Step 2, Case 2.] asserts an isomorphism
L∆k∪{⟨v⟩},W (g) ∼= Lk+1,W (g). [Put09, Page 634. Proof of Proposition 6.13,
third conclusion. Step 3.] asserts that L∆k∪{ϕ(x)},W

δ (g) ∼= Lk+1,W
δ (g).

We use the first claim to illustrate why these assertions are difficult to verify.
Translated to the notation of the present note, it is as follows:

1. Let 0 ≤ k ≤ n− 2 and ∆ a k-simplex in Im
n (W ). Then

LinkIm
n (W )(∆) ∼= Im+k+1

n−k−1 (W ).

Let m = 0, n ≥ 2 and consider the 0-simplex ∆ = en ∈ In(W ). Then the claim
asserts that

LinkIn(W )(en) ∼= LinkIn(W )(e1).

For In, i.e. if the vertex set has not been restricted using W , it is indeed easy to
see that there is an isomorphims LinkIn

(en) ∼= LinkIn
(e1). However, while there is

an equality LinkIn(W )(en) = LinkIn(en), the inclusion LinkIn(W )(e1) ⊊ LinkIn(e1)
is strict because e.g. the vertex fn is not contained in LinkIn(W )(e1). Therefore the
first assertion about links in In(W ) has the following consequence:

LinkIn
(e1) ∼= LinkIn

(en) = LinkIn(W )(en) ∼= LinkIn(W )(e1) ⊊ LinkIn
(e1),

i.e. it identifies LinkIn
(e1) with a proper subcomplex of itself. It is not clear why

such an identification would exists. Similar issues arise if one tries to verify the
other claims.

Remark 3.7. The proofs of [Put09, Proposition 6.13.2 and 6.13.4], i.e. Item 2 and
Item 4 of Theorem 3.5, use identifications which are analogous to the assertions
described in Remark 3.6. The important difference is that in [Put09, Proposition
6.13.2 and 6.13.4] these are identifications of complexes whose vertex set has not
been restricted using Wm+n = ⟨e⃗1, f⃗1, . . . , e⃗m+n−1, f⃗m+n−1, e⃗m+n⟩Q ⊆ Q2(m+n).
Hence, these identifications can easily be verified. The proofs of [Put09, Proposition
6.13.2 and 6.13.4] furthermore rely on [Put09, Proposition 6.13.1 and 6.13.3]. Since
we provide alternative arguments for these two statements, the proofs of [Put09,
Proposition 6.13.2 and 6.13.4] are unaffected by the discussion in Remark 3.6. Sim-
ilarly, the proof of [Put09, Proposition 6.11], i.e. Item 5 in Theorem 3.5, is not
affected.

We now start working towards an alternative proof of [Put09, 6.13.1 and 6.13.3],
i.e. Item 1 and Item 3 of Theorem 3.5, using the restricted Tits building intro-
duced in the previous subsection and connectivity calculations obtained by Church–
Putman [CP17]. This fixes the gaps in [Put09] outlined in Remark 3.6.

1[Put09, Theorem 6.11] states this result only for m = 0. Its proof uses Item 2 and Item 4 for
m = 0. For m > 0, the same argument works if one uses Item 2 and Item 4 for m > 0.
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Definition 3.8. Let Wm+n = ⟨e⃗1, f⃗1, . . . , e⃗m+n−1, f⃗m+n−1, e⃗m+n⟩Q ⊆ Q2(m+n) be
as in Section 2. We write

Tω,m
n := (Tω

m+n)>⟨e⃗1,...,e⃗m⟩Q and Tω,m
n (W ) := T (Wm+n)>⟨e⃗1,...,e⃗m⟩Q

for the upper links of the isotropic subspace ⟨e⃗1, . . . , e⃗m⟩Q in Tω
m+n and Tω

m+n(W ),
respectively.

Lemma 3.9. Let m ≥ 0 and n ≥ 1. Tω,m
n and Tω,m

n (W ) are Cohen–Macaulay
posets of dimension (n− 1). Furthermore, Tω,m

n (W ) is contractible.

Proof. For the upper links in the symplectic Tits building Tω,m
n , this follows from

the Solomon–Tits Theorem (see [Sol69] and [Bro89, IV.5 Remark 2]) and [Qui78,
Proposition 8.6]. For the upper links in the restricted Tits building Tω,m

n (W ),
it follows from Theorem 2.2 and [Qui78, Proposition 8.6]. The contractibility of
Tω,m
n (W ) = Tω

m+n(W )>⟨e⃗1,...,e⃗m⟩Q follows from Item 1 in the proof of Lemma 2.6
because ⟨e⃗m+n⟩Q ̸⊆ ⟨e⃗1, . . . , e⃗m⟩Q. □

Definition 3.10. Given an isotropic subspace V ∈ Tω,m
n , we obtain an isotropic

summand V ∩Z2(m+n) of Z2(m+n) (see e.g. [CP17, Lemma 2.4]) properly containing
⟨e⃗1, . . . , e⃗m⟩Z.

1. Let Bm(V ∩Z2(m+n)) be the full subcomplex of Im
n on the vertices satisfying

v ⊆ V ∩ Z2(m+n).
2. Let BAm(V ∩ Z2(m+n)) be the full subcomplex of Iδ,m

n on the vertices sat-
isfying v ⊆ V ∩ Z2(m+n).

Let Zm+n = ⟨e1, . . . , em+n⟩Q ∩ Z2(m+n). By results of Maazen [Maa79] and
Church–Putman [CP17], the complex Bm(Zm+n) is Cohen–Macaulay of dimension
(n − 1). The connectivity properties of BAm(Zm+n) have also been studied by
Church–Putman [CP17]. We summarize the results contained in [CP17] in the
following theorem.

Theorem 3.11 ([CP17, Theorem 4.2 and Theorem C]). Let m ≥ 0 and n ≥ 1.
1. Bm(Zm+n) is (n− 2)-connected and Cohen–Macaulay of dimension (n− 1).
2. BAm(Zm+n) is (n− 1)-connected.

The following two results allow us to relate the complexes introduced above.
The first is a result of Quillen [Qui78]. For this, we recall that the height h(y)
of an element y in a poset P is the length l of the longest chain of the form
y0 < · · · < yl = y in P . If no such l exists, we put h(y) = ∞.

Theorem 3.12 ([Qui78, Corollary 9.7]). Let f : X → Y be a poset map which
is strictly increasing (if x < x′, then f(x) < f(x′)). Assume that Y is Cohen–
Macaulay of dimension n and that the poset fibers f≤y = {x ∈ X : f(x) ≤ y} are
Cohen–Macaulay of dimension h(y) for all y ∈ Y . Then X is Cohen–Macaulay of
dimension n.

The second result is a generalization of Quillen’s [Qui78, Theorem 9.1] due to
van der Kallen–Looijenga.

Theorem 3.13 ([KL11, Corollary 2.2]). Let f : X → Y be a poset map, θ ∈ Z,
and t : Y → Z an increasing (if y′ < y, then t(y′) < t(y)) but bounded function.
Suppose that for every y ∈ Y , the poset fiber f≤y = {x ∈ X : f(x) ≤ y} is (t(y)−2)-
connected and that the upper link Y>y is (θ− t(y)− 1)-connected. Then the map f
is θ-connected.

We are now ready to formulate our alternative arguments for the first items of
Theorem 3.5. These arguments are completely formal and analogous to the proof of
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e.g. [KL11, Proposition 1.2.]; the major difference being the input from Theorem 2.2
and Theorem 3.11.

Lemma 3.14. Let m ≥ 0 and n ≥ 1. The complex Im
n (W ) is Cohen–Macaulay of

dimension n− 1. In particular, Item 1 of Theorem 3.5 holds.

Lemma 3.15. Let m ≥ 0 and n ≥ 1. The complex Im
n is Cohen–Macaulay of

dimension n− 1. In particular, Item 2 of Theorem 3.5 holds.

Lemma 3.15 can easily be deduced from [Put09, Proposition 6.13.2], i.e. Item 2
of Theorem 3.5, or [KL11, Proposition 1.2]. Since it is used in the proof that IAm

n

is highly connected at the end of this section and in the sequel [BPS23], we included
a short argument.

Proof of Lemma 3.14 and Lemma 3.15. Let P (Im
n (W )) and P (Im

n ) denote the sim-
plex posets of Im

n (W ) and Im
n , respectively. The two lemmas follow by considering

the poset maps

f : P (Im
n (W )) → Tω,m

n (W ) : ∆ 7→ ⟨e⃗1, . . . , e⃗m⟩Q ⊕ ⟨∆⟩Q
and

f : P (Im
n ) → Tω,m

n : ∆ 7→ ⟨e⃗1, . . . , e⃗m⟩Q ⊕ ⟨∆⟩Q ,

respectively, and invoking Theorem 3.12. Let V ∈ Tω,m
n (W ) or V ∈ Tω,m

n . The
application of Quillen’s result relies on the facts that h(V ) = dim(V ) − m − 1,
that Tω,m

n (W ) and Tω,m
n are Cohen–Macaulay posets of dimension (n − 1) (see

Lemma 3.9) and the observation that f≤V = Bm(V ∩ Z2(m+n)), which is Cohen–
Macaulay of dimension (dim(V )−m− 1) by Theorem 3.11. □

Finally, we formulate an alternative argument for Item 3 of Theorem 3.5.

Proof of Item 3 of Theorem 3.5. We will show that P (Iδ,m
n (W )), the simplex poset

of Iδ,m
n (W ), is (n− 1)-connected. There is a poset map

f : P (Iδ,m
n (W )) → Tω,m

n (W ) : ∆ 7→ ⟨e⃗1, . . . , e⃗m⟩Q + ⟨∆⟩Q .

Let θ = n and define t : Tω,m
n (W ) → Z : V 7→ dim(V )−m+ 1. By Lemma 3.9, we

know that Tω,m
n (W )>V is ((n−1)−(dim(V )−m−1)−2) = (θ−t(V )−1)-connected.

Furthermore, f≤V = P (BAm(V ∩ Z2(m+n))) is (dim(V ) − m − 1) = (t(V ) − 2)-
connected by Theorem 3.11 for dim(V ) ≥ 1 +m. Therefore Theorem 3.13 implies
that f is n-connected. By Lemma 3.9, the target is contractible, hence Iδ,m

n (W ) is
(n− 1)-connected. □

We end this section by explaining how Putman’s connectivity result for Iσ,δ,m
n

(see Theorem 3.5) implies high-connectivity of IAm
n .

Corollary 3.16. If m ≥ 0 and n ≥ 1, then IAm
n is (n− 1)-connected.

Proof. By Item 5 of Theorem 3.5, the subcomplex X0 = Iσ,δ,m
n of X1 = IAm

n is
(n− 1)-connected. We will apply the standard link argument explained in [HV17,
§2.1] and [HV17, Corollary 2.2] to conclude that X1 is (n − 1)-connected as well.
Let B be the set of minimal mixed simplices contained in X1, i.e. B is the set
of simplices ∆ = ∆′ ∗ Θ in IAm

n consisting of a σ edge Θ = {v, w} and a 2-
additive simplex of the form ∆′ = {⟨±v⃗1 ± v⃗2⟩ , v1, v2} or ∆′ = {⟨±e⃗i ± v⃗1⟩ , v1}
where ei ∈ {e1, . . . , em}. Here, we call ∆′ = {⟨±e⃗i ± v⃗1⟩ , v1} a 2-additive simplex
in IAm

n if {⟨±e⃗i ± v⃗1⟩ , v1, ei} is a 2-additive simplex in IAm+n. We note that,
by Definition 3.3, a simplex ∆ in IAm

n is mixed (i.e. ∆ ∪ {e1, . . . , en} is mixed
in IAm+n) if and only if ∆ has a unique face contained in B. This property
implies that B is a set of bad simplices in the sense of [HV17, §2.1]: [HV17, §2.1,
Condition (1)] holds, since any simplex in X1 = IAm

n with no face in B has to be
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in X0 = Iσ,δ,m
n . [HV17, §2.1, Condition (2)] holds, because if two faces of a simplex

in X1 = IAm
n are in B these faces need to be equal. For ∆ ∈ B, the complex

of simplices that are good for ∆ is therefore given by LinkgoodX1
(∆) = LinkX1

(∆).
Now, LinkX1

(∆) ∼= Im+dim(∆)−2
n−dim(∆)+1 and, by Lemma 3.15, this is (even more than)

(n−dim(∆)−2)-connected for every minimal mixed simplex ∆. Since X0 = Iσ,δ,m
n

is (n−1)-connected (see Theorem 3.5), [HV17, Corollary 2.2] therefore implies that
X1 = IAm

n is (n− 1)-connected as well. □

4. Symplectic integral apartment classes

Following [Gun00, Section 3], we explain the construction of the symplectic in-
tegral apartment class map appearing in Theorem 1.1,

[−] : Z[Sp2n(Z)] → Stωn = H̃n−1(T
ω
n ;Z).

The image
[M ] ∈ Stωn = H̃n−1(T

ω
n ;Z)

of an integral symplectic matrix M ∈ Sp2n(Z) under this map is called its integral
apartment class. To define these homology classes, we use the following notation
and observations.

Definition 4.1. Let [[n]] := {1, 1̄, . . . , n, n̄}. A nonempty subset I ⊆ [[n]] is called a
standard subset if for all 1 ≤ a ≤ n it holds that {a, ā} ̸⊂ I. We denote by ∂βn the
simplicial complex whose vertex set is [[n]] and whose k-simplices are the standard
subsets I ⊂ [[n]] of size k + 1.

Observe that ∂β1 = {1, 1̄} ∼= S0 and that the inclusion of vertex sets [[n]] ⊆ [[n+1]]
induces an inclusion of simplicial complexes ∂βn ↪→ ∂βn+1 for any n ∈ N. It is
readily verified that ∂βn+1 is exactly the simplicial join ∂βn ∗ {n + 1, n+ 1}. It
follows that ∂βn

∼= ∗n1S0 is a simplicial sphere of dimension n−1 and that ∂βn+1 =
∂βn ∗ {n + 1, n+ 1} is obtained from ∂βn by suspension. We fix a fundamental
class ξ = ξ0 ∈ H̃0(∂β1;Z) once and for all. Using the suspension isomorphism, this
class gives rise to fundamental classes ξ = ξn−1 ∈ H̃n−1(∂βn;Z) for all n ∈ N.

Given an integral symplectic matrix M ∈ Sp2n(Z), its column vectors form a
symplectic basis of Qn. We may index the 2n column vectors from left to right
by [[n]] = {1, 1̄, . . . , n, n̄}. By the definition of the symplectic form ω, this indexing
M = (M⃗a)a∈[[n]] has the property that if I ∈ ∂βn is a simplex, then

MI = ⟨{M⃗a : a ∈ I}⟩Q
is an isotropic subspace of Q2n. This implies that for every M ∈ Sp2n(Z), we can
define a poset map

∂M : P (∂βn) → Tω
n : I 7→ MI ,

where P (∂βn) denotes the poset of simplices of ∂βn. Note that, passing to the
associated order complexes of these posets, ∂M defines a simplicial embedding.
Since the order complex of the poset P (∂βn) is the barycentric subdivision of ∂βn,
it follows that the image of the map ∂M is a subcomplex that is homeomorphic to
an (n − 1)-sphere. Such a subcomplex is called an integral apartment of the Tits
building Tω

n . Taking homology, we obtain a map

∂M⋆ : H̃n−1(P (∂βn);Z) → Stωn .

Barycentric subdivision of simplicial complexes comes with a natural homology
isomorphism on chain level b : C⋆ → C⋆ ◦P , where C⋆ assigns an ordered simplicial
complex its simplicial chain complex with trivial Z-coefficients. Using the induced
isomorphism

b : H̃n−1(∂βn;Z) → H̃n−1(P (∂βn);Z),
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we obtain a unique class b(ξ) ∈ H̃n−1(P (∂βn);Z) for every n ∈ N.

Definition 4.2. The symplectic integral apartment class [M ] ∈ Stωn of M ∈ Sp2n(Z)
is defined to be the value of ∂M⋆ : H̃n−1(P (∂βn);Z) → Stωn at b(ξ),

[M ] := ∂M⋆(b(ξ)).

This defines a map
[−] : Z[Sp2n(Z)] → Stωn : M 7→ [M ]

which we called the symplectic integral apartment class map.

Remark 4.3. The construction of symplectic apartment classes described above also
works if one starts with an element in the rational symplectic group M ∈ Sp2n(Q).
This leads to the definition of a symplectic rational apartment class map

[−] : Z[Sp2n(Q)] → Stωn .

It follows from the proof of the Solomon–Tits Theorem (see [Sol69] or [Bro89, Sec-
tion IV.5, Theorem 2]) that this map is a surjection. Gunnells’ theorem states that
its restriction to the “much smaller” group ring Z[Sp2n(Z)] is still a surjection. The
“smallness” of Z[Sp2n(Z)] can be illustrated from a building theoretic perspective:
Every apartment in the complete system of apartments of the building Tω

n (in the
sense of [Bro89, Section IV.4]) can be obtained by a Sp2n(Q)-translation, but not
by a Sp2n(Z)-translation, of the standard apartment.

Remark 4.4. Gunnells’ proof for Theorem 1.1 was inspired by work of Ash–Rudolph
[AR79] and based on the content of Remark 4.3. The general strategy is to devise
an algorithm that takes as input a rational apartment classes [M ] ∈ Stωn for M ∈
Sp2n(Q) and outputs a linear combination of integral apartment classes that is
equal to [M ].

Remark 4.5. The integral apartment classes introduced in Definition 4.2 are called
“unimodular symbols” in [Gun00], and the rational apartment classes in Remark 4.3
are called “symplectic modular symbols” in [Gun00]. More generally, the terminol-
ogy that we use in this note is close to that of [CFP19; CP17; Brü+22; BSS22],
while the terminology in Gunnells’ paper [Gun00] is close to that of [AR79].

5. A new proof of Gunnells’ theorem

In this final section, we present a new proof of Gunnells’ Theorem 1.1, i.e. we
prove that the integral apartment class map

[−] : Z[Sp2n(Z)] → Stωn

is surjective. Our strategy is to factor it into a composition of four maps and then
verify that each of these is a surjection. This is analogous to the strategy employed
by Church–Farb–Putman in [CFP19]. Gunnells’ theorem then follows from the
following two propositions, whose proof we will explain in the remainder of this
work.

Proposition 5.1. If n ≥ 1, there exists a commutative diagram of the following
shape

Z[Sp2n(Z)]

Hn(IAn, Iδ
n) H̃n−1(Iδ

n)

H̃n−1(P (Iδ
n)) H̃n−1(T

ω
n ) = Stωn

α

[−]

δ

b

s⋆
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where [−] : Z[Sp2n(Z)] → Stωn is the integral apartment class map, δ is the connect-
ing morphism of the long exact sequence of the pair (IAn, Iδ

n) and b is the homology
isomorphism coming from barycentric subdivision.

The morphisms α and s⋆ in the statement of Proposition 5.1 are defined below.

Proposition 5.2. If n ≥ 1, then the maps occurring in Proposition 5.1 satisfy:

1. α : Z[Sp2n(Z)] → Hn(IAn, Iδ
n) is a surjection.

2. δ : Hn(IAn, Iδ
n) → H̃n−1(Iδ

n) is a surjection.
3. b : H̃n−1(Iδ

n) → H̃n−1(P (Iδ
n)) is an isomorphism.

4. s⋆ : H̃n−1(P (Iδ
n)) → Stωn is an isomorphism.

To define the morphisms α and s⋆ in the statement of Proposition 5.1, we start
by introducing a simplicial complex, which is closely related to the complex ∂βn

occurring in the definition of the apartment class map.

Definition 5.3. We call a nonempty subset I ⊂ [[n]] a σ subset, if {n, n̄} ⊂ I and
for all 1 ≤ a ≤ n − 1 : {a, ā} ̸⊂ I. Let βn be the simplicial complex with vertex
set [[n]] and k-simplices subsets I ⊂ [[n]] of size k+1, which are either standard (see
Definition 4.1) or σ subsets.

Note that β1
∼= D1. Furthermore, βn

∼= (∗n−1
1 S0) ∗ D1 is homeomorphic to

a disc of dimension n whose boundary sphere is triangulated by the subcomplex
∂βn ⊂ βn, i.e.

(|βn|, |∂βn|) ∼= (Dn, Sn−1)

The definition of the map α involves the following construction: Let M =

(M⃗a)a∈[[n]] ∈ Sp2n(Z). Given a k-simplex I of βn, we find an associated simplex
Mα

I = {⟨M⃗a⟩Z : a ∈ I} of IAn: If I is a standard subset, then Mα
I is a standard

simplex. If I is σ subset, then Mα
I is a σ simplex. The resulting map

Mα : βn → IAn

is a simplicial embedding and the boundary

∂Mα : ∂βn → IAn

of this simplicial disc is contained in Iδ
n, i.e.

∂Mα : ∂βn → Iδ
n → IAn.

Definition 5.4. The value α(M) of the map α : Z[Sp2n(Z)] → Hn(IAn, Iδ
n) at a

matrix M = (M⃗a)a∈[[n]] ∈ Sp2n(Z) is defined to be the image of the fundamental
class ξ ∈ H̃n−1(∂βn) under the composition

H̃n−1(∂βn) Hn(βn, ∂βn) Hn(IAn, Iδ
n),

∼= (Mα,∂Mα)⋆

where the first isomorphism is the connecting morphism associated to the pair
(βn, ∂βn).

Finally, we define the map s⋆.

Definition 5.5. s⋆ : H̃n−1(P (Iδ
n)) → Stωn is the map induced in homology by the

spanning map

s : P (Iδ
n) → Tω

n : ∆ 7→ ⟨∆⟩Q,

where P (Iδ
n) denotes the poset of simplices of Iδ

n.
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5.1. Proof of Proposition 5.1. Let M ∈ Sp2n(Z). We need to verify that

[M ] = (s⋆ ◦ b ◦ δ ◦ α)(M).

Consider the following diagram:

Hn(βn, ∂βn) H̃n−1(∂βn) H̃n−1(P (∂βn))

Hn(IAn, Iδ
n) H̃n−1(Iδ

n) H̃n−1(P (Iδ
n))

∼=

(Mα,∂Mα)⋆ ∂Mα
⋆

b

P (∂Mα)⋆

δ b

The left square commutes because the connecting morphism of the long exact
sequence of a pair is a natural transformation. The right square commutes because
b : C⋆ → C⋆ ◦ P is a natural homology isomorphism. It follows that

(b ◦ δ ◦ α)(M) = (P (∂Mα)⋆ ◦ b)(ξ) ∈ H̃n−1(P (Iδ
n)).

To complete the proof, we need to see that

(s ◦ P (∂Mα) ◦ b)⋆(ξ) = [M ],

where [M ] = (∂M◦b)⋆(ξ) is as in Definition 4.2. This holds because the composition
(s◦P (∂Mα)) defined in this section is equal to the map ∂M defined in the paragraph
before Definition 4.2.

5.2. Proof of Proposition 5.2. The arguments for Item 2, Item 3 and Item 4 of
Proposition 5.2 are similar to the arguments used by Church–Farb–Putman in the
setting of SLn(Z) [CFP19]. However, while the analogue of the surjectivity of the
map αn : Z[Sp2n(Z)] → Hn(IAn, Iδ

n) is rather immediate for special linear groups,
this step (i.e. Item 1 of Proposition 5.2) is more involved for symplectic groups.
The reason is that apartments in the Tits building of type An−1, which is used in
the argument for SLn(Z), have the same combinatorial structure as the boundary
of an (n − 1)-simplex ∂∆n−1 and can therefore be “filled” by gluing in a single
simplex of dimension n − 1. Apartments of the Tits building of type Cn, which
we use here for Sp2n(Z), have a different simplicial structure. They are modelled
by the complex ∂βn and require multiple simplices to be “filled”. In the complex
IAn, this is achieved by σ simplices. Observe that σ simplices already occur in
dimension one. Therefore, and in contrast to the analogous situation for special
linear groups (see [CFP19, Step 1, 2.3 Proof of Theorem B]), the relative chain
complex C⋆(IAn, Iδ

n) is nontrivial in degree ⋆ = n− 1.

Proof of Item 2 of Proposition 5.2. Corollary 3.16 implies that H̃n−1(IAn) = 0.
Hence, the long exact sequence of the pair (IAn, Iδ

n) implies that δ : Hn(IAn, Iδ
n) →

H̃n−1(Iδ
n) is surjective. □

Proof of Item 3 of Proposition 5.2. The map b : H̃n−1(Iδ
n) → H̃n−1(P (Iδ

n)) is an
isomorphism by definition. It is induced by a natural homology isomorphism of
chain complexes. □

Proof of Item 4 of Proposition 5.2. To verify that the map s⋆ : H̃n−1(P (Iδ
n)) →

H̃n−1(T
ω
n ) = Stωn is an isomorphism, we can apply Theorem 3.13 once more. Let

θ = n. Let V ∈ Tω
n and set t(V ) = dim(V ) + 1. Lemma 3.9 for m = 0 implies

that the upper link (Tω
n )>V is ((n − 1) − (dim(V ) − 1) − 2) = (θ − t(V ) − 1)-

connected. Theorem 3.11 for m = 0 implies that the lower fiber f≤V = BA(V ∩Zn)
is (dim(V ) − 1) = (t(V ) − 2)-connected. Therefore, it follows from Theorem 3.13
that s : P (Iδ

n) → Tω
n is n-connected and, hence, that the map s⋆ : H̃n−1(P (Iδ

n)) →
H̃n−1(T

ω
n ) = Stωn is an isomorphism. □
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Let n ∈ N. In the following, Eω
n denotes the set of all σ edges in IAn. The proof

of Item 1 of Proposition 5.2 is by induction on n ≥ 1. The base case n = 1 is the
content of the next lemma.

Lemma 5.6. If n = 1, then αn : Z[Sp2n(Z)] → Hn(IAn, Iδ
n) is surjective.

Proof. For 2n = 2, it follows that IA1 is a one-dimensional connected simplicial
complex, that all edges are σ edges and that Iδ

1 = I1 is exactly the 0-skeleton of
IA1.2 In particular,

H1(IA1, Iδ
1)

∼=
⊕

∆∈Eω
1

Z.

Given some M ∈ Sp2(Z) with M = (v⃗, w⃗), we see that Mα(β1) ⊂ IA1 is exactly the
σ edge ∆ = {v, w} and Mα(∂β1) ⊂ Iδ

1 is exactly the boundary of this edge. Hence,
under the identification above, α1 maps the symplectic matrix M to a generator of
the Z-summand indexed by ∆ = {v, w}. Given any σ edge ∆ = {v, w}, we have
that ω(v⃗, w⃗) = ±1. Thus, for some choice of signs (±v⃗,±w⃗) ∈ Sp2(Z). It follows
that αn is surjective for n = 1. □

Proof of Item 1 of Proposition 5.2. To see that the map

αn : Z[Sp2n(Z)] → Hn(IAn, Iδ
n)

is surjective, we perform an induction on n ≥ 1. The induction beginning n = 1
is Lemma 5.6. Let n > 1 and assume that Item 1 of Proposition 5.2 holds for
1 ≤ k ≤ n− 1. We deduce the surjectivity of the map αn in two steps.

The first step is to show that the target Hn(IAn, Iδ
n) is a direct sum of “smaller”

Steinberg modules. For this, we observe that IAn is obtained from Iδ
n via the

following pushout diagram:⊔
∆∈Eω

n
Σ1LinkIAn(∆)

⊔
∆∈Eω

n
StarIAn(∆) ∩ Iδ

n Iδ
n

⊔
∆∈Eω

n
StarIAn(∆) IAn

∼=

In particular, excision implies that

(1) Hn(IAn, Iδ
n)

∼=
⊕

∆∈Eω
n

Hn(StarIAn
(∆),Σ1LinkIAn

(∆)).

The contractibility of StarIAn
(∆) implies that the connecting morphism of the

pair
(StarIAn

(∆),Σ1LinkIAn
(∆))

is an isomorphism

(2) Hn(StarIAn
(∆),Σ1LinkIAn

(∆))
δn−→ H̃n−1(Σ

1LinkIAn
(∆)).

The suspension isomorphism gives an identification

(3) H̃n−1(Σ
1LinkIAn

(∆))
Σ−1

−−−→ H̃n−2(LinkIAn
(∆)).

Observe that LinkIAn(∆) = Iδ(∆⊥), where ∆⊥ := ⟨∆⟩⊥ ⊂ Q2n. We therefore
proved that

(4) Hn(IAn, Iδ
n)

∼=
⊕

∆∈Eω
n

H̃n−2(Iδ(∆⊥)) ∼=
⊕

∆∈Eω
n

Stω(∆⊥)

2In fact, Sp2(Z) = SL2(Z) and IA1 is isomorphic to the 1-dimensional complex of partial frames
B(Z2). The complex B(Z2) is discussed in detail in the introduction of [CP17] (see paragraph
“Improving connectivity: the complex of partial augmented frames”).
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where the last isomorphism is obtained by invoking Item 3 and Item 4 of Propo-
sition 5.2 and Stω(∆⊥) denotes the Steinberg module of the symplectic subspace
∆⊥ ⊂ Q2n. This completes the first step.

The second step of the proof that αn : Z[Sp2n(Z)] → Hn(IAn, Iδ
n) is surjective is

to decompose the domain Z[Sp2n(Z)] in a compatible way and identify the resulting
map on each summand. This is the content of the following claim.

Claim 5.7. Let ∆ = {v, w} ∈ Eω
n and let ω(v⃗, w⃗) = 1, ∆̃ = (v⃗, w⃗) an ordered pair.

Let Z[Sp(∆̃⊥)] ⊂ Z[Sp2n(Z)] be the Z-summand spanned by symplectic matrices
M ∈ Sp2n(Z) satisfying M⃗n = v⃗ and M⃗n̄ = w⃗. The sequence of identifications
above yields a map

[−]∆̃ : Z[Sp(∆̃⊥)] → Hn−1(IA(∆⊥), Iδ(∆⊥)) → H̃n−2(Iδ(∆⊥)) → Stω(∆⊥)

that is exactly the integral apartment class map of the group Sp(∆⊥) of symplectic
automorphisms of the summand ∆⊥ ⊂ Z2n.

Before proving this claim, we explain how this finishes the proof of the induction
step and hence of Proposition 5.2. Claim 5.7 implies that the following diagram
commutes.

Z[Sp2n(Z)]
⊕

∆̃=(M⃗n,M⃗n̄)
Z[Sp(∆̃⊥)]

Hn(IAn, Iδ
n)

⊕
∆∈Eω

n
Stω(∆⊥)

αn ⊕[−]∆̃

∼=

The induction hypothesis, Claim 5.7 and Item 2, Item 3 and Item 4 of Proposi-
tion 5.2 imply that the integral apartment class maps occurring on the right hand
side of the above diagram,

[−]∆̃ : Z[Sp(∆̃⊥)] → Stω(∆⊥),

are surjective. For any ∆ ∈ Eω
n , there exists an ordered pair ∆̃ = (M⃗n, M⃗n̄) such

that ∆ = {⟨M⃗n⟩Z, ⟨M⃗n̄⟩Z}. It follows that the right vertical map in the diagram is
surjective. Therefore, αn is surjective as well. □

Proof of Claim 5.7. It suffices to consider the case where (v⃗, w⃗) = (e⃗n, f⃗n) consists
of the last symplectic pair of the standard symplectic basis. All other cases can be
reduced to this case by applying a symplectic matrix that sends (v⃗, w⃗) to (e⃗n, f⃗n).
Let ∆ = {⟨e⃗n⟩Z, ⟨f⃗n⟩Z}, ∆̃ = (e⃗n, f⃗n) and M ∈ Sp2n(Z) a symplectic matrix with
M⃗n = e⃗n and M⃗n̄ = f⃗n. The symplectic relations imply that the e⃗n- and f⃗n-
coordinates of all other column vectors M⃗a, M⃗ā, where a ∈ {1, . . . , n − 1}, of M

are zero. In particular, M corresponds to a unique element M̃ of the symplectic
group Sp(∆⊥) of the summand ∆⊥ ⊂ Z2n and vice versa. Recall that the class
α(M) ∈ Hn(IAn, Iδ

n) was defined using the map of pairs:

(Mα, ∂Mα) : (βn, ∂βn) → (IAn, Iδ
n)

This map factors through the pair

(StarIAn(∆),StarIAn(∆) ∩ Iδ
n)

∼= (StarIAn(∆),Σ1LinkIAn(∆)).

The naturality of connecting morphisms yields a commutative diagram:

Hn(βn, ∂βn) H̃n−1(∂βn) H̃n−2(∂βn−1)

Hn(StarIAn(∆),Σ1LinkIAn(∆)) H̃n−1(Σ
1LinkIAn(∆)) H̃n−2(LinkIAn(∆))

δ

(Mα,∂Mα)⋆ ∂Mα
⋆

Σ−1

∂M̃α
⋆

δ Σ−1
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Hence, under the identifications in Equation (1), Equation (2) and Equation (3),
the class

α(M) ∈ Hn(IAn, Iδ
n)

is mapped to

∂M̃α
⋆ (ξn−2) ∈ H̃n−2(LinkIAn(∆)) = H̃n−2(Iδ(∆⊥)).

The following commuting square proves that ∂M̃α
⋆ (ξn−2) is exactly (δ ◦αn−1)(M̃):

Hn(βn−1, ∂βn−1) H̃n−1(∂βn−1)

Hn(IA(∆⊥), Iδ(∆⊥)) H̃n−1(Iδ(∆⊥))

δ

(M̃α,∂M̃α)⋆ ∂M̃α
⋆

δ

Hence, the final identification used in Equation (4) and Proposition 5.1 yield
that αn(M) is mapped to

(s⋆ ◦ b ◦ δ ◦ αn−1)(M̃) = [M̃ ] ∈ Stω(∆⊥) □
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