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Weighted sums of generalized polygonal numbers
with coefficients 1 or 2

by

Daejun Kim (Seoul)

1. Introduction. For any positive integer m ≥ 3, the m-gonal numbers
are the integers of the form

Pm(x) = (m− 2) ·
(
x2 − x

2

)
+ x for x ∈ N0 := N ∪ {0}.

In 1638, Fermat claimed that every non-negative integer is written as the
sum of m m-gonal numbers, that is, there exists an x = (x1, . . . , xm) ∈ Nm

0

such that
m∑
i=1

Pm(xi) = N

for any N ∈ N0. Later, in 1770, Lagrange proved the four square theo-
rem, which is exactly the case m = 4 of Fermat’s assertion. In 1796, Gauss
proved the so called Eureka Theorem, which is the case m = 3, and finally,
Cauchy proved the general case m ≥ 5 in 1815. Nathanson (see [12] and [13,
pp. 3–33]) simplified Cauchy’s theorem and provided the proof of a slightly
stronger version. Fermat’s polygonal number theorem was generalized in
many directions.

In 1830, Legendre refined Fermat’s polygonal number theorem and proved
that any integer N ≥ 28(m− 2)3 with m ≥ 5 is written as

Pm(x1) + Pm(x2) + Pm(x3) + Pm(x4) + δm(N),

where x1, x2, x3, x4 ∈ N0, δm(N) = 0 if m is odd, and δm(N) ∈ {0, 1} if m
is even. Nathanson [13, p. 33] simplified the proofs of Legendre’s theorem.
Recently, Meng and Sun [11] strengthened Legendre’s theorem by showing
that if m ≡ 2 (mod 4) with m ≥ 5, then any integer N ≥ 28(m − 2)2
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can be written as the above with δm(N) = 0, while if m ≡ 0 (mod 4)
with m ≥ 5, there are infinitely many positive integers not of the form
Pm(x1) + Pm(x2) + Pm(x3) + Pm(x4) with x1, x2, x3, x4 ∈ N0.

On the other hand, Guy [6] considered Fermat’s polygonal number theo-
rem for more general numbers Pm(x) with x ∈ Z, which are called generalized
m-gonal numbers. For a positive integer m ≥ 3, a = (a1, . . . , ak) ∈ Nk, and
x = (x1, . . . , xk) ∈ Zk, we define the sum

(1.1) Pm,a(x) :=
k∑

i=1

aiPm(xi).

We say the sum Pm,a represents an integer N if Pm,a(x) = N has an integer
solution x ∈ Zk, and we write N → Pm,a. The sum Pm,a is called universal
if it represents every non-negative integer. Guy [6] asked for which k ∈ N
the equation

k∑
i=1

Pm(xi) = N

has an integer solution x1, . . . , xk ∈ Z for any N ∈ N0, that is, what is the
minimal number km such that the sum Pm,(1,...,1) (1 is repeated km times)
is universal. He explained that km = 3 for m ∈ {3, 5, 6} and k4 = 4, and
showed that km ≥ m − 4 for m ≥ 8, using the simple observation that the
smallest generalized m-gonal number other than 0 and 1 is m− 3.

Later, Sun [16] proved that P8,(1,1,1,1) is universal, which implies k8 = 4,
and also explained in the introduction that k7 = 4. Indeed, note that P7,(1,1,1)

cannot represent 10, and one may show that P7,(1,1,1,1) is universal; thanks
to Legendre’s theorem, one needs only check that any integers less than
3500 = 28(7 − 2)3 are represented by P7,(1,1,1,1). In the same manner, one
may verify that k9 = 5. Recently in [1], it was shown that km = m − 4 for
m ≥ 10 (see the proof of Theorem 3.2 for another proof). Therefore, the
value km is determined for any integer m ≥ 3.

On the other hand, Kane and his collaborators [1] considered the specific
case when

a = ar,r−1,k = (1, . . . , 1, r, . . . , r),

where 1 is repeated r − 1 times and r is repeated k − r + 1 times, and
determined the minimal number k, denoted km,r,r−1, such that Pm,ar,r−1,k

is
universal. In particular, they proved that km,2,1 = ⌊m/2⌋ for any m ≥ 14.

Motivated by this, in this article, we study the representations of the sum
(1.1) with coefficients 1 or 2. For simplicity, for any non-negative integers α
and β, we denote

(1α, 2β) = (

α times︷ ︸︸ ︷
1, . . . , 1,

β times︷ ︸︸ ︷
2, . . . , 2),
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where 1 is repeated α times, and 2 is repeated β times. The following theorem
is the main result of this paper.

Theorem 1.1. For any positive integer m ≥ 10, the sum Pm,(1α,2β) is
universal if and only if it represents 1, m−4, and m−2. Moreover, the sum
Pm,(1α,2β) is universal if and only if it represents

1, 3, 5, 10, 19, and 23 if m = 7, and 1, 5, 7, and 34 if m = 9.

Note that Theorem 1.1 is complete in the sense that for each m =
3, 4, 5, 6, 8, there is a criterion for determining the universality of an arbi-
trary sum Pm,a (see Remark 1.3(1)). On the other hand, Theorem 1.1 will be
proved by using Lemma 3.1 and Theorem 3.2. When we prove Theorem 3.2,
Lemma 2.2 will be systematically applied for the case when m ≥ 19, however,
the same strategy does not work for m ≤ 18. Moreover, neither Lemma 3.1
nor Theorem 3.2 covers the case of m = 7. Therefore, in order to deal with
the cases for those small positive integers, we need the following theorem,
which is analogous to that of Legendre.

Theorem 1.2. Let m ≥ 5 and N be integers. Let a be one of the vectors in

{(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 2, 2)},
and put Ca = 1

8 ,
1
10 ,

1
3 , and 7

8 accordingly. Then we have the following :

(1) Every integer N ≥ Ca(m− 2)3 is represented by Pm,a, unless

a ∈ {(1, 1, 1, 1), (1, 1, 2, 2)} and m ≡ 0 (mod 4) with m > 8.

(2) In each exceptional case, there are infinitely many positive integers which
are not represented by Pm,a.

Remark 1.3. (1) In [10], Kane and Liu showed that there exists a unique
minimal positive integer γm such that for any a ∈ Nk, Pm,a is universal if
and only if it represents every N ≤ γm.

For the case when 3 ≤ m ≤ 9 with m ̸∈ {7, 9}, the value γm is known:
γ3 = γ6 = 8 (Bosma and Kane [3]), γ4 = 15 (the Conway–Schneeberger
fifteen theorem, see [2, 4]), γ5 = 109 (Ju [8]), and γ8 = 60 (Ju and Oh [9]),
so those theorems give us criteria for Pm,(1α,2β) to be universal. It seems to
be difficult to obtain the values γm for m = 7, 9.

(2) Generalizing the number km,r,r−1, for any r ∈ N, let us define the
number

km,r := min {k | Pm,a is universal for some a ∈ Nk
≤r},

where N≤r = {a ∈ N | a ≤ r}. Then km,r ≤ km,r,r−1 follows from the
definition. In particular, by Theorem 3.2, km,2,1 = km,2 = ⌊m/2⌋ for any
odd integer m with m ≥ 11, while km,2 = ⌊m/2⌋ − 1 < ⌊m/2⌋ = km,2,1 for
any even integer m with m ≥ 10, and k9,2 = 4 < 5 = k9,2,1.
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(3) Theorem 1.2(1) will be proved with the aid of Lemmas 4.1–4.3. In
those lemmas, the following system of diophantine equations is considered:{

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = a,

a1x1 + a2x2 + a3x3 + a4x4 = b,

where a, a1, a2, a3, a4 ∈ N and b ∈ Z. We study the solvability of the above
equation over Z by connecting it with the existence of a representation of a
binary Z-lattice by a diagonal quaternary Z-lattice with a certain constraint.
When (a1, a2, a3, a4) = (1, 1, 1, 1), the above equation was considered by
Goldmakher and Pollack [5], and our approach was taken in this case by
Hoffmann [7]. Hence, our strategy could be considered as a generalization of
the method used in [7].

(4) In addition to what we introduced previously, Meng and Sun [11] also
showed that if m ̸≡ 0 (mod 4), then any N ≥ 1628(m−2)3 can be written as

Pm(x1) + Pm(x2) + 2Pm(x3) + 2Pm(x4) with x1, x2, x3, x4 ∈ N0,

while if m ≡ 0 (mod 4), then there are infinitely many positive integers not
of the above form. Therefore, the statement “any sufficiently large positive
integer is represented by Pm,a over Z” has nothing to prove if we weaken the
condition xi ∈ N0 to xi ∈ Z, but Theorem 1.2(1) gives improvements on the
constants Ca. On the other hand, Theorem 1.2(2) tells us something more.

The rest of the paper is organized as follows. In Section 2, we introduce a
geometric language and the theory of Z-lattices which are used to prove our
theorems. In Section 3, we classify all the universal sums Pm,(1α,2β) and prove
Theorem 1.1. Finally, in Section 4, we prove Theorem 1.2, giving informa-
tion on the integers represented by each of the sums Pm,(1,1,1,1), Pm,(1,1,1,2),
Pm,(1,1,2,2), and Pm,(1,2,2,2).

2. Preliminaries. In this section, we introduce several definitions, no-
tations and well-known results on quadratic forms in the more convenient
geometric language of quadratic spaces and lattices. A Z-lattice L = Zv1 +
Zv2+ · · ·+Zvk of rank k is a free Z-module equipped with a non-degenerate
symmetric bilinear form B such that B(vi, vj) ∈ Q for any 1 ≤ i, j ≤ k. The
corresponding quadratic map is defined by Q(v) = B(v, v) for any v ∈ L.
We say a Z-lattice L is positive definite if Q(v) > 0 for any non-zero vector
v ∈ L, and integral if B(v, w) ∈ Z for any v, w ∈ L. Throughout this ar-
ticle, we always assume that a Z-lattice is positive definite and integral. If
B(vi, vj) = 0 for any i ̸= j, then we simply write

L = ⟨Q(v1), . . . , Q(vk)⟩.
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The corresponding quadratic form in k variables is defined by

fL(x1, . . . , xk) =
∑

1≤i,j≤k

B(vi, vj)xixj .

For two Z-lattices ℓ and L, we say ℓ is represented by L, written ℓ → L,
if there is a linear map σ : ℓ → L such that

B(σ(x), σ(y)) = B(x, y) for any x, y ∈ ℓ.
Such a linear map σ is called a representation from ℓ to L. When ℓ → L and
L → ℓ, we say ℓ and L are isometric to each other, and we write ℓ ∼= L. For
any prime p, we define the localization of L at p by Lp = L⊗ZZp. We say ℓ is
locally represented by L if there is a local representation σp : ℓp → Lp which
preserves the bilinear forms for any prime p. For a Z-lattice L, we define the
genus gen(L) of L as

gen(L) = {K on QL | Kp
∼= Lp for any prime p},

where QL = {αv | α ∈ Q, v ∈ L} is the quadratic space on which L lies. The
isometric relation induces an equivalence relation on gen(L), and we call the
number of different equivalence classes in gen(L) the class number of L.

Any unexplained notation and terminology can be found in [15].
The following is the well-known local-global principle for Z-lattices.
Theorem 2.1. Let ℓ and L be Z-lattices. If ℓ is locally represented by L,

then ℓ → L′ for some L′ ∈ gen(L). Moreover, if the class number of L is 1,
then ℓ → L if and only if ℓ is locally represented by L.

Proof. See [15, Example 102:5].
Note that in case when ℓ is a unary Z-lattice ⟨n⟩, ℓ → L if and only if

n = fL(x) is solvable over Z, and ℓ is locally represented by L if and only
if n = fL(x) is solvable over Zp for any prime p. The following lemma plays
an important role in the proof of Theorem 3.2, hence also in the proof of
Theorem 1.1.

Lemma 2.2. The sum Pm,(1,2,2,2) represents every integer in the set

{(m− 2)N ∈ N0 : N ̸= 22s(8t+ 1) for any s, t ∈ N0}.
Proof. Consider (x1, . . . , x4) ∈ Z4 in the hyperplane x1 + 2x2 + 2x3 +

2x4 = 0. Then

Pm,(1,2,2,2)(x1, x2, x3, x4) =
m−2
2

(
(−2x2 − 2x3 − 2x4)

2 + 2x22 + 2x23 + 2x24
)

= (m− 2)(3x22 + 3x23 + 3x24 + 4(x2x3 + x3x4 + x4x2)).

Note that the Z-lattice L of rank 3 to which the ternary quadratic form
3x22+ · · · in the last equation corresponds has class number 1. Moreover, one
may check that L locally represents every integer not of the form 22s(8t+1).
Therefore, the lemma follows from Theorem 2.1.
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3. Main theorem

Lemma 3.1. Let m ≥ 9 be a positive integer and let α, β be non-negative
integers. Assume that Pm,(1α,2β) is universal. Then

(1) Pm,(1α′ ,2β′ ) is universal for any integers α′ ≥ α and β′ ≥ β,
(2) Pm,(1α+2β′ ,2β−β′ ) is universal for any integer 0 ≤ β′ ≤ β,
(3) α ≥ max(m− 2β − 4, 1),
(4) if β = ⌊m/2⌋ − 2, then α ≥ 2.

Proof. Statements (1) and (2) are obvious. On the other hand, since
Pm,(1α,2β) represents 1, we have α ≥ 1. Note that the smallest generalized
m-gonal number other than 0 and 1 is m− 3. So, in order for the equation

m− 4 =
α∑

i=1

Pm(xi) +

α+β∑
i=α+1

2Pm(xi)

to have a solution x ∈ Zα+β , we should have α+2β ≥ m−4. This proves (3).
Now assume that β = ⌊m/2⌋ − 2. Then α ≥ 1 by (3). If the equation

m− 2 = Pm(x1) +

1+β∑
i=2

2Pm(xi)

had a solution, then we should have Pm(x1) ∈ {0, 1,m− 3} and 2Pm(xi) ∈
{0, 2} for each i with 2 ≤ i ≤ 1 + β. However, this is impossible. Therefore,
we should have α ≥ 2.

Theorem 3.2. Let m ≥ 9 be a positive integer and let α and β be non-
negative integers. Then the sum Pm,(1α,2β) is universal if and only if

α ≥


1 if β ≥ ⌊m/2⌋ − 1,

2 if β = ⌊m/2⌋ − 2,

m− 2β − 4 if 0 ≤ β ≤ ⌊m/2⌋ − 3,

unless m = 9 and β = 3, in which case P9,(1α,23) is universal if and only if
α ≥ 2.

Proof. The “only if” part follows immediately from Lemma 3.1(3)–(4),
and the fact that P9,(11,23) cannot represent 34. Now we prove the “if” part.
Note that if we prove that Pm,(1m−2β−4,2β) is universal when β = ⌊m/2⌋ − 3,
then Lemma 3.1(2) implies that it is also universal for any 0 ≤ β ≤ ⌊m/2⌋−3.
Moreover, for m even, if Pm,(12,2(m−6)/2) is universal, then so is Pm,(12,2(m−4)/2)

by Lemma 3.1(1). Hence, in view of Lemma 3.1(1), it is enough to prove that

(i) Pm,(11,2⌊m/2⌋−1) for any m ≥ 10, P9,(12,23), and P9,(11,24) are universal,
(ii) Pm,(12,2(m−5)/2) and Pm,(13,2(m−7)/2) are universal for any odd integer m,
(iii) Pm,(12,2(m−6)/2) is universal for any even integer m.
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First, we prove (i). The statement for any m ≥ 14 is proved in [1, The-
orem 1.1(3)] (see [1, Section 4] for the proof). For any 9 ≤ m ≤ 13, note
that ⌊m/2⌋ − 1 ≥ 3. By Theorem 1.2(1), we know that Pm,(11,23) represents
every integer N ≥ 7

8(m − 2)3. Therefore, by checking (by a computer pro-
gram) whether or not the integers less than 7

8(m − 2)3 are represented by
Pm,(11,23), one may determine the set E(Pm,(11,23)) of all integers that are not
represented by Pm,(11,23). From this set, one may conclude what we want; for
example, we have E(P9,(11,23)) = {34}, so 34 is represented by both P9,(12,23)

and P9,(11,24). Hence they are universal.
Next, we prove (ii) and (iii). For any 9 ≤ m ≤ 18, one may similarly

prove that the sums are universal by determining the set E(Pm,(11,23)),
E(Pm,(12,22)), or E(Pm,(13,21)) with the aid of Theorem 1.2(1). Now, we as-
sume m ≥ 19. We first prove the universality of Pm,(12,2(m−5)/2) = Pm,(11,23)+
Pm,(11,2(m−11)/2) for any odd integer m with m ≥ 19. Let N be a non-negative
integer and let

R1 = {0, 1, . . . ,m− 10, 2m− 11, 3m− 12, 4m− 13, 4m− 12,

3m− 9, 2m− 6,m− 3},
R2 = {r + 2(m− 2) | r ∈ R1} and R = R1 ∪R2.

Note that Ri is a complete set of residues modulo m − 2 for each i = 1, 2,
and one may check that any integer r ∈ R is represented by Pm,(11,2(m−11)/2).
Also, one may check that every integer N < 6m − 17 is represented by
Pm,(12,2(m−5)/2). Assume that N ≥ 6m − 17. For each i = 1, 2, there is a
unique ri ∈ Ri such that

N ≡ ri (modm− 2) and N − ri ≥ 0.

Write N − ri = ci(m − 2). Since r2 − r1 = 2(m − 2), we have c1 − c2 = 2,
hence for some i0 ∈ {1, 2}, ci0 is not of the form 22s(8t+1) for any s, t ∈ N0.
Therefore, by Lemma 2.2, N − ri0 is represented by Pm,(11,23), hence N =
(N − ri0) + ri0 is represented by Pm,(12,2(m−5)/2).

To prove the universality of Pm,(13,2(m−7)/2) = Pm,(11,23)+Pm,(12,2(m−13)/2)

for any odd integer m with m ≥ 19, and Pm,(12,2(m−6)/2) = Pm,(11,23) +
Pm,(11,2(m−12)/2) for any even integer m with m ≥ 19, we take

R1 = {0, 1, . . . ,m− 11, 2m− 12, 3m− 13, 4m− 14, 5m− 15,

4m− 12, 3m− 9, 2m− 6,m− 3}.
Then one may show the universality by repeating the same argument.

Proof of Theorem 1.1. The proof is nothing but combining Lemma 3.1
and Theorem 3.2 appropriately. When m ≥ 10, assume that P = Pm,(1α,2β)

represents 1,m − 4, and m − 2. Since 1 → P , we have α ≥ 1. Moreover,
since m − 4 → P , we have α + 2β ≥ m − 4 (see the proof of Lemma 3.1).
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Thus, by Theorem 3.2, P is universal unless β = ⌊m/2⌋ − 2. In the case
when β = ⌊m/2⌋ − 2, we should have α ≥ 2 in order for Pm,(1α,2⌊m/2⌋−2) to
represent m− 2 (see the proof of Lemma 3.1), and therefore Pm,(1α,2⌊m/2⌋−2)

is universal by Theorem 3.2.
When m = 9, one may similarly show that if P = P9,(1α,2β) represents

1, 5, and 7, then it is universal, except for P9,(1,2,2,2). Using Theorem 1.2, we
may verify that E(P9,(1,2,2,2)) = {34}, and so both P9,(12,23) and P9,(11,24) are
universal. Therefore, we conclude that if P represents 1, 5, 7, and 34, then it
is universal.

When m = 7, one may show that if P = P7,(1α,2β) represents 1, 3, and 5
then P should contain P7,(1,1,1), P7,(1,1,2), or P7,(1,2,2), and they do not repre-
sent 10, 23, or 19, respectively. On the other hand, using Theorem 1.2, we may
verify that each of the sums P7,(1,1,1,1), P7,(1,1,1,2), P7,(1,1,2,2), and P7,(1,2,2,2) is
universal. Therefore, we conclude that if P represents 1, 3, 5, 10, 19, and 23,
then it is universal.

4. Representations of quaternary sums Pm,(1α,2β). In this section,
we prove Theorem 1.2. Throughout this section, let us set several notations.
For each a = (a1, a2, a3, a4) ∈ N4, we put A = Aa =

∑4
i=1 ai, and we define

the quaternary diagonal Z-lattice La with basis {w1, w2, w3, w4} by

La = Zw1 + Zw2 + Zw3 + Zw4 = ⟨a1, a2, a3, a4⟩.

Let
S := {(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 2, 2)},

and for each a ∈ S, we define the set of integers

Ea =


{22s(8t+ 7) | s ∈ N0, t ∈ Z} if a = (1, 1, 1, 1) or (1, 1, 2, 2),

{52s+2(5t± 2) | s ∈ N0, t ∈ Z} if a = (1, 1, 1, 2),

{22s(16t+ 14) | s ∈ N0, t ∈ Z} if a = (1, 2, 2, 2).

For a binary Z-lattice ℓ = Zv1 + Zv2, we write ℓ = [Q(v1), B(v1, v2), Q(v2)].
The following lemmas will play crucial roles in proving Theorem 1.2(1).

Lemma 4.1. Let a = (a1, a2, a3, a4) ∈ N4, a ∈ N, and b ∈ Z. Assume
that the system of diophantine equations

(4.1)

{
a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = a,

a1x1 + a2x2 + a3x3 + a4x4 = b

has an integer solution x1, x2, x3, x4 ∈ Z. Then

(1) a ≡ b (mod 2) and Aa− b2 ≥ 0,
(2) the integer N := m−2

2 (a− b) + b is represented by Pm,(a1,a2,a3,a4).
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Proof. Since x2i ≡ xi (mod 2), we necessarily have a ≡ b (mod 2), and
the inequality Aa − b2 ≥ 0 is nothing but the Cauchy–Schwarz inequality.
Moreover, note that

m− 2

2
(a− b) + b =

4∑
i=1

ai

(
m− 2

2
(x2i − xi) + xi

)
= Pm,(a1,a2,a3,a4)(x1, x2, x3, x4).

This proves the lemma.

Lemma 4.2. Let a ∈ S, and let a and b be integers such that
a ≡ b (mod 2) and Aa− b2 > 0.

Then the following are equivalent :

(1) The system (4.1) has an integer solution x1, x2, x3, x4 ∈ Z.
(2) There exists a representation σ : [A, b, a] → La such that

σ(v1) = w1 + w2 + w3 + w4.

(3) The binary Z-lattice [A, b, a] is represented by the quaternaryZ-latticeLa.
(4) The positive integer Aa− b2 is not contained in Ea.

Proof. We first prove (3)⇔(4). Note that the class number of La is 1 for
any a ∈ S. Therefore, by Theorem 2.1, [A, b, a] is represented by La if and
only if [A, b, a] is locally represented by La. By [14, Theorems 1 and 3], one
may check, under the given assumptions on a and b, that [A, b, a] is locally
represented by La if and only if Aa− b2 ̸∈ Ea.

Next, we prove (1)⇔(2). Assume there exist x1, x2, x3, x4 ∈ Z satisfying
(4.1). Define a linear map σ : [A, b, a] → La by

σ(v1) = w1 + w2 + w3 + w4 and σ(v2) =

4∑
i=1

xiwi.

Then σ : [A, b, a] → L is a representation since we have
Q(σ(v1)) = A = Q(v1),

Q(σ(v2)) = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = a = Q(v2),

B(σ(v1), σ(v2)) = a1x1 + a2x2 + a3x3 + a4x4 = b = B(v1, v2),

from (4.1). This proves (1)⇒(2), and (2)⇒(1) can also be easily proved.
Finally, we prove (2)⇔(3). We need only prove (3)⇒(2). Assume that

there is a representation τ : [A, b, a] → La. By changing the sign of wi for
1 ≤ i ≤ 4 or by interchanging wi and wj for 1 ≤ i, j ≤ 4 with ai = aj if
necessary, we may assume that either τ(v1) = w1 + w2 + w3 + w4 or

τ(v1) =


2w1 if a = (1, 1, 1, 1),

2w1 + w2 if a = (1, 1, 1, 2),

2w1 + w3 if a = (1, 1, 2, 2).
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In the former case, we are done by taking σ = τ . To deal with the latter
case, let τ(v2) =

∑4
i=1 yiwi (yi ∈ Z).

First, we consider the case when a = (1, 1, 1, 2) and τ(v1) = 2w1 + w2.
Consider the Q-linear map σT from QLa to itself defined by

σT (wj) =
4∑

i=1

tijwi for each 1 ≤ j ≤ 4, where T = (tij) =
1

2

(
0 2 0 0

1 0 1 2

1 0 1 −2

1 0 −1 0

)
.

Then σT ∈ O(QLa). If we let σ = σT ◦ τ , then

σ(v1) = σT (2w1 + w2) = w1 + w2 + w3 + w4.

On the other hand, since τ : [A, b, a] → La is a representation, we have

y21 + y22 + y23 + 2y24 = a and 2y1 + y2 = b.

Note that since y22 ≡ y2 ≡ b ≡ a (mod 2), we have y1 ≡ y21 ≡ y23 ≡ y3 (mod 2).
Therefore, σ(v2) = σT (

∑4
i=1 yiwi) =:

∑4
i=1 xiwi ∈ La, since

(x1, x2, x3, x4) =

(
y2,

y1 + y3
2

+ y4,
y1 + y3

2
− y4,

y1 − y3
2

)
∈ Z4,

which implies that σ : [A, b, a] → La is a representation that we want to
find.

For each of the remaining two cases, one may follow the argument similar
to the above to show that σ = σT ◦ τ is a representation that we desired, by
taking

T =
1

2

(
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

)
or

1

2

(
0 0 2 2

0 0 2 −2

1 −1 0 0

1 1 0 0

)
,

according as (a, τ(v1)) = ((1, 1, 1, 1), 2w1) or ((1, 1, 2, 2), 2w1 + w3).

Lemma 4.3. Let a ∈ S and put Ba = 2, 2, 4, 7 according as
a = (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 2, 2).

Let m ≥ 5 be an integer and let I be a closed interval whose length is greater
than or equal to Ba(m− 2). Then for any integer N , there exists an integer
b ∈ I such that
(4.2) N ≡ b (modm− 2) and Aa− b2 ̸∈ Ea,

where a = 2
(
N−b
m−2

)
+b, unless m ≡ 0 (mod 4) and a ∈ {(1, 1, 1, 1), (1, 1, 2, 2)}.

Proof. For any integer N , let b0 be the smallest integer in I such that
N ≡ b0 (modm− 2). For an integer k, we define

bk = b0 + k(m− 2), ak = 2

(
N − bk
m− 2

)
+ bk, Dk = Aak − b2k.

Note that ak = a0 + k(m− 4) ∈ Z for any integer k. We will show that
Dk ̸∈ Ea for some 0 ≤ k ≤ Ba − 1.
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Then the lemma follows since b = bk satisfies (4.2) and the interval I contains
Ba(m− 2) consecutive integers.

Case 1: a = (1, 1, 1, 1) and m ̸≡ 0 (mod 4) (Ea = {22s(8t+ 7) | s ∈ N0,
t ∈ Z}).

If N ̸≡ 0 (mod 2) or m ̸≡ 0 (mod 2), then one may note that bk is an
odd integer for some k ∈ {0, 1}. Then Dk = 4ak − b2k ≡ 3 (mod 8), since
ak ≡ bk ≡ 1 (mod 2). Hence, Dk ̸∈ Ea.

Otherwise, N ≡ 0 (mod 2) and m ≡ 2 (mod 4). Thus, bi ≡ ai ≡ 0 (mod 2)
for any integer i. Moreover, since m−4 ≡ 2 (mod 4), we have ak ≡ 2 (mod 4)
for some k ∈ {0, 1}. Since Dk ≡ 4 or 8 (mod 16), we have Dk ̸∈ Ea.

Case 2: a = (1, 1, 1, 2) (Ea = {52s+2(5t± 2) | s ∈ N0, t ∈ Z}).
If (m − 2) ̸≡ 0 (mod 5), then bk ̸≡ 0 (mod 5) for some k ∈ {0, 1}. Note

that Dk = 5ak − b2k ≡ ±1 (mod 5). Hence, Dk ̸∈ Ea.
Now assume that (m − 2) ≡ 0 (mod 5). Note that N ≡ b0 (mod 5). If

N ̸≡ 0 (mod 5), then D0 ≡ ±1 (mod 5), hence D0 ̸∈ Ea. If 5 |N , then
ak ̸≡ 0 (mod 5) for some k ∈ {0, 1}. Since bk ≡ b0 ≡ 0 (mod 5), we have
5 |Dk but 25 ∤ Dk, hence Dk ̸∈ Ea.

Case 3: a = (1, 1, 2, 2) and m ̸≡ 0 (mod 4) (Ea = {22s(8t+ 7) | s ∈ N0,
t ∈ Z}).

If N ̸≡ 0 (mod 2) or m ̸≡ 0 (mod 2), then one may note that bk is an
odd integer for some k ∈ {0, 1}. Then Dk = 6ak − b2k ≡ 1 or 5 (mod 8), since
ak ≡ bk ≡ 1 (mod 2). Hence Dk ̸∈ Ea.

Otherwise, N ≡ 0 (mod 2) and m ≡ 2 (mod 4). So, bi ≡ ai ≡ 0 (mod 2),
hence Di ≡ 0 (mod 4) for any integer i. Note that Di1 ≡ Di2 (mod 16) if and
only if

4(i1 − i2)

(
3

(
m− 4

2

)
− b0

(
m− 2

2

)
+ (i1 + i2)

(
m− 2

2

)2)
≡ 0 (mod 16).

Since m − 4 ≡ 2 (mod 4) and m − 2 ≡ 0 (mod 4), this is equivalent to
i1 ≡ i2 (mod 4). Hence,

{Di mod 16 | i = 0, 1, 2, 3} = {0, 4, 8, 12}.
Therefore, Dk ̸∈ Ea for some k ∈ {0, 1, 2, 3}.

Case 4: a = (1, 2, 2, 2) (Ea = {22s(16t+ 14) | s ∈ N0, t ∈ Z}).
We will show that Dk ̸∈ Ea for some integer k with 0 ≤ k ≤ 6. We may

assume that D0 ∈ Ea, since otherwise we are done. For any integer i, define
∆i = Di −D0 = 7(m− 4)i− (b0 + i(m− 2))2 + b20.

4.1: m ≡ 1 (mod 2). Note that ∆i ≡ 0 (mod 2) for any i. Moreover, for
integers i1, i2 with i1 ≡ i2 (mod 2), we have ∆i1 ≡ ∆i2 (mod 8) if and only if(

i1 − i2
2

)(
7(m− 4)− (m− 2)((i1 + i2)(m− 2) + 2b0)

)
≡ 0 (mod 4).
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Since both m − 4 and m − 2 are odd, this is equivalent to i1 ≡ i2 (mod 8).
Hence, {∆i (mod 8) | i = 0, 2, 4, 6} = {0, 2, 4, 6}, so ∆k ≡ 4 (mod 8) for some
k ∈ {0, 2, 4, 6}. Therefore, one may show that Dk = D0 +∆k ̸∈ Ea.

4.2: m ≡ 2 (mod 4). In this case, one may easily show that ∆2 ≡
4 (mod 8). Hence, D2 = D0 +∆2 ̸∈ Ea.

4.3: m ≡ 4 (mod 8). If b0 ≡ 0 (mod 2), then ∆1 ≡ 4 (mod 8), so D1 =
D0 +∆1 ̸∈ Ea. Now assume b0 ≡ 1 (mod 2). Then ∆i ≡ 0 (mod 8) for any i.
Moreover, for integers i1, i2 with i1 ≡ i2 (mod 2), one may show that

∆i1 ≡ ∆i2 (mod 32) ⇐⇒ i1 ≡ i2 (mod 8).

Hence, {∆i (mod 32) | i = 0, 2, 4, 6} = {0, 8, 16, 24}.
If D0 is of the form 4(16t + 14), then Dk = D0 + ∆k ̸∈ Ea for some

k ∈ {0, 2, 4, 6} with ∆k ≡ 16 (mod 32). Otherwise, for some k ∈ {0, 2, 4, 6}
with ∆k ≡ 8 (mod 32), we have Dk = D0 +∆k ̸∈ Ea.

4.4: m ≡ 0 (mod 8). The proof is quite similar to that of 4.3.

Proof of Theorem 1.2(1). For each a ∈ S, let A = Aa and B = Ba, let

I = Ia =

[
A

2

(
m− 4

m− 2

)
− B

2
(m− 2),

A

2

(
m− 4

m− 2

)
+

B

2
(m− 2)

]
be a closed interval whose length is B(m − 2), and let N ≥ Ca(m − 2)3 be
an integer. Then by Lemma 4.3, there exists an integer b ∈ I such that

N ≡ b (modm− 2) and Aa− b2 ̸∈ Ea,

where a = 2
(
N−b
m−2

)
+ b. Note that a ≡ b (mod 2) and since Ca = B2

8A , we have

max
b∈I

[(
m− 2

2A

)
b2 −

(
m− 4

2

)
b

]
=

B2

8A
(m− 2)3 − A(m− 4)2

8(m− 2)
< Ca(m− 2)3

for any m ≥ 5. Since Aa − b2 > 0 if and only if N >
(
m−2
2A

)
b2 −

(
m−4
2

)
b,

we have Aa− b2 > 0. Therefore, by Lemma 4.2, there are integers x1, . . . , x4
such that

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = a and a1x1 + a2x2 + a3x3 + a4x4 = b.

Therefore, by Lemma 4.1, N = m−2
2 (a− b) + b is represented by Pm,a.

Proof of Theorem 1.2(2). Let a be either (1, 1, 1, 1) or (1, 1, 2, 2), A = Aa

and let m = 4l+ 4 for some integer l ≥ 2. Let N0 be a positive integer such
that

N0↛Pm,a and (2l + 1)N0 +Al2 ≡ 0 (mod 4).

Note that such an integer exists; for example, one may take N0 = 10 when
a = (1, 1, 2, 2) and l ≥ 2 is odd, and N0 = 8 otherwise. Moreover, we put

n = ord2l+1(2) = ord2l+1(l + 1),

where ordb(a) is the smallest positive integer k such that ak ≡ 1 (mod b) for
any positive integers a and b with gcd(a, b) = 1.
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We claim that for any t ∈ N0, the integer

Nt = Nt,a :=
4nt((2l + 1)N0 +Al2)−Al2

2l + 1
is not represented by Pm,a. Since Nt ∈ N, the theorem follows directly from
this claim. We will show that for t ∈ N, Nt → Pm,a implies Nt−1 → Pm,a.
Then since N0 is not represented by Pm,a, the claim follows. Note that for
any integer N , we have

N = Pm,a(x1, x2, x3, x4) ⇐⇒ (2l + 1)N +Al2 =
4∑

i=1

ai((2l + 1)xi − l)2.

Assume that Nt = Pm,a(x1, x2, x3, x4) for some x1, x2, x3, x4 ∈ Z. Then

4n((2l + 1)Nt−1 +Al2) = 4nt((2l + 1)N0 +Al2) =
4∑

i=1

ai((2l + 1)xi − l)2.

Since the left hand side is a multiple of 16, we have (2l+1)xi− l ≡ 0 (mod 2)
for any 1 ≤ i ≤ 4. Since (2l + 1)xi − l)/2 ≡ −l(l + 1) (mod 2l + 1), there
exist y1, y2, y3, y4 ∈ Z such that

4n−1((2l + 1)Nt−1 +Al2) =
4∑

i=1

ai((2l + 1)yi − l(l + 1))2.

Applying similar arguments recursively, we have

(2l + 1)Nt−1 +Al2 =
4∑

i=1

ai((2l + 1)zi − l(l + 1)n)2

for some z1, z2, z3, z4 ∈ Z. Since (2l + 1)zi − l(l + 1)n ≡ −l (mod 2l + 1),

(2l + 1)Nt−1 +Al2 =

4∑
i=1

ai((2l + 1)z′i − l)2

for some z′1, z
′
2, z

′
3, z

′
4 ∈ Z, and so Nt−1 → Pm,a. This proves the claim, and

hence the theorem.
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