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Artificial Intelligence Approach for 
Variant Reporting

INTRODUCTION

Over the past decade, several areas in clinical 
oncology have been revolutionized by cancer 
genotyping.1-3 And next-generation sequenc-
ing (NGS) technologies will continue to play an 
integral part of precision medicine.3-6 From an 
analytic perspective, the amount and complexity 
of raw NGS data require sophisticated pipelines 
(Fig 1) for read alignment, variant calling, and 
annotation, each of which may be associated 
with error and noise; this is also true for the 
sequencing instrumentation itself. Ultimately, 
these pipelines procure a text file containing a 
list of sequence variants, called a variant call for-
mat (VCF) file, wherein each variant is listed with 
a set of features (ie, annotations). These anno-
tations span hundreds of columns and include 
functional predictions, variant calling metrics, 
frequencies in public databases, and/or clinical 

implications. Molecular pathologists/geneticists 
interpret these VCF files and integrate selected 
data points when issuing a clinical report (Fig 1).

Knowledge derived from the literature and pub-
lic databases provides comprehensive disease- 
variant associations.7 By using clinical practice 
data, we can achieve similar disease-variant 
associations as exemplified by a two-feature 
representation (disease sites and reported vari-
ants by gene; Fig 1). The final condensed matrix 
does not, however, fully represent the complex 
reporting process and does not aid the molec-
ular pathologist/geneticist with the day-to-day, 
case-by-case, and variant-by-variant reporting 
decision.

Numerous approaches2,8-10 and guidelines for 
variant calling,11-13 annotation,12,14,15 and inter-
pretation8,9,16-18 have been proposed. Ultimately, 
these strategies share the common end goal of 

Purpose Next-generation sequencing technologies are actively applied in clinical oncology. Bio-
informatics pipeline analysis is an integral part of this process; however, humans cannot yet 
realize the full potential of the highly complex pipeline output. As a result, the decision to include 
a variant in the final report during routine clinical sign-out remains challenging.

Methods We used an artificial intelligence approach to capture the collective clinical sign-out ex-
perience of six board-certified molecular pathologists to build and validate a decision support tool 
for variant reporting. We extracted all reviewed and reported variants from our clinical database 
and tested several machine learning models. We used 10-fold cross-validation for our variant call 
prediction model, which derives a contiguous prediction score from 0 to 1 (no to yes) for clinical 
reporting.

Results For each of the 19,594 initial training variants, our pipeline generates approximately 500 
features, which results in a matrix of > 9 million data points. From a comparison of naive Bayes, 
decision trees, random forests, and logistic regression models, we selected models that allow 
human interpretability of the prediction score. The logistic regression model demonstrated 1% 
false negativity and 2% false positivity. The final models’ Youden indices were 0.87 and 0.77 
for screening and confirmatory cutoffs, respectively. Retraining on a new assay and performance 
assessment in 16,123 independent variants validated our approach (Youden index, 0.93). We 
also derived individual pathologist-centric models (virtual consensus conference function), and 
a visual drill-down functionality allows assessment of how underlying features contributed to a 
particular score or decision branch for clinical implementation.

Conclusion Our decision support tool for variant reporting is a practically relevant artificial intel-
ligence approach to harness the next-generation sequencing bioinformatics pipeline output when 
the complexity of data interpretation exceeds human capabilities.
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Fig 1. The complexity of variant reporting in clinical practice. (A) The amount and complexity of raw next-generation sequencing (NGS) data 
requires NGS pipelines for read alignment, variant calling, and variant annotation to provide a (filtered) variant call format (VCF) file for manual review 
by a pathologist/geneticist. The reporting decision is a complex process that requires experience, involves management of the VCF file and various 
resources, and ultimately results in a reporting decision. (B) Distribution of tumor types included in the variant training data set (V1). Variants are 
represented in 37 principal tumor types that combine 383 histologic subtypes. (C) After manual review of 19,594 variants, only 24% (n = 4,787) are 
reported, and 76% of the review effort is not captured in the final report. (D) The reporting fraction by site (left) and gene (right) shows considerable 
variation (range, 0% to 100%). (E) The effect of the variant reporting decisions illustrated on a variant frequency matrix; green bars represent the 
number of variants within each disease site or gene. We used the formula "all" minus "no" equals "yes." Specifically, the filtered pipeline output rep-
resents "all" reviewed variants and after subtraction of the variants that received "no" calls (ie, are vetted not to be included in the report), the resulting 
matrix shows the variant frequencies by gene and site in the final report (ie, "yes" calls). The resulting "yes" matrix is similar to that in recent publica-
tions7; however, in clinical practice, pathologists/geneticists are confronted with all data ("all" matrix on the left). The portrayed distribution of variants 
by gene and site represents only two of approximately 500 pipeline features attached to each variant. The full pipeline output and the dimensionality of 
interrelations exceed the human ability to handle all available data efficiently. AD, adenocarcinoma; BAM, binary alignment map; CRC, colorectal can-
cer; CUP, carcinoma of unknown primary; EGC, esophagogastric cancer; GIST, GI stromal tumor; Heme, hematologic malignancies; LCNEC, large-cell 
neuroendocrine carcinoma; NE, neuroendocrine carcinoma; Non-Ca, nonepithelial malignancy; NSCLC, non–small-cell lung cancer; PDAC, pancreatic 
cancer; QC, quality control; SAM, sequence alignment map; SCLC, small-cell lung cancer; SQ, squamous cell carcinoma.
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the pathologist/geneticist rendering a seemingly 
basic decision: whether to report a variant. To 
our knowledge, the binary reporting decision has 
not been captured or used systematically.8-10,16,19 
In particular, the decision to not report a variant 
(Figs 1C and 1E; Data Supplement) is equally 
valuable because the same variant may be 
found in subsequent cases. In times of escalat-
ing costs, building on prior knowledge may save 
time and effort. Comprehensive pipeline results 

may help, but the reporting decision remains 
difficult relative to the context of the called 
variant (eg, presence of a mutation at low lev-
els, variants at sites of private polymorphisms, 
unknown functional consequences of variants, 
splice site variants). To render the reporting 
decision, a board-certified pathologist/geneticist 
uses experience with numerous features distrib-
uted over many columns to render a reporting 
decision (called"vetting"; Fig 2A). Some full 
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Fig 2. Performance assessment of the artificial intelligence model for variant reporting. (A) Concept of a decision support tool for variant reporting. 
Current practice (top) is shown with the tested implementation (bottom). The artificial intelligence/machine learning model was built on the basis of 
prior human reporting decisions. Note that the implemented model provides a reporting decision for each variant on a scale from 0 (no) to 1 (yes) 
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as distribution of no and yes calls per pathologist (A to F). (C) Distribution of 19,954 model scores in the reported and not reported variants. Two call 
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pipeline outputs consist of > 500 dimensions (or 
features) for each variant. In other words, for a 
clinical NGS laboratory, the integration and pro-
cessing of the full potential of the entire pipe-
line output as it relates to the reporting decision 
exceed human capabilities.8,19,20

Artificial intelligence is one approach to mine 
big data and derive models for decision mak-
ing.21-23 Common repetitive tasks in medicine 
are amenable to modeling by artificial intelli-
gence21-23; however, computers are notoriously 
poor at understanding unstructured data (eg, 
medical notes).21,23-25 In contrast, artificial intelli-
gence tools for structured data are available and 
have already surpassed human performance in 
many areas.25-31 Of note, bioinformatics pipe-
lines generate mostly structured, discrete data. 
Thus, we consider the inability of humans to gain 
access to the full potential of the pipeline output, 
coupled with the discrete nature of the data and 
the final binary reporting decision, as an ideal 
setting32 to assess the performance of an artifi-
cial intelligence–based decision support system 
for variant reporting.

On the basis of our experience with implement-
ing clinical genotyping33,34 that uses NGS tech-
nologies,35 we report on how we aligned big 
clinical sequencing data with human decisions 
in our group. As a result, we established an arti-
ficial intelligence approach for variant reporting 
and describe its performance in two indepen-
dent data sets from routine clinical practice.

METHODS

Design, Regulatory Approval, and Clinical Setting

The project was undertaken as a retrospective 
analysis of existing data obtained as part of rou-
tine cancer care in a clinical molecular genetics 
laboratory. All patients provided written informed 
consent for molecular genotyping. Institutional 
review board approval was obtained (protocol 
2014P000940). Details about the project site, 
case volume, and assays can be found in Zheng 
et al35 and the Data Supplement.

NGS Assays and Bioinformatics

For sequence analysis, we used our laboratory- 
developed, Clinical Laboratory Improvement 
Amendments–validated NGS bioinformatics pipe-
line. We used Illumina (San Diego, CA) MiSeq 

(V1) or NextSeq (V2) instruments. We performed 
tumor-only sequencing, and the 2 × 151–base 
paired end sequencing results were aligned to 
the hg19 human genome reference by using 
Burrows-Wheeler Aligner MEM.36 Variant calling 
for V1 (Data Supplement) was performed with 
MuTect version 1.1.7 for single-nucleotide vari-
ants,37 and Oncotator (version 1.2.10.0)38 was 
used for variant annotation. For V2 (Data Supple-
ment), we used Novoalign (www.novocraft.com) 
for read alignment and an ensemble variant 
calling approach, including MuTect1, LoFreq, 
Genome Analysis Toolkit, and a laboratory- 
developed hotspot caller, for variant detection. 
The variant effect predictor tool was used for 
variant annotation.39 A detailed standard oper-
ating procedure is available upon request; a 
description of the variant scoring and features 
used for analysis in V1 and V2 are provided in 
the Data Supplement.

Machine Learning and Classifier Selection

Python version 2.7.11, Pandas version 0.18.1, 
NumPy version 1.11.0, and scikit-learn version 
0.17.1 libraries (Python Software Foundation, 
Wilmington, DE) were applied for model build-
ing. By following recommendations by Kohavi40 
for real-world data sets, the best method to 
use for model selection is 10-fold stratified40-44 
cross-validation.42,43 For selection of the most 
accurate classifier,42 we compared area under 
the curve (AUC) values for naive Bayes, logis-
tic regression, decision trees, random forests 
(depth of trees, 10, 15, 50, and 100), and sup-
port vector machines (scikit-learn library).45 We 
refer to artificial intelligence model or model as 
the selected predictor/classifier for implementa-
tion (Data Supplement).

Aggregate and Individual Models

In our clinical practice, each case is signed 
out by one pathologist (detailed call frequency 
by gene and disease site across all patholo-
gists are provided in the Data Supplement). For 
the aggregate model, we trained and tested by 
using all reporting call decisions as labels (ie, 
not included as a feature in the model). For the 
individual models, we filtered the training sets 
to include only calls made by one pathologist 
(Fig 2B); the six resulting models (A to F) can 
be regarded as representative of each individual 
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pathologist’s reporting practice. In addition, we 
assessed transferability of the approach to a new 
assay (T1/T2 experiments [ie, trained model on 
variants V1 and tested on V2]) and validated the 
performance in an independent data set (V2; 
Data Supplement).

Statistical Analysis

We defined reporting rates of pathologists as 
the number of yes decisions over the total num-
ber of decisions. To account for different use 
cases, we describe the model performance by 
using different score cutoffs (naive v outliers v 
screening v confirmatory; Data Supplement). To 
assign P values to individual features, we used 
univariable analysis of variance testing (Data 
Supplement). We assessed the performance of 
the model by comparing the model-based pre-
dictions versus the original clinically reported 
variant calls and provide precision, recall, sen-
sitivity, specificity, F1 score, and Youden index. 
Statistical significance was defined as P < .05.

RESULTS

Data Extraction Results

An overview of the data set V1 and the validation 
data set V2 is listed in Table 1. In V1, our pipe-
line assigns 507 features to each variant (Data 
Supplement). The reporting pathologist/genet-
icist could be regarded as a feature; however, 
this feature was not included because it is not 
available when confronted with a new variant. 

We provide however, the number of cases, vari-
ants, and yes call rates by pathologist (Table 2). 
The number of reviewed variants (approximately 
five per case) and the number of calls per case 
(fewer than two plus or minus two per case) did 
not differ significantly (Table 2). In other words, 
despite some variation in case and/or variant 
exposure of every pathologist (Table 2; Data 
Supplement), we considered the call rates to 
be internally consistent and the aggregate total 
variant number as representative of our sign-out 
practice.

Selection of the Machine Learning Classifier

We compared the AUCs for several different 
predictor methods (Data Supplement). In V1, 
we selected a logistic regression model (over 
the equally predictive random forest classifier), 
and in V2, we selected random forests as the 
top performing model (Data Supplement). Spe-
cifically, although each model derived a single 
number, we also considered human interpret-
ability; we regard the individual coefficients or 
decision branches for each feature as an addi-
tional benefit for manual review (transparency of 
the model).

Results From Implementing the Model

The prediction model assigns a score from 0 
to 1 that represents a continuous scale from the 
ground truth reporting calls (no to yes, respec-
tively). Review of the frequency distribution 
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Table 1. Overview of the Data Sets

Component No. Description

Data set (V1)

Variants 19,954 Unique variants from clinical practice

Disease sites 383 Unique primary diagnosis from 37 principle disease sites (eg, brain, 
lung, etc)

Genes 39 Gene names (by following HGNC nomenclature)

Time frame, months 32 November 2013 to June 2016

Data set (V2)

Variants 16,123 Unique variants from clinical practice

Disease sites 398 Unique primary diagnosis from 37 principle disease sites (eg, brain, 
lung, etc)

Genes 116 Gene names (by following HGNC nomenclature)

Time frame, months 11 September 2016 to July 2017

Pathologists 6 No. of pathologists

Abbreviation: HGNC, Human Genome (HUGO) Gene Nomenclature Committee.
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of calls for all 19,594 variants by model score 
showed that the model assigned the majority 
of scores near 0 and 1 (Fig 2B, top). To allow 
comparison of how each pathologist contributes 
to the aggregate model, we plotted individual 
model scores (Fig 2B; Table 3) and assessed 
several call thresholds (Figs 2B and C; Data 
Supplement). When plotting the true-positive 
rate over the false-positive rate for all existing 
model score cutoffs as a receiver operating 
characteristic curve (Fig 2D), the AUC can be 
interpreted as the probability that a randomly 
selected positive variant in the test data receives 
a higher score from the model than a randomly 
selected negative variant. The resulting receiver 

operating characteristic curve shows an AUC of 
0.990, which indicates an almost perfect predic-
tion model (Table 3, aggregate model V1), and 
we provide the specific test characteristics and 
case numbers of a screening cutoff at 0.01 and 
a confirmatory cutoff at 0.9 (Fig 2D).

Clinical Implementation

We implemented the model for screening (cutoff 
> 0.01) and observed that the false-negative rate 
decreases with the overall variant prevalence by 
gene (Fig 2E), which is related to our call prac-
tice (Fig 2B; Data Supplement). For example, 
SMO variants in our setting are overall rare (n = 7)  
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Table 2. Number of Cases, Variants, and Calls by Pathologist in V1

Pathologist Cases Variants
Variants per  
Case ± SEM "Yes" Calls (%)

"Yes" Calls per  
Case ± SEM P*

A 723 4,015 5.55 ± 0.083 959 (23.9) 1.91 ± 0.051 .45

B 1,118 6,170 5.52 ± 0.064 1,502 (24.3) 1.86 ± 0.041 .73

C 314 1,765 5.62 ± 0.120 419 (23.7) 1.83 ± 0.070 .38

D 830 4,564 5.50 ± 0.075 1,152 (25.2) 1.90 ± 0.041 .33

E 92 487 5.29 ± 0.200 122 (25.1) 1.77 ± 0.120 .23

F 453 2,593 5.72 ± 0.099 633 (24.4) 1.97 ± 0.069 .23

Total 3,530 19,594 5.55 ± 0.036 4,787 (24.4) 1.89 ± 0.023 NA

Abbreviations: NA, not applicable; SEM, standard error of the mean.
*P values derived from Fisher’s exact tests that compared each pathologist’s average yes call rate against all others (eg, A v non-A).

Table 3. Performance of the Aggregate and Individualized Models

Performance Measures

Model TC AUC Precision
Recall or 

Sensitivity Specificity
Youden 
Index F1 Score*

Aggregate (V1) 19,594 0.989 0.907 0.936 0.969 0.915 0.921

Pathologist

A 4,015 0.986 0.934 0.845 0.961 0.806 0.887

B 6,170 0.988 0.911 0.904 0.973 0.877 0.907

C 1,765 0.985 0.892 0.824 0.969 0.793 0.857

D 4,564 0.988 0.893 0.883 0.971 0.854 0.888

E 487 0.982 0.921 0.741 0.979 0.720 0.821

F 2,593 0.984 0.905 0.835 0.972 0.807 0.868

Validation set (V2) 16,123 0.987 0.938 0.953 0.974 0.927 0.945

Transferability

T1 not retrained 568 0.768 0.903 0.567 0.755 0.322 0.697

Δ |T2 – T1| NA 0.212 0.022 0.356 0.204 0.560 0.204

T2 retrained 568 0.980 0.881 0.923 0.959 0.882 0.901

NOTE. The table provides the performance of the model-based predictions when compared with the originally clinically reported calls (labels). V1 and V2 refer to distinct 
variant sets (Table 1). V1 is shown in Figs 1 and 2, whereas V2 refers to an entirely separate validation set of variants (September 2016 to July 2017). To quantify the 
importance of retraining, we performed two transferability experiments: T1 refers to an intentionally wrong application of a not retrained model compared with T2, which 
is an appropriately retrained model (Data Supplement). Abbreviations: AUC, area under the curve; TC, training call. 
*Measure of test accuracy (harmonic mean of precision and recall)
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yet frequently reported (n = 5; Data Supple-
ment). As a consequence, the one false-negative  
call by the model results in a relatively high false- 
negative rate (15%). However, despite these  
limitations, the overall error and false-negative  
rate is only approximately 3%. We used the 
same approach to derive individual models 
for each pathologist (Table 3; Figs 2D and F), 
which illustrates three things. First, the aggre-
gate model outperforms most individual models. 
Second, the performance among all individual 
models differs only by 0.8% (AUCs, 0.982 to 
0.990). Third, our approach to derive a model 
for every pathologist suggests that there are only 
small differences in sign-out practice for vari-
ant reporting that are reflected in the six mod-
els (akin to a consensus difference). Figure 2F 
shows the model-based landscape of our variant 
reporting practice.

Validation Experiments

The launch of a new assay in July 2016 provided 
an opportunity to transfer our artificial intelli-
gence model from the V1 assay to the new V2 
assay, and in doing so, to validate our approach. 
We used V2 as an independent data set that 
contained 16,123 consecutive variants from 
clinical practice (V2; Table 1). The performance 
measures (Table 3; Data Supplement) and the 
Youden index of 0.927 validate the machine 
learning model as robust in capturing our sign-
out experience with respect to reporting deci-
sions.

Transferability Experiments

The launch of a new assay also triggered the 
following question: What would happen to the 
model performance if we intentionally trans-
ferred the wrong model? We consider this trans-
ferability question to be highly relevant because 
any new assay (or laboratory test) will have 
slightly different frequencies of cancer types, 
genes, and so forth. As an analogy, when a 
pathologist/geneticist starts to work with a new 
assay, he or she would need to retrain and gain 
familiarity with the assay to confidently sign out 
cases. We designed transferability experiments 
to assess the importance of retraining and the 
risk imposed by wrongful artificial intelligence 
model transfer (Data Supplement). The lower 
performance (up to −35%) is no surprise and 

related to substantially different panels; however, 
some performance measures are preserved 
(precision, approximately 0.9; Table 3). These 
findings indicate that some variants are shared 
between the assays and that transfer of artificial 
intelligence models requires careful multipara-
metric performance evaluation. The validation 
experiments (V1 v V2) confirmed transferability 
of the machine learning approach, whereas the 
transferability experiments (T1/T2) assessed the 
transferability of the model. These experiments 
emphasize that pathologists’ calls are necessary 
to retrain a model and that the approach can be 
accurately transferred to capture reporting deci-
sions on an entirely different assay.

Implementation in Clinical Practice

To illustrate how we implemented the models 
in clinical practice, we provide screenshots of 
two variant review popup tools. First, a consen-
sus tool (Fig 3A) allows for the review of the 
reporting prediction scores to augment variant 
reporting decisions and instantly access the 
diversity of reporting suggestions along with a 
drill-down functionality that allows review of the 
features that contributed to a particular score. 
These functionalities capture two key aspects 
of a traditional consensus conference: the 
decision and the reasoning. Second, we imple-
mented a tree map visualization of the deci-
sion branches and the underlying reasoning 
(Fig 3B). The added level of transparency was 
a core design component that empowers the 
reviewing pathologist/geneticist to understand 
the underlying reasoning; in other words, the 
model provides the user with a justification for 
a given decision.

DISCUSSION

We present an artificial intelligence approach 
for genetic variant reporting in cancer. The core 
design idea is to use artificial intelligence to fully 
exploit the entire bioinformatics pipeline output 
for modeling the reporting decision. We combined 
the structured variant annotations with the collec-
tive, multiyear reporting experience of six patholo-
gists in a clinical molecular diagnostic laboratory. 
By using > 19,000 variants, we derived substan-
tial performance metrics with AUC > 99%, and 
we validated the approach in > 16,000 indepen-
dent variants in another assay with similarly high 
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performance metrics. We also share two clinically 
relevant visualization tools (a consensus and a 
tree map visualization module) that allow human 
exploration of the underlying (supporting) reasons 

by the artificial intelligence model. This approach 
is a practical example of how to apply artificial 
intelligence meaningfully when the complexity of 
data exceeds human capabilities.
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A

B

Fig 3. Model decision exploration in clinical practice. (A) Screenshot shows our variant review and graphic user interface used to select variants 
for inclusion in the report (background; old assay, V1). The inset shows individual pathologists' model scores (P1 to P6) and the aggregate. When 
hovering over one model, the drill-down option shows the top five predictors derived from the logistic regression pathologist's model that contributed 
to the report recommendation (report). (B) Screenshot shows our variant review and graphic user interface used to select variants for inclusion in the 
report (background; new assay, V2). The machine learning (ML) score links out to the ML tree module, which allows for exploration of 15 random forest 
decision branches. Each branch contains the order of contributing features and findings that resulted in the decision (green argues for reporting, red 
against). Each circle represents one feature, and the drill-down option (inset) shows the feature (eg, a quality control [QC] metric of a caller), the finding 
in this variant (eg, 1), and the cutoff used by the model (here > 0.5). The added level of transparency that allows review of the features that underlie a 
model-derived decision is an important design component of our implementation in clinical practice, and we propose the term next-generation decision 
support. CADD, combined annotation dependent depletion; LOFREQ, low frequency; SNV, single-nucleotide variant.
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Artificial intelligence and machine learning as 
tools have been established,40,42-45 and in our 
model design,32 we aimed for two things: to 
generate a single score output as a contiguous 
score from 0 to 1 as a simple way to recognize 
the decision and to give the reviewing patholo-
gist/geneticist the opportunity not only to review 
the decision but also to explore the underlying 
reasoning by the model (Fig 3). We offer this 
additional layer of transparency as a drill-down 
function and propose the term next-generation 
decision support tool. Given that the model 
takes the full set of variant calling pipeline out-
put into consideration, we foresee review of 
these features that underlie a reporting decision 
as valuable (eg, machine-based education of 
the reviewing pathologist). Unfortunately, when 
machines or programs mimic components of 
the cognitive functions that humans attribute 
to learning, the disparity between intended  
use and public perception generates unnec-
essary confusion. For example, in science fic-
tion, the term artificial intelligence typically is 
applied to excite ethical and emotional reac-
tions. Thus, we want to re-emphasize the crit-
ical importance of thoughtful design and that 
we limited our approach to the binary reporting 
decision. Thus, the intended use of our model 
is not to substitute human decision making. 
Comparison of human versus model decisions 
enables the pathologist to decide whether  
the variant should be re-reviewed by an inde-
pendent pathologist or presented at a consen-
sus conference. Thus, the tool may increase 
efficiency and reinforce human interaction.  
In other words, we built, implemented, and 
validated a model that continues to rely on 
unbiased pathologist calls; this small integral 
design part literally means: no pathologist, no 
model.

Future adoptions may extend to incorporate 
other data types (eg, histopathologic image fea-
tures),46 other artificial intelligence approaches 
(ie, neural networks, deep learning),47,48 or 
the transfer to other laboratories or assays 
(as demonstrated in our transferability experi-
ments). Despite the overall promising nature of 
our findings, numerous limitations apply. The 
model currently does not distinguish somatic 
from germline variants for prediction, and we 
did not include other forms of variants (ie, 
indels, copy number variation). With regard to 

implementing our approach in other clinical 
laboratories, limitations exist in terms of dif-
ferent frequencies of diseases or insufficient 
clinical volumes to drive model building. Our 
model is restricted to the collective experience 
of our group (eg, we do not sequence matched 
normals). Confounders and biases may exist in 
our model with regard to such nuances as the 
ethnicity or ancestry of our testing population 
compared with the reference genome used 
for variant calling. Furthermore, the launch of 
a new assay shows evolution of performance 
over time, and our transferability experiments 
demonstrate that this also applies to an artifi-
cial intelligence model because the model is, 
by definition, assay, instrument, and pipeline 
specific. Although these limitations can be per-
ceived as disadvantageous, they are not specific 
to our own practice and are well acknowledged 
in the artificial intelligence and machine learn-
ing community.20,23,25,49 Despite these limita-
tions, we have shown that although models may 
be assay and setting specific (V1 v V2; Table 3), 
the application of artificial intelligence for deci-
sion support is indeed a practically feasible and 
clinically relevant strategy.

To the best of our knowledge, our artificial intel-
ligence model as a decision support tool for 
variant reporting is new. Given the performance 
metrics of the model, appropriate model cutoffs 
(< 0.01) significantly reduce the number of vari-
ants to be reviewed (Fig 2D). Thus, we view the 
deployment of an artificial intelligence model  
in a clinical environment as a tool to filter out 
nonreportable variants and to enable explora-
tion of the underlying reasoning as highly rel-
evant because it makes pipeline result vetting 
reasonable timewise and scalable in terms of 
content and for increased numbers of clinical 
samples.

The implicit understanding that big data efforts 
will ultimately improve decision making in health 
care entails optimization of the care coordination 
process. We consider the complexity of NGS bio-
informatics pipeline outputs as an opportunity 
to apply artificial intelligence because the com-
plexity exceeds human capabilities. In times of 
increasing health care costs, tools for increased 
efficacy are in demand, and we hope that by 
sharing our approach to leverage the power 
of artificial intelligence and apply it to genetic 
variant reporting in cancer, other groups will 
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be motivated to explore this emerging field and 
improve patient care.

DOI: https://doi.org/10.1200/CCI.16.00079 
Published online on ascopubs.org/journal/cci on  
March 22, 2018.

AUTHOR CONTRIBUTIONS

Conception and design: Michael G. Zomnir, Maciej Pacula, 
Enrique Dominguez Meneses, Nishchal Nadhamuni, A. 
John Iafrate, Long P. Le, Jochen K. Lennerz

Collection and assembly of data: Michael G. Zomnir, Lev 
Lipkin, Maciej Pacula, Enrique Dominguez Meneses, 
Allison MacLeay, Sekhar Duraisamy, Saeed H. Al Turki, 
Miguel Rivera, A. John Iafrate, Long P. Le, Jochen K. 
Lennerz

Data analysis and interpretation: Jochen K. Lennerz, Lev 
Lipkin, Sekhar Duraisamy, Zongli Zheng, Valentina Nardi, 
Dora Dias-Santagata, A. John Iafrate, Long P. Le

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS' DISCLOSURES OF 
POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided 
by authors of this manuscript. All relationships are 
considered compensated. Relationships are self-held 
unless noted. I = Immediate Family Member, Inst = My 
Institution. Relationships may not relate to the subject 
matter of this manuscript. For more information about 
ASCO's conflict of interest policy, please refer to www.
asco.org/rwc or ascopubs.org/jco/site/ifc.

Michael G. Zomnir
No relationship to disclose

Lev Lipkin
Stock and Other Ownership Interests: TEVA Pharmaceuticals 
Industries, Pfizer, Novartis

Maciej Pacula
Patents, Royalties, Other Intellectual Property: Ute 
Geigenmuller, Doris Damian, Maciej Pacula, Mark A. 
DePristo. Methods and Systems for Determining Autism 
Spectrum Disorder Risk (US patent 9,176,113), granted 
November 3, 2015 (Inst)

Enrique Dominguez Meneses
No relationship to disclose

Allison MacLeay
Travel, Accommodations, Expenses: InterSystems, 
Athenahealth (I)

Sekhar Duraisamy
No relationship to disclose

Nishchal Nadhamuni
No relationship to disclose

Saeed H. Al Turki
Honoraria: Foundation Medicine
Consulting or Advisory Role: Pfizer
Travel, Accommodations, Expenses: AstraZeneca, 
Foundation Medicine

Zongli Zheng
Stock and Other Ownership Interests: Archer Biosciences
Patents, Royalties, Other Intellectual Property: Co-inventor 
and patent royalty recipient of Anchored Multiplex PCR 
(AMP) technology

Miguel Rivera
Consulting or Advisory Role: Loxo Oncology, Asubio 
Pharmaceuticals (I)
Speakers’ Bureau: Pfizer (I)
Research Funding: Advanced Cell Diagnostics, Affymetrix
Patents, Royalties, Other Intellectual Property: Patents with 
Affymetrix

Valentina Nardi
Stock and Other Ownership Interests: KSQ Therapeutics (I), 
The Navicor Group (I)
Consulting or Advisory Role: Thermo Fisher Scientific (I), 
Cell Signaling Technology (I)

Dora Dias-Santagata
No relationship to disclose

A. John Iafrate
Stock and Other Ownership Interests: Archer Biosciences
Consulting or Advisory Role: Debiopharm Group, 
Constellation Pharmaceuticals, Chugai Pharma, Roche
Research Funding: Blueprint Medicines
Patents, Royalties, Other Intellectual Property: ArcherDx 
exclusive license to AMP technology

Long P. Le
Stock and Other Ownership Interests: Archer Biosciences
Consulting or Advisory Role: Archer Biosciences
Patents, Royalties, Other Intellectual Property: Co-inventor 
and patent royalty recipient of AMP technology, which is 
licensed to ArcherDx
Travel, Accommodations, Expenses: Archer Biosciences

Jochen K. Lennerz
No relationship to disclose

ACKNOWLEDGMENT

We thank the entire clinical team of the Center for Inte-
grated Diagnostics. We also thank Julie Batten, Hayley 
Robinson, Yi Cao, Caitlin E. Finn, and Amelia N. Raymond 
for expert technical assistance. Furthermore, we thank 
M.R. Toups; M. Boswell; D. Borger, PhD; J. Steinestel, 
MD; A. Stenzinger, MD; C. Wang, MD; J. Baron, MD; V. 
Klepeis, MD, PhD; D. Sgroi, MD; and D. Louis, MD, for 
thoughtful discussions.

Affiliation
All authors: Massachusetts General Hospital, Boston, MA.

10� ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 

http://ascopubs.org/doi/full/10.1200/CCI.16.00079
http://ascopubs.org/journal/cci
http://www.asco.org/rwc
http://www.asco.org/rwc
http://ascopubs.org/jco/site/ifc
http://ascopubs.org/journal/cci


REFERENCES

1.	 Haber DA, Gray NS, Baselga J: The evolving war on cancer. Cell 145:19-24, 2011

2.	 Sobel ME, Bagg A, Caliendo AM, et al: The evolution of molecular genetic pathology: Advancing 
20th-century diagnostic methods into potent tools for the new millennium. J Mol Diagn 10:480-
483, 2008

3.	 Goodwin S, McPherson JD, McCombie WR: Coming of age: Ten years of next-generation 
sequencing technologies. Nat Rev Genet 17:333-351, 2016

4.	 Buermans HP, den Dunnen JT: Next generation sequencing technology: Advances and applications. 
Biochim Biophys Acta 1842:1932-1941, 2014

5.	 Hagemann IS, O’Neill PK, Erill I, et al: Diagnostic yield of targeted next generation sequencing in 
various cancer types: An information-theoretic approach. Cancer Genet 208:441-447, 2015

6.	 Roy S, LaFramboise WA, Nikiforov YE, et al: Next-generation sequencing informatics: Challenges 
and strategies for implementation in a clinical environment. Arch Pathol Lab Med 140:958-975, 
2016

7.	 Zehir A, Benayed R, Shah RH, et al: Mutational landscape of metastatic cancer revealed from 
prospective clinical sequencing of 10,000 patients. Nat Med 23:703-713, 2017

8.	 Sharma MK, Phillips J, Agarwal S, et al: Clinical genomicist workstation. AMIA Jt Summits Transl 
Sci Proc 2013:156-157, 2013

9.	 Yohe SL, Carter AB, Pfeifer JD, et al: Standards for clinical grade genomic databases. Arch Pathol 
Lab Med 139:1400-1412, 2015

10.	Zehnbauer BA, Buchman TG: Precision diagnosis is a team sport. J Mol Diagn 18:1-2, 2016

11.	Aziz N, Zhao Q, Bry L, et al: College of American Pathologists’ laboratory standards for next-
generation sequencing clinical tests. Arch Pathol Lab Med 139:481-493, 2015

12.	Lai Z, Markovets A, Ahdesmaki M, et al: VarDict: A novel and versatile variant caller for next-
generation sequencing in cancer research. Nucleic Acids Res 44:e108, 2016

13.	Liu X, Han S, Wang Z, et al: Variant callers for next-generation sequencing data: A comparison 
study. PLoS One 8:e75619, 2013

14.	Kircher M, Witten DM, Jain P, et al: A general framework for estimating the relative pathogenicity 
of human genetic variants. Nat Genet 46:310-315, 2014

15.	Krøigård AB, Thomassen M, Lænkholm AV, et al: Evaluation of nine somatic variant callers 
for detection of somatic mutations in exome and targeted deep sequencing data. PLoS One 
11:e0151664, 2016

16.	Dienstmann R, Dong F, Borger D, et al: Standardized decision support in next generation 
sequencing reports of somatic cancer variants. Mol Oncol 8:859-873, 2014

17.	Zutter MM, Bloom KJ, Cheng L, et al: The cancer genomics resource list 2014. Arch Pathol Lab 
Med 139:989-1008, 2015

18.	Patel NM, Michelini VV, Snell JM, et al: Enhancing next-generation sequencing-guided cancer 
care through cognitive computing. Oncologist 2017-0170, 2017

19.	Castaneda C, Nalley K, Mannion C, et al: Clinical decision support systems for improving 
diagnostic accuracy and achieving precision medicine. J Clin Bioinforma 5:4, 2015

20.	Baron JM, Dighe AS, Arnaout R, et al: The 2013 symposium on pathology data integration and 
clinical decision support and the current state of field. J Pathol Inform 5:2, 2014

21.	Appenzeller T: The scientists’ apprentice. Science 357:16-17, 2017

22.	Hutson M: AI glossary: Artificial intelligence, in so many words. Science 357:19, 2017

23.	Musib M, Wang F, Tarselli MA, et al: Artificial intelligence in research. Science 357:28-30, 2017

24.	El Naqa I: Perspectives on making big data analytics work for oncology. Methods 111:32-44, 2016

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics	 11

http://ascopubs.org/journal/cci


25.	Krittanawong C: The rise of artificial intelligence and the uncertain future for physicians. Eur J 
Intern Med [epub ahead of print on June 23, 2017] https://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&#x0026;db=PubMed&#x0026;list_uids=28651747&#x0026;dopt=Abstract

26.	Ciompi F, Chung K, van Riel SJ, et al: Towards automatic pulmonary nodule management in lung 
cancer screening with deep learning. Sci Rep 7:46479, 2017

27.	Moravčík M, Schmid M, Burch N, et al: DeepStack: Expert-level artificial intelligence in heads-up 
no-limit poker. Science 356:508-513, 2017

28.	Rocha JC, Passalia FJ, Matos FD, et al: A method based on artificial intelligence to fully automatize 
the evaluation of bovine blastocyst images. Sci Rep 7:7659, 2017

29.	Schrum J, Miikkulainen R: Solving multiple isolated, interleaved, and blended tasks through 
modular neuroevolution. Evol Comput 24:459-490, 2016

30.	Lee M, Roos P, Sharma N, et al: Systematic computational identification of variants that activate 
exonic and intronic cryptic splice sites. Am J Hum Genet 100:751-765, 2017

31.	Ghanat Bari M, Ung CY, Zhang C, et al: Machine learning-assisted network inference approach 
to identify a new class of genes that coordinate the functionality of cancer networks. Sci Rep 
7:6993, 2017

32.	Arnott D: Cognitive biases and decision support systems development: A design science 
approach. Inf Syst J 16:55-78, 2006

33.	Dias-Santagata D, Akhavanfard S, David SS, et al: Rapid targeted mutational analysis of human 
tumours: A clinical platform to guide personalized cancer medicine. EMBO Mol Med 2:146-158, 
2010

34.	Sequist LV, Heist RS, Shaw AT, et al: Implementing multiplexed genotyping of non-small-cell lung 
cancers into routine clinical practice. Ann Oncol 22:2616-2624, 2011

35.	Zheng Z, Liebers M, Zhelyazkova B, et al: Anchored multiplex PCR for targeted next-generation 
sequencing. Nat Med 20:1479-1484, 2014

36.	Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25:1754-1760, 2009

37.	Cibulskis K, Lawrence MS, Carter SL, et al: Sensitive detection of somatic point mutations in 
impure and heterogeneous cancer samples. Nat Biotechnol 31:213-219, 2013

38.	Ramos AH, Lichtenstein L, Gupta M, et al: Oncotator: Cancer variant annotation tool. Hum Mutat 
36:E2423-E2429, 2015

39.	McLaren W, Gil L, Hunt SE, et al: The Ensembl variant effect predictor. Genome Biol 17:122, 
2016

40.	Kohavi R: A study of cross-validation and bootstrap for accuracy estimation and model selection. 
Int Jt Conf Artif Intell 2:1137-1143, 1995

41.	Kohavi R, Provost F: Machine Learning. Glossary of Terms. Boston, MA, Kluwer Academic, 1998

42.	Arlot S, Celisse A: A survey of cross-validation procedures for model selection. Stat Surv 4:40-79, 
2010

43.	Rodríguez JD, Pérez A, Lozano JA: Sensitivity analysis of kappa-fold cross validation in prediction 
error estimation. IEEE Trans Pattern Anal Mach Intell 32:569-575, 2010

44.	Saeys Y, Inza I, Larrañaga P: A review of feature selection techniques in bioinformatics. 
Bioinformatics 23:2507-2517, 2007

45.	Pedregosa F, Varoquax G, Michel V, et al: Scikit-learn: Machine learning in Python. J Mach Learn 
Res 12:2825-2830, 2011

46.	Cruz-Roa A, Gilmore H, Basavanhally A, et al: Accurate and reproducible invasive breast cancer 
detection in whole-slide images: A deep learning approach for quantifying tumor extent. Sci Rep 
7:46450, 2017

12� ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&#x0026;db=PubMed&#x0026;list_uids=28651747&#x0026;dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&#x0026;db=PubMed&#x0026;list_uids=28651747&#x0026;dopt=Abstract
http://ascopubs.org/journal/cci


47.	Buggenthin F, Buettner F, Hoppe PS, et al: Prospective identification of hematopoietic lineage 
choice by deep learning. Nat Methods 14:403-406, 2017

48.	Chang K, Bai HX, Zhou H, et al: Residual convolutional neural network for determination of IDH 
status in low- and high-grade gliomas from MR imaging. Clin Cancer Res [epub ahead of print on 
November 22, 2017]

49.	Stanford: One hundred year study on artificial intelligence (AI100), 2016. https://ai100.stanford.edu

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics	 13

https://ai100.stanford.edu
http://ascopubs.org/journal/cci

