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Abstract: Flat morphology is a general method for obtaining increasing operators on grey-level or multivalued
images from increasing operators on binary images (or sets). It relies on threshold stacking and superposition;
equivalently, Boolean max and min operations are replaced by lattice-theoretical sup and inf operations.

In this paper we consider the construction a flat operator on grey-level or colour images from an operator on
binary images that is not increasing. Here grey-level and colour images are functions from a space to an interval
in R™ or Z™ (m > 1). Two approaches are proposed. First, we can replace threshold superposition by threshold
summation. Next, we can decompose the non-increasing operator on binary images into a linear combination
of increasing operators, then apply this linear combination to their flat extensions. Both methods require the
operator to have bounded variation, and then both give the same result, which conforms to intuition. Our
approach is very general, it can be applied to linear combinations of flat operators, or to linear convolution
filters.

Our work is based on a mathematical theory of summation of real-valued functions of one variable ranging in
a poset.

In a second paper, we will study some particular properties of non-increasing flat operators.
Keywords: poset, bounded variation, summation, operator on sets, flat morphological operator
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1 Introduction

Mathematical morphology [10, 20, 21, 22] is a branch of image processing, that relies on lattice-theoretical
and geometrical operations. It is used for processing binary, grey-level and multivalued images, as well as
many other imaging structures.

It was initially developed in the framework of binary images, and later generalised to grey-level and
multivalued images. The mostly used morphological operators on grey-level (or multivalued) images are the
so-called flat operators, for instance those using flat structuring elements. They are obtained from operators on
binary images through the method of flat extension [16]. For instance a grey-level flat dilation (resp., erosion)
applies at each point a local supremum (resp., infimum) of grey-levels. Another flat operator is the median
filter. A fundamental limitation of this method is that it is restricted to increasing operators, in other words
operators that preserve the inclusion order. Thus, it cannot be applied to non-increasing operators such as
the morphological gradient and Laplacian, or the hit-or-miss transform, although many authors have given
grey-level versions of these operators in an ad hoc manner.

The purpose of this paper is to generalise the flat extension to non-increasing operators. Subsection 1.1
recalls the classical theory of the flat extension of binary operators, then the simple example of the difference
between a dilation and an erosion shows how this method fails for non-increasing operators. Subsection 1.2
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introduces two equivalent approaches for obtaining the flat extension of a non-increasing operator: first, replace
threshold superposition by threshold summation; second, decompose the non-increasing operator into a linear
combination of increasing operators, and take this linear combination with their flat extensions.

The paper requires a substantial mathematical background, which was initiated in [18]. The two proposed
approaches require the operator to be of bounded variation: this condition is studied in Section 2. Section 3
introduces a theory of summation on posets, which gives a kind of Riemann integral. Section 4 studies the
decompositions of functions into linear combinations of increasing functions.

Then Section 5 applies this theory to the flat extension of operators on binary images, not only operators
P(E) — P(E), but also P(E) — K for a finite interval K C Z. Section 6 concludes and introduces some
perspectives, some of which will be dealt with in a second paper.

1.1 Flat extension by threshold superposition

We use the standard lattice-theoretical terminology of [16]. See Subsection 1.3 for more details.

Consider a space of points F, which can be the Euclidean (E = R") or digital (£ = Z") space, or a subset
of such a space. Image intensities are numerical values, they range in a closed subset T’ of R = RU {—o00, +o0};
for example in the digital case, one can take T to be an interval in Z = Z U {—o0, +o0}. Then one models
binary images as subsets of E, grey-level images as numerical functions £ — T', and multivalued images (e.g.,
colour, multispectral, or multimodal images) as functions E — T™ for some integer m > 1. Write P(E) for
the set of all subsets of E (i.e., binary images), T and (T™)¥ for the set of maps E — T and E — T™
respectively.

An operator is a map transforming an image into an image. There are for instance operators on binary,
grey-level images or multivalued images, that is, maps P(E) — P(E), T¥ — TF or (1™)¥ — (1™)%.
There can also be operators between different families of images, for instance thresholding is an operator
" = P(E).

An operator ¢ : P(E) — P(E) on binary images is said to be increasing (or isotone) if it preserves the
inclusion order: for X, Y € P(E), X CY = ¢(X) C ¢(Y). There is a systematic method for constructing an
operator on grey-level or multivalued images from an increasing operator on binary images: the flat extension.
Let us briefly recall from [16] how this is done.

Let us write V for the set of image values; we assume that V =T (for grey-level images) or V =T"" (for
multivalued images), where T is a closed interval in Z or R. Then V is partially ordered, numerically for T,

and componentwise for T:
(1, zm) < (Y1y.-yym) <= z; <y;fori=1,...,m . (1)

Note that there are other possible orders on T"", but the componentwise order is mathematically easier, with
it we could obtain results for multivalued images, see Theorem 10 and Proposition 30. Now, V' constitutes
a complete lattice [1] (every subset of V has a supremum and an infimum for the order). Write L and T
for the least and greatest elements of V, and \/ for the supremum operation in V; when V = T, \/ is the
numerical supremum, and when V = T™, it is the componentwise numerical supremum. Thus, VE will be a
complete lattice, whose order, supremum and infimum are obtained by applying those of V' pointwise: F' < G
iff F(p) < G(p)forallpe E, and for F; e VE iel, Vier Fi is the function E — V : p— \/, o Fi(p).
For an image F': E — V and v € V, the threshold set [10] is

Xo(F)={p€ E| F(p) > v} . (2)

The set Xy (F) is decreasing in v: w > v = Xu(F) C Xy(F), in other words threshold sets form a stack
[15, 16]. We illustrate such a stack in Figure 1 for E = R and V = T = [a, b], a bounded interval in R: the
sets {t} x X¢(F) for ¢t € T pile up.

For B C F and v € V, the cylinder of base B and level v is the function Cpg , given by

v ifpeB,

VpeE, Cpw(p) =
L ifp¢B.
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{th x X¢(F) E

Fig. 1: Here E =R and V =T = [a,b] C R. The hypograph of I is the set {(h,t) € ExT |t < F(h)}, and its horizontal
cross-sections are the sets {t} x X¢(F) for t € T'.

Then every function F' : E — V is the upper envelope of the sets {v} x Xy (F'), in other words the supremum
of cylinders
F=\ Oy -
veV
Consider now an increasing operator ¢ : P(E) — P(FE) on binary images, so X CY = ¢(X) C ¢¥(Y).
Then for any F : E — V, the sets 1) (Xo(F)) decrease with v, thus they form a stack. We can take the upper
envelope of the sets {v} x ¢ (Xy(F')), that is:

WV (F) = \/ CyXo(F))0 - (3)
veV
For every point p € E¥ we have:
W (F)p) = \/{v eV IpepXu(F)} . )

Then ¢V : VE 5 VP F s gV (F) is the flat operator corresponding to ), or the flat extension of 1 [15, 16].
We illustrate this construction in Figure 2 for the example of Figure 1, where the operator 1 is first the
dilation dp, then the erosion ep by a structuring element B € P(E) [10, 20]: for any X € P(E),

p(X)=xoB= )X, and ep(X)=X0B=[)X_; (5)
beB beB
here X, = {x +b| z € X} is the translate of X by b.

Now if we take a non-increasing operator, this approach does not work correctly. The sets ¢ (X4 (F)) do
not anymore form a stack, since they do not decrease with v. Consider the example of Figure 1, and let the
operator ¢ be the set difference between the dilation § and erosion ¢ of Figure 2. As shown in Figure 3, the
stacking approach of (3,4) gives for F the same result as the flat extension of the dilation: [6\¢]T (F) = 67 (F).
More generally, for a function G, we will have 67 (G) > [0\ &)1 (G) > 6T(G) — T (@), see Figure 4.

However intuition tells us that since here the erosion is included in the dilation, the flat extension of
their set-theoretical difference should be the arithmetical difference of their flat extensions: [§ \ e]? (F) =
6T (F) — el (F). This accords with common practice, as indeed the Beucher gradient [20] of an image is
defined as 6(X) \ e(X) for a binary image X and 67 (F) — e’ (F) for a grey-level image F, where & and ¢ are
the dilation and erosion by a point neighbourhood.

1.2 Threshold summation and linear combination of increasing operators

The solution to our problem was hinted at in Section V.2 of [14]; in fact, it proposed two equivalent methods for
obtaining the flat extension of a non-increasing binary operator. Although the point of view of that paper was
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Fig 2: Again E = Rand V = T = [a,b] C R. The function F of Figure 1 is shown dashed. Here the operators are
the dilation § (left) and erosion € (right) by a segment centered about the origin (shown as a big dot). The sets {¢t} x
5 (X¢(F)) (left) and {t} x e (X¢(F)) (right) pile up, their upper envelopes are the functions 67 (F) and 7 (F).
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Fig. 3:Still E = Rand V = T = [a,b], and the above function F is shown dashed. Here 1)(X) = 6(X) \ &(X) for the
dilation § and the erosion & by a segment centered about the origin. The sets {t} x 1 (X¢(F')) do not pile up correctly.

strictly finitary (with only finite structuring elements or filter windows, and finitely many images intensities),
and restricted to grey-level images (V' = T'), the approach can be extended to our general framework. This
paper proposed two different ideas that will finally lead to the same result.
Let us (temporarily) restrict ourselves to grey-level images (V' = T'). The first idea is that the sets
1 (X¢(F)) (t € T) should not be superposed by a supremum of cylinders, but numerically summed or integrated
over t € T, following the threshold decomposition method introduced by [5] for median filters, and extended
in [24] to arbitrary flat operators.
In order to avoid long or imbricated subscripts, for any X € P(E), we will write xX, rather than the
usual x x, for the characteristic function of X:
{1 ifpe X |
VX eP(E), VpeE, xX(p) = (6)
0 ifpd X .
Then, given an operator ¢ : P(E) — P(E), for any X € P(FE) we write x¢(X) for the characteristic function
of (X); in other words, we have the map x¢ : P(E) — {0,1}F, which is the composition of ¢ : P(E) — P(E)
followed by y : P(E) — {0,1}7.
Given an increasing operator v : P(E) — P(E), we have for any F € T¥ and p € E:
— in the discrete case T = {tg,...,tn}, where L =ty < - - <tp =T:

n

YT (F)(p) = L+ (t —ti1) x¥(Xe, (F))(p) - (7)

i=1
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Fig. 4: The same operator 1 as in Figure 3, but with another function G. Here 67 (G) — €T (G) would give the height of
the union of all sets {t} x ¥ (X¢(F)).

— in the continuous case T = [L, T]:

T
W) = L+ [ xwelF)o) e ®)
1
In fact, in [5, 24] it was assumed that "= {0,...,n}, so there (7) took the form
ST F)p) = 3 b (F)(p) - (9)
i=1

Then one could take (7,8) as the definition of the flat extension of any operator, increasing or not. For our
example with ¢ given by ¢(X) = §(X) \ e(X), as £(X) C §(X) for all X € P(E), we have x[§(X) \ e(X)] =
x0(X)—xe(X), and by the linearity of summation and integration, (7,8) gives [§\e]? (F) = L4867 (F)—el (F);
when L = 0 (which is often the case in practice), we get [0\ e]? (F) = 67 (F) — e (F). This is exactly what
intuition tells us: the arithmetical difference is the extension to numerical functions of the set difference X \'Y’
for Y C X.

The two equations (7,8) should be extended to multivalued images (V = T™) and unified into a single
equation valid for both discrete and continuous numerical values. Indeed, our contributed article [18] at the
Kiselmanfest of 2006 is devoted to such a generalisation: we introduced an analogue of the Riemann integral
for functions defined on a poset (partially ordered set) included in R™ or Z"* (m > 1), we called it function
summation; it relies on the order and the compatibility of the operations of addition, subtraction and scalar
multiplication (in R™ or Z™) with that order. Its application to thresholded grey-level images gives (7) for
discrete grey-levels and (8) for continuous grey-levels; moreover, in the case of an increasing operator, for
image values in an interval in R™ or Z™, the result is equivalent to flat extension, in other words threshold
summation (7,8) is equivalent to threshold stacking (4).

Now this function summation was defined only for functions that are linear combinations of bounded,
non-negative and decreasing (or increasing) functions, in other words functions with bounded variation; thus
we analysed this property in [18]. We do not exclude the possibility of extending our function summation to
functions defined on a poset, which do not have bounded variation; this could possibly be achieved by using
measure theory and the methodology of the Lebesgue integral, but that is beyond the scope of our study.

The second idea of [14] is that a function with binary values should be expressed as a linear combination
of increasing binary-valued functions. We proposed there to decompose a function f : {0,1}" — {0,1}
into an alternating sum and difference of a decreasing sequence of increasing binary functions, that is, into
fi—fo+fz—---+(=1)""1f where r is an integer > 0, each function f; : {0,1}™ — {0,1} is increasing, and
f1 > -+ > fr. This was stated without justification, the details were announced to appear in a manuscript

in preparation, which was never written ... until the result was proven in a more general form in [18], see
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Section 4, in particular Theorem 18. Now for ¢ : P(E) — P(FE), we would like to have a similar decomposition

X% = x¥1 — x2 + x¥3 + - (=1)" " 'xyr (10)

where the ¢; (i =1,...,r) form a decreasing sequence of increasing operators P(E) — P(E); then we would

deduce from it the same decomposition for the flat extension (assuming | = 0):
14 14 |4 14 -1,V
WU =l =y ey e (D) e (11)

However, in an infinite space F, such a decomposition is not guaranteed. Indeed, as 11, ..., %, are increasing,
given an increasing sequence (Xp)pen in P(E), for any p € E and i = 1,...,r, the sequence xv;(Xn)(p) can
change at most once, from 0 to 1, hence for the decomposition (10), the sequence x1(Xr)(p) should change
at most r times, alternating between 0 and 1. However, for an infinite space F, it is easy to find an operator
1 such that the sequence x1(Xn)(p) will endlessly alternate between 0 and 1.

We will indeed see that the necessary and sufficient condition for a decomposition of the form (10) is that
the functions P(E) — {0,1} : X — x¢(X)(p) for p € E are of uniform bounded variation, in other words the
same bound holds for their total variation for all p € E. This will imply in particular that for every F': £ — V
and p € F, the function v — x¥ (Xu(F)) (p) will have its summation well-defined, in other words the formula
generalising (7,8) will be valid. In fact, assuming | = 0, we will then have the corresponding decomposition
(11).

We see thus that bounded variation is at the core of the theory of the flat extension of non-increasing
set operators, and it was the main theme of [18]. This work constitutes the mathematical basis for our study,
and the next three sections will mostly summarise the main concepts and results of that paper, although
we present a few new results. Section 2 studies bounded variation of functions defined on an arbitrary poset
(partially ordered set) and with real or integer values. Then Section 3 defines a summation for real-valued
functions defined on a poset included in R™ or Z™, m > 1. For m = 1, this summation gives the integral
in the continuous case, and a sum similar to (7) in the discrete case. For m > 1, there will be a summation

along each coordinate; for instance, in R3, given a; < b; for i = 1,2, 3, the summation of f from (a1, a2, as)

to (b1, b2, b3) will be
b1 ba bs
([stazanar. [ tanar, [ omoar) .
al a2z as

Next, Section 4 studies the decomposition of integer-valued functions into a linear combination of increasing
binary functions; in the case where the function to be decomposed has binary values, we get an alternating
sum and difference of a decreasing sequence of increasing binary functions, cf. (10).

Section 5 applies the mathematical results of the three preceding sections to the theory of the flat extension
of operators on binary images, that is, operators P(E) — P(E), or more generally P(E) — K for a finite

interval K C 7Z, such as for instance the morphological Laplacian:
X6 4 xe — 2xid : P(E) — {—=1,0,1}F : X s x6(X) + xe(X) — 2xX , (12)

where id is the identity operator on P(FE), while § and £ are the dilation and erosion by a point neighbourhood.
Our approach relies on threshold summation, and in the case of increasing operators P(E) — P(E), it gives
the same result as the original threshold stacking method. We will see that several examples of non-increasing
flat operators for grey-level images informally given in the literature belong to our framework: the external,
internal and Beucher gradient, the morphological Laplacian, the white, black, and self-complementary top-
hat, and finally Soille’s unconstrained hit-or-miss transform. We will also give some general properties of
flat operators, which are rather similar to those given in [16] in the case of increasing operators. Finally the
conclusion summarises our findings and proposes some possible extensions of our theory.

Note that our approach combines linear operations (summation, linear combination) with non-linear ones
(thresholding); thus the resulting flat operators are generally non-linear (for instance, the usual operators
of mathematical morphology). However, we can also obtain flat operators that are linear; for instance, the
identity and spatial translations are linear flat operators, so the convolution by a finite mask, which is a
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linear combination of translations, will be a linear flat operator, which will be increasing only when the mask
coefficients are all non-negative.

Given the length of our study, we have split our work into two parts. In a second paper, we will consider
duality and study some properties of flat operators, where the non-increasing case differs from the increasing

one, for instance the flat extension of a supremum, infimum or composition of operators.

1.3 Mathematical preliminaries

We recall here some basic notions from the theory of posets and lattices [1, 4, 7]. A poset is a set P with a
partial order relation < (reflexive, antisymmetric and transitive); write < for the corresponding strict partial
order, that is, x <y < (x <y and z # y). Two elements = and y of P are said to be comparable if either
x <yorz=yorx>y. Wesay that the order < is total if x and y are comparable for all z,y € P; then P
is called a chain. A finite chain vg < -+ < vy in a poset P has length n; the height of P, written h(P), is the
supremum of the lengths of all chains included in P; if there is no upper bound on chain lengths in P, we get
h(P) = oco. For a,c € P, we say that ¢ covers a if a < ¢ and there is no b € P with a < b < ¢. Given a,b € P
such that a < b, let [a,b] = {x € P | a <z < b}, we call it the closed interval between a and b.

A bounded poset is one having a least element and a greatest element; a poset is bounded by a,b if its
least element is a and its greatest element is b.

Given two posets P and @ (equal or different), a map ¥ : P — Q is increasing (or isotone) if for all
z,y € Pz <y = (z) < Y(y); it is decreasing (or antitone) if for all z,y € P, z <y = (z) > ¥(y).
A map ¢ : P — P is extensive if for all x € P we have x < 9(z); it is idempotent if for all z € P we have
P((@)) = ().

A closure map on P [4, 7] is a map ¢ : P — P that is increasing, extensive, and idempotent. Equivalently,
for all z,y € P,z < o(y) & ¢(z) < o(y). A closure range on P [4] is a subset M of P such that for
every ¢ € P, the set of all y € M such that y > = is non-empty and has a least element. There is a bijection
between closure maps and closure ranges on P, where a closure map ¢ and a closure range M correspond by
two reciprocal relations: M = {¢(z) | z € P}, and for every x € P, p(z) is the least y € M such that y > .
Note that when P has a greatest element T, we always have T € M and o(T)=T.

For Q C P, a lower bound (resp., upper bound) of @Q is any x € P such that for all y € Q, =z < y (resp.,
x > y). The greatest lower bound of Q is a lower bound of @) greater than any other lower bound; if it exists,
it is unique. One defines similarly the least upper bound of Q. Then P is a lattice if every pair {z,y} in P has
a least upper bound, called the join of z,y and written x V y, and a greatest lower bound, called the meet of
x,y and written z A y. Now P is a complete lattice if every subset @Q of P has a least upper bound, called the
supremum of @ and written \/ Q, and a greatest lower bound, called the infimum of Q and written A Q; in
particular it has a least element L = A P =\/ 0 and a greatest element T =\/ P = A 0.

Of particular interest are lattices of numbers and of vectors. Every interval in Z, every closed interval [a, b]
in R, the completions Z = Z U {—o00, 400} and R = RU {—o00, +o0} are complete lattices for the numerical
order; all of them have the same non-empty supremum and infimum operations, which coincide with the
usual numerical supremum and infimum; we will thus write sup @ and inf @ rather than \/ Q and A Q for a
non-empty @ C R. The empty numerical supremum and infimum, sup ) and inf (), have no a priori values,
they are generally defined as the least and greatest elements of the interval under consideration. For m > 1,
Z™ and Em, as well as any closed interval in Z™ or R™, are complete lattices for the componentwise order
(1); their non-empty supremum and infimum, again written sup and inf, correspond to taking the numerical
supremum and infimum componentwise: writing x; for the i-th coordinate of z € R (i = 1,...,n), for any
non-empty @ C R we have (sup Q)Z = sup{z; | z € Q} and similarly for the infimum.

A conditionally complete lattice is a lattice where every subset having an upper bound has a least upper
bound (supremum), and every subset having a lower bound has a greatest lower bound (infimum). For instance,
Z and R are conditionally complete lattices for the numerical order, while for m > 1, Z" and R™ are

conditionally complete lattices for the componentwise order.
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In a complete lattice P, one calls an inf-closed subset of P a subset M of P such that for any subset @
of M, A\ Q € M; in particular, it contains the empty infimum, that is, the greatest element: T = A0 € M.
In fact, M is inf-closed if and only if it is a closure range; it is then a complete lattice, with the same
infimum operation as in P, but with the supremum of @) C M given by <p(\/ Q), where ¢ is the closure map
corresponding to M. One defines similarly a sup-closed subset of P: Q C M = \/Q € M; then L € M
and M is a complete lattice. A complete sublattice of P is a subset Q of P which is a complete lattice with
the same supremum and infimum operations as in P, in other words, @ is both inf-closed and sup-closed; it

contains in particular the empty supremum and infimum, that is, the least and greatest elements: L, T € Q.

2 Bounded variation in a poset

Bounded variation is a classical topic in functions R — R, see for example Section 3.5 of [6]. We summarise
here Section 2 of [18], with minor corrections and improvements, and we add some examples. The most
important results of this section are Proposition 4 and Corollary 5, together with the discussion of duality
following them.

Let P be a poset. In practice, P can be P(E), the set of parts of a space E (ordered by inclusion), or a
closed interval T in R, or P = T™ (ordered componentwise). We will consider functions P — R.

Every function P — R has its positive, negative and total variation, and when the latter is bounded, we
say that the function has bounded variation. The bounded variation of functions P — R has been studied in
[8, 9] in the restricted case where the order < is total.

For z € R, let [z]' and [z] be the positive and negative parts of

z ifz>0,

[2]T = max(z,0) =
0 ifz<0;

and
] fxz<0,

z]” = [—2]t = max(—z =
2 =] (==.0) {0 ifx>0.

Then z = [z]T — [z]” and |z| = [«]" + [2]”.

A strictly increasing sequence in P is a (n + 1)-tuple (sq,...,$n), where n € N sg,...,sn € P and
s0 < -+ < sn. The set of such sequences is ordered by inclusion, where (rg, ..., m) is included in (sg, ..., sn)
iff {ro,...,rm} C {s0,...,sn}, that is, iff (ro,...,7m) = (sjo,...,55,) for 0 < jo < .-+ < jm < m; we say
then that (rg,...,rm) is a sub-sequence of (sg,...,sn), and write (rg,...,7m) C (sg,...,8n)-

Let f: P — R. For any strictly increasing sequence, we define the positive, negative and total variation
of f on it:

n

PViggony) = S [fs) = fsic)] T
=1

NViso,.sm)(f) = Z[f(si)—f(si—l)] , (13)

=1
TVisgrs)(F) = D_|F(s0) = Flsi1)] -
1=1

These three numbers are non-negative. Then concatenating strictly increasing sequences adds their variations,

in other words, a strictly increasing sequence (sq, ..., Sm+n) (where m,n > 0) satisfies:
PWSQ,...,Sm+n)(f) = P‘/(so.,...,sm)(f) +P‘/(sm,...,sm+n)(f) )
N‘/(so,...,sm+n)(f) = N‘/(so,...,sm)(f) +J\f‘/v(sm,...,strn)(.f) ) (14)

T‘/(so,...,sm+n)(f) = T‘/(SO,...,sm)(f) +Tv(sm,.,..,sm+n)(f) .
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It follows (see Lemma 1 of [18]) that taking a sub-sequence of a strictly increasing sequence decreases its

variations:
if (ro,---y,rm) € (s0,---,8n)
then P‘/(7-0,...77'm)(f) < P‘/(SO,...,sn)(f) 5 (15)
N‘/(ro ..... rm)(f) < N‘/(so _____ s )(f) s
and T‘/(ro ..... rm)(f) < T‘/(SO _____ Sn)(f)

Let a,b € P with a < b. Consider the interval [a,b] = {z € P | a < x < b}. Let S(a,b) be the set of
strictly increasing sequences in P that start in a and end in b:

S(a,b) ={(s0,...,8n) | neEN, a=s9<--- <sp=0>} . (16)

Taking the supremum of variations (13) for all sequences in S(a,b), one obtains the positive, negative and
total variation of f on [a,b], written PV, 1) (f), NViq 4 (f) and TV]4 ) (f) respectively:

PVigp(f) = sup{PV(s, . s.)(f) | (50, 8n) € S(a, )},
NVigp)(f) = sup{NV(s, .s.) () | (50,---,8n) € S(a,0)} (17)
TVia)(f) = sup{TVisy,....s,)(f) | (50, 8n) € S(a,b)} .
Note that these three variations can be infinite; they are thus in the interval [0,+o00]. The identity x =
[]T — [z] gives for any (so,...,sn) € S(a,b):
PViggoom)(F) = NVige, sy (F) =Y (F(s0) = f(siz1)) = f(b) = f(a) ,
i=1
that is,
P‘/(so ..... sn)(f)+f(a) :N‘/(so ..... sn)(f)+f(b) : (18)
Taking the supremum over all (sg,...,sn) € S(a,b), we get
fora<b:  PViy(f)+ /(@) = NViy(f) + f(b) . (19)

Now the identity |z| = [z]T + [z]~ gives for any (so,...,sn) € S(a,b):

TV(SO ..... sn)(f) = PV(SD ..... sn)(f) + NV(SO ..... sn)(f) . (20)

Then (18) gives TV(y,, . s,)(f) = 2NV(g, . s (f) + f(b) — f(a), so by taking the supremum over all
(80,---,8n) € S(a,b), we get T'V|q 4)(f) = 2NV, 3 (f) + f(b) — f(a), and by (19) we get:

TViap)(f) = PVia,5)(f) + NVigp)(f) - (21)

NB. In [18] we incorrectly derived (21) from (20) by taking the suprema over all (sg,...,sn) € S(a,b), but a
supremum of sums does not necessarily coincide with the sum of suprema.

By (19), PV]q)(f) and NV, 4 (f) are either both finite or both infinite. We say that f is of bounded
variation on [a,b] (or briefly, f is BV(a,b]) if TV],)(f) is finite, in other words, PV[, 3 (f) and NV, (f)
are both finite. Then the terms of (19) are finite, so

fora<band f BV[ab:  PViay(H) — NViuy () = £0) — f(a) - (22)
The following (Lemma 2 of [18]) generalises a remark in Section 3.5 of [6]:

Lemma 1. Let P be poset, let a,c € P, where a < ¢ but ¢ does not cover a, and let f: P — R. Then

Pv[a,c](f) = illl)g )[P‘/[a,b](f) + P‘/[b,c](f)] s
N‘/[a,c](f) = illlyg [N‘/[a,b](f) + N‘/[b,c] (f)] s
T‘/[a,c] (f) = sup [T‘/[a,b] (f) + T‘/[b,c] (f)] .

a<b<c
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If P is a chain, then for every b € P such that a < b < ¢, we have

P‘/[a,c](f) = P‘/[a,b] (f) + P‘/[b,c](f) )
Nv[a,c] (f) = Nv[a,b] (f) + NV[b,c] (f) )
Tv[a,c] (f) = Tv[a,b] (f) + T‘/[b,c] (f) :

When P is not a chain, the second statement in the lemma is generally false.

Example 2. Let V = {0,1,2}2, and define f : P — R by f(2,0) = 1, f(0,2) = —1, and f(z,y) = 0 for
all (z,y) € V\{(2,0),(0,2)}. Only strictly increasing chains passing through (2,0) or (0,2) can have a non-
zero variation. Thus PV 0y (1,1)](f) = NV{(0,0),(1,1](f) = PV(1,1),2,2)(f) = NV[1,1),(2,2))(f) = 0, while
PV1(0,0),2,2)1(f) = NVi(0,0),2,2)1 () = 1.

Lemma 1 implies in particular that PV, ;) (f), NV} (f) and TV],;)(f) increase when the interval [a, ]
increases, in other words when a decreases and b increases. In the limiting case where a = b, S(a, a) contains
the unique sequence a = sq, and then trivially PV, 4(f) = NV|q 4)(f) = TV|4,4)(f) = 0. Thus (19,21,22) are
true for a < b, as well as Lemma 1 for a < b < ¢, including in the case of equality a = b or b = c.

We will say that f is of bounded variation on P (or briefly, f is BV) if sup{T'V[, (f) | a,b € P, a <b} <
oo; in other words, all PV|, (f) and NV, )(f) (a,b € P, a < b) are all bounded by some real M.

When P is bounded by L, T, we will write PV (f), NV (f) and T'V(f) for PV[; 1)(f), NV 71(f) and
TV] 1 1)(f) respectively. Then f is of bounded variation on P iff TV (f) < oo, that is, both PV (f) and NV'(f)
are finite. If P has finite height and f is bounded (in particular, if P is finite), then f will be of bounded
variation; when one of these two conditions is not satisfied, f can have unbounded variation:

Example 3. (a) Let P = P(Z), ordered by inclusion, and let f: P — {0,1} be defined by f(X) =1 if X
is a segment of odd length, and f(X) = 0 otherwise. Here f is bounded, but P has infinite height. Then f is
not of bounded variation, because for Yy = {0,...,t} (t =0,1,2,3,...), Y is increasing in t, and f(Yz) will
endlessly alternate between 1 and 0, so sup,en PV]y, v, (f) = subsen NV, v, (f) = oco.

(b) Let P ={L,T}U{an | n € N}, with the order relation given by L < an < T for all n € N; let
f: P — N be given by f(L) = f(T) = 0 and f(an) = n for n € N. Here P has finite height, but f is
unbounded. For n € N we have PV , 7)(f) = NV 4, 7)(f) =n, so PV(f) =NV (f) =00

Assume now that P has a least element 1. We define the positive, negative and total variation functions
pv[f], no[f], tv[f] : P — [0, o0] as follows:

Vo e P, polfl(z) = PViL o (f) » nolfl(@) = NV 4 (f)
and  to[f](x) = TV 4 (f) = PV o) (F) + NV g (F) -

Note that pv[f](L) = nv[f](L) = tv[f](L) = 0. Next, we define fp and fy, the positive and negative

increments of f, by

fr(z) = [f(1)

Vze P, _ (23)
In(@) = [f(D] +nolfl(x) .
We have then the following (see Proposition 4 of [18]):
Proposition 4. Let P be poset with least element 1, and let f: P — R. Then:
1. pv[f] and nv[f] are increasing.
2. Forz € P, pv[f](z) + f(L) = nv[f](z) + f(x); if f is BV[L,x], then
f(@) = f(L) + polfl(e) — no[f](z) = fp(z) — In(2) - (24)

3. [ is increasing iff nv[f] =0, iff for all x € P, f(x) = f(L) + pv[f](z).

4. f is decreasing iff pv[f] = 0, iff for all z € P, f(x) = f(L) — nv[f](z).

5. If f = g—h for ggh : P — R non-negative and increasing, then for all x € P we have pv[f](z) <
9(x) — g(L), nv[f](z) < h(z) — h(L), fp(z) < g(z) and fn(z) < h(z).
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NB. In [18], the equation (24) was given under the condition that f is BV (on P) instead of now BV[L,z],
and the second “iff” in items 3 and 4 was given under the condition that f is BV, which is now removed.
Indeed, the proof only requires that f has bounded variation on the interval [0, z] (not on P); now for z € P,
each of the four equalities nv[f](z) = 0, f(z) = f(L) + pv[f](z), pv[f](z) = 0, and f(z) = f(L) — nv[f](x)
given in items 3 and 4 implies that pv[f](z) and nv[f](z) cannot be both infinite, and then from (19) we
deduce that pv[f](z) and nv[f](x) are both finite, hence f is BV[L, x|, which is sufficient for the proof.
Combining items 1, 2 and 5, we deduce (Corollary 5 of [18]):

Corollary 5. Let P be poset with least element 1, and let f : P — R. Then f is of bounded variation iff
there exist g,h : P — R bounded, non-negative and increasing, such that f = g — h, and then the least such g
and h are fp and fn.

A similar result was given in [8] when P is a chain.

The principle of duality states that for a set P with a partial order relation <, the inverse relation >
is also a partial order, so every statement has a dual where one exchanges < with >, least element | with
greatest element T, etc. Here positive and negative variation are exchanged, that is, PV[a_’b](f) corresponds
to NV[bya](f) in the dual poset. Now, if P has a greatest element T, we obtain the dual positive and negative
variation functions pv*[f], nv*[f] : P — [0, 0o] given by

VeeP,  pu[fl(x) = NV, 7(f) and w”[fl(z) = PV, 71(f) -

They are decreasing, and pv*[f](T) = nv*[f](T) = 0. We have then the dual positive and negative increments
of f, .
o) = [f(D]" +p*fl(@) ,

Vz e P, _
N@ = [fM] +no*(fl@) -

(25)
Now, for f BV we have the dual of (24):

f@) = f(T) +po*[fl(2) — " [f](2) = fp(@) — fx (@) -

The dual of Corollary 5 is: let P have greatest element T; then f: P — R is BV iff f is the difference of two
bounded, non-negative and decreasing functions P — R. We illustrate such a decomposition in Figure 5.

In fact, given two bounded non-negative functions g, h : P — R, for some M > 0 we have 0 < g,h < M,
then the two functions ¢’ = M —h and b’ = M — g are bounded and non-negative, they satisfy 0 < ¢’,h’ < M;
moreover, g’ —h' = g — h; now g and h are increasing iff ¢’ and A’ are decreasing. Thus we can consider either
decomposition f =g—hor f =g —h'.

f=g-h g

N

.

Fig. 5: Left: a BV function f. We have f = g—h for g = f} and h = f}, cf. (25). Right: we show g and —h. When f de-
creases, g decreases while h remains constant; when f increases, —h increases (so h decreases) while g remains constant.
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Note that when P is bounded by L, T, every increasing or decreasing function f is bounded: for f
increasing, f(L) < f(z) < f(T), while for f decreasing, f(T) < f(z) < f(L1).

Let us briefly mention an application of bounded variation to signal processing. Rohwer and Wild [13]
considered functions Z — R and flat morphological operators on such functions, in particular those built from
the closing Uy and opening L, by a segment of length n + 1 (for n > 0); they showed that for any function

f +Z — R and any operator ¢ obtained by composing in any order some U, and Ly for n > 0, we have

TV(f) =TV (¥(f) + TV (f = ¥(f))

3 Function summation in numerical and multivalued posets

Here we summarise Section 4 of [18], but we also add some new material: first, counterexamples (Figure 7 and
Example 12), then an important property, Proposition 13, and finally, some technical results (Proposition 14
and Lemma 15). The most important results of this section are Theorem 8, Theorem 10, Corollary 11 and
Proposition 13.

We will define a summation of real-valued functions defined on a poset of real numbers or vectors with
real coordinates. This leads to a sum as in (7) when the poset is a discrete chain in R, and to an integral
as in (8) when the poset is an interval in R. When the poset is a product of chains, the summation will be
made along each coordinate of the vectors. Our results will be used in our new definition of flat morphological
operators and the analysis of their properties.

We assume that the poset P is a subset of R™ (m > 1), with componentwise ordering, cf. (1). The
standard case (assumed in most studies) is the one where we choose in R™ (resp., in Z") a bottom value L
and a top value T, with | < T, and take for P the interval [L, T] (resp., the discrete interval [L, T] N Z™).
Choosing L. = 0 = (0,...,0) makes formulas simpler, but we will not restrict ourselves to that choice. Then
we consider functions P — R.

In our theory, a central role is played by bounded, non-negative and decreasing functions. Note that if P
has a least element L, then a decreasing function f: P — R is bounded by f(L).

Consider a function f : P — R that is bounded, non-negative and decreasing. For a strictly increasing

sequence (sq,...,Sn) in P, define the summation

n

S(sgmsm) () = D F(si) (55 = 5i1) - (26)

=1

We illustrate in Figure 6 this construction for P being an interval in R.

IR A

P
L g £ 9 S

Fig, 6: The function f is bounded, non-negative and decreasing. The hatched area represents S,
increasing sequence (so,...,s6) with so = L and s¢ = T.

sg) (f) for a strictly

,,,,,
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Then, as we had for variations, see (14), concatenating strictly increasing sequences adds their summations,

in other words, a strictly increasing sequence (sq, ..., Sm+n) (where m,n > 0) satisfies:

S(so,...,sm+n)(f) = S(SO,...,sm)(f) + S(sm,.,.,sm+n)(f) : (27)

And as we had for variations, see (15), taking a sub-sequence of a strictly increasing sequence leads to a

smaller summation (see Lemma 9 of [18]):

if (ro,---y,rm) € (s0,---,8n)
then S(ro,_..,rm)(f) < S(So,---,sn)(f)-

Recall from (16) the set S(a,b) of strictly increasing sequences in P starting in a and ending in b (where
a,b € P and a < b). Again, let f: P — R be bounded, non-negative and decreasing. In the definition (26) of

S(s0,...,sn) (f), We associate to the interval [s;_1, s;] the term f(s;)(s; — s;—1); when P is a real interval, this

(28)

term is an approximation from below of the integral of f on that interval, so Sy, .. s,)(f) approximates the
integral of f from below, see Figure 6. Thus, for a,b € P with a < b, we define the summation of f over the

interval [a, b] as the supremum of summations over all sequences in S(a, b):

S[a,b](f) = Sup{s(so,.,.,sn)(f) | (307 ceey s") € S(CL, b)} . (29)

Note that this supremum sup is taken in R (or Z™), in other words, by taking componentwise the numerical
supremum. That is why we write sup instead of \/ for the supremum. It is easily seen that this summation
is non-negative and bounded: given M > 0 such that all z € P satisfy 0 < f(x) < M, we deduce from (26)
that 0 < S, 3 (f) < M(b— a). Similarly, the summation is increasing on the function f: if f(x) < g(x) for all
x € P, then Sj, 4 (f) < Sjq.)(9)-

For a = b, S(a,a) = {a} and S, ¢(f) = 0. When P is bounded by L, T, we will write S(f) for S, +)(f),
the summation of f over P. The following result (Proposition 10 of [18]) is the analogue of Lemma 1 for

summation instead of variation:

Proposition 6. Let f: P — R be bounded, non-negative and decreasing, and let a,c € P, where a < ¢ but ¢
does not cover a. Then

Sia,e)(f) = sup [Siap)(f) + Sp, ()] -

a<b<c
If P is a chain, then for every b € P such that a < b < ¢, we have

Sa,e)(f) = Sjap)(f) + Spp,q () -

The second equality is specific to chains, for instance it does not hold in R” and Z"* for m > 1, see Corollary 11
and the example in R? following it.

3.1 Additive summation

In order to extend summation to functions that are not necessarily non-negative and decreasing, we will
consider the summation of a linear combination of bounded, non-negative and decreasing functions. This will
lead to the condition that S is additive on P. We first have the following general property (Lemma 11 of [18]):

Lemma 7. Let f,g : P — R be bounded, non-negative and decreasing, let a,b € P with a < b, and take a
scalar A\ > 0. Then:

L. Af is bounded, non-negative and decreasing and Siq p)(Af) = AS[q ) (f)-

2. f+g is bounded, non-negative and decreasing and S p)(f + 9) < Siq,5(f) + S[a,p)(9)-

We say that S is additive on P if for all bounded, non-negative and decreasing functions f,¢g : P — R, and
all a,b € P with a < b, we have S|g4)(f +9) = S[q,5(f) +S[q4,5)(9)- This property is fundamental, as it allows
to extend the definition of the summation S|, p to functions of bounded variation.
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Indeed, we saw after Corollary 5 that, assuming that P is bounded, a function f: P — R is of bounded
variation iff there are two bounded, non-negative and decreasing functions g,h : P — R such that f =g — h.
We can then define the summation of f as Sjg 4)(f) = S[4,5(9) —S[q,5) (h). But this definition should not depend
on the choice of g and h. Suppose two decompositions f = g1 —hy = g2 — ha; then we have g1 + ho = g2 + hq,
and the additivity gives

Sa,8)(91) + Sjap)(h2) = S[a,p (91 + h2) = Sjap)(92 + h1) = S, (92) + Sjap)(h1)

hence Sjg 41(91) — Sja,p)(h1) = S[a,5)(92) — S[q,p)(h2). Then this extension of S|, ;) to functions of bounded
variation will be a linear operator (Theorem 12 of [18]):

Theorem 8. Let P be a bounded poset. Suppose that S is additive on P. For any f : P — R of bounded
variation, given a decomposition f = g — h for g,h : P — R bounded, non-negative and decreasing, define
S(a,5)(f) = S[a,p)(9) = Sa,p)(h). Then Siq ) (f) does not depend on the choice of g and h in the decomposition,
and S|, p) 48 a linear operator on the module of functions with bounded variation: for fi1, f2 : P — R of bounded
variation and A1, Ao € R,

Slap)(Af1 + A2f2) = M8 1) (f1) + A2S[a 4 (f2) -

A consequence of this result is that summation is increasing on functions of bounded variation. Let f and g
be two BV functions such that f > g. Then f = g+ h for some h > 0, and by definition (26,29) we have
S[a,b] (h) >0, so

Siap)(f) = Sjap) (9 + 1) = Sjap(9) + Sja,p)(h) = Spap)(9) -

In view of Theorem 8 and Corollary 5, we will require the poset P to be bounded, and the summation S
to be additive on P. We will describe later (see Figure 7 and Example 12) a family of posets included in Z2,
for which the summation is not additive. However, we have shown that summation is additive for a chain (a
totally ordered set) or a direct product of chains, for instance for the usual posets of real values or real-valued

vectors in an interval. We consider first a chain (see Proposition 13 and Corollary 14 of [18]):

Proposition 9. If P is a bounded chain, then S is additive on P. Given f: P — R of bounded variation:

L. If P is a finite chain, P = {to,...,tn} with to < .-+ < tn, then for 0 < u < v < n, Sy, 4,1(f) =
i JE) (i —ti1).

2. If P is a closed real interval, P = [L, T] C R, then for a,b € P with a <b, S[, y(f) = f: f(t)dt.

In the case of real functions, our definition of the summation of a function is very similar to that of the
Riemann integral. Now a real function is Riemann integrable iff it is continuous almost everywhere, that is,
the set of its discontinuities has Lebesgue measure zero. As a decreasing real function is continuous almost
everywhere (see Section 3.5 of [6]), it follows that any real function of bounded variation is continuous almost
everywhere, hence Riemann integrable. Note that the sum in item 1 can be considered as a discrete analogue
of the integral in item 2.

We will now consider the case where P is a product of chains, and we will see below that S does not
resemble the classical multi-dimensional real integral, nor the complex integral.

Let P = P; X --- X Pp, the cartesian product of posets Pi,...,Pn, with componentwise ordering,
see (1). If each P; is bounded by L;, T;, then P will be bounded by L, T, where L = (Ly,..., L) and
T=(T1,...,Tm). For each i = 1,...,m we define the i-th projection

mi i PLX oo X Py = Py (21,0 ,xm) &=z . (30)
Since each P; is included in R* for some k > 1, we can extend this definition of the projection 7; to linear

combinations of elements of P, hence to the summation of a function on a chain,

n

i (S(s0,..s5m) () = Zf(sj)(ﬂz‘(sj) —mi(sj-1))

j=1
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cf. (26), and finally to the summation over an interval, cf. (29). Given a = (a1, ...,am) € P, define the i-th
embedding through a:

T];l:Piﬁpl ><'~><Pm::v+—>(al,...,ai_l,x,ai_,_l,...,am) 5 (31)

in other words m;(n{'(z)) = « and 7;(n{(x)) = a;j for j # i. Now for f : P — R, we write fn{ rather than

f oni for their composition, in other words:

i PRz f(ni(x) = flat,...,ai—1,2,0i41,---,am) - (32)

We obtain then the following important result (see Proposition 15 and Corollary 16 of [18]):

Theorem 10. Let P = Py X --- X P, where each P; is a poset (i = 1,...,m), with the componentwise order
on P. Let f: P — R be bounded, non-negative and decreasing, and let a = (a1,...,am),b=(b1,...,bm) € P
with a <b. Then for each i =1,...,m, 7i(S[q5](f)) = Sja, ;) (f15"), with fni" given by (32).

Moreover, if each P; is bounded and S is additive on each P; (i =1,...,m), then S is additive on P, and
the identity m;(S[q 5 (f)) = S[a;,b,)(f1i") holds for any f: P — R of bounded variation.

Geometrically speaking, this result means that each projection 7;(S[, p(f)) is obtained by summing f along
the line segment parallel to the i-th axis of P, joining a = (a1,...,am) to (a1,...,a;—1,b;,ai41,-..,am). In
particular S[a,b](f) is completely determined by the restriction of f to the m lines through a parallel to the
axes.

We illustrate this result with two very simple examples. First, let P = {0,1}4, a = (0,0,0,1) and
b= (0,1,1,1); then, for any f: P = R, S, 4(f) = (0, f(0,1,0,1), f(0,0,1,1),0). Second, let P = {0, 1,2}°,
a=(0,0,0,1,1) and b = (0,1, 2,2,1); then, for any f: P —» R, S[a,b](f) = (21, 22, 23, 24, 25 ), where z1 = z5 =
0, 22 = £(0,1,0,1,1), 23 = £(0,0,1,1,1) + £(0,0,2,1,1), and z4 = £(0,0,0,2,1).

More generally, if each P; is a chain, from Proposition 9 we derive the following (Corollary 17 of [18]):

Corollary 11. Let P = Py x - - - X Pp,, where each P; is a bounded chain (i = 1,...,m), with the component-

wise order on P. Then S is additive on P. Let f : P — R be of bounded variation, and take a = (ay,...,am),

b=(b1,...,bm) € P with a <b, and set S, )(f) = (01,...,0m), that is, 0; = 7 (S|4 p)(f)) fori=1,...,m.

Then:

1. If P; is a finite chain, P; = {tg,...,tn} with tg < -+ < tn, then for a; =ty and b; =ty (0 <u < v < n),
Ti = Y p—ug1 SN (R) (th — th—1)-

2. If P; is a real interval, P = [L;, T;] CR, then o; = f;; fni(t)de.

Let us illustrate this in the case where m = 3. Let P = R3, with componentwise ordering. Let a = (a1, a2, a3)
and b = (by, bz, b3) two points of P, with a; < by, as < bz and az < b3. Then for a BV function f,

b1 b2 bs
S = ([ fazaar, [ faran)ar, [ farasnar)

For a < b < ¢ we will generally have Sj, (f) # Sja5(f) + Sp,¢(f), because

c1 by C1
T (S[a,c](f)) = /f(t, a2,a3) dt = /f(t, a2,a3) dt+/f(t,a2,a3)dt s
ay ay b1

while

b1 C1
71 (Spa) () + Sy () = / £t az, az) dt + / F(tbaba)dt
ai by
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and similarly for w2 and 73. We see thus that in Proposition 6, the second equality is specific to chains. We

have a similar result for P = Z3, here

by ba b3
S[a,b](f):( Z f(t,az2,a3) , Z f(a1,t,a3) , Z f(a17a27t)) :

t=a1+1 t=as+1 t=az+1

We give now a family of bounded posets included in ZQ, with componentwise ordering, on which § is not
additive; it includes several non-distributive lattices, which are not sublattices of Z2.

@ @

(2,0) 0,2)

(0.0

Fig. 7: (a) and (b): the two lattices Py and P of Example 12. (c) and (d): the values of f and g respectively, on the least
element (0,0) and its 3 covers (2,0), (1,1) and (0,2); f and g have value 0 on all other elements of the lattice.

Example 12. Let P be a finite poset included in ZQ, with componentwise ordering, cf. (1), with least element

L =(0,0) and greatest element T = (2,2), such that the elements of P covering (0,0) are (2,0), (1,1) and

(0,2), all other elements of P being above one of these three. Note that that the infimum in P of (1,1) and

(0,2) is (0,0), while it is (0,1) in Z2. Thus, if P is a lattice, then its infimum does not coincide with the

numerical infimum in Z2, so P is not a sublattice of Z2. We give two ezamples of such lattices:

- Py ={L =(0,0),(2,0),(1,1),(0,2),(2,2) = T}, see Figure 7 (a). Here Py is a lattice isomorphic to
the “diamond” lattice (see My in Chapter 1 of [1] and Ms in Chapter 2 of [7]); it is modular but not
distributive.

- P ={1=(0,0),(2,0),(1,1),(0,2),(2,1),(1,2),(2,2) = T}, see Figure 7 (b). Here P; is the subset of
72 generated by all non-empty suprema of (0,0), (2,0), (1,1) and (0,2), in other words, the sup-closed
subset of {0, 1,2}2 generated by them; it is a lattice, which is not modular, because it has the sublattice
{(0,0), (2,0),(0,2),(1,2),(2,2)} isomorphic to the “pentagon” lattice (see N5 in Chapter 1 of [1] and in
Chapter 2 of [7]).

For any such poset P, define the two bounded, non-negative and decreasing functions f,g: P — R as follows,
see Figure 7 (c,d): for any x € P,

0 otherwise ;

@)= {1 fo=(0,0), (2.0), or (0,2) ,

o) = {2 if = (0,0) or (1,1) ,

0 otherwise .

For a strictly increasing chain starting in L = (0,0) and ending in T = (2,2), the summation of f on this
chain according to (26) either is equal to 0, or has an element x > (0,0) with f(x) > 0, namely z = (2,0) or

(0,2), and it is then the unique non-zero contribution to the sum. Thus

S(f) =sup{f(2,0)-(2,0), £(0,2) - (0,2)} =sup{1-(2,0),1-(0,2)} = (2,2) .

(Here f(2,0) and f(0,2) are scalars while (2,0) and (0,2) are vectors, and the dot designates the scalar
multiplication of a scalar by a vector.) Similarly, for the summation of g, a non-zero value on x > (0,0) arises
only for x = (1,1), so

S(g)=9(1,1)-(1,1)=2-(1,1)=(2,2) .
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For the summation of f + g, a non-zero value on x > (0,0) arises only for z = (2,0), (1,1), or (0,2), so

S(f +9) =sup{(f(2) +g(2)) -z |z = (2,0), (1,1), (0,2)}
=sup{1-(2,0),2-(1,1),1-(0,2)} = (2,2) .

Therefore S(f + g) = (2,2) < (4,4) = S(f) + S(g), and S is not additive on P.

Given a product V of bounded chains, S is additive on V', but S will not necessarily be additive on a sup-closed
subset of V', as we saw with the above example P;. However, S will be additive on an inf-closed subset of V.
Recall from Subsection 1.3 the two corresponding notions of a closure map and a closure range. When P is a

complete lattice (for instance, a product of complete chains), a closure range is an inf-closed set.

Proposition 13. Let P be a poset bounded by 1, T, let M be a closure range on P such that L € M, and
let p be the corresponding closure map on P. For any f: M — R, define f, : P — R by fo(x) = f(p(z)).
Then f is the restriction of f, to M, and for any a,b € M such that a <b we have PV}, y(fo) = PV]q)(f)
and NV, y(fo) = NViap)(f). In particular, if f is of bounded variation, then f, is of bounded variation.

If S is additive on P, then it is additive on M, and for f : M — R of bounded variation, S[a,b](f) =

Sap) (f)-

Proof. Since M is a closure range, T € M. Let f : M — R. For x € M, p(x) = z, so fo(z) = f(e(x)) =
f(z), hence f is the restriction of f, to M. Let a,b € M such that a < b. We consider the set S(a,b) of
strictly increasing sequences in P that start in a and end in b, that is, (sg,...,sn) with a = s9 < -+ <
sn = b; write S(a,b)ps for its restriction to M, that is, sequences with sg,...,sn € M. For (sg,...,8n) €
S(a,b)ar, we have fo(si) = f(si) for i = 0,...,mn, so (13) gives PViy o )(f) = PV(,. . s.)(fe) and
NViso,.osm) () = NVigq.....s,) (o). As S(a,b)ar € S(a, b), the supremum on sequences in S(a, b) s is smaller
than the one on sequences in S(a, b), so (17) gives PV|, 3 (f) < PV|q4)(fy) and NV, () < NV, 3 (fe). Now
for (sg,...,sn) € S(a,b), we have ¢(sg),...,o(sn) € M and f(e(s;)) = fo(s;) for ¢ = 0,...,n. Whenever
©(s;) = @(si—1), we have f(p(si)) — f(@(si—1)) = 0 and f(@(si+1)) = fl@(si)) = f(o(sit1)) — f(@(si-1)), so
we can eliminate ¢(s;) from the sequence without changing the results in the formulas of (13). Thus we obtain
from (¢(s0),--.,¢(sn)) a reduced sequence (to,...,tm) € S(a,b)pr with PViy, . s )(fo) = PVig, 1,0 (f)
and NV(g, . s.)(fo) = NVigo, 1, (f). As each (so,...,sn) € S(a,b) gives such a (to,...,tm) € S(a,b)n,
(17) gives PV(s, . s,)(fo) < PV]q ) (f), hence PV, 1 (fp) < PV]q p)(f), and in the same way NV|, (fp) <
NVi4,5(f). The equality follows from the double inequality.

For the summation, we suppose first that f is bounded, non-negative and decreasing. For z,y € P with
© < y, we have p(x) < @(y), hence f(z) = f(p(x)) > F(()) = fo(y), 50 f, is decreasing. As f, takes
values of f, it is bounded and non-negative.

For (sg,...,sn) € S(a,b)p, we have (sg,...,sn) € S(a,b), and for each s; (i = 0,...,n), we have
fo(si) = f(si); hence Siyy s )(f) = S(sg,....s0)(fio)- As S(a,b)p € S(a,b), we deduce from (29) that
Sia,p)(f) < Spa,p(fio)- Consider now a sequence (so,...,sn) € S(a,b), but not in S(a,b)ss. Let k be the
greatest ¢ such that s; ¢ M; as so = a and sp = b, both in M, we have 0 < k < n; since si41 € M, we have
sk < p(sk) < spq1. First case:r if o(sg) = spy1, then fo(si) = f(p(sk)) = f(sk+1) = fo(skr1), 50

Jo(si)(sk = sk—1) + fo(sk41) (Spg1 — k) =
Jo(8k41) (5% = sk—1) + fo(sky1)(Sk41 — 5k) = fo(Skt1)(Skg1 — Sk—1) -

Then (26) gives 8(507-~~,Sn)(f‘1”) = S(SO,--wsk—l,Sk+17~-~»sn)
summation equal. Second case: if p(sg) 7# Sgt1, then s < p(sg) < spy1 and as f is decreasing, f,(¢(s)) =

fo(sk) = f(p(sk)) = f(skt1) = fo(sk41), s0
fo(si) (s — sp—1) + fo(sk1)(sp41 — sk) =
fo(sk)(sk — sk—1) + fo(sk+1)(0(sk) — sk) + fo(sk+1) (k41 — ©(sk)) <
fo(e(sk))(sk = sk—1) + fo(@(sk))(0(sk) = sk) + fo(sk41)(Sk+1 — @(sk)) =
fo(@(si))(@(sk) = sk—1) + fo(sk+1)(sk+1 — @(sk)) -

(fe): we remove sy, from the sequence, keeping the

+1
+1
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Then (26) gives Ss,,....5,)(fo) < S(so,.isn1,0(51),5k11s5n) (fio): In the sequence, we replace si by ¢(sg),
which increases the summation. In both cases we have reduced the number of terms of the sequence which
do not belong to M, with the summation getting greater or equal. We repeat this modification until we get
a reduced sequence (to,...,tm) € S(a,b)ns such that iy, . 5. (fo) < Spg,....tm)(fo) = Sitg,... 1) () We
deduce then from (29) that S(y, . s.)(fe) < Sy (f), hence Sy, ) (fo) < Spqp)(f). From both inequalities,
the equality Siq 4)(fo) = S[q,p)(f) follows.

Now let f,g : M — R be both bounded, non-negative and decreasing; then f 4+ g is bounded, non-
negative and decreasing. For z € P, (f + g)p(z) = (f + )(0(2)) = [(p(x)) + 9(0(2)) = fi (&) + gp(), thus
(f +9)¢ = fo + go. By the above, we have Sj, 4 (f) = Sia,1)(f): S[a,p)(9) = Sjap(9e), and Sp, 4 (f + g) =
Siap) (f + 9)¢) = Sjap(fo + gp). If S is additive on P, then Sj, ) (fo + 9¢) = Sjap)(fe) + Sa,p)(9¢)
(because f, and g, are bounded, non-negative and decreasing). We get then Sjg 4 (f +9) = Sja,0)((f +9)p) =
Slap)(fo + 9¢) = Sjap) (fe) + Sjap) (9¢) = Sja b (f) + S(a,p)(9), hence S is additive on M.

Let now f : M — R be of bounded variation. By the dual form of Corollary 5, there are two bounded,
non-negative and decreasing functions g,h : M — R such that f = g — h. By the above, g, and hy are
bounded, non-negative and decreasing, Sjq4)(9¢) = S[q,p(9) and Spy ) (he) = Sjap)(h). Now for z € P,
Fo(@) = F($(@)) = (9 — W)(@(@) = 9(p(@)) — hp(@)) = go(@) — ho(w), 50 fo = go — hp3 by the dual form
of Corollary 5, f, is of bounded variation (but this follows also from the equality of the positive and negative
variations, see above). By definition, Sy, 3(f) = S[a,](9) — S[a,p) () and Sjg 41 (fo) = Sja,p](9e) — Sja,p) (he);
as Sq,1)(9¢) = Sa,p)(9) and Sy, p)(he) = Sja,p)(h), we deduce that S, p)(f) = Sa,p)(f)- O

A particular case arises when P is a complete lattice and M is both sup-closed and inf-closed, in other words
it is a complete sublattice of P. This implies that the summation is additive on any complete sublattice of a
closed interval in R"" or Z™.

We illustrate this result with a simple example. Let L, T € R with L < T, and let P = [L, T], ordered
numerically. Let M be a finite chain in P, bounded by L, T, M = {1l =tg,...,t, = T}; then M is a closure
range on P, the corresponding closure map ¢ is defined by ¢(tg) = to and p(x) = t; for t;—1 < z < i,
i=1,...,k. For amap f: M — R, f, will be the step function with f,(z) = f(¢;) for t;_1 < x < ¢;,
i =1,...,k Then fj fo(zx)dz = S(fy) = S(f) = Zle f(t:)(¢; — ti—1). The integral of a step function
reduces to the sum of products of the width and height of steps.

The above result will be useful in our study of flat operators, when we will consider the restriction of
images values to a complete sublattice of the original lattice of values: then the definitions of such an operator

for both lattices will coincide.

3.2 Further properties

We end with two technical results that will be used in our analysis of the properties of flat operators.

The following proposition (implicit in [18]) will imply that for an increasing operator on binary images,
given image intensities forming a complete sublattice of the interval [L, T] in R™ or Z™, flat extension by
threshold summation leads to the same result as flat extension by threshold stacking.

Proposition 14. Let P be bounded by L, T. For any decreasing function f: P — {0,1},
L+8(f) =supfz e P | fz) =1}, (33)
where we set sup® = L on the right side of the equation.

Proof. Let (so,...,sn) € S(L, T). If f(s;) =0 for each i = 1,...,n, then S(y, . 5. )(f) = 0. If there is some
¢ =1,...,n such that f(s;) = 1, let u be the greatest such i; as f is decreasing, f(s;) = 1 for ¢ < uw and
f(si) =0 for i > u, so we get S(s,,... 5.y (f) = D i1 (5i — 5i—1) = su — 80 = su — L, where f(su) = 1.

If f(z) =0 for all z € P, then sup{z € P | f(z) = 1} =supf = L; now for every (sg,...,sn) € S(L,T),
S(s0,....s,)(f) = 0, hence S(f) = 0. Therefore (33) holds in this case.
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If f(z) =1 for all z € P, then sup{z € P | f(z) = 1} = T; now for every (sg,...,sn) € S(L,T),
S(sosersn)(f) =sn —L =T — 1, hence S(f) = T — L. Therefore (33) holds in this case.

Suppose finally that there are z,y € P with f(z) = 0 and f(y) = 1, in other words f(L) = 1 and
f(T) =0. For (so,...,sn) € S(L, T), we have Sy, . s,)(f) = su — L, where u is the greatest i € {1,...,n}
with f(s;) = 1. Conversely, take any x € P with f(z) = 1;if z = L, then (L, T) € S(L, T) and S| 1)(f) =
0 = z — L; on the other hand if z # L, then L <2 < T, (L,z,T) € S(L,T) and S| , 1)(f) =z — L.
Therefore the set of all ¢y, ,)(f) for (so,...,sn) € S(L, T) coincides with the set of all z — L for x € P
with f(z) = 1. Taking the supremum of both sets, we get

S(fy=sup{z—L|zeP, f(x)=1}=sup{z e P| f(x)=1}—L |
from which we obtain (33). O

Finally, we will need the following slight generalisation of Lemma 1 and Proposition 6:

Lemma 15. Let the poset P have an element b which is comparable to every element of P: for all x € P,

xr=>borx<borx>b. Then for any a,c € P such that a < b < c:

—  Buery function f : P — R satisfies PV]q o (f) = PV]ap)(f) + PVjp.(f), and similarly for NV and T'V.

—  Ewvery bounded, non-negative and decreasing function f : P — R satisfies Sjq o(f) = Sia,5)(f) + Spp,e) (f);
if P is bounded, every BV function f: P — R satisfies that equality.

The proof uses the same argument as those of Lemma 1 and Proposition 6 given in Lemma 2 and Proposition 10
of [18]: given a strictly increasing sequence in S(a, c), inserting b inside it (if b does not belong to it) gives
a strictly increasing sequence that is larger, and this can only increase the function variation by (15) and
summation by (28); then applying (14) for the variation leads to the inequality PV}, (f) < PV, (f) +
PVpy ¢ (f), and similarly for NV and 7'V, while (27) for the summation will give Sy, ¢)(f) < S(a,5)(f)+S),¢(f)
(for f bounded, non-negative and decreasing). The equality follows then from Lemma 1 and Proposition 6.

For f BV, we have f = g — h for g, h bounded, non-negative and decreasing, with S, .(9) = S[4,)(9) +
Siv,e(9) and Sjy g (h) = Spa p)(h) + Spp ¢ (h), s0

Sia,d(F) = S(a,)(9) = Sia,q (M) = (Sja,p)(9) + Sip,c(9)) = (Sta,p)(B) + Spp.ei (R))
= (Sa,0)(9) = Sja,p)(B) + (S, (9) = S, (1)) = Siap)(f) + S, (f) -

4 Decomposition of integer-valued functions

We will now consider the decomposition of an integer-valued function of bounded variation into a sum and
difference of increasing binary functions. In other words, for f : P — Z of bounded variation, we will obtain
a decomposition f = Z?:l Aifi, where for each ¢ = 1,...,n, f; is an increasing function P — {0,1} and
A; = £1. Morever, when f is P — {0,1}, we have f1 > --- > fn and \; = (71)1'—1’ we get an alternating
sum and difference of a decreasing sequence of increasing binary functions, cf. (10).

We will use such a decomposition to compute the flat extension of a non-increasing operator on binary im-
ages: a linear combination of increasing operators on binary images will extend to the same linear combination
of their flat extensions. This will be possible when the operator is of uniform bounded variation.

We start by decomposing a function P — {0,...,n} (where n > 0) into a sum of binary functions, using
the method of threshold summation of [5, 24], as in (9). For f : P — N and t € N, let §(f) = xX¢(f) be the
characteristic function (6) of the threshold set (2) X¢(f):

&(f):Pﬁ{O,l}:xH{l i flo) 2t (34)

0 if f(z) <t .

The following was obtained in Lemma 6 of [18] (except the “if” part of the last sentence, which is straightfor-
ward):
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Lemma 16. Let P be poset, let f : P — {0,...,n} (n € N), and let f1,...,fn : P — {0,1}. Then the
following two statements are equivalent:

L fiz-->fyand f=1"1fi

2. fi=&(f) fori=1,...,n.

Furthermore, f is increasing if and only if £;(f) is increasing for each i =1,...,n.

Let the poset P have least element L. Recall from (23) the positive increment fp and negative increment fy

of a function f:

~

fr@) = [P +polfi) = [FWO]T + PV
fv@ = [FW)] +mlfl@) = [f(L)] +NViLg(f) -

Combining Proposition 4 with Lemma 16, we get the following:

Vz e P,

Proposition 17. Let P be poset with least element 1, and let f : P — Z be of bounded variation. Let
m = maxzecp fp(z) and n = max,cp fn(z). Then there are m+n increasing functions gi,...,gm,h1,...,hn :
P — {0,1} such that g1 > - > gm, h1 > --- > hp ‘mdf:Z?l19i_Z?:1hj-

Proof. Here fp and fy are bounded functions P — N, hence they reach a maximum, respectively m and
n, both in N. By Proposition 4, fp and fy are increasing and f = fp — fn, cf. (24). Taking g; = &;(fp)
(t=1,...,m)and h; = &;(fn) ( =1,...,n), the result follows by Lemma 16. a

Let us now consider binary functions. For a function f : P — {0,1}, we have f(1) >0, so [f(J_)]+ = f(1)
and [f(L)] = 0. Thus (23) becomes here:

fr = f(L)+polf]
In = nolf] .

and (35)

Define
fr=fp+fn=/f(L)+t[f] . (36)
For f: P — {0,1}, define the function I(f) : P — {0,1} by

VeeP,  I(f)(x) =max{f(y) |y € P, y <z} .

Then I(f) is the least increasing function g : P — {0, 1} such that g > f. Note that since I(f) > f, and both
f and I(f) are P — {0,1}, I(f) — f will be a function P — {0,1}.

In Theorem 8 of [18] we obtained the following important result:

Theorem 18. Let P be poset with least element L, and let f : P — {0,1} be of bounded variation, with
maxzcp fr(z) =v > 0. Then there are v increasing functions fi,..., fo : P(E) — {0,1} such that f1 > fa >
e > f'u > O’

F=f—fatt(=D""fo, (37)
and for each s=1,...,v,
fo = &alfr) = | St UR) s s odd (38)
€s (fn) if s is even ;
moreover,
s—1
o= 1((-D7 0T (39)
1=1

Furthermore, given another decomposition f = g1 — g + -+ + (=1)“ " Lgw, with g1,..., gw : P(E) — {0,1}
increasing and g1 > g2 > ... > gw, then w > v and gs > fs for s = 1,...,v. Conversely, any function
f: P — {0,1} having a decomposition of the form (37) for increasing f1,..., fo : P(E) — {0,1} is of bounded
variation.
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The first elements of the sequence (38) are:

h = &alfr) = &(fpe),

fo = &(fr) = &(fn),

f3 = &fr) = &(fp),

fo = &(fr) = &(fn)
Then the first elements of the sequence (39) are:

fl = [(f) P

oo = I(h—f),

fs = Ifa=fr+f),

fa = I(fs—fo+fi-1Ff) .

Intuitively, we take f1 = I(f) = &1(fr), then fi1 — f has a smaller variation than f, and we get by recurrence
the decomposition fi — f = fo — f3 + -+ + (—1)" "2 f,, with each f; as in (39).
Let us complement the last sentence of the above theorem (this result is new):

Proposition 19. Let P be poset with least element 1, and let the function f : P — Z have a decomposition
of the form (387), that is, Z?Zl(—l)i_lfi for v increasing functions fi,...,fv : P(E) = {0,1} such that
fi>foe>->fo>0. Then f is P — {0,1}, of bounded variation, and f < f1.

Proof. Let us show by induction on v that fis P — {0,1} and f < f1. For v =1, f = f; and the result holds.
Suppose now that v > 1 and that the result holds for v — 1. Let g = Z?ZQ(fl)ifi; by induction hypothesis, g
is P — {0,1} and g < fo; since fo < f1, we have g < fi. Thus, for all © € P, we have 0 < g(z) < fi(z) < 1,
from which we deduce that 0 < f1(z) — g(z) < fi(z) < 1. As f = f1 — g, we get thus 0 < f(z) < fi(z) <1,

and the result follows for v. Now, f is BV by the last sentence of Theorem 18. O

5 Generalised flat morphological operators

The three preceding sections provide a mathematical framework for our generalised theory of flat morphological
operators. Our new definition of the flat extension of an operator on binary images deals correctly with the
case where the operator is not increasing. Quite generally, we will consider not only operators P(E) — P(E)
(transforming binary images), but also operators P(E) — K% for a finite interval K C Z; this occurs for
instance when one makes measurements on binary images, see for example the morphological Laplacian (12).

In the case where image intensities are in a closed interval in R™ or Z", for any increasing operator
P(E) — P(FE), the new definition of its flat extension will coincide with the classical one [15, 16]. For
operators that are not increasing, the properties of the flat extension given in [15, 16] for the increasing case
will not always be satisfied.

5.1 Basic definitions and examples

We specify our framework for images. Let E be the space of points. Image values will be reals or integers
(for grey-level images), or vectors with real or integer coordinates (for multivalued images). Formally, let
m > 1, and for ¢ = 1,...,m, let either C; = R or C; = u;Z for some real u; > 0 (usually u; = 1); now let
U=C1 X+ x Cnp, with componentwise or marginal ordering (1). Note that there are other possible orders
on U, including total orders (such as the lexicographic order), but the componentwise order is mathematically
easier to deal with, it allowed us to obtain a componentwise decomposition of the summation, see Theorem 10,
which will be applied to flat operators, see Proposition 30. Then all images, those given as input to flat
operators, as well as those obtained as the output of operators, will have their values in U. The set U has two
important properties:
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— It is a conditionally complete lattice for the componentwise order: every subset of U having an upper
bound (resp., a lower bound) will have a supremum (resp., infimum). In particular, every closed interval
[a,b] C U will be a complete lattice where the supremum and infimum operations are the componentwise
numerical sup and inf operations.

— It is a module: it has the operations of addition and subtraction, with neutral 0 = (0,...,0), and of scalar
multiplication with scalars in Z. Then for any bounded, non-negative and decreasing function f: U — Z
and any strictly increasing sequence (so,...,sn) in U, the summation Sy, ,)(f) will belong to U.

This implies that for any interval [a,b] C U (a < b) and for any bounded, non-negative and decreasing function

f:]a,b] — Z, the summation S|, )(f) will be a supremum of elements of U, bounded by (b — a) f(a), hence

it will belong to U.

In order to exclude infinite values in our summations, all input images will have bounded values, so we
choose two bounds L, T € U, with L < T, and consider the interval [L,T] ={v e U | L <v < T}. Now
1l=(Ly,...;1n)and T =(T1,...,Tn), so

[L,T]=[L1, Ta] x -+ X [Lm, Tn]

where [L;, T;]={veC;| L; <v<T;} (i=1,1,...,m). Note that we do not necessarily choose L =0 =

(0,...,0); indeed, some modalities use a range of intensities that can include negative values, for instance,

CT images have values in Hounsfield units, which correspond to the radiodensity of the objects. Since each

[L;, T;] is a complete chain, [L, T] is a completely distributive complete lattice [16].

We will apply flat operators to images E — V, where V is a subset of the interval [ L, T] having | and T
as least and greatest elements: {1, T} CV C [L, T]. Then the output of flat operators will be images E — U
(not necessarily E — V). We have some flexibility in the choice of the set V' of image values. We make the
following two requirements:

A. The summation S must be additive on V' (we saw in Example 12 that this does not hold for some bounded
posets in Z""). This is necessary in order to define the summation of any BV function, see Theorem 8.
It also implies that given a decomposition of an operator on binary images as a linear combination of
operators on binary images, we obtain the same decomposition with the flat extensions, see (10,11).

B. The set V must be closed under non-empty componentwise numerical supremum. By Proposition 20
below, this will guarantee that for increasing operators on binary images, the new definition of the flat
extension to images E — V will coincide with the classical one in [16].

We give here two cases where both requirements are satisfied:

1. The standard case, where V. =[L, T]. Here V. =V) x --- x Vi for V; = [L;, T;] (¢ =1,...,n). Hence V is
a product of chains, so the summation will be additive on [L, T] by Corollary 11.

2. The sub-standard case, where V is a complete sublattice of [L, T], in other words it is closed under the
componentwise numerical supremum and infimum operations. Then V is a closure range on [ L, T], and the
summation is additive on [L, T|] (which is the standard case, item 1), so by Proposition 13, the summation
will be additive on V.

We recall from Sections 2 and 3 the convention that for a function f defined on V, when we consider the

variation and the summation of f over the whole of V, we can omit the subscript [L, T] in the formulas,

in other words: PV, 11(f), NV[L 1)(f), TV|L 11(f) and S T)(f) can be abbreviated into PV'(f), NV (f),

TV (f) and S(f).

We introduce here a new convention. Throughout Sections 2 and 3, there was no ambiguity in the notation
TViap)(f) and S, p)(f) about the variable over which we measure the variation or make the summation, since
we assumed that f is a function of a single variable. Similarly, for a real function of one variable, we can write
f: f for f: f(z) dz. Now we will encounter functions of several variables, and we will have to specify over
which variable we consider the variation or summation of the function. Similarly, for a real function of three
variables, f: f(z,y, z) dy indicates that the integration is made on the second variable y. Given an expression
W in several variables, a variable x appearing in W and a poset P, we will write “W | x € P” to specify that
the variation or summation of W is over the variable  ranging over P; in other words TV, y (W |z e P)
and Sp, (W | € P) designate the total variation T'V[, ;(f) and summation Sj, ;)(f) for the function
f:PNnja,b] > R:z— W.
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Recall from the Introduction the characteristic function xX of a set X € P(E), cf. (6); then for an
operator ¢ : P(E) — P(E), we have the operator x¢ : P(E) — {0,1}F : X — yu(X). Given a function
F:E — V, for each v € V we have the threshold set X, (F'), cf. (2); this set decreases when v increases.

Now with our new convention, the three formulas (7,8,9) for the flat extension by threshold summation
will unify into

BT (F)(p) = L+ S(bXe(F)(p) [ tET) .

Here we summed over the variable ¢ an expression depending also on the function F' and the point p € E.

More generally, we can express the flat extension wv of an increasing binary image transformation v :
P(E) — P(FE), see (3,4), in terms of a summation. The following result generalises the threshold decomposition
method (9) introduced in [5, 24]:

Proposition 20. Let V C [L, T]. Given an increasing operator ¢ : P(E) — P(E), an image F : E =V and
a point p € E,
L+S(xvXo(F)(p) |ve V) =sup{v eV |peyp(Xo(F)} ,

where we set sup@® = L on the right side of the equation. If V is closed under componentwise numerical

supremum (it is then a complete lattice), we get

VY (F)(p) = L+ S(x(Xo(F)(p) v € V)

where 1/)V is the flat extension of ¢ to VE.

Proof. The set Xy(F) decreases when v increases, and the operator v is increasing; hence the set ¥(Xy(F))
also decreases when v increases, so for any p € E, the function V' — {0,1} : v — x9(Xo (F))(p) is decreasing.
We apply Proposition 14, so (33) gives:

L+SxXo(F)(p) |veV) = supf{veV | xy(Xe(F))(p) =1}
sup{v e V ’p € p(Xo(F))} .

If V is closed under componentwise numerical supremum, then the latter coincides with the lattice-theoretical

supremum operation in V', so
L+ SHxXe(F)(p) [veV)=\/{veV|peypXu(F)} ,

which gives 1" (F)(p) by (4). O

This result can be taken as the basis for the definition of the flat extension of any operator on P(E). But
our theory requires first to distinguish two types of operators in image processing. On the one hand there
are operators such as the opening, closing, median filtering and Gaussian smoothing, which map an image in
VE to another image in VF that is supposed to show the same objects; we call such an operator vE L yF
an image transformation. On the other hand, there are operators like the gradient or the Laplacian, which
are not intended to produce viewable images, and indeed do not necessarily preserve the interval V of values,
for instance, they can generate negative values from positive grey-levels; we call such an operator an image
measurement.

Let us formalise this distinction in the case of binary images. A binary image transformation is a map
P(E) — P(FE); for instance, the dilation, erosion, opening and closing by a structuring element. A binary image
measurement is a map P(E) — K¥ for a finite interval K C Z; for instance, the morphological Laplacian
(12). Obviously, every binary image transformation ¢ corresponds to the binary image measurement x, with
K ={0,1}.

Given a binary image measurement y : P(F) — K¥ | we define the no-shift flat extension pfv

of u by
setting for any image F': E — V and point p € E:

1V (F)(p) = S(u(Xo(F)(p) [ ve V), (40)
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provided that the summation is well-defined, that is, the summed function v — u(Xy(F))(p) is of bounded
variation: TV (u(Xv (F))(p) ’ v € V) < oo. This question will be analysed in the next subsection. Note that
if V' has finite height, in particular if V is finite, then this function will indeed be of bounded variation, see
Proposition 23 below. On the other hand, when V is an interval in R™, this will not necessarily be the case,
see Example 25 below.

Since the summation on V' is additive (requirement A), the no-shift flat extension will be linear on the

operator p (see Theorem 8): for two scalars A1, A2 and two binary image measurements puq, u2,
-V -V -V
(Atp1 + Xop2) = Aipy A+ Aepg

Moreover, for F : E — V, =" (F) will have bounded values (in U). As min K < p(Xo(F))(p) < max K for
all v € V, S(u(Xu(F))(p) | v € V) will be bounded below by S(min K | v € V) = (T — L) min K and above
by S(maxK ’ vE V) = (T — L)max K, that is,

(T—LminK <~ V(F)(p) < (T — L)max K . (41)

Given a binary image transformation ¢ : P(E) — P(FE), we define the shifted flat extension TV of 1 by
setting for any image F': E — V and point p € E:

VTV (F) () = L+ ()" (F)(p) = L+ S(x¢(Xe(F))(p) [0 € V) | (42)

again provided that the summation is well-defined. Assuming V' to be closed under componentwise numerical
supremum (requirement B), for any increasing operator i, this definition (42) will by Proposition 20 be

equivalent to the usual definition (3,4). Without requirement B, this is not true:

Example 21. Let U = Z? and V = {(0,0),(1,0),(0,1),(2,2)}; here L = (0,0) and T = (2,2), and V 1is
a complete lattice with supremum \/{(1,0),(0,1)} = (1,0) v (0,1) = (2,2), distinct from the componentwise
numerical supremum sup{(LO),(OJ)}: (1,1). Let 0 € A C E, and let F : E — V with F(p) = (1,0)
forp € A and F(p) = (0,1) for p € E\ A. We have X(0,0)(F) = E, X(1,0)(F) = A, X(0,1)(F) = E'\ 4,
and X(g,9)(F) = 0. Take an extensive dilation § on P(E), so 6(E) = E (we have 6(0) = 0 anyway). Then
X0y (F)) = B, 6100 (F)) = 5(A), 6(Xq1(F) = 6(E\ A), and §(Xa)(F)) = 0. Now, for p €
S(A)NS(E\ A), (4) gives §¥ (F)(p) = \V{(1,0),(0,1)} = (2,2), while

S(xI(Xu(F)(p) [ v € V) =sup{1-[(1,0) = (0,0)] +0-[(2,2) - (1,0)],
1 [(07 1) - (070)] +0- [(272) - (07 1)]} = sup{(LO), (07 1)}: (17 1) >

hence (42) will give 5TV (F)(p) = (1,1) # 6V (F)(p).
Since the measurement x1 has K = {0,1}, here (41) becomes
0< () EP) ST L,

hence (42) gives
L<yo™V () <T . (43)

Thus " is an operator VF — [L, T]¥. In the standard case V = [L, T], we get 7V (F) € VE. This holds
also when 1 increasing, since ¢V (F) = ¢V (F), where vV (F) € VF by [16]. On the other hand, this is not

necessarily true for a non-increasing operator in the non-standard case:

Example 22. Let U = Z* and V = {(0,0),(2,1),(2,3),(4,4)}; here L = (0,0) and T = (4,4). As V is a
chain, it is closed under componentwise numerical supremum, and S is additive on V. Let ) C A C E, and let
F:E—V with F(p) = (2,3) forp € A and F(p) = (2,1) for p € E\ A. We have X (g 0)(F) = X2,1)(F) = E,
X(2,3)(F) = A, and X4 4)(F) = 0. Take an extensive dilation & and an anti-extensive erosion € on P(E), so
5(E) = E and £(0) = 0 (we have 6(0) = 0 and e(E) = E anyway). Consider the non-increasing operator on
P(E) given by their difference, d\e : X = 6(X)\e(X). Then (6\&)(X(0,0)(F)) = (6\e)(X(2,1)(F)) = E\E = 0,
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(6\ e)(X(2,3)(F)) = 6(A) \ e(A) and (5 \ €)(X(4,4)(F)) = (7)\(7) = 0. Thus for p € §5(A) \ €(A) we have

X0\ &) Xo(F))(p) =1 for v=1(2,3) and 0 for v # (2,3), s
S(x(0\¢) |v€V)—O[( 1) —(0,0)] +
1-0(2,3) = (2, )] [(47 4)=(2,3)]=(2,3) - (2,1) = (0,2) ;

hence (42) will give (6\ )TV (F)(p) = (0,2) ¢ V.

We end this subsection by describing some well-known examples of non-increasing flat operators given in the
literature. For the sake of simplicity, we can assume that F is the digital space Z" and that V is an interval
[L,T] in R™ or Z™ (m > 1), thus we are in the standard case. Then V will be a completely distributive
complete lattice, which is a necessary requirement for obtaining the usual properties of increasing flat operators
[16]. Moreover, for any increasing operator v, Proposition 20 gives w"'v = z/zv: the shifted flat extension of
coincides with the standard flat extension according to [16]. For X € P(E), write X¢ = E'\ X (the complement
of X) and X = {—z | © € X} (the symmetrical of X). Recall from (5) the dilation g and erosion 5 by a
structuring element B € P(E); we assume that B # (). Write id for the identity operator on P(E).

When B is the digital neighbourhood of the origin (origin included), d5(X) \ X is the outer border of X
(set of all points of X neighbouring at least one point of X'), while X \ eg(X) is the inner border of X (set
of all points of X neighbouring at least one point of X°); their disjoint union dg(X) \ eg(X) is the border of
X. We can generalise this to any symmetrical structuring element B containing the origin, and we get thus
the three image transformations dp \ id, id\ eg and ép \ . Since B contains the origin, d5 is extensive and
ep is anti-extensive, that is, eg(X) C X C dp(X) for all X € P(E), so we get:

x(0p \id) = xdp — xid , x(id\ ep) = xid — xeB ,
x(0B \eB) = xdp —xep = x(0p \id) + x(id \ ep) .

From (40,42) and the linearity of summation, we derive:

[x@p\id)] ™ =6tV —iatV , (@G \id)*Y = L +55Y —iatV

[xGd\ep)] "V =idtV -5V, (id\ep)tV = L+idtV — 5V,
-V

[x@B\ep)] =65 -5, G\ep)tV = L+5fV —efV .

Here id ™" will be the identity operator on V¥, while 6;‘/ and EEV will be the standard flat dilation and

erosion 55 and sg based on computing a local supremum and infimim respectively, see [16]. The three

operators 5;‘/ - id+V, idtV — sgv and 5;‘/ - sgv are called the external gradient, internal gradient

and Beucher gradient (or morphological gradient) respectively [22]; they are morphological variants of the
traditional Roberts, Prewitt or Sobel gradients based on linear convolution.
The Laplacian on binary images (12) is the image measurement P(E) — {—1,0,+1}¥ defined by
x(0p \id) — x(id\ ep) = xdp + xep — 2xid .
Its no-shift flat extension is then the morphological Laplacian:
. -V . .
[X(5B \ ld)] - [X(ld \ 53)] 5B + 5 —2idtV .
Take now any non-empty structuring element B, and consider the opening and closing by B,
v :P(E) - P(E): X — (XS B)®B=dp(ep(X)) ,
¢p:PE)—=PE): X— (X®B)oB=cp(dp(X)) .
Then pp is extensive and ~p is anti-extensive, we have y5(X) C X C pp(X) for all X € P(FE). The set
0B (X)\ X shows all portions of X that are too narrow to contain a translate of B, while X \ y5(X) shows
all portions of X that are too narrow to contain a translate of B ; their disjoint union ¢p(X) \ v(X) will
show both. As with the gradient, we get:
x(id\vp) =xid— x5 ,  x(vp\id) = xpp —xid ,
x(eB\7B) =x¥B —Xx7B = X(¢p \id) + x(id \ yB) .
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Then we obtain their no-shift flat extensions:

. -V . . .
[xdd\vp)] " =id™V 25", (d\yp) "V =L+id"V LY,
. -V . . .
X \id)] " =¢fY —id™" , (pp\id)TV = L+ —id™V
-V v v \% 1%
Xes\v8)] " =¢E =75 . e\ )tV =L+ep” —gY
Here 'y‘gv = 6;‘/5;‘/ = 6%5% and @EV = agvégv = agég, the flat opening and closing, are obtained

+V

by composing the flat erosion and dilation, see [16]. The three operators idtV — Y5 s cpJ]gV —idtV

and
4,0;‘/ - ,YEV are called the white top-hat, black top-hat and self-complementary top-hat respectively [22]; the
same names can also be used for their binary counterparts id \ 75, ¢p \ id and ¢ \ v5. In the case of
grey-level or colour images, the white top-hat shows narrow bright zones, the black top-hat shows narrow
dark zones, and the self-complementary top-hat shows both.

The hit-or-miss transform uses a pair (A, B) of structuring elements, and looks for all positions where
A can be fitted within a figure X, and B within the background X¢ [20], in other words it is the operator
HMTy gy : P(E) — P(E) defined by

HMT (4 py(X) = {peE|ApC X and B, C X}
= ea(X)Nep(X%) =ea(X)\d5(X) .
One assumes that AN B = (), otherwise we have always HMT 4 gy(X) = 0. We can write HMT4 g)(X) =
ea(X)\ (5B(X) N 6A(X)), where we always have 0 5(X) Nea(X) Cex(X). Thus
XHMT 4 gy =xca —x(6gNea) =xea— (X0 AXxea) »
where A is the meet (binary infimum) operation. Now (65 N etV = 5;‘/ A sj&v [16], hence we obtain:
-V
[XHMT(AyB)] :sjvf(5BﬂsA)+stjvf(5gv/\sjv) ,
\%4 14 14 14 \%
HMT(‘;,B) =L+efV —(pne)t = LaefV - @t nelY) .
Thus for any F : E — V and p € E we have:

XHMT(4 5)) " (F)p) = £V (F)(p) —min[5LY (F)(p), 4" (F) ()]
max[s Y (F)(p) = 65V (F)(p),0] .

In the case of images with discrete grey-levels (V =T = {tg,...,t1} C Z), Soille’s unconstrained hit-or-miss
transform [22] was defined, for an input grey-level image F', by computing at every point p € E the length of
the interval

{teT|pe HMT( 5 py(Xe(F)}={t €T | p€ea(Xe(F)), p ¢ s5(Xe(F))}

that is, the summation S(xHMT( 4 p)(X¢(F))(p) | t € T). Thus the no-shift flat extension [xHMT 4 p)] -
is exactly Soille’s unconstrained hit-or-miss transform. This operator was further analysed in [12], where it
was extended to continuous grey-levels (T' C R) and to grey-level structuring functions instead of structuring
elements. This paper gave a general survey of the various types of hit-or-miss transforms for grey-level images.

These examples of non-increasing flat grey-level operators, namely the external, internal and Beucher
gradient, the morphological Laplacian, the white, black, and self-complementary top-hat, and Soille’s uncon-
strained hit-or-miss transform, have previously been defined in an intuitive way as a grey-level extension of
the corresponding set operators. No formal theory for their construction was given, except in [12] for the
specific case of the hit-or-miss transform.

Note that their form given in the literature always coincides with the no-shift flat extension (X¢)—V of
the corresponding binary image transformation v, rather than the shifted one 1/)+V =1+ (Xz/))_v. Indeed,
most authors implicitly assume image intensities to be between 0 and 255, in other words, L = 0, so the
intensity shift by L does not matter.
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5.2 Bounded variation of image measurements

We have now to analyse conditions for the summation S (u(Xo(F))(p) | v € V) of (40) to be well-defined, in
other words for the summed function to have bounded variation: TV (u(Xo(F))(p) ’ v € V) < co. Then the
no-shift flat extension (40), and the shifted one (42) for u = x, will be well-defined.

Recall from Subsection 1.3 A(V'), the height of V, that is, the supremum of the lengths of all chains in P;
for a finite interval K C Z we have similarly its height A(K) = max K — min K.

Now the total variation of p(Xy(F))(p) on v € V can be bounded either by h(K)h(V'), or by the total
variation of u(Z)(p) on Z € P(E):

Proposition 23. Let u: P(E) — K% be a binary image measurement, for a ﬁm’te interval K C Z. Then for
any Fe VP andp € B, TV (u(Xo(F))(p) |veE V) < min(h(K)h(V) TV (u(Z)(p) | Z € P(E )))

Proof. Let F € VF and consider a strictly increasing sequence (sq,...,sn) in V. Then for i = 1,...,n,
|1(Xs: (F))(p) — 1(Xs; , (F))(p)| < h(K), while obviously n < h(V'). Hence

TViso,....sm) (B (F))(p) | v € V) = Z!u(XSi (F)(p) = p(Xsi—y (1)) (p)] < Zh(K) S R(K)R(V)

Since TV .....5,,) (X (F))(p) ’ v E V) < h(K)h(V) for every strictly increasing sequence (sg,...,sn) in V,
by taking the supremum on such sequences, we deduce that T'V (u(Xo (F))(p) ’ v e V) <hK)(V).

Now Xs, (F') decreases when ¢ increases from 1 to n. We eliminate in the sequence sg, ..., sn all s; with
Xs; (F) = Xs;_1 (F), we obtain thus a subsequence (tg,...,tm), where m < n, such that X¢((F) D -+ D
Xt (F). For j = 0,...,m, let Z; = X¢,,_,(F), so Zg C --- C Zm. Then (with the change of variable
k =m — j + 1 at the end of the second line),

TViag..on) (1% (F)) (D) | 0 € V) Zlu Xex (F)) () — 1(Xsq_ (F) (D)
= Z|u Xt] Xt] 1 | = Z|M m— j m j+1 ’ - Z ’N Zk 1 N(Zk)(p)|
k=m
—Z!u Z1)(p) — w(Zi—1)(0)| = TV(z,,... 2,,)((Z) (D) | Z € P(E)) < TV (u(Z)(p) | Z € P(E)) .

By taking the supremum on all strictly increasing sequences (so,...,sn), we obtain TV (u(Xy(F))(p) ’ v E

V) <TV(u(Z)(p) | Z € P(E)). O

Remark 24. When h(K) = 1, that is, K = {k,k + 1} for some k € Z (for instance, if n = x¢ for a binary
image transformation v : P(E ) — ’P( )), then the bound given in Proposition 28 is the best possible: for any
natural u < min(h(V) TV( | ZeP(E )), there exists F € VE such that TV( Xo(F))(p) | ONS V) =
u, so we get suppeye TV (1 (XU( ) (p ’ v e V) =min(h(V), TV ((Z)(p) | Z € P(E)).
Indeed, there is a strictly increasing sequence Yo C --- C Yy in 73( ) such that TV(YO,...,Yn)(N(Z)(P) ’
Z e{Yy,..., Yn}) = u. By eliminating all terms Y; such that p(Y;)(p ) = u(Y;—1)(p), we obtain a subsequence
(Xo,...,Xm) such that for i = 1,...,m we have u(X;)(p) # w(X;-1)(p); as h(K) = 1, the sequence of
w(X;)(p), ¢ = 1,...,m, alternates between the two elements of K, so |u(X;)(p) — w(X;—1)(p)| = 1; as the
sequence has total variation u, we have m = u. We can assume that X, = E, otherwise: if u(Xu)(p) =
w(E)(p), then we replace Xy by E in the sequence, while if u(Xu)(p) # w(E)(p), then we replace the sequence
(Xo0,..., Xu) by (X1,...,Xu, E), and rename it (Xo,...,Xu). There is also a strictly increasing chain tg <
- < ty in'V, and we can assume that to = L and ty = T. Define F : E — V by F(p) = tu if p € Xo,
and F(p) =ty—; if p€ X;\ Xi-1 (i=1,...,u). We see (by induction on i) that p € X; iff F(p) > ty—;, so
Xiw_;(F)=X; (i=0...,u). Then, as total variation is self-dual for the order on V,

u—i

u=TV(x,,..x,)(1(Z)(p) | Z € {Xo,..., Xu})
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=TVit,,,...t0) (Ko (F))(P) | v € {to, - tu}) = TVisy 1) (WX (F))(P) | v € {to, .. tu}) -

For any v € V, let p(v) be the least t; (i =0...,u) such that t; > v (since tu = T, such a t; always exists);
then Xo(F) = X, (F). As ¢ is a closure operator on V., Proposition 13 gives

TV (1% (F)(p) | v € V) = TViy o) (1% (F)(B) | v € {to, - tu}) -

From Proposition 23 we see that when V has finite height, for instance if V' is finite, then TV (,u(XU(F))(p) |
v e V) < h(K)h(V) < oo, so the function (X (F))(p) | v € V is summable and the flat extension =" is
well-defined. However, when V' has infinite height, there are functions F' : E — V such that TV (,u(XU(F))(p) |
v E V) = 00, so the function is not summable:

Example 25. Let E=V =[0,1] CR and let F: E -V : 2 +— 1 —x; then forv € V, Xy(F) = [0,1 —v].
Partition [0,1] into two dense sets A and B. For every X € P(E), supX € E (where we set supf) = 0).
Define v : P(E) — P(E) by w(X)=F if l—sup X € A and Y(X) =0 if 1 —sup X € B. Then for anyp € E,
XV Xo(F))(p) =1ifve A, and =0 if v € B. As A and B are dense in V, for any n > 0 there is a strictly
increasing sequence (vi,...,ven) € V such that v; € A for i odd and v; € B for i even, in other words the
sequence alternates between A and B. Then x¢(Xo(F))(p) alternates between 1 and O on this sequence, that
is, TV(UI,...,U%)(Xw(xv(F))(P) | v € {vy,.. .,vgn}) = 2n. It follows that TV(Xw(XU(F))(p) | v E V) = 0.

We consider now a condition that puts a limit on the variation of the function P(E) — K : Z — u(Z)(p).
Let us say that u is local if for any p € E there exists a finite W(p) € P(F) such that for any Z € P(E),
w(Z)(p) = M(Z N W(p))(p) For instance, the dilation, erosion, opening and closing by a finite structuring
element, and the hit-or-miss transform by two finite structuring elements, are local.

Proposition 26. Let u: P(E) — K¥ be a binary image measurement, for a finite interval K C Z. If p is
local, then for any p € E,

TV (u(Z)(p) | Z € P(E)) =TV ((X)(p) | X € P(W(p))) < h(K)W (p)| -

Proof. Let (Zy,...,Zn) be a strictly increasing sequence in P(E). If we remove from that sequence all Z;
such that Z; N W(p) = Z;_1 N W(p), we obtain a subsequence (Y, ..., Ym) such that the sequence (YO N
W(p),...,YmnN W(p)) is strictly increasing. Since p is local,

n

TV zo,...2.2)(1(2)(p) | Z € P(E)) = Z’M(Zz')(P) —w(Zi—1)(p)| =

=1
S (2 n W) (p) — w(Zici "W () )] = Y _|u(Y; 0 W) (@) — n(Y-1 n W) ()] -
i=1 j=1

Now P(W (p)), ordered by inclusion, has height |W(p)|, so the strictly increasing sequence Y; N W (p) (j =
0,...,m) has length at most |[W(p)|, thus m < |W(p)|. Hence

> u(Y; W (@) (p) — p(Y;-1 N W (p)) (p)] < h(K)m < h(K)|W (p)]| -
j=1

The result follows. O

Therefore, when a binary image measurement p is local, for any F' € vE and p € E, Proposition 23 gives
TV(M(XU(F))(p) | v E V) < h(K)|W (p)], so the flat extension x~" will be well-defined.

Let us say that the binary image measurement i is of uniform bounded variation if sup,c g TV (u(Z) (p) |
Z € P(E)) < co. This property is stronger than the having 7'V (1u(Z)(p) | Z € P(E)) finite for all p € E
(which is the sufficient condition we gave for the flat extension pfv to be well-defined), as shown by the

following example:
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Example 27. Let E = N, and define the binary image transformation ¢ : P(E) — P(E) as follows: VZ €
P(E),

N if X is infinite,

W(Z) =<{0,...,|X|}U(@N+1) if X is finite and | X| is odd,

{0,...,|X|} U2N if X is finite and | X| is even.
Here 2N and 2N + 1 are the sets respectively of even and of odd naturals. Then for a growing sequence of sets
(Xn)nen, where | Xn| = n, for every m € E we have m € ¥(Xn) if n has the same parity as m or if n > m.
Thus X (Xn)(m) alternates for n < m, hence we get TV (x(Z)(m) | Z € P(E)) = m. Therefore xt has

bounded variation at every point, but is not of uniform bounded variation.

By Proposition 26, a local binary image measurement will be of uniform bounded variation if sup ¢ g |[W (p)| <
oo; this is for instance the case when EF = R" or Z™ and the local operator y is translation-invariant, because
here W(p) = By, the translate by p of a fixed finite structuring element B.

Now uniform bounded variation is precisely the necessary and sufficient condition for a binary image
measurement p to take the form of a sum and difference of characteristic functions of increasing binary image

transformations:

m n
n= me - th% , form,...,nm,01,...,0n : P(E) — P(E), which are all increasing . (44)

Proposition 28. A binary image measurement i : P(E) — KT (for a finite interval K C Z) has a decom-
position of the form (44) if and only if it is of uniform bounded variation. More precisely:
1. Given a decomposition of the form (44), we have sup,cp PV (u(Z)(p) ’ Z € P(E)) < m and

suppep NV (1(Z)(p) | Z € P(E)) < n.
2. For p of umform bounded variation, there is a decomposition of the form (44) with m < [max K]+ +
suppeEPV( ’ Z € P(E)) and n < [min K]~ +suppep NV (u(Z | Z € P(E)).

Proof. Let p € E. In a decomposition of the form (44), each map P(E) — {0,1} : Z — xn:;(2)(p) (i =

1,...,m)and Z — x0;(Z)(p) (j = 1,...,n), when applied to an increasing sequence of sets, has a unique
variation from 0 to 1. Thus PV (u(Z | Z e P(E)) <mand NV (u(Z | Z € P(E)) < n. Hence item 1
holds.

Let now u be of uniform bounded variation. For each p € E, we apply Proposition 17 to f? : P(E) —
K : Z + pu(Z)(p). We have the positive and negative increments f and fX;, see (23), given by setting for
X € P(E):
Fp(X) = @ @)]* + PV x)(u(Z !ZGP( )
FR(X) = @) P~ + NV x1(1(Z)(p) | Z € P(E)) .
Let m = sup{fp(X) | X € P(E), p € E} and n = sup{ fi (X) | X € P(E), p € E}. We have then

m < [max K|t +supp€EPV( Z)(p) ’ZG”P ))
n < [min K]~ —l—suppeENV( p)’ZGP( ) -

We take the increasing functions ¢i,...,gm,h1,...,An : P — {0,1} as in Proposition 17, and we have
[P =371 9i= 37— hj. We define then for any Z € P(E): x;(Z)(p) = 9:(Z) (i = 1,...,m) and x0;(Z)(p) =
hj(Z) (j = 1,...,n). This definition, made for each p € E, gives thus the binary image transformations 7;
and 6. Since for each p € E, xn;(Z)(p) and x0;(Z)(p) are increasing in Z, and u(Z)(p) = Y i1 xn:(Z)(p) —
Z;‘L:1 x0;(Z)(p), the maps n; and 6; are increasing and (44) holds. |

Proposition 29. A binary image measurement i : P(E) — KT (for a finite interval K C Z) has a decom-

position of the form

i=1

all increasing, with Y1 > -+ > P ,
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if and only if p is of uniform bounded variation and there is a binary image transformation ¢ : P(E) — P(E)
such that p = x.

Proof. If p is of uniform bounded variation and u = xv for ¢ : P(E) — P(E), we apply the same argument
as in Proposition 28, but using Theorem 18 instead of Proposition 17, which gives thus (45) in place of (44).
Conversely, if (45) holds, we use Proposition 19 in the argument. O

5.3 General properties

We will give some mathematical properties of flat extension, following Section 3 of [16]. We consider first
the standard case, see Subsection 5.1: V = [L, T], a closed interval in the module U = Cj X - -+ X Cp; thus
V=Vx-:xVyforV; =[L;, T;] (i=1,...,n). For instance, in multivalued images, V. =T" (n > 1), for
a closed interval 7T'.

Recall from (30) the i-th projection m; : V. — V; : (v1,...,vn) = v; for i = 1,...,n; it can naturally
be extended to a projection II; : vE VZE : F — II;(F) from images having values in V to images with
values in V;, by applying it pointwise: I1;(F)(p) = 7; (F(p)) For instance, if V' consists of RGB colours and
71 projects a colour on its red component, then II; will associate to a coulour image its red layer. We obtain
the same result as Proposition 12 of [16]: a flat operator is obtained by applying that flat operator on each
projection. For instance, a RGB colour Laplacian is obtained by applying the intensity Laplacian to each R,
G and B layer.

Proposition 30. Assume the standard case. Let F : E — V. For every binary image measurement p we
have T1; (FFV(F)) =pu " (HI(F)) for all i = 1,...,n. For every binary image transformation 1 we have
I, (Y (F)) = ¢V (IL(F)) foralli=1,...,n.

Proof. Let p € E. By (40), u~V (F)(p) = ST (,u(XU(F))(p) | vE V). We apply the definition of projection,
then by Theorem 10 we get:
I (Y (F)) (p) = mi (¥ (F)(p)) = m; (S[L,T] (X (F))(p) | v e V))
= S[L,-,T,-](N(Xml(t)(F))(p) |teVi),
where by (31) we have nf‘(t) =(Ly,...,L—1,t, Li41,...,Ln). Now for any ¢ € E, we have ¢ € Xv;#(t) (F)
iff F(q) > n;-(t), iff
(M (F(@), -, mn(F(q) = (L1,  Lici, b, Lig1, .o Ln)

that is, iff IT;(F)(q) = m(F(q)) > t, in other words g € X¢(II;(F')). Hence Xn+(t)(F) = X¢(II;(F)), and the
above with (40) again gives:

IL (V' (F)) (p) = S[Li,Ti](N(Xn;(t)(F))(P) |[teV;) =

Spu, 1 (r(Xe(I(F) (p) | t € Vi) = ™V (IL(F)) (p) -

As the equality holds for any p € F, we deduce the identity IT; (u_V(F)) = M_Vi (HZ(F)) Now for a binary
image transformation v, we apply (42), so

L (Y (F)) = I (L + [xy] "V (F)) =
L+ 10 (] ™Y (7)) = L + ]V (F) = Vi (I(F))
O

In Subsection 5.1 we considered also the sub-standard case, where V is a complete sublattice of [L, T]. The
following result shows that for flat operators, the sub-standard case reduces to the standard case.
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Proposition 31. Let W be a complete sublattice of V and let F : E — W. For every binary image mea-
surement pu we have u_W(F) = M_V(F), and for every binary image transformation 1 we have ¢+W(F) =

TV (F).

Proof. We refer to Lemma 3 of [16]: for any v € V, let s(v, F) = inf{F(p) | p € Xo(F)}; then s(v, F) > v
and Xy, ) (F) = Xy(F). Since all F(p) € W, we deduce that s(v, ") € W. Let ¢ be the closure operator
corresponding to the closure range W, in other words, for any v € V, ¢(v) is the least w € W such that
w > v. Then v < p(v) < s(v, F), hence Xo(F) 2 X () (F) 2 Xy, 1) (F) = Xo(F), thus X,y (F) = Xo(F).

Let p € E. We apply Proposition 13 with P =V, M =W and f: W — Z : w — p(Xw(F))(p). Then
fois the map V. — Z 1 v = (X ) (F))(p). As Xy ) (F) = Xo(F), we have fi, : v = pu(Xo(F))(p). As the
summation S is additive on V, it will be additive on W, f has the same bounded variation as f,, and we
get S(fy) = S(f), that is, S(M(XU(F))(p) ’ v E V) = S(M(Xw(F))(p) | w € W) By (41), this means that
5V (F)p) = 5V (F)(0).

Finally, (42) gives 67 (F)(p) = L+ ()™ (F)(p) = L + () ™Y (F)(p) = v+ (F)(v). O

A particular case is W = {1, T}. Images E — {L, T} are binary, they correspond to subsets of E. For any
A e P(E), define B] [A]: E— W by B [A] = L+ (T — L)xA, in other words:

T ifpe A,
¥peE, Bl[Al(p) = , (46)
L ifpgA.

Then for every F: E — {1, T}, we have F = B| [A] for A = F~Y(T) = X1(F). Now a flat operator will
behave on BI [A] as the corresponding set operator on A. The following result generalises Proposition 15 of
[16]:

Corollary 32. Let A € P(E). For any binary image measurement pu we have p~" (B] [A]) = (T — L)u(A).
For any binary image transformation ¢ we have 1/)+V(BI [A]) = BI [W(A)].

Proof. The summation Sy | 1(f) of a function f: {1, T} — R reduces to (T — L) f(T). Thus, by (40) and
Proposition 31, we get:

pV(BLA) = u B AD = Sp1 1y (sXu(BLAD)(p) | v e {L,T}) =
(T — L)u(XT(BL[A]) = (T — L)u(4) .

By (42), we derive with pu = x:
GV (BLIADKp) = L+ ()™ (BLIAD(p) = L + (T — L)xw(A) = B [(A)] .

O

A special case is given by | =0 and T = 1. Here B[A] = xA4, see (6), and we get u_{o’l}(xA) = p(A) and
w+{0’1}(xA) = x¥(A). The following generalises Corollary 29 of [16]:

Corollary 33. For any two binary tmage measurements 1, jt2 we have p1 < pg < ul_v < NQ_V. For any
two binary image transformation ¥1,v2 we have 1 < Yo & 1/)1”/ < 1/);"/. In particular, the two maps
W ,ufv and Y — 1/)+V are injective.
Proof. Since summation is increasing on BV functions, we have p3 < po = ufv < ,u;v and Y1 < g =
frV < 1/1;‘/. Conversely, if ufv < M;V, then by Corollary 32 we get for any A € P(E): (T — L)ui1(4) =
iV (BLIA]) < gV (B][A]) = (T — L)pa(A), that is, 11 (A) < p2(A); hence iy < pg. Similarly oV < ¢V
gives B [v1(4)] = vV (B][A)) < vV (BL[A]) = B] [f2(A)], so by (46) we get 1(A4) C a(A); hence
1 < 1ho. Now

v _ v vV _ v v _ v
py =py = (pp <py o oand py <pp)
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> (1 <poand pa < p1) = = po .

We show similarly that zpi"v = 1/);"/ & 11 = 2. Thus the two maps p +— ,ufv and ¢ — 1/)+V are
injective. O

It is known that for images with values in a finite chain, usual flat operators (median filter, dilation, erosion,
opening or closing by a non-empty structuring element) do not create new values in an image. This is not
true for images with values in an infinite chain or a product of chains. The topic of image values generated by
increasing flat operators was analysed precisely in [16], see its Proposition 13 and Theorem 19, then its Sub-
section 3.3 for more details. We summarise these results. Let ¢ be an increasing binary image transformation;
then for any FF': E — V and p € E:
1. ¢Y(F)(p) is a supremum of infima of F(q) (q € E).
2. Ifp € ¢¥(0), then in item 1 the empty infimum appears as an argument to the supremum, and wV(F) (p) =
T.
3. If pe E\(E), then in item 1 the supremum is empty, and ¢" (F)(p) = L.
4. Ifp € Y(E) \ ¥(0), then in item 1 the supremum and all infima are non-empty, and F(p) lies between
AF(q) | g€ E} and V{F(q) | ¢ € E}.
Thus, from item 1, 1" (F)(p) belongs to the complete sublattice of V generated by {F(q) | ¢ € E}. More
specifically, following item 4, when p € ¥(E) \ (D), ¥" (F)(p) belongs to the least subset of V containing
{F(q) | ¢ € E} and closed under non-empty supremum and infimum; this set is a complete lattice, however
its least and greatest elements can differ from | and T.
For operators that are not increasing, the flat extension will involve not only lattice-theoretical operations,
but also arithmetical ones, see for instance Example 22. We obtain the following result for binary image

measurements:

Proposition 34. Let W be a non-empty subset of V, closed under non-empty (numerical) supremum and
infimum, with least element 19 =infW and greatest element Tg =supW. Then S is additive on W, and for

any F: E — W and for any binary image measurement 1, we have
-V o 0 —-W
p (F) = (L7 = Dp(E) +p= 7 (F) + (T = To)u(?) - (47)

Proof. Since W is a complete sublattice of [ L.°, Tg], S is additive on W by Proposition 13. Let X = WU{L, T}.
Then X is the complete sublattice of V' generated by W, and by Proposition 31, u_X = M_V. Clearly 19 s
comparable to every other element of X: 1 < 19 < T and 1y < z for any x € W; similarly T is comparable
to every other element of X. Let f : X — R; if L < 19 Lemma 15 gives Sp,m(f) = Sp1o(f) +
Sp10,71(f), while this equality obviously holds if L = 19; similarly, S0, 1) = Spo 1) (f) + Siro, 1 (F)s
thus Sy 1)(f) = Sj1,10)(f) + Spro, 10 (f) + Si4,71(f)- Applying this to the map v = pu(Xo(F))(p), with

(40) we get
p= () (p) = S 1y (1% (F))(p) | v € X) = S 10 (%o (F))(p) | v € X)
820,70 (OGN @) | 0 € X) + Sery 1y (X () p) | v € X) .

Since F has values in the interval [L°, T¢], we get X, (F) = E for v € [1, 1% and X,(F) = 0 for v > Tg.
Thus

SiL,10) (BXo(F))(p) | v € X) = Sp1, 10 (1(E)p) [ v € X) = (L7 = L)u(E)(p)
and

Spro,7) (1O (F))(p) | v € X) = Sy 11 (1(O)(p) | v € X) = (T = To)u(0)(p) -
On the other hand, (40) gives

S0, 7o (X (F))(p) | v € X) =
Spio, 7o) (HXo(F))(p) | v € W) =V (F)(p) .
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Combining together the above equalities, we get

w N (F)p) = (L0 — L)u(E)(p) + 1~ (F)(p) + (T = To)u®)(»)
and this for any p € E. Since u~~ = p~", (47) holds. O

As we noticed in [16], when £ = R" or Z" and the increasing binary image transformation ¢ is translation-
invariant, ¥(E) and ¢ () must be equal to E or §; thus either (a) ¥(F) = E and () = 0, (b) 1 is the constant
E map, or (c) ¢ is the constant () map. Hence the two joint conditions ¢ (F) = E and (D) = 0 appear as a
standard requirement for increasing binary image transformations. Indeed, from item 4 above, they guarantee
that each 1/1V(F)(p) will be a non-empty supremum of non-empty infima of values F(q) (¢ € E). In particular
¢" will preserve constant functions, and for a function F with values in an interval [a,b], ¥V (F) will have
values in that interval.

Let us now consider the corresponding requirements for a binary image measurement p, which is not
necessarily increasing. We remark that when F = R"™ or Z" and p is translation-invariant, u(E) and pu(0) will
be constant, but there is a priori no ordering between them. In view of (47), we will require u()) = (), so that
values above T will not influence the result. If we restrict ourselves to the no-shift flat extension, then we

will require p(E) = 0, so that =" coincides with =",
On the other hand, for a binary image transformation 1, if we consider the shifted flat extension 1/)+V

rather than the no-shift flat extension (x1)) ™", preserving an interval of image values requires both 1) (E) = E

and () =

Proposition 35. For any binary image transformation 1, the following three conditions are equivalent:

1. Y(E)=E and ¥(0) = 0.

2. Given a,b € V with a < b, for any F : E — V such that a < F(p) < b for all p € E, we get
a<¢pTV(F)(p)<bforallpeE

3. 1/)+V preserves all constant functions: for any a € V, let Cq : E —V : p— a; then 1/)+V(Ca) =Caq.

Proof. 1 implies 2: Suppose that ¢(F) = E and 1/)( ) = 0. We apply Proposition 34 with W = [a,].
Here (47) gives (x¢)~V(F) = (a — L)XE + (x¥) "W (F) + (T — b)x®, where xE is constant 1 and x0 is
constant 0, in other words for any p € E we have (x¢) ™V (F)(p) = (a — L) + (x) "V (F)(p), so (42) gives
GV F)p) = L+ 0a) Y (F)m) = a+ ()~ (F)(p). Now (41) gives 0 < (x) "W (F)(p) < b— a, 50
a<ytV(F)(p) <b.

2 implies 3 by taking b = a.

3 implies 1: Take any a € V, and let W = {a}; then Xz/)_W(Ca) is constant 0, since we make a summation
over the interval [a, a]. Then (47) with F = Cy gives (x¢) ™V (Ca) = (a — L)XW(E) + 0+ (T —a)xp(0), so for
any p € F, (42) and the requirement that w+V(C’a) = Cq give

a=Ca(p) =v"" (Ca)(p) = L+ (x¥) "V (Ca)(p) =
L+ (a— L)x$(E)(p) + (T — a)xu(0)(p) -

Applying this equality to a = L gives L = L + (T — L)x(0)(p), so x¥(0)(p) = 0 for all p € E, that is,
P(0) = 0. Applying it to a = T gives T = L + (T — L)x¥(E)(p), so x¥(E)(p) = 1 for all p € E, that is,
W(E) = E. O

Let E =R" or Z", and consider a translation-invariant binary image transformation 1 of bounded variation;
then it will be of uniform bounded variation. Thus, Proposition 29 will give by (45) a decomposition x =
Z?:l(—l)i_lxz/zi, where 11, ...,1n are increasing a binary image transformations and ¢ > --- > ¥p. Now
¥1,...,%n will also be translation-invariant, so we have v¢;(F) = E unless 1); is constant (), and ;(0) = 0
unless v; is constant E. Since the constant () map is redundant in such a decomposition, we will have 1;(E) = E
fori=1,...,n. Hence ¥(F) = E if n is odd, and ¢ (F) = 0 if n is even. If ¢;(0) = @ for all 4, then 1 (0) = 0. If
1;(0) = E for some i, then 1); is the constant £ map, and as it is the greatest possible map, we necessarily have
i =1, and ¥;(0) = 0 for i > 2, so ¥(0) = E. Then 7 involves a complementation, we have ¥ (X) = 6(X)° for
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all X € P(E), where 0 is the translation-invariant binary image transformation given by x6 = Z?ZQ(fl)ixzpi,
with 6(0) = 0.

Extrapolating this discussion to the case where we do not have translation-invariance, for a binary image
transformation 1 of uniform bounded variation, we will suppose that both 1(FE) and 1(0)) are equal to either
E or (. In the case where () = E, we have then ¢(X) = 6(X)€ for all X € P(FE), with 8(0) = 0 (and again
0(E) will be either E or §); we get then (x) ™" = (T — 1) — (x0)~".

5.4 Flat zones and connected operators

In an image F': E — V, a flat zone is a connected subet of E on which F' is constant, and which is maximal
for the inclusion; in other words, it is a connected component of F~!(v) for some v € V. An operator ¥
transforming images is said to be connected if for every image F', each flat zone of F' is included in a flat zone
of U(F); equivalently, given any connected subset C of E, if F' is constant on C, then ¥(F') will be constant
on C. This definition depends on the definition of connectivity chosen for subsets of E: we call “connected
set” one belonging to a given connection [17, 21].

In Proposition 27 of [16], we showed that for an increasing binary image transformation v, if ¢ is connected,
then its flat extension 1/1V is connected. We will generalise this result to non-increasing operators, but we will
also analyse deeper the notion of flat zones and its relation to connections.

Recall [21] that a connection on P(E) is a a family C C P(FE) that comprises the empty set and all
singletons (@ € C and for all p € E, {p} € C), such that for any B C C such that [ B # 0, we have | JB € C.
Elements of C are said to be connected. For any X € P(FE), a connected component of X according to C is
any non-empty connected subset of X, which is maximal for inclusion: C € C, § # C C X, and VC’ € C,
C CC' CX = (' = C. Then the connected components of X form a partition of X [17]. When it is
necessary to specify which connection is used (for instance, if we compare several connections), we will say a
C-connected set and a C-connected component.

One can derive a connection from another. A well-known example is the connection by dilation [21]. Let
C be a connection on P(E), and let d be an extensive dilation on P(FE) such that the dilation of a singleton is
connected: Vp € E, p € 6({p}) € C. For instance, when F = R"™ or F = Z", § is the dilation by a connected
structuring element containing the origin: § = dp, where 0 € B € C. Let C° = {X € P(E) | §(X) € C}.
Then C? is a connection and C C C°. In practice, the elements of C? are either C-connected sets, or clusters
of C-connected sets, see Figure 8. For any X € P(E), each C%-connected component A of X corresponds
bijectively to a C-connected component B of §(X) by the two reciprocal relations B = §(A) and A = BN X.

Given a function F': E — A and a set X C F, we say that F' is flat on X, and write fI(F, X), if there
is some a € A such that for all x € X we have F(z) = a. We extend this notion from functions E — A to
subsets of E, thanks to the characteristic function: given F' € P(E), F is flat on X iff xF is flat on X, where
xF is E — {0,1}¥; in other words, either X C F, or X C E\ F.

Given two sets of image values A and B (not necessarily distinct), and a map ¥ : A¥ — B (transforming
F:E — Ainto ¥(F) : E — B), the flatness preservation set of ¥ is the set FP(¥) of all X C E such that
for any F': E — A, if F is flat on X, then U(F) is flat on X:

FP(W) = {X e P(E)|VFe A", fl(F,X) = fI(¥(F),X)} . (48)

By the above identification of a set with its characteristic function, for a binary image measurement y : P(E) —
KE FP(u) = FP(ux™1), where x =1 : {0,1}¥ — P(E) is the inverse of the characteristic function, mapping
a binary function onto its support, so pux ' is {0, 1}E — KP. Similarly, for a binary image transformation
¢ : P(E) — P(E), FP(¢) = FP(x¢x 1), where x¢x ' is {0,1}F — {0,1}F.

Now the usual notion that an operator ¥ is connected with respect to a given connection C on P(FE),
simply means that C C F'P(V). That such a notion has been put forward in relation to connections is justified
by the following result:

Proposition 36. For ¥ : AP — BE FP(W) is a connection.
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Proof. Let the set X be empty or a singleton. For any function G defined on E, trivially fI(G, X); thus for any
F e AE| fI(F, X) and fI(¥(F), X) both hold true; hence X € FP(¥). Thus the empty set and all singletons
belong to FP(V).

Let B C FP(¥) such that (B # 0; if B is empty, then | JB = 0 € FP(¥). We assume thus that B is
non-empty; set C = |JB and choose p € (| B. Suppose that for some F : E — A we have fI(F,C); then for
any B € B, we have B C C, so fI(F, B); as B € FP(¥), we deduce that fI(V(F), B). Now for any = € C,
there is some B € B such that « € B, and as p € B and fI(U(F), B), we get U(F)(z) = ¥(F)(p); thus U(F)
is flat on C. We have thus shown that fI(F,C) = fI(¥(F),C); therefore | JB = C € FP(¥). O

This result also indicates that we are not bound to a particular choice of connection on sets: when one says
that an operator W is connected with respect to a given connection C, this simply means that C C FP(V);
however, the connection F'P(1) can be greater than C, which means then that ¢ can be connected with respect

to a wider connectivity. We illustrate this with the connection by dilation:
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Fig. 8: (a) The connected structuring element B centered about the origin (shown as a black dot); we take § = 5. (b)
The set X, shown in black. (c) The dilation 6(X), shown in grey and surrounding X in black, has 3 C-connected compo-
nents; thus, in (b) we delineate with dashed lines the 3 corresponding C9-connected components of C; they are clusters
of C-connected components. Next to each C-connected component of §(X), we give the ration of its area to that of B.
(d) We apply to §(X) the area opening with threshold equal to 9 times the area of B, which eliminates one C-connected
component of §(X); the trace on X gives ¢)(X), where one C%-connected component has been eliminated.

(b) - (©

Example 37. Take a connection C on P(E) and a dilation § on P(E) such that Vp € E, p € 6({p}) C C.
Let yn be the area opening (w.r.t. C) with area threshold n: for any X € P(E), yn(X) is the union of all
C-connected components of X whose measure (area or volume) is at least n. Given A € C‘;, let us say that
A s large if 6(A) has measure at least n, and small otherwise. Consider the operator ¢ on P(E) given by
Y(X) = X Nyn(6(X)). The behaviour of 1 is illustrated in Figure 8: it will remove all small C°-connected
components of a set. Then v is a connected operator for the connection C‘S, but FP(3) is a larger connection.
Let D be the set of all A € P(E) such that either A € C‘S, or all C°-connected components of A are large.
Then D is a connection, and we have C° C D C FP(y). We conjecture that for E = Z", C the graph
connectivity given by one of the usual translation-invariant adjacencies, and 6 = ép for o € B € C, we must
have FP(y) = D.

The following generalises Proposition 27 of [16], and its proof is similar:

Proposition 38. For any binary image measurement p : P(E) — K we have FP(u) C FP(u~™"). For
any binary image transformation ¢ : P(E) — P(E), we have FP(y) C FP(yTV),

Proof. Let C € FP(u); take any F' : E — V such that fI(F,C); thus there is some a € V such that
F(z) = a for all z € C. For any v € V, from (2) we have either a > v and C C Xy(F), or a ? v and
C C E\ Xy(F); in other words Xy (F) is flat on C; as C € FP(u), fl(Xo(F),C) implies fl(u(Xy(F)),C),
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so the value of u(Xy(F))(p) is the same for all p € C. Thus the summation S (u(Xo(F))(p) ’ v € V) has
the same value for all p € C, and by (40), this means that M_V(F) is flat on C. We have thus shown that
fUF,C) = fl(u~V(F),C), so C € FP(u~"). Therefore FP(u) C FP(u~V).

Let C € FP(y) = FP(xt); then the above with u = yi gives C € FP((x¥)~"). Thus, for any
F : E — V such that F is flat on C, (x¢))~V (F) will be flat on C. Now adding the constant L does not
change the flatness, so by (42), vV (F) = L+ (x¢) ™V (F) will be flat on C. So fI(F,C) = fl(v TV (F),C),
and C € FP(4TV). Therefore FP(y) C FP(yTY). O

An example of non-increasing connected flat operator is the white top-hat by reconstruction. Given a con-
nected structuring element B, the opening v3 by B by reconstruction associates to a set X the geodesical
reconstruction from the marker yg(X) in the mask X, in other words it will keep all connected components
of X which contain a translate of B. The set difference id \ 75 will select in X all connected components that
are too narrow to contain a translate of B. Its flat extension [X(id\'yg)] V_jatv - (v5) TV extracts from
a grey-level image its bright regions that are narrow relatively to B.

Anti-extensive connected operators have been analysed in the context of the maz-tree [19]. We consider
images with grey-level values in an integer interval: V. = {hpin, ..., Amaz} C Z. We assume that E € C.
Given an image F': E — V, we construct a directed tree whose nodes are all connected components of the
thresholdings X, (F') for all h € V; the root is E = X,
say that A is at level h), the children nodes of A will be all connected components of X1 (F) (nodes at level
h + 1) included in A. We associate to node A at level h the set of points of A having value h, those with

higher values will be associated to its descendant nodes. If all points in A have value > h, then A is in fact a

F); given a connected component A of X (F) (we

min (

connected component of X1 1(F), it coincides with its child node at level h + 1, so we remove the node A at
level h, its parent node becomes thus the parent of A at level h + 1.

An anti-extensive connected operator on sets removes some connected components of a set. Applied to a
thresholding Xy, (F), it will remove some of its connected components, in other words some nodes of the max-
tree. There are then several methods to reconstruct the filtered image from the pruned tree. The direct method
acts by threshold superposition; for an increasing operator on sets, it gives thus the usual flat extension. When
the operator is not increasing, there are two variants trying to give it a behaviour similar to the increasing
case: the min method will further remove all descendant nodes of a removed node, while the maz method will
counteract the removal of a node if one of its descendants is not removed.

In [23], a fourth method was introduced, the substractive one. It gives to a node the grey-level correspond-
ing to the subtraction of its level and that of its parent, then sums all these grey-levels. This corresponds to
our definition of the flat extension by threshold summation, and indeed equation (8) of [23] gives exactly the
flat operator 1T in the case where 1 is an attribute thinning, that is, an idempotent anti-extensive connected
operator that acts independently on each connected component of a set and removes those that do not satisfy
some criterion.

In [25], connected operators have been extended from the spatial domain to the domain of the max-tree.

6 Conclusion and perspectives

The classical theory of flat morphology [16] extends any increasing operator on sets (or binary images) to an
increasing flat operator on grey-level or multi-valued images (more precisely, functions defined on sets and
with values in a complete lattice). It relies on three steps: from a function F, build the stack of thresholdings,
Xv(F)(ueV): then apply the increasing set operator v to all thresholdings X, (F'), and finally superpose the
resulting stack 1)(Xo(F))(,cv) by using a lattice-theoretical supremum.

We have presented an alternative approach to flat morphology, which can be applied to a wider family
of operators on sets, in particular to non-increasing ones, such as the hit-or-miss transform, the top-hat and
the Beucher gradient. Here the last step of superposition is replaced by a summation, an idea first proposed
in [5, 24] in the case of bounded integer grey-levels. We have thus elaborated an extensive theory of function
summation in a poset [18], which requires the functions to be of bounded variation. It can be applied to
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functions with values in a closed interval in R or Z™, in other words to grey-level or multivalued images,
with either discrete or analog values. In the case of increasing set operators, the new definition of flat extension
gives the same result as the traditional one.

While classical flat morphology gives a flat extension of increasing operators P(E) — P(E) (or {0,1}F —
{0,1}), our theory gives the flat extension of functions P(E) — K (or {0,1}F — KF) for any finite interval
K included in Z, so it can be applied to functions with non-binary values, such as the morphological Laplacian.
Now, since the summation is a linear operation, given a function P(E) — K which is a linear combination
of increasing functions P(E) — {0,1}F, its flat extension will be the same linear combination of the flat
extensions of the latter functions. For instance, the flat extension of the set difference between an extensive
dilation and an anti-extensive erosion on sets will be the arithmetical subtraction of the corresponding flat
dilation and erosion on functions.

There should be no complication in relaxing the condition K C Z to K C (é)Z for some d > 1. We
can thus apply our theory to linear combinations with rational coefficients of morphological operators on
binary images. There have been several works on image filters built by combining linear and morphological
operations, see for instance [2, 3, 11], and they could thus be integrated into our framework.

For instance, in the discrete space Z™, the convolution by a finite mask M is a linear combination of
translations: F'x M = suppecqupp(M) M (p) - Tp(F), where supp(M) is the support of the mask M, and for
p € supp(M), M(p) is the mask value at p and Ty is the translation by p. Since the translation is an increasing
operator on sets, so a flat operator on functions, convolution by the finite mask M is a linear combination of
flat morphological operators, and it enters into our framework; in fact, the convolution by M for grey-level or
multivalued functions is the flat extension of that same convolution for binary images.

We have analysed some general properties of flat operators, such as compatibility with projection on one
value in the case of multivalued images, and preservation of intervals of values. We have also been able to
show that the flat extension of a connected operator on sets is a connected operator on functions.

There are other properties that were established in [16] for the flat extension of increasing set operators, in
particular its relation with combinations of operators (composition, union and intersection). These properties
do not extend fully to the general case, but we can obtain weaker properties. Also the notion of duality
becomes rather complex in the case of non-increasing operators. These problems can be analysed and solved
through the use of complicated mathematical techniques, and they will be dealt with in our second paper,

where we will also analyse linear operators and “hybrid filters” combining linear and morphological operators.

References

[1] G. Birkhoff. Lattice Theory, volume 25 of American Mathematical Society Colloquium Publications.
American Mathematical Society, 3rd edition, 8th printing, 1995.

[2] A. Bovik, T. Huang, and D. Munson. A generalization of median filtering using linear combinations
of order statistics. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31(6):1342-1350,
December 1983.

[3] K.-S. Choi, A. W. Morales, and S.-J. Ko. Design of linear combination of weighted medians. IEEFE
Transactions on Signal Processing, 49(9):1940-1952, September 2001.

[4] M. Erné. Closure. In F. Mynard and E. Pearl, editors, Beyond Topology, volume 486 of Contemporary
Mathematics, pages 163—238. American Mathematical Society, 2009.

[5] J.P. Fitch, E.J. Coyle, and N.C. Gallagher. Median filtering by threshold decomposition. IEEE Trans.
Acoustics, Speech € Signal Processing, 32(6):1183-1188, 1984.

[6] G.B. Folland. Real Analysis. John Wiley & Sons, New York, 1984.

[7] G. Gratzer. General Lattice Theory. Birkhauser, 2nd edition, Basel, 2003.

[8] P.C. Hammer. Syntonicity of functions and the variation functional. Rendiconti del Circolo Matematico
di Palermo, 8:145-151, 1959.



38 =—— REFERENCES DE GRUYTER

(9]

[10]
[11]

[12]
[13]
[14]

[15]

[16]
[17]

18]

[19]

[20]
[21]

[22]

23]

[24]

[25]

P.C. Hammer and J. Holladay. Functions of restricted variation. Rendiconti del Circolo Matematico di
Palermo, 8:102-114, 1959.

H.J.A.M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

P. Heinonen and Y. Neuvo. Fir-median hybrid filters. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 35(6):832—-838, June 1987.

B. Naegel, N. Passat, and C. Ronse. Grey-level hit-or-miss transforms — Part I: Unified theory. Pattern
Recognition, 40(2):635-647, 2007.

C. Rohwer and M. Wild. LULU theory, idempotent stack filters, and the mathematics of vision of marr.
Advances in Imaging and Electron Physics, 146:57-162, 2007.

C. Ronse. Order-configuration functions: mathematical characterizations and applications to digital
signal and image processing. Information Sciences, 50(3):275-327, 1990.

C. Ronse. Flat morphological operators on arbitrary power lattices. In T. Asano, R. Klette, and C. Ronse,
editors, Geometry, Morphology, and Computational Imaging — 11th International Workshop on Theoret-
ical Foundations of Computer Vision, Dagstuhl Castle, Germany, April 7-12, 2002, Revised Papers,
volume 2616 of Lecture Notes in Computer Science, pages 1-21. Springer, 2003.

C. Ronse. Flat morphology on power lattices. Journal of Mathematical Imaging and Vision, 26(1/2):185—
216, 2006.

C. Ronse. Partial partitions, partial connections and connective segmentation. Journal of Mathematical
Imaging and Vision, 32(2):97-125, October 2008.

C. Ronse. Bounded variation in posets, with applications in morphological image processing. In M. Pas-
sare, editor, Complex Analysis and Digital Geometry, Proceedings of the Kiselmanfest, 2006, volume 86,
pages 249-281. Acta Universitatis Upsaliensis, Upsala, Sweden, 2009.

Philippe Salembier, Albert Oliveras, and Luis Garrido. Antiextensive connected operators for image and
sequence processing. IEEE Transactions on Image Processing, 7(4):555-570, 1998.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

J. Serra, editor. Image Analysis and Mathematical Morphology, II: Theoretical Advances. Academic
Press, London, 1988.

P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin Heidelberg,
2nd edition, 2003.

Erik R Urbach, Jos BTM Roerdink, and Michael HF Wilkinson. Connected shape-size pattern spectra for
rotation and scale-invariant classification of gray-scale images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(2):272-285, 2007.

P.D. Wendt, E.J. Coyle, and N.C. Gallagher. Stack filters. IEEE Trans. Acoustics, Speech € Signal
Processing, 34(4):898-911, 1986.

Yongchao Xu, Thierry Géraud, and Laurent Najman. Connected filtering on tree-based shape-spaces.
IEEE transactions on Pattern Analysis and Machine Intelligence, 38(6):1126-1140, 2015.



	Flat morphological operators from non-increasing set operators, I: general theory
	1 Introduction
	1.1 Flat extension by threshold superposition
	1.2 Threshold summation and linear combination of increasing operators
	1.3 Mathematical preliminaries

	2 Bounded variation in a poset
	3 Function summation in numerical and multivalued posets
	3.1 Additive summation
	3.2 Further properties

	4 Decomposition of integer-valued functions
	5 Generalised flat morphological operators
	5.1 Basic definitions and examples
	5.2 Bounded variation of image measurements
	5.3 General properties
	5.4 Flat zones and connected operators

	6 Conclusion and perspectives


