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Abstra
t: Flat morphology is a general method for obtaining in
reasing operators on grey-level or multivalued

images from in
reasing operators on binary images (or sets). It relies on threshold sta
king and superposition;

equivalently, Boolean max and min operations are repla
ed by latti
e-theoreti
al sup and inf operations.

In this paper we 
onsider the 
onstru
tion a �at operator on grey-level or 
olour images from an operator on

binary images that is not in
reasing. Here grey-level and 
olour images are fun
tions from a spa
e to an interval

in R
m
or Z

m
(m ≥ 1). Two approa
hes are proposed. First, we 
an repla
e threshold superposition by threshold

summation. Next, we 
an de
ompose the non-in
reasing operator on binary images into a linear 
ombination

of in
reasing operators, then apply this linear 
ombination to their �at extensions. Both methods require the

operator to have bounded variation, and then both give the same result, whi
h 
onforms to intuition. Our

approa
h is very general, it 
an be applied to linear 
ombinations of �at operators, or to linear 
onvolution

�lters.

Our work is based on a mathemati
al theory of summation of real-valued fun
tions of one variable ranging in

a poset.

In a se
ond paper, we will study some parti
ular properties of non-in
reasing �at operators.

Keywords: poset, bounded variation, summation, operator on sets, �at morphologi
al operator
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1 Introdu
tion

Mathemati
al morphology [10, 20, 21, 22℄ is a bran
h of image pro
essing, that relies on latti
e-theoreti
al

and geometri
al operations. It is used for pro
essing binary, grey-level and multivalued images, as well as

many other imaging stru
tures.

It was initially developed in the framework of binary images, and later generalised to grey-level and

multivalued images. The mostly used morphologi
al operators on grey-level (or multivalued) images are the

so-
alled �at operators, for instan
e those using �at stru
turing elements. They are obtained from operators on

binary images through the method of �at extension [16℄. For instan
e a grey-level �at dilation (resp., erosion)

applies at ea
h point a lo
al supremum (resp., in�mum) of grey-levels. Another �at operator is the median

�lter. A fundamental limitation of this method is that it is restri
ted to in
reasing operators, in other words

operators that preserve the in
lusion order. Thus, it 
annot be applied to non-in
reasing operators su
h as

the morphologi
al gradient and Lapla
ian, or the hit-or-miss transform, although many authors have given

grey-level versions of these operators in an ad ho
 manner.

The purpose of this paper is to generalise the �at extension to non-in
reasing operators. Subse
tion 1.1

re
alls the 
lassi
al theory of the �at extension of binary operators, then the simple example of the di�eren
e

between a dilation and an erosion shows how this method fails for non-in
reasing operators. Subse
tion 1.2
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introdu
es two equivalent approa
hes for obtaining the �at extension of a non-in
reasing operator: �rst, repla
e

threshold superposition by threshold summation; se
ond, de
ompose the non-in
reasing operator into a linear


ombination of in
reasing operators, and take this linear 
ombination with their �at extensions.

The paper requires a substantial mathemati
al ba
kground, whi
h was initiated in [18℄. The two proposed

approa
hes require the operator to be of bounded variation: this 
ondition is studied in Se
tion 2. Se
tion 3

introdu
es a theory of summation on posets, whi
h gives a kind of Riemann integral. Se
tion 4 studies the

de
ompositions of fun
tions into linear 
ombinations of in
reasing fun
tions.

Then Se
tion 5 applies this theory to the �at extension of operators on binary images, not only operators

P(E) → P(E), but also P(E) → KE
for a �nite interval K ⊂ Z. Se
tion 6 
on
ludes and introdu
es some

perspe
tives, some of whi
h will be dealt with in a se
ond paper.

1.1 Flat extension by threshold superposition

We use the standard latti
e-theoreti
al terminology of [16℄. See Subse
tion 1.3 for more details.

Consider a spa
e of points E, whi
h 
an be the Eu
lidean (E = R
n
) or digital (E = Z

n
) spa
e, or a subset

of su
h a spa
e. Image intensities are numeri
al values, they range in a 
losed subset T of R = R∪{−∞,+∞};

for example in the digital 
ase, one 
an take T to be an interval in Z = Z ∪ {−∞,+∞}. Then one models

binary images as subsets of E, grey-level images as numeri
al fun
tions E → T , and multivalued images (e.g.,


olour, multispe
tral, or multimodal images) as fun
tions E → Tm for some integer m > 1. Write P(E) for

the set of all subsets of E (i.e., binary images), TE and (Tm)E for the set of maps E → T and E → Tm

respe
tively.

An operator is a map transforming an image into an image. There are for instan
e operators on binary,

grey-level images or multivalued images, that is, maps P(E) → P(E), TE → TE or (Tm)E → (Tm)E .

There 
an also be operators between di�erent families of images, for instan
e thresholding is an operator

TE → P(E).

An operator ψ : P(E) → P(E) on binary images is said to be in
reasing (or isotone) if it preserves the

in
lusion order: for X,Y ∈ P(E), X ⊆ Y ⇒ ψ(X) ⊆ ψ(Y ). There is a systemati
 method for 
onstru
ting an

operator on grey-level or multivalued images from an in
reasing operator on binary images: the �at extension.

Let us brie�y re
all from [16℄ how this is done.

Let us write V for the set of image values; we assume that V = T (for grey-level images) or V = Tm (for

multivalued images), where T is a 
losed interval in Z or R. Then V is partially ordered, numeri
ally for T ,

and 
omponentwise for Tm:

(x1, . . . , xm) ≤ (y1, . . . , ym) ⇐⇒ xi ≤ yi for i = 1, . . . ,m . (1)

Note that there are other possible orders on Tm, but the 
omponentwise order is mathemati
ally easier, with

it we 
ould obtain results for multivalued images, see Theorem 10 and Proposition 30. Now, V 
onstitutes

a 
omplete latti
e [1℄ (every subset of V has a supremum and an in�mum for the order). Write ⊥ and ⊤

for the least and greatest elements of V , and
∨

for the supremum operation in V ; when V = T ,
∨

is the

numeri
al supremum, and when V = Tm, it is the 
omponentwise numeri
al supremum. Thus, V E will be a


omplete latti
e, whose order, supremum and in�mum are obtained by applying those of V pointwise: F ≤ G

i� F (p) ≤ G(p) for all p ∈ E, and for Fi ∈ V E , i ∈ I ,
∨

i∈I Fi is the fun
tion E → V : p 7→
∨

i∈I Fi(p).

For an image F : E → V and v ∈ V , the threshold set [10℄ is

Xv(F ) = {p ∈ E | F (p) ≥ v} . (2)

The set Xv(F ) is de
reasing in v: w > v ⇒ Xw(F ) ⊆ Xv(F ), in other words threshold sets form a sta
k

[15, 16℄. We illustrate su
h a sta
k in Figure 1 for E = R and V = T = [a, b], a bounded interval in R: the

sets {t} × Xt(F ) for t ∈ T pile up.

For B ⊆ E and v ∈ V , the 
ylinder of base B and level v is the fun
tion CB,v given by

∀ p ∈ E, CB,v(p) =

{

v if p ∈ B ,

⊥ if p /∈ B .
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Fig. 1:Here E = R and V = T = [a, b] ⊂ R. The hypograph of F is the set {(h, t) ∈ E×T | t ≤ F (h)}, and its horizontal


ross-se
tions are the sets {t} × Xt(F ) for t ∈ T .

Then every fun
tion F : E → V is the upper envelope of the sets {v} ×Xv(F ), in other words the supremum

of 
ylinders

F =
∨

v∈V

CXv(F ),v .

Consider now an in
reasing operator ψ : P(E) → P(E) on binary images, so X ⊆ Y ⇒ ψ(X) ⊆ ψ(Y ).

Then for any F : E → V , the sets ψ (Xv(F )) de
rease with v, thus they form a sta
k. We 
an take the upper

envelope of the sets {v} × ψ (Xv(F )), that is:

ψV (F ) =
∨

v∈V

Cψ(Xv(F )),v . (3)

For every point p ∈ E we have:

ψV (F )(p) =
∨

{

v ∈ V | p ∈ ψ(Xv(F ))
}

. (4)

Then ψV : V E → V E : F 7→ ψV (F ) is the �at operator 
orresponding to ψ, or the �at extension of ψ [15, 16℄.

We illustrate this 
onstru
tion in Figure 2 for the example of Figure 1, where the operator ψ is �rst the

dilation δB , then the erosion εB by a stru
turing element B ∈ P(E) [10, 20℄: for any X ∈ P(E),

δB(X) = X ⊕B =
⋃

b∈B

Xb and εB(X) = X ⊖B =
⋂

b∈B

X−b ; (5)

here Xb = {x+ b | x ∈ X} is the translate of X by b.

Now if we take a non-in
reasing operator, this approa
h does not work 
orre
tly. The sets ψ (Xv(F )) do

not anymore form a sta
k, sin
e they do not de
rease with v. Consider the example of Figure 1, and let the

operator ψ be the set di�eren
e between the dilation δ and erosion ε of Figure 2. As shown in Figure 3, the

sta
king approa
h of (3,4) gives for F the same result as the �at extension of the dilation: [δ\ε]T (F ) = δT (F ).

More generally, for a fun
tion G, we will have δT (G) ≥ [δ \ ε]T (G) ≥ δT (G) − εT (G), see Figure 4.

However intuition tells us that sin
e here the erosion is in
luded in the dilation, the �at extension of

their set-theoreti
al di�eren
e should be the arithmeti
al di�eren
e of their �at extensions: [δ \ ε]T (F ) =

δT (F ) − εT (F ). This a

ords with 
ommon pra
ti
e, as indeed the Beu
her gradient [20℄ of an image is

de�ned as δ(X) \ ε(X) for a binary image X and δT (F )− εT (F ) for a grey-level image F , where δ and ε are

the dilation and erosion by a point neighbourhood.

1.2 Threshold summation and linear 
ombination of in
reasing operators

The solution to our problem was hinted at in Se
tion V.2 of [14℄; in fa
t, it proposed two equivalent methods for

obtaining the �at extension of a non-in
reasing binary operator. Although the point of view of that paper was
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Fig. 2: Again E = R and V = T = [a, b] ⊂ R. The fun
tion F of Figure 1 is shown dashed. Here the operators are

the dilation δ (left) and erosion ε (right) by a segment 
entered about the origin (shown as a big dot). The sets {t} ×

δ (Xt(F )) (left) and {t} × ε (Xt(F )) (right) pile up, their upper envelopes are the fun
tions δT (F ) and εT (F ).

{ }t ψ Xtx (         )(   )F

E

T

a

b ψT F(  ) ψ = dilation \ erosion by

Fig. 3: Still E = R and V = T = [a, b], and the above fun
tion F is shown dashed. Here ψ(X) = δ(X) \ ε(X) for the

dilation δ and the erosion ε by a segment 
entered about the origin. The sets {t} × ψ (Xt(F )) do not pile up 
orre
tly.

stri
tly �nitary (with only �nite stru
turing elements or �lter windows, and �nitely many images intensities),

and restri
ted to grey-level images (V = T ), the approa
h 
an be extended to our general framework. This

paper proposed two di�erent ideas that will �nally lead to the same result.

Let us (temporarily) restri
t ourselves to grey-level images (V = T ). The �rst idea is that the sets

ψ (Xt(F )) (t ∈ T ) should not be superposed by a supremum of 
ylinders, but numeri
ally summed or integrated

over t ∈ T , following the threshold de
omposition method introdu
ed by [5℄ for median �lters, and extended

in [24℄ to arbitrary �at operators.

In order to avoid long or imbri
ated subs
ripts, for any X ∈ P(E), we will write χX , rather than the

usual χX , for the 
hara
teristi
 fun
tion of X :

∀X ∈ P(E), ∀ p ∈ E, χX(p) =

{

1 if p ∈ X ,

0 if p /∈ X .
(6)

Then, given an operator ψ : P(E) → P(E), for any X ∈ P(E) we write χψ(X) for the 
hara
teristi
 fun
tion

of ψ(X); in other words, we have the map χψ : P(E) → {0, 1}E , whi
h is the 
omposition of ψ : P(E) → P(E)

followed by χ : P(E) → {0, 1}E.

Given an in
reasing operator ψ : P(E) → P(E), we have for any F ∈ TE and p ∈ E:

� in the dis
rete 
ase T = {t0, . . . , tn}, where ⊥ = t0 < · · · < tn = ⊤:

ψT (F )(p) = ⊥+

n
∑

i=1

(ti − ti−1)χψ(Xti(F ))(p) . (7)
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Fig. 4:The same operator ψ as in Figure 3, but with another fun
tion G. Here δT (G) − εT (G) would give the height of

the union of all sets {t} × ψ (Xt(F )).

� in the 
ontinuous 
ase T = [⊥,⊤]:

ψT (F )(p) = ⊥+

⊤
∫

⊥

χψ(Xt(F ))(p) dt . (8)

In fa
t, in [5, 24℄ it was assumed that T = {0, . . . , n}, so there (7) took the form

ψT (F )(p) =

n
∑

i=1

χψ(Xi(F ))(p) . (9)

Then one 
ould take (7,8) as the de�nition of the �at extension of any operator, in
reasing or not. For our

example with ψ given by ψ(X) = δ(X) \ ε(X), as ε(X) ⊆ δ(X) for all X ∈ P(E), we have χ
[

δ(X) \ ε(X)
]

=

χδ(X)−χε(X), and by the linearity of summation and integration, (7,8) gives [δ\ε]T (F ) = ⊥+δT (F )−εT (F );

when ⊥ = 0 (whi
h is often the 
ase in pra
ti
e), we get [δ \ ε]T (F ) = δT (F ) − εT (F ). This is exa
tly what

intuition tells us: the arithmeti
al di�eren
e is the extension to numeri
al fun
tions of the set di�eren
e X \Y

for Y ⊆ X .

The two equations (7,8) should be extended to multivalued images (V = Tm) and uni�ed into a single

equation valid for both dis
rete and 
ontinuous numeri
al values. Indeed, our 
ontributed arti
le [18℄ at the

Kiselmanfest of 2006 is devoted to su
h a generalisation: we introdu
ed an analogue of the Riemann integral

for fun
tions de�ned on a poset (partially ordered set) in
luded in R
m

or Z
m

(m ≥ 1), we 
alled it fun
tion

summation; it relies on the order and the 
ompatibility of the operations of addition, subtra
tion and s
alar

multipli
ation (in R
m

or Z
m
) with that order. Its appli
ation to thresholded grey-level images gives (7) for

dis
rete grey-levels and (8) for 
ontinuous grey-levels; moreover, in the 
ase of an in
reasing operator, for

image values in an interval in R
m

or Z
m
, the result is equivalent to �at extension, in other words threshold

summation (7,8) is equivalent to threshold sta
king (4).

Now this fun
tion summation was de�ned only for fun
tions that are linear 
ombinations of bounded,

non-negative and de
reasing (or in
reasing) fun
tions, in other words fun
tions with bounded variation; thus

we analysed this property in [18℄. We do not ex
lude the possibility of extending our fun
tion summation to

fun
tions de�ned on a poset, whi
h do not have bounded variation; this 
ould possibly be a
hieved by using

measure theory and the methodology of the Lebesgue integral, but that is beyond the s
ope of our study.

The se
ond idea of [14℄ is that a fun
tion with binary values should be expressed as a linear 
ombination

of in
reasing binary-valued fun
tions. We proposed there to de
ompose a fun
tion f : {0, 1}n → {0, 1}

into an alternating sum and di�eren
e of a de
reasing sequen
e of in
reasing binary fun
tions, that is, into

f1−f2 +f3 −· · ·+(−1)r−1fr, where r is an integer > 0, ea
h fun
tion fi : {0, 1}
n → {0, 1} is in
reasing, and

f1 > · · · > fr . This was stated without justi�
ation, the details were announ
ed to appear in a manus
ript

in preparation, whi
h was never written ... until the result was proven in a more general form in [18℄, see
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Se
tion 4, in parti
ular Theorem 18. Now for ψ : P(E) → P(E), we would like to have a similar de
omposition

χψ = χψ1 − χψ2 + χψ3 + · · · (−1)r−1χψr , (10)

where the ψi (i = 1, . . . , r) form a de
reasing sequen
e of in
reasing operators P(E) → P(E); then we would

dedu
e from it the same de
omposition for the �at extension (assuming ⊥ = 0):

ψV = ψV1 − ψV2 + ψV3 + · · · (−1)r−1ψVr . (11)

However, in an in�nite spa
e E, su
h a de
omposition is not guaranteed. Indeed, as ψ1, . . . , ψr are in
reasing,

given an in
reasing sequen
e (Xn)n∈N in P(E), for any p ∈ E and i = 1, . . . , r, the sequen
e χψi(Xn)(p) 
an


hange at most on
e, from 0 to 1, hen
e for the de
omposition (10), the sequen
e χψ(Xn)(p) should 
hange

at most r times, alternating between 0 and 1. However, for an in�nite spa
e E, it is easy to �nd an operator

ψ su
h that the sequen
e χψ(Xn)(p) will endlessly alternate between 0 and 1.

We will indeed see that the ne
essary and su�
ient 
ondition for a de
omposition of the form (10) is that

the fun
tions P(E) → {0, 1} : X 7→ χψ(X)(p) for p ∈ E are of uniform bounded variation, in other words the

same bound holds for their total variation for all p ∈ E. This will imply in parti
ular that for every F : E → V

and p ∈ E, the fun
tion v 7→ χψ (Xv(F )) (p) will have its summation well-de�ned, in other words the formula

generalising (7,8) will be valid. In fa
t, assuming ⊥ = 0, we will then have the 
orresponding de
omposition

(11).

We see thus that bounded variation is at the 
ore of the theory of the �at extension of non-in
reasing

set operators, and it was the main theme of [18℄. This work 
onstitutes the mathemati
al basis for our study,

and the next three se
tions will mostly summarise the main 
on
epts and results of that paper, although

we present a few new results. Se
tion 2 studies bounded variation of fun
tions de�ned on an arbitrary poset

(partially ordered set) and with real or integer values. Then Se
tion 3 de�nes a summation for real-valued

fun
tions de�ned on a poset in
luded in R
m

or Z
m
, m ≥ 1. For m = 1, this summation gives the integral

in the 
ontinuous 
ase, and a sum similar to (7) in the dis
rete 
ase. For m > 1, there will be a summation

along ea
h 
oordinate; for instan
e, in R
3
, given ai ≤ bi for i = 1, 2, 3, the summation of f from (a1, a2, a3)

to (b1, b2, b3) will be

(

b1
∫

a1

f(t, a2, a3) dt ,

b2
∫

a2

f(a1, t, a3) dt ,

b3
∫

a3

f(a1, a2, t) dt
)

.

Next, Se
tion 4 studies the de
omposition of integer-valued fun
tions into a linear 
ombination of in
reasing

binary fun
tions; in the 
ase where the fun
tion to be de
omposed has binary values, we get an alternating

sum and di�eren
e of a de
reasing sequen
e of in
reasing binary fun
tions, 
f. (10).

Se
tion 5 applies the mathemati
al results of the three pre
eding se
tions to the theory of the �at extension

of operators on binary images, that is, operators P(E) → P(E), or more generally P(E) → KE
for a �nite

interval K ⊂ Z, su
h as for instan
e the morphologi
al Lapla
ian:

χδ + χε− 2χid : P(E) → {−1, 0, 1}E : X 7→ χδ(X) + χε(X)− 2χX , (12)

where id is the identity operator on P(E), while δ and ε are the dilation and erosion by a point neighbourhood.

Our approa
h relies on threshold summation, and in the 
ase of in
reasing operators P(E) → P(E), it gives

the same result as the original threshold sta
king method. We will see that several examples of non-in
reasing

�at operators for grey-level images informally given in the literature belong to our framework: the external,

internal and Beu
her gradient, the morphologi
al Lapla
ian, the white, bla
k, and self-
omplementary top-

hat, and �nally Soille's un
onstrained hit-or-miss transform. We will also give some general properties of

�at operators, whi
h are rather similar to those given in [16℄ in the 
ase of in
reasing operators. Finally the


on
lusion summarises our �ndings and proposes some possible extensions of our theory.

Note that our approa
h 
ombines linear operations (summation, linear 
ombination) with non-linear ones

(thresholding); thus the resulting �at operators are generally non-linear (for instan
e, the usual operators

of mathemati
al morphology). However, we 
an also obtain �at operators that are linear; for instan
e, the

identity and spatial translations are linear �at operators, so the 
onvolution by a �nite mask, whi
h is a
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linear 
ombination of translations, will be a linear �at operator, whi
h will be in
reasing only when the mask


oe�
ients are all non-negative.

Given the length of our study, we have split our work into two parts. In a se
ond paper, we will 
onsider

duality and study some properties of �at operators, where the non-in
reasing 
ase di�ers from the in
reasing

one, for instan
e the �at extension of a supremum, in�mum or 
omposition of operators.

1.3 Mathemati
al preliminaries

We re
all here some basi
 notions from the theory of posets and latti
es [1, 4, 7℄. A poset is a set P with a

partial order relation ≤ (re�exive, antisymmetri
 and transitive); write < for the 
orresponding stri
t partial

order, that is, x < y ⇔ (x ≤ y and x 6= y). Two elements x and y of P are said to be 
omparable if either

x < y or x = y or x > y. We say that the order ≤ is total if x and y are 
omparable for all x, y ∈ P ; then P

is 
alled a 
hain. A �nite 
hain v0 < · · · < vn in a poset P has length n; the height of P , written h(P ), is the

supremum of the lengths of all 
hains in
luded in P ; if there is no upper bound on 
hain lengths in P , we get

h(P ) = ∞. For a, c ∈ P , we say that c 
overs a if a < c and there is no b ∈ P with a < b < c. Given a, b ∈ P

su
h that a ≤ b, let [a, b] = {x ∈ P | a ≤ x ≤ b}, we 
all it the 
losed interval between a and b.

A bounded poset is one having a least element and a greatest element; a poset is bounded by a, b if its

least element is a and its greatest element is b.

Given two posets P and Q (equal or di�erent), a map ψ : P → Q is in
reasing (or isotone) if for all

x, y ∈ P , x ≤ y ⇒ ψ(x) ≤ ψ(y); it is de
reasing (or antitone) if for all x, y ∈ P , x ≤ y ⇒ ψ(x) ≥ ψ(y).

A map ψ : P → P is extensive if for all x ∈ P we have x ≤ ψ(x); it is idempotent if for all x ∈ P we have

ψ(ψ(x)) = ψ(x).

A 
losure map on P [4, 7℄ is a map ϕ : P → P that is in
reasing, extensive, and idempotent. Equivalently,

for all x, y ∈ P , x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y). A 
losure range on P [4℄ is a subset M of P su
h that for

every x ∈ P , the set of all y ∈M su
h that y ≥ x is non-empty and has a least element. There is a bije
tion

between 
losure maps and 
losure ranges on P , where a 
losure map ϕ and a 
losure range M 
orrespond by

two re
ipro
al relations: M = {ϕ(x) | x ∈ P}, and for every x ∈ P , ϕ(x) is the least y ∈ M su
h that y ≥ x.

Note that when P has a greatest element ⊤, we always have ⊤ ∈M and ϕ(⊤) = ⊤.

For Q ⊆ P , a lower bound (resp., upper bound) of Q is any x ∈ P su
h that for all y ∈ Q, x ≤ y (resp.,

x ≥ y). The greatest lower bound of Q is a lower bound of Q greater than any other lower bound; if it exists,

it is unique. One de�nes similarly the least upper bound of Q. Then P is a latti
e if every pair {x, y} in P has

a least upper bound, 
alled the join of x, y and written x ∨ y, and a greatest lower bound, 
alled the meet of

x, y and written x∧ y. Now P is a 
omplete latti
e if every subset Q of P has a least upper bound, 
alled the

supremum of Q and written

∨

Q, and a greatest lower bound, 
alled the in�mum of Q and written

∧

Q; in

parti
ular it has a least element ⊥ =
∧

P =
∨

∅ and a greatest element ⊤ =
∨

P =
∧

∅.

Of parti
ular interest are latti
es of numbers and of ve
tors. Every interval in Z, every 
losed interval [a, b]

in R, the 
ompletions Z = Z ∪ {−∞,+∞} and R = R ∪ {−∞,+∞} are 
omplete latti
es for the numeri
al

order; all of them have the same non-empty supremum and in�mum operations, whi
h 
oin
ide with the

usual numeri
al supremum and in�mum; we will thus write supQ and inf Q rather than

∨

Q and

∧

Q for a

non-empty Q ⊆ R. The empty numeri
al supremum and in�mum, sup ∅ and inf ∅, have no a priori values,

they are generally de�ned as the least and greatest elements of the interval under 
onsideration. For m > 1,

Z
m

and R
m
, as well as any 
losed interval in Z

m
or R

m
, are 
omplete latti
es for the 
omponentwise order

(1); their non-empty supremum and in�mum, again written sup and inf , 
orrespond to taking the numeri
al

supremum and in�mum 
omponentwise: writing xi for the i-th 
oordinate of x ∈ R (i = 1, . . . , n), for any

non-empty Q ⊆ R
m

we have

(

supQ
)

i
= sup{xi | x ∈ Q} and similarly for the in�mum.

A 
onditionally 
omplete latti
e is a latti
e where every subset having an upper bound has a least upper

bound (supremum), and every subset having a lower bound has a greatest lower bound (in�mum). For instan
e,

Z and R are 
onditionally 
omplete latti
es for the numeri
al order, while for m > 1, Zm and R
m

are


onditionally 
omplete latti
es for the 
omponentwise order.
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In a 
omplete latti
e P , one 
alls an inf-
losed subset of P a subset M of P su
h that for any subset Q

of M ,

∧

Q ∈ M ; in parti
ular, it 
ontains the empty in�mum, that is, the greatest element: ⊤ =
∧

∅ ∈ M .

In fa
t, M is inf-
losed if and only if it is a 
losure range; it is then a 
omplete latti
e, with the same

in�mum operation as in P , but with the supremum of Q ⊆ M given by ϕ
(
∨

Q
)

, where ϕ is the 
losure map


orresponding to M . One de�nes similarly a sup-
losed subset of P : Q ⊆ M ⇒
∨

Q ∈ M ; then ⊥ ∈ M

and M is a 
omplete latti
e. A 
omplete sublatti
e of P is a subset Q of P whi
h is a 
omplete latti
e with

the same supremum and in�mum operations as in P , in other words, Q is both inf-
losed and sup-
losed; it


ontains in parti
ular the empty supremum and in�mum, that is, the least and greatest elements: ⊥,⊤ ∈ Q.

2 Bounded variation in a poset

Bounded variation is a 
lassi
al topi
 in fun
tions R → R, see for example Se
tion 3.5 of [6℄. We summarise

here Se
tion 2 of [18℄, with minor 
orre
tions and improvements, and we add some examples. The most

important results of this se
tion are Proposition 4 and Corollary 5, together with the dis
ussion of duality

following them.

Let P be a poset. In pra
ti
e, P 
an be P(E), the set of parts of a spa
e E (ordered by in
lusion), or a


losed interval T in R, or P = Tm (ordered 
omponentwise). We will 
onsider fun
tions P → R.

Every fun
tion P → R has its positive, negative and total variation, and when the latter is bounded, we

say that the fun
tion has bounded variation. The bounded variation of fun
tions P → R has been studied in

[8, 9℄ in the restri
ted 
ase where the order ≤ is total.

For x ∈ R, let [x]+ and [x]− be the positive and negative parts of x:

[x]+ = max(x, 0) =

{

x if x ≥ 0 ,

0 if x ≤ 0 ;

and

[x]− = [−x]+ = max(−x, 0) =

{

|x| if x ≤ 0 ,

0 if x ≥ 0 .

Then x = [x]+ − [x]− and |x| = [x]+ + [x]−.

A stri
tly in
reasing sequen
e in P is a (n + 1)-tuple (s0, . . . , sn), where n ∈ N, s0, . . . , sn ∈ P and

s0 < · · · < sn. The set of su
h sequen
es is ordered by in
lusion, where (r0, . . . , rm) is in
luded in (s0, . . . , sn)

i� {r0, . . . , rm} ⊆ {s0, . . . , sn}, that is, i� (r0, . . . , rm) = (sj0 , . . . , sjm) for 0 ≤ j0 < · · · < jm ≤ n; we say

then that (r0, . . . , rm) is a sub-sequen
e of (s0, . . . , sn), and write (r0, . . . , rm) ⊆ (s0, . . . , sn).

Let f : P → R. For any stri
tly in
reasing sequen
e, we de�ne the positive, negative and total variation

of f on it:

PV(s0,...,sn)(f) =

n
∑

i=1

[

f(si)− f(si−1)
]+

,

NV(s0,...,sn)(f) =

n
∑

i=1

[

f(si)− f(si−1)
]−

,

TV(s0,...,sn)(f) =

n
∑

i=1

∣

∣f(si)− f(si−1)
∣

∣ .

(13)

These three numbers are non-negative. Then 
on
atenating stri
tly in
reasing sequen
es adds their variations,

in other words, a stri
tly in
reasing sequen
e (s0, . . . , sm+n) (where m,n ≥ 0) satis�es:

PV(s0,...,sm+n)(f) = PV(s0,...,sm)(f) + PV(sm,...,sm+n)(f) ,

NV(s0,...,sm+n)(f) = NV(s0,...,sm)(f) +NV(sm,...,sm+n)(f) ,

TV(s0,...,sm+n)(f) = TV(s0,...,sm)(f) + TV(sm,...,sm+n)(f) .

(14)
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It follows (see Lemma 1 of [18℄) that taking a sub-sequen
e of a stri
tly in
reasing sequen
e de
reases its

variations:

if (r0, . . . , rm) ⊆ (s0, . . . , sn)

then PV(r0,...,rm)(f) ≤ PV(s0,...,sn)(f) ,

NV(r0,...,rm)(f) ≤ NV(s0,...,sn)(f) ,

and TV(r0,...,rm)(f) ≤ TV(s0,...,sn)(f) .

(15)

Let a, b ∈ P with a < b. Consider the interval [a, b] = {x ∈ P | a ≤ x ≤ b}. Let S(a, b) be the set of

stri
tly in
reasing sequen
es in P that start in a and end in b:

S(a, b) = {(s0, . . . , sn) | n ∈ N, a = s0 < · · · < sn = b} . (16)

Taking the supremum of variations (13) for all sequen
es in S(a, b), one obtains the positive, negative and

total variation of f on [a, b], written PV[a,b](f), NV[a,b](f) and TV[a,b](f) respe
tively:

PV[a,b](f) = sup{PV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} ,

NV[a,b](f) = sup{NV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} ,

TV[a,b](f) = sup{TV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} .

(17)

Note that these three variations 
an be in�nite; they are thus in the interval [0,+∞]. The identity x =

[x]+ − [x]− gives for any (s0, . . . , sn) ∈ S(a, b):

PV(s0,...,sn)(f)−NV(s0,...,sn)(f) =

n
∑

i=1

(

f(si)− f(si−1)
)

= f(b) − f(a) ,

that is,

PV(s0,...,sn)(f) + f(a) = NV(s0,...,sn)(f) + f(b) . (18)

Taking the supremum over all (s0, . . . , sn) ∈ S(a, b), we get

for a < b : PV[a,b](f) + f(a) = NV[a,b](f) + f(b) . (19)

Now the identity |x| = [x]+ + [x]− gives for any (s0, . . . , sn) ∈ S(a, b):

TV(s0,...,sn)(f) = PV(s0,...,sn)(f) +NV(s0,...,sn)(f) . (20)

Then (18) gives TV(s0,...,sn)(f) = 2NV(s0,...,sn)(f) + f(b) − f(a), so by taking the supremum over all

(s0, . . . , sn) ∈ S(a, b), we get TV[a,b](f) = 2NV[a,b](f) + f(b)− f(a), and by (19) we get:

TV[a,b](f) = PV[a,b](f) +NV[a,b](f) . (21)

NB. In [18℄ we in
orre
tly derived (21) from (20) by taking the suprema over all (s0, . . . , sn) ∈ S(a, b), but a

supremum of sums does not ne
essarily 
oin
ide with the sum of suprema.

By (19), PV[a,b](f) and NV[a,b](f) are either both �nite or both in�nite. We say that f is of bounded

variation on [a, b] (or brie�y, f is BV [a, b]) if TV[a,b](f) is �nite, in other words, PV[a,b](f) and NV[a,b](f)

are both �nite. Then the terms of (19) are �nite, so

for a < b and f BV [a, b] : PV[a,b](f) −NV[a,b](f) = f(b)− f(a) . (22)

The following (Lemma 2 of [18℄) generalises a remark in Se
tion 3.5 of [6℄:

Lemma 1. Let P be poset, let a, c ∈ P , where a < c but c does not 
over a, and let f : P → R. Then

PV[a,c](f) = sup
a<b<c

[

PV[a,b](f) + PV[b,c](f)
]

,

NV[a,c](f) = sup
a<b<c

[

NV[a,b](f) +NV[b,c](f)
]

,

TV[a,c](f) = sup
a<b<c

[

TV[a,b](f) + TV[b,c](f)
]

.
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If P is a 
hain, then for every b ∈ P su
h that a < b < c, we have

PV[a,c](f) = PV[a,b](f) + PV[b,c](f) ,

NV[a,c](f) = NV[a,b](f) +NV[b,c](f) ,

TV[a,c](f) = TV[a,b](f) + TV[b,c](f) .

When P is not a 
hain, the se
ond statement in the lemma is generally false.

Example 2. Let V = {0, 1, 2}2, and de�ne f : P → R by f(2, 0) = 1, f(0, 2) = −1, and f(x, y) = 0 for

all (x, y) ∈ V \ {(2, 0), (0, 2)}. Only stri
tly in
reasing 
hains passing through (2, 0) or (0, 2) 
an have a non-

zero variation. Thus PV[(0,0),(1,1)](f) = NV[(0,0),(1,1)](f) = PV[(1,1),(2,2)](f) = NV[(1,1),(2,2)](f) = 0, while

PV[(0,0),(2,2)](f) = NV[(0,0),(2,2)](f) = 1.

Lemma 1 implies in parti
ular that PV[a,b](f), NV[a,b](f) and TV[a,b](f) in
rease when the interval [a, b]

in
reases, in other words when a de
reases and b in
reases. In the limiting 
ase where a = b, S(a, a) 
ontains

the unique sequen
e a = s0, and then trivially PV[a,a](f) = NV[a,a](f) = TV[a,a](f) = 0. Thus (19,21,22) are

true for a ≤ b, as well as Lemma 1 for a ≤ b ≤ c, in
luding in the 
ase of equality a = b or b = c.

We will say that f is of bounded variation on P (or brie�y, f is BV ) if sup{TV[a,b](f) | a, b ∈ P, a < b} <

∞; in other words, all PV[a,b](f) and NV[a,b](f) (a, b ∈ P , a < b) are all bounded by some real M .

When P is bounded by ⊥,⊤, we will write PV (f), NV (f) and TV (f) for PV[⊥,⊤](f), NV[⊥,⊤](f) and

TV[⊥,⊤](f) respe
tively. Then f is of bounded variation on P i� TV (f) <∞, that is, both PV (f) and NV (f)

are �nite. If P has �nite height and f is bounded (in parti
ular, if P is �nite), then f will be of bounded

variation; when one of these two 
onditions is not satis�ed, f 
an have unbounded variation:

Example 3. (a) Let P = P(Z), ordered by in
lusion, and let f : P → {0, 1} be de�ned by f(X) = 1 if X

is a segment of odd length, and f(X) = 0 otherwise. Here f is bounded, but P has in�nite height. Then f is

not of bounded variation, be
ause for Yt = {0, . . . , t} (t = 0, 1, 2, 3, . . .), Yt is in
reasing in t, and f(Yt) will

endlessly alternate between 1 and 0, so supt∈N PV[Y0,Yt](f) = supt∈NNV[Y0,Yt](f) = ∞.

(b) Let P = {⊥,⊤} ∪ {an | n ∈ N}, with the order relation given by ⊥ < an < ⊤ for all n ∈ N; let

f : P → N be given by f(⊥) = f(⊤) = 0 and f(an) = n for n ∈ N. Here P has �nite height, but f is

unbounded. For n ∈ N we have PV(⊥,an,⊤)(f) = NV(⊥,an,⊤)(f) = n, so PV (f) = NV (f) = ∞

Assume now that P has a least element ⊥. We de�ne the positive, negative and total variation fun
tions

pv[f ], nv[f ], tv[f ] : P → [0,∞] as follows:

∀ x ∈ P, pv[f ](x) = PV[⊥,x](f) , nv[f ](x) = NV[⊥,x](f)

and tv[f ](x) = TV[⊥,x](f) = PV[⊥,x](f) +NV[⊥,x](f) .

Note that pv[f ](⊥) = nv[f ](⊥) = tv[f ](⊥) = 0. Next, we de�ne fP and fN , the positive and negative

in
rements of f , by

∀ x ∈ P,
fP (x) =

[

f(⊥)
]+

+ pv[f ](x) ,

fN (x) =
[

f(⊥)
]−

+ nv[f ](x) .
(23)

We have then the following (see Proposition 4 of [18℄):

Proposition 4. Let P be poset with least element ⊥, and let f : P → R. Then:

1. pv[f ] and nv[f ] are in
reasing.

2. For x ∈ P , pv[f ](x) + f(⊥) = nv[f ](x) + f(x); if f is BV [⊥, x], then

f(x) = f(⊥) + pv[f ](x) − nv[f ](x) = fP (x)− fN (x) . (24)

3. f is in
reasing i� nv[f ] = 0, i� for all x ∈ P , f(x) = f(⊥) + pv[f ](x).

4. f is de
reasing i� pv[f ] = 0, i� for all x ∈ P , f(x) = f(⊥)− nv[f ](x).

5. If f = g − h for g, h : P → R non-negative and in
reasing, then for all x ∈ P we have pv[f ](x) ≤

g(x)− g(⊥), nv[f ](x) ≤ h(x)− h(⊥), fP (x) ≤ g(x) and fN (x) ≤ h(x).
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NB. In [18℄, the equation (24) was given under the 
ondition that f is BV (on P ) instead of now BV[⊥, x],

and the se
ond �i�� in items 3 and 4 was given under the 
ondition that f is BV, whi
h is now removed.

Indeed, the proof only requires that f has bounded variation on the interval [0, x] (not on P ); now for x ∈ P ,

ea
h of the four equalities nv[f ](x) = 0, f(x) = f(⊥) + pv[f ](x), pv[f ](x) = 0, and f(x) = f(⊥) − nv[f ](x)

given in items 3 and 4 implies that pv[f ](x) and nv[f ](x) 
annot be both in�nite, and then from (19) we

dedu
e that pv[f ](x) and nv[f ](x) are both �nite, hen
e f is BV[⊥, x], whi
h is su�
ient for the proof.

Combining items 1, 2 and 5, we dedu
e (Corollary 5 of [18℄):

Corollary 5. Let P be poset with least element ⊥, and let f : P → R. Then f is of bounded variation i�

there exist g, h : P → R bounded, non-negative and in
reasing, su
h that f = g − h, and then the least su
h g

and h are fP and fN .

A similar result was given in [8℄ when P is a 
hain.

The prin
iple of duality states that for a set P with a partial order relation ≤, the inverse relation ≥

is also a partial order, so every statement has a dual where one ex
hanges ≤ with ≥, least element ⊥ with

greatest element ⊤, et
. Here positive and negative variation are ex
hanged, that is, PV[a,b](f) 
orresponds

to NV[b,a](f) in the dual poset. Now, if P has a greatest element ⊤, we obtain the dual positive and negative

variation fun
tions pv∗[f ], nv∗[f ] : P → [0,∞] given by

∀ x ∈ P, pv∗[f ](x) = NV[x,⊤](f) and nv∗[f ](x) = PV[x,⊤](f) .

They are de
reasing, and pv∗[f ](⊤) = nv∗[f ](⊤) = 0. We have then the dual positive and negative in
rements

of f ,

∀ x ∈ P,
f∗P (x) =

[

f(⊤)
]+

+ pv∗[f ](x) ,

f∗N (x) =
[

f(⊤)
]−

+ nv∗[f ](x) .
(25)

Now, for f BV we have the dual of (24):

f(x) = f(⊤) + pv∗[f ](x) − nv∗[f ](x) = f∗P (x)− f∗N (x) .

The dual of Corollary 5 is: let P have greatest element ⊤; then f : P → R is BV i� f is the di�eren
e of two

bounded, non-negative and de
reasing fun
tions P → R. We illustrate su
h a de
omposition in Figure 5.

In fa
t, given two bounded non-negative fun
tions g, h : P → R, for some M > 0 we have 0 ≤ g, h ≤ M ,

then the two fun
tions g′ = M−h and h′ =M−g are bounded and non-negative, they satisfy 0 ≤ g′, h′ ≤ M ;

moreover, g′−h′ = g−h; now g and h are in
reasing i� g′ and h′ are de
reasing. Thus we 
an 
onsider either

de
omposition f = g − h or f = g′ − h′.

RI

RI

f = g − h

f

g

−h

Fig. 5: Left: a BV fun
tion f . We have f = g−h for g = f∗
P

and h = f∗
N
, 
f. (25). Right: we show g and −h. When f de-


reases, g de
reases while h remains 
onstant; when f in
reases, −h in
reases (so h de
reases) while g remains 
onstant.
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Note that when P is bounded by ⊥,⊤, every in
reasing or de
reasing fun
tion f is bounded: for f

in
reasing, f(⊥) ≤ f(x) ≤ f(⊤), while for f de
reasing, f(⊤) ≤ f(x) ≤ f(⊥).

Let us brie�y mention an appli
ation of bounded variation to signal pro
essing. Rohwer and Wild [13℄


onsidered fun
tions Z → R and �at morphologi
al operators on su
h fun
tions, in parti
ular those built from

the 
losing Un and opening Ln by a segment of length n+ 1 (for n > 0); they showed that for any fun
tion

f : Z → R and any operator ψ obtained by 
omposing in any order some Un and Ln for n > 0, we have

TV (f) = TV
(

ψ(f)
)

+ TV
(

f − ψ(f)
)

.

3 Fun
tion summation in numeri
al and multivalued posets

Here we summarise Se
tion 4 of [18℄, but we also add some new material: �rst, 
ounterexamples (Figure 7 and

Example 12), then an important property, Proposition 13, and �nally, some te
hni
al results (Proposition 14

and Lemma 15). The most important results of this se
tion are Theorem 8, Theorem 10, Corollary 11 and

Proposition 13.

We will de�ne a summation of real-valued fun
tions de�ned on a poset of real numbers or ve
tors with

real 
oordinates. This leads to a sum as in (7) when the poset is a dis
rete 
hain in R, and to an integral

as in (8) when the poset is an interval in R. When the poset is a produ
t of 
hains, the summation will be

made along ea
h 
oordinate of the ve
tors. Our results will be used in our new de�nition of �at morphologi
al

operators and the analysis of their properties.

We assume that the poset P is a subset of R
m

(m ≥ 1), with 
omponentwise ordering, 
f. (1). The

standard 
ase (assumed in most studies) is the one where we 
hoose in R
m

(resp., in Z
m
) a bottom value ⊥

and a top value ⊤, with ⊥ < ⊤, and take for P the interval [⊥,⊤] (resp., the dis
rete interval [⊥,⊤] ∩ Z
m
).

Choosing ⊥ = 0 = (0, . . . , 0) makes formulas simpler, but we will not restri
t ourselves to that 
hoi
e. Then

we 
onsider fun
tions P → R.

In our theory, a 
entral role is played by bounded, non-negative and de
reasing fun
tions. Note that if P

has a least element ⊥, then a de
reasing fun
tion f : P → R is bounded by f(⊥).

Consider a fun
tion f : P → R that is bounded, non-negative and de
reasing. For a stri
tly in
reasing

sequen
e (s0, . . . , sn) in P , de�ne the summation

S(s0,...,sn)(f) =

n
∑

i=1

f(si)(si − si−1) . (26)

We illustrate in Figure 6 this 
onstru
tion for P being an interval in R.
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Fig. 6: The fun
tion f is bounded, non-negative and de
reasing. The hat
hed area represents S(s0,...,s6)
(f) for a stri
tly

in
reasing sequen
e (s0, . . . , s6) with s0 = ⊥ and s6 = ⊤.
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Then, as we had for variations, see (14), 
on
atenating stri
tly in
reasing sequen
es adds their summations,

in other words, a stri
tly in
reasing sequen
e (s0, . . . , sm+n) (where m,n ≥ 0) satis�es:

S(s0,...,sm+n)(f) = S(s0,...,sm)(f) + S(sm,...,sm+n)(f) . (27)

And as we had for variations, see (15), taking a sub-sequen
e of a stri
tly in
reasing sequen
e leads to a

smaller summation (see Lemma 9 of [18℄):

if (r0, . . . , rm) ⊆ (s0, . . . , sn)

then S(r0,...,rm)(f) ≤ S(s0,...,sn)(f) .
(28)

Re
all from (16) the set S(a, b) of stri
tly in
reasing sequen
es in P starting in a and ending in b (where

a, b ∈ P and a < b). Again, let f : P → R be bounded, non-negative and de
reasing. In the de�nition (26) of

S(s0,...,sn)(f), we asso
iate to the interval [si−1, si] the term f(si)(si − si−1); when P is a real interval, this

term is an approximation from below of the integral of f on that interval, so S(s0,...,sn)(f) approximates the

integral of f from below, see Figure 6. Thus, for a, b ∈ P with a < b, we de�ne the summation of f over the

interval [a, b] as the supremum of summations over all sequen
es in S(a, b):

S[a,b](f) = sup
{

S(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)
}

. (29)

Note that this supremum sup is taken in R
m

(or Z
m
), in other words, by taking 
omponentwise the numeri
al

supremum. That is why we write sup instead of

∨

for the supremum. It is easily seen that this summation

is non-negative and bounded: given M > 0 su
h that all x ∈ P satisfy 0 ≤ f(x) ≤ M , we dedu
e from (26)

that 0 ≤ S[a,b](f) ≤M(b− a). Similarly, the summation is in
reasing on the fun
tion f : if f(x) ≤ g(x) for all

x ∈ P , then S[a,b](f) ≤ S[a,b](g).

For a = b, S(a, a) = {a} and S[a,a](f) = 0. When P is bounded by ⊥,⊤, we will write S(f) for S[⊥,⊤](f),

the summation of f over P . The following result (Proposition 10 of [18℄) is the analogue of Lemma 1 for

summation instead of variation:

Proposition 6. Let f : P → R be bounded, non-negative and de
reasing, and let a, c ∈ P , where a < c but c

does not 
over a. Then

S[a,c](f) = sup
a<b<c

[

S[a,b](f) + S[b,c](f)
]

.

If P is a 
hain, then for every b ∈ P su
h that a < b < c, we have

S[a,c](f) = S[a,b](f) + S[b,c](f) .

The se
ond equality is spe
i�
 to 
hains, for instan
e it does not hold in R
m
and Z

m
form > 1, see Corollary 11

and the example in R
3
following it.

3.1 Additive summation

In order to extend summation to fun
tions that are not ne
essarily non-negative and de
reasing, we will


onsider the summation of a linear 
ombination of bounded, non-negative and de
reasing fun
tions. This will

lead to the 
ondition that S is additive on P . We �rst have the following general property (Lemma 11 of [18℄):

Lemma 7. Let f, g : P → R be bounded, non-negative and de
reasing, let a, b ∈ P with a < b, and take a

s
alar λ ≥ 0. Then:

1. λf is bounded, non-negative and de
reasing and S[a,b](λf) = λS[a,b](f).

2. f + g is bounded, non-negative and de
reasing and S[a,b](f + g) ≤ S[a,b](f) + S[a,b](g).

We say that S is additive on P if for all bounded, non-negative and de
reasing fun
tions f, g : P → R, and

all a, b ∈ P with a < b, we have S[a,b](f + g) = S[a,b](f) +S[a,b](g). This property is fundamental, as it allows

to extend the de�nition of the summation S[a,b] to fun
tions of bounded variation.
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Indeed, we saw after Corollary 5 that, assuming that P is bounded, a fun
tion f : P → R is of bounded

variation i� there are two bounded, non-negative and de
reasing fun
tions g, h : P → R su
h that f = g − h.

We 
an then de�ne the summation of f as S[a,b](f) = S[a,b](g)−S[a,b](h). But this de�nition should not depend

on the 
hoi
e of g and h. Suppose two de
ompositions f = g1−h1 = g2−h2; then we have g1+h2 = g2+h1,

and the additivity gives

S[a,b](g1) + S[a,b](h2) = S[a,b](g1 + h2) = S[a,b](g2 + h1) = S[a,b](g2) + S[a,b](h1) ,

hen
e S[a,b](g1) − S[a,b](h1) = S[a,b](g2) − S[a,b](h2). Then this extension of S[a,b] to fun
tions of bounded

variation will be a linear operator (Theorem 12 of [18℄):

Theorem 8. Let P be a bounded poset. Suppose that S is additive on P . For any f : P → R of bounded

variation, given a de
omposition f = g − h for g, h : P → R bounded, non-negative and de
reasing, de�ne

S[a,b](f) = S[a,b](g)−S[a,b](h). Then S[a,b](f) does not depend on the 
hoi
e of g and h in the de
omposition,

and S[a,b] is a linear operator on the module of fun
tions with bounded variation: for f1, f2 : P → R of bounded

variation and λ1, λ2 ∈ R,

S[a,b](λ1f1 + λ2f2) = λ1S[a,b](f1) + λ2S[a,b](f2) .

A 
onsequen
e of this result is that summation is in
reasing on fun
tions of bounded variation. Let f and g

be two BV fun
tions su
h that f ≥ g. Then f = g + h for some h ≥ 0, and by de�nition (26,29) we have

S[a,b](h) ≥ 0, so

S[a,b](f) = S[a,b](g + h) = S[a,b](g) + S[a,b](h) ≥ S[a,b](g) .

In view of Theorem 8 and Corollary 5, we will require the poset P to be bounded, and the summation S

to be additive on P . We will des
ribe later (see Figure 7 and Example 12) a family of posets in
luded in Z
2
,

for whi
h the summation is not additive. However, we have shown that summation is additive for a 
hain (a

totally ordered set) or a dire
t produ
t of 
hains, for instan
e for the usual posets of real values or real-valued

ve
tors in an interval. We 
onsider �rst a 
hain (see Proposition 13 and Corollary 14 of [18℄):

Proposition 9. If P is a bounded 
hain, then S is additive on P . Given f : P → R of bounded variation:

1. If P is a �nite 
hain, P = {t0, . . . , tn} with t0 < · · · < tn, then for 0 ≤ u < v ≤ n, S[tu,tv](f) =
∑v
i=u+1 f(ti)(ti − ti−1).

2. If P is a 
losed real interval, P = [⊥,⊤] ⊂ R, then for a, b ∈ P with a < b, S[a,b](f) =
∫ b

a
f(t) dt.

In the 
ase of real fun
tions, our de�nition of the summation of a fun
tion is very similar to that of the

Riemann integral. Now a real fun
tion is Riemann integrable i� it is 
ontinuous almost everywhere, that is,

the set of its dis
ontinuities has Lebesgue measure zero. As a de
reasing real fun
tion is 
ontinuous almost

everywhere (see Se
tion 3.5 of [6℄), it follows that any real fun
tion of bounded variation is 
ontinuous almost

everywhere, hen
e Riemann integrable. Note that the sum in item 1 
an be 
onsidered as a dis
rete analogue

of the integral in item 2.

We will now 
onsider the 
ase where P is a produ
t of 
hains, and we will see below that S does not

resemble the 
lassi
al multi-dimensional real integral, nor the 
omplex integral.

Let P = P1 × · · · × Pm, the 
artesian produ
t of posets P1, . . . , Pm, with 
omponentwise ordering,

see (1). If ea
h Pi is bounded by ⊥i,⊤i, then P will be bounded by ⊥,⊤, where ⊥ = (⊥1, . . . ,⊥m) and

⊤ = (⊤1, . . . ,⊤m). For ea
h i = 1, . . . ,m we de�ne the i-th proje
tion

πi : P1 × · · · × Pm → Pi : (x1, . . . , xm) 7→ xi . (30)

Sin
e ea
h Pi is in
luded in R
k
for some k ≥ 1, we 
an extend this de�nition of the proje
tion πi to linear


ombinations of elements of P , hen
e to the summation of a fun
tion on a 
hain,

πi
(

S(s0,...,sn)(f)
)

=

n
∑

j=1

f(sj)
(

πi(sj)− πi(sj−1)
)

,
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f. (26), and �nally to the summation over an interval, 
f. (29). Given a = (a1, . . . , am) ∈ P , de�ne the i-th

embedding through a:

ηai : Pi → P1 × · · · × Pm : x 7→ (a1, . . . , ai−1, x, ai+1, . . . , am) , (31)

in other words πi(η
a
i (x)) = x and πj(η

a
i (x)) = aj for j 6= i. Now for f : P → R, we write fηai rather than

f ◦ ηai for their 
omposition, in other words:

fηai : Pi → R : x 7→ f(ηai (x)) = f(a1, . . . , ai−1, x, ai+1, . . . , am) . (32)

We obtain then the following important result (see Proposition 15 and Corollary 16 of [18℄):

Theorem 10. Let P = P1 ×· · ·×Pm, where ea
h Pi is a poset (i = 1, . . . ,m), with the 
omponentwise order

on P . Let f : P → R be bounded, non-negative and de
reasing, and let a = (a1, . . . , am), b = (b1, . . . , bm) ∈ P

with a < b. Then for ea
h i = 1, . . . ,m, πi(S[a,b](f)) = S[ai,bi](fη
a
i ), with fη

a
i given by (32).

Moreover, if ea
h Pi is bounded and S is additive on ea
h Pi (i = 1, . . . ,m), then S is additive on P , and

the identity πi(S[a,b](f)) = S[ai,bi](fη
a
i ) holds for any f : P → R of bounded variation.

Geometri
ally speaking, this result means that ea
h proje
tion πi(S[a,b](f)) is obtained by summing f along

the line segment parallel to the i-th axis of P , joining a = (a1, . . . , am) to (a1, . . . , ai−1, bi, ai+1, . . . , am). In

parti
ular S[a,b](f) is 
ompletely determined by the restri
tion of f to the m lines through a parallel to the

axes.

We illustrate this result with two very simple examples. First, let P = {0, 1}4, a = (0, 0, 0, 1) and

b = (0, 1, 1, 1); then, for any f : P → R, S[a,b](f) =
(

0, f(0, 1, 0, 1), f(0, 0, 1, 1), 0
)

. Se
ond, let P = {0, 1, 2}5,

a = (0, 0, 0, 1, 1) and b = (0, 1, 2, 2, 1); then, for any f : P → R, S[a,b](f) = (z1, z2, z3, z4, z5), where z1 = z5 =

0, z2 = f(0, 1, 0, 1, 1), z3 = f(0, 0, 1, 1, 1) + f(0, 0, 2, 1, 1), and z4 = f(0, 0, 0, 2, 1).

More generally, if ea
h Pi is a 
hain, from Proposition 9 we derive the following (Corollary 17 of [18℄):

Corollary 11. Let P = P1×· · ·×Pm, where ea
h Pi is a bounded 
hain (i = 1, . . . , m), with the 
omponent-

wise order on P . Then S is additive on P . Let f : P → R be of bounded variation, and take a = (a1, . . . , am),

b = (b1, . . . , bm) ∈ P with a < b, and set S[a,b](f) = (σ1, . . . , σm), that is, σi = πi(S[a,b](f)) for i = 1, . . . ,m.

Then:

1. If Pi is a �nite 
hain, Pi = {t0, . . . , tn} with t0 < · · · < tn, then for ai = tu and bi = tv (0 ≤ u ≤ v ≤ n),

σi =
∑v
h=u+1 fη

a
i (th)(th − th−1).

2. If Pi is a real interval, P = [⊥i,⊤i] ⊂ R, then σi =
∫ bi
ai
fηai (t) dt.

Let us illustrate this in the 
ase where m = 3. Let P = R
3
, with 
omponentwise ordering. Let a = (a1, a2, a3)

and b = (b1, b2, b3) two points of P , with a1 < b1, a2 < b2 and a3 < b3. Then for a BV fun
tion f ,

S[a,b](f) =
(

b1
∫

a1

f(t, a2, a3) dt ,

b2
∫

a2

f(a1, t, a3) dt ,

b3
∫

a3

f(a1, a2, t) dt
)

.

For a < b < c we will generally have S[a,c](f) 6= S[a,b](f) + S[b,c](f), be
ause

π1
(

S[a,c](f)
)

=

c1
∫

a1

f(t, a2, a3) dt =

b1
∫

a1

f(t, a2, a3) dt+

c1
∫

b1

f(t, a2, a3) dt ,

while

π1
(

S[a,b](f) + S[b,c](f)
)

=

b1
∫

a1

f(t, a2, a3) dt+

c1
∫

b1

f(t, b2, b3) dt ,
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and similarly for π2 and π3. We see thus that in Proposition 6, the se
ond equality is spe
i�
 to 
hains. We

have a similar result for P = Z
3
, here

S[a,b](f) =
(

b1
∑

t=a1+1

f(t, a2, a3) ,

b2
∑

t=a2+1

f(a1, t, a3) ,

b3
∑

t=a3+1

f(a1, a2, t)
)

.

We give now a family of bounded posets in
luded in Z
2
, with 
omponentwise ordering, on whi
h S is not

additive; it in
ludes several non-distributive latti
es, whi
h are not sublatti
es of Z
2
.

(2,2)

(2,0) (0,2)

(0,0)

(1,1)

(2,1) (1,2)

(0,2)

(2,2)

(2,0)
(1,1)

(0,0)

(a) (b) (c) (d)

1

11 0 0 0

2

2

f g

Fig. 7: (a) and (b): the two latti
es P0 and P1 of Example 12. (
) and (d): the values of f and g respe
tively, on the least

element (0, 0) and its 3 
overs (2, 0), (1, 1) and (0, 2); f and g have value 0 on all other elements of the latti
e.

Example 12. Let P be a �nite poset in
luded in Z
2
, with 
omponentwise ordering, 
f. (1), with least element

⊥ = (0, 0) and greatest element ⊤ = (2, 2), su
h that the elements of P 
overing (0, 0) are (2, 0), (1, 1) and

(0, 2), all other elements of P being above one of these three. Note that that the in�mum in P of (1, 1) and

(0, 2) is (0, 0), while it is (0, 1) in Z
2
. Thus, if P is a latti
e, then its in�mum does not 
oin
ide with the

numeri
al in�mum in Z
2
, so P is not a sublatti
e of Z

2
. We give two examples of su
h latti
es:

� P0 = {⊥ = (0, 0), (2, 0), (1, 1), (0, 2), (2, 2) = ⊤}, see Figure 7 (a). Here P0 is a latti
e isomorphi
 to

the �diamond� latti
e (see M5 in Chapter 1 of [1℄ and M3 in Chapter 2 of [7℄); it is modular but not

distributive.

� P1 = {⊥ = (0, 0), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2) = ⊤}, see Figure 7 (b). Here P1 is the subset of

Z
2
generated by all non-empty suprema of (0, 0), (2, 0), (1, 1) and (0, 2), in other words, the sup-
losed

subset of {0, 1, 2}2 generated by them; it is a latti
e, whi
h is not modular, be
ause it has the sublatti
e

{(0, 0), (2, 0), (0, 2), (1, 2), (2, 2)} isomorphi
 to the �pentagon� latti
e (see N5 in Chapter 1 of [1℄ and in

Chapter 2 of [7℄).

For any su
h poset P , de�ne the two bounded, non-negative and de
reasing fun
tions f, g : P → R as follows,

see Figure 7 (
,d): for any x ∈ P ,

f(x) =

{

1 if x = (0, 0), (2, 0), or (0, 2) ,

0 otherwise ;

g(x) =

{

2 if x = (0, 0) or (1, 1) ,

0 otherwise .

For a stri
tly in
reasing 
hain starting in ⊥ = (0, 0) and ending in ⊤ = (2, 2), the summation of f on this


hain a

ording to (26) either is equal to 0, or has an element x > (0, 0) with f(x) > 0, namely x = (2, 0) or

(0, 2), and it is then the unique non-zero 
ontribution to the sum. Thus

S(f) = sup
{

f(2, 0) · (2, 0), f(0, 2) · (0, 2)
}

= sup
{

1 · (2, 0), 1 · (0, 2)
}

= (2, 2) .

(Here f(2, 0) and f(0, 2) are s
alars while (2, 0) and (0, 2) are ve
tors, and the dot designates the s
alar

multipli
ation of a s
alar by a ve
tor.) Similarly, for the summation of g, a non-zero value on x > (0, 0) arises

only for x = (1, 1), so

S(g) = g(1, 1) · (1, 1) = 2 · (1, 1) = (2, 2) .
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For the summation of f + g, a non-zero value on x > (0, 0) arises only for x = (2, 0), (1, 1), or (0, 2), so

S(f + g) = sup
{(

f(x) + g(x)
)

· x
∣

∣ x = (2, 0), (1, 1), (0, 2)
}

= sup
{

1 · (2, 0), 2 · (1, 1), 1 · (0, 2)
}

= (2, 2) .

Therefore S(f + g) = (2, 2) < (4, 4) = S(f) + S(g), and S is not additive on P .

Given a produ
t V of bounded 
hains, S is additive on V , but S will not ne
essarily be additive on a sup-
losed

subset of V , as we saw with the above example P1. However, S will be additive on an inf-
losed subset of V .

Re
all from Subse
tion 1.3 the two 
orresponding notions of a 
losure map and a 
losure range. When P is a


omplete latti
e (for instan
e, a produ
t of 
omplete 
hains), a 
losure range is an inf-
losed set.

Proposition 13. Let P be a poset bounded by ⊥,⊤, let M be a 
losure range on P su
h that ⊥ ∈ M , and

let ϕ be the 
orresponding 
losure map on P . For any f : M → R, de�ne fϕ : P → R by fϕ(x) = f(ϕ(x)).

Then f is the restri
tion of fϕ to M , and for any a, b ∈M su
h that a < b we have PV[a,b](fϕ) = PV[a,b](f)

and NV[a,b](fϕ) = NV[a,b](f). In parti
ular, if f is of bounded variation, then fϕ is of bounded variation.

If S is additive on P , then it is additive on M , and for f : M → R of bounded variation, S[a,b](f) =

S[a,b](fϕ).

Proof. Sin
e M is a 
losure range, ⊤ ∈ M . Let f : M → R. For x ∈ M , ϕ(x) = x, so fϕ(x) = f(ϕ(x)) =

f(x), hen
e f is the restri
tion of fϕ to M . Let a, b ∈ M su
h that a < b. We 
onsider the set S(a, b) of

stri
tly in
reasing sequen
es in P that start in a and end in b, that is, (s0, . . . , sn) with a = s0 < · · · <

sn = b; write S(a, b)M for its restri
tion to M , that is, sequen
es with s0, . . . , sn ∈ M . For (s0, . . . , sn) ∈

S(a, b)M , we have fϕ(si) = f(si) for i = 0, . . . , n, so (13) gives PV(s0,...,sn)(f) = PV(s0,...,sn)(fϕ) and

NV(s0,...,sn)(f) = NV(s0,...,sn)(fϕ). As S(a, b)M ⊆ S(a, b), the supremum on sequen
es in S(a, b)M is smaller

than the one on sequen
es in S(a, b), so (17) gives PV[a,b](f) ≤ PV[a,b](fϕ) and NV[a,b](f) ≤ NV[a,b](fϕ). Now

for (s0, . . . , sn) ∈ S(a, b), we have ϕ(s0), . . . , ϕ(sn) ∈ M and f(ϕ(si)) = fϕ(si) for i = 0, . . . , n. Whenever

ϕ(si) = ϕ(si−1), we have f(ϕ(si))− f(ϕ(si−1)) = 0 and f(ϕ(si+1))− f(ϕ(si)) = f(ϕ(si+1))− f(ϕ(si−1)), so

we 
an eliminate ϕ(si) from the sequen
e without 
hanging the results in the formulas of (13). Thus we obtain

from (ϕ(s0), . . . , ϕ(sn)) a redu
ed sequen
e (t0, . . . , tm) ∈ S(a, b)M with PV(s0,...,sn)(fϕ) = PV(t0,...,tm)(f)

and NV(s0,...,sn)(fϕ) = NV(t0,...,tm)(f). As ea
h (s0, . . . , sn) ∈ S(a, b) gives su
h a (t0, . . . , tm) ∈ S(a, b)M ,

(17) gives PV(s0,...,sn)(fϕ) ≤ PV[a,b](f), hen
e PV[a,b](fϕ) ≤ PV[a,b](f), and in the same way NV[a,b](fϕ) ≤

NV[a,b](f). The equality follows from the double inequality.

For the summation, we suppose �rst that f is bounded, non-negative and de
reasing. For x, y ∈ P with

x ≤ y, we have ϕ(x) ≤ ϕ(y), hen
e fϕ(x) = f(ϕ(x)) ≥ f(ϕ(y)) = fϕ(y), so fϕ is de
reasing. As fϕ takes

values of f , it is bounded and non-negative.

For (s0, . . . , sn) ∈ S(a, b)M , we have (s0, . . . , sn) ∈ S(a, b), and for ea
h si (i = 0, . . . , n), we have

fϕ(si) = f(si); hen
e S(s0,...,sn)(f) = S(s0,...,sn)(fϕ). As S(a, b)M ⊆ S(a, b), we dedu
e from (29) that

S[a,b](f) ≤ S[a,b](fϕ). Consider now a sequen
e (s0, . . . , sn) ∈ S(a, b), but not in S(a, b)M . Let k be the

greatest i su
h that si /∈ M ; as s0 = a and sn = b, both in M , we have 0 < k < n; sin
e sk+1 ∈ M , we have

sk < ϕ(sk) ≤ sk+1. First 
ase: if ϕ(sk) = sk+1, then fϕ(sk) = f(ϕ(sk)) = f(sk+1) = fϕ(sk+1), so

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) =

fϕ(sk+1)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) = fϕ(sk+1)(sk+1 − sk−1) .

Then (26) gives S(s0,...,sn)(fϕ) = S(s0,...,sk−1,sk+1,...,sn)(fϕ): we remove sk from the sequen
e, keeping the

summation equal. Se
ond 
ase: if ϕ(sk) 6= sk+1, then sk < ϕ(sk) < sk+1 and as f is de
reasing, fϕ(ϕ(sk)) =

fϕ(sk) = f(ϕ(sk)) ≥ f(sk+1) = fϕ(sk+1), so

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) =

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(ϕ(sk)− sk) + fϕ(sk+1)(sk+1 − ϕ(sk)) ≤

fϕ(ϕ(sk))(sk − sk−1) + fϕ(ϕ(sk))(ϕ(sk)− sk) + fϕ(sk+1)(sk+1 − ϕ(sk)) =

fϕ(ϕ(sk))(ϕ(sk)− sk−1) + fϕ(sk+1)(sk+1 − ϕ(sk)) .



18 Christian RONSE, General theory of non-in
reasing �at morphologi
al operators

Then (26) gives S(s0,...,sn)(fϕ) ≤ S(s0,...,sk−1,ϕ(sk),sk+1,...,sn)(fϕ): in the sequen
e, we repla
e sk by ϕ(sk),

whi
h in
reases the summation. In both 
ases we have redu
ed the number of terms of the sequen
e whi
h

do not belong to M , with the summation getting greater or equal. We repeat this modi�
ation until we get

a redu
ed sequen
e (t0, . . . , tm) ∈ S(a, b)M su
h that S(s0,...,sn)(fϕ) ≤ S(t0,...,tm)(fϕ) = S(t0,...,tm)(f). We

dedu
e then from (29) that S(s0,...,sn)(fϕ) ≤ S[a,b](f), hen
e S[a,b](fϕ) ≤ S[a,b](f). From both inequalities,

the equality S[a,b](fϕ) = S[a,b](f) follows.

Now let f, g : M → R be both bounded, non-negative and de
reasing; then f + g is bounded, non-

negative and de
reasing. For x ∈ P , (f + g)ϕ(x) = (f + g)(ϕ(x)) = f(ϕ(x)) + g(ϕ(x)) = fϕ(x) + gϕ(x), thus

(f + g)ϕ = fϕ + gϕ. By the above, we have S[a,b](f) = S[a,b](fϕ), S[a,b](g) = S[a,b](gϕ), and S[a,b](f + g) =

S[a,b]((f + g)ϕ) = S[a,b](fϕ + gϕ). If S is additive on P , then S[a,b](fϕ + gϕ) = S[a,b](fϕ) + S[a,b](gϕ)

(be
ause fϕ and gϕ are bounded, non-negative and de
reasing). We get then S[a,b](f +g) = S[a,b]((f+g)ϕ) =

S[a,b](fϕ + gϕ) = S[a,b](fϕ) + S[a,b](gϕ) = S[a,b](f) + S[a,b](g), hen
e S is additive on M .

Let now f : M → R be of bounded variation. By the dual form of Corollary 5, there are two bounded,

non-negative and de
reasing fun
tions g, h : M → R su
h that f = g − h. By the above, gϕ and hϕ are

bounded, non-negative and de
reasing, S[a,b](gϕ) = S[a,b](g) and S[a,b](hϕ) = S[a,b](h). Now for x ∈ P ,

fϕ(x) = f(ϕ(x)) = (g − h)(ϕ(x)) = g(ϕ(x)) − h(ϕ(x)) = gϕ(x)− hϕ(x), so fϕ = gϕ − hϕ; by the dual form

of Corollary 5, fϕ is of bounded variation (but this follows also from the equality of the positive and negative

variations, see above). By de�nition, S[a,b](f) = S[a,b](g) − S[a,b](h) and S[a,b](fϕ) = S[a,b](gϕ) − S[a,b](hϕ);

as S[a,b](gϕ) = S[a,b](g) and S[a,b](hϕ) = S[a,b](h), we dedu
e that S[a,b](fϕ) = S[a,b](f).

A parti
ular 
ase arises when P is a 
omplete latti
e and M is both sup-
losed and inf-
losed, in other words

it is a 
omplete sublatti
e of P . This implies that the summation is additive on any 
omplete sublatti
e of a


losed interval in R
m

or Z
m
.

We illustrate this result with a simple example. Let ⊥,⊤ ∈ R with ⊥ < ⊤, and let P = [⊥,⊤], ordered

numeri
ally. Let M be a �nite 
hain in P , bounded by ⊥,⊤, M = {⊥ = t0, . . . , tk = ⊤}; then M is a 
losure

range on P , the 
orresponding 
losure map ϕ is de�ned by ϕ(t0) = t0 and ϕ(x) = ti for ti−1 < x ≤ ti,

i = 1, . . . , k. For a map f : M → R, fϕ will be the step fun
tion with fϕ(x) = f(ti) for ti−1 < x ≤ ti,

i = 1, . . . , k. Then
∫ ⊤
⊥
fϕ(x) dx = S(fϕ) = S(f) =

∑k
i=1 f(ti)(ti − ti−1). The integral of a step fun
tion

redu
es to the sum of produ
ts of the width and height of steps.

The above result will be useful in our study of �at operators, when we will 
onsider the restri
tion of

images values to a 
omplete sublatti
e of the original latti
e of values: then the de�nitions of su
h an operator

for both latti
es will 
oin
ide.

3.2 Further properties

We end with two te
hni
al results that will be used in our analysis of the properties of �at operators.

The following proposition (impli
it in [18℄) will imply that for an in
reasing operator on binary images,

given image intensities forming a 
omplete sublatti
e of the interval [⊥,⊤] in R
m

or Z
m
, �at extension by

threshold summation leads to the same result as �at extension by threshold sta
king.

Proposition 14. Let P be bounded by ⊥,⊤. For any de
reasing fun
tion f : P → {0, 1},

⊥+ S(f) = sup{x ∈ P | f(x) = 1} , (33)

where we set sup ∅ = ⊥ on the right side of the equation.

Proof. Let (s0, . . . , sn) ∈ S(⊥,⊤). If f(si) = 0 for ea
h i = 1, . . . , n, then S(s0,...,sn)(f) = 0. If there is some

i = 1, . . . , n su
h that f(si) = 1, let u be the greatest su
h i; as f is de
reasing, f(si) = 1 for i ≤ u and

f(si) = 0 for i > u, so we get S(s0,...,sn)(f) =
∑u
i=1(si − si−1) = su − s0 = su −⊥, where f(su) = 1.

If f(x) = 0 for all x ∈ P , then sup{x ∈ P | f(x) = 1} = sup ∅ = ⊥; now for every (s0, . . . , sn) ∈ S(⊥,⊤),

S(s0,...,sn)(f) = 0, hen
e S(f) = 0. Therefore (33) holds in this 
ase.
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If f(x) = 1 for all x ∈ P , then sup{x ∈ P | f(x) = 1} = ⊤; now for every (s0, . . . , sn) ∈ S(⊥,⊤),

S(s0,...,sn)(f) = sn −⊥ = ⊤−⊥, hen
e S(f) = ⊤−⊥. Therefore (33) holds in this 
ase.

Suppose �nally that there are x, y ∈ P with f(x) = 0 and f(y) = 1, in other words f(⊥) = 1 and

f(⊤) = 0. For (s0, . . . , sn) ∈ S(⊥,⊤), we have S(s0,...,sn)(f) = su −⊥, where u is the greatest i ∈ {1, . . . , n}

with f(si) = 1. Conversely, take any x ∈ P with f(x) = 1; if x = ⊥, then (⊥,⊤) ∈ S(⊥,⊤) and S(⊥,⊤)(f) =

0 = x − ⊥; on the other hand if x 6= ⊥, then ⊥ < x < ⊤, (⊥, x,⊤) ∈ S(⊥,⊤) and S(⊥,x,⊤)(f) = x − ⊥.

Therefore the set of all S(s0,...,sn)(f) for (s0, . . . , sn) ∈ S(⊥,⊤) 
oin
ides with the set of all x−⊥ for x ∈ P

with f(x) = 1. Taking the supremum of both sets, we get

S(f) = sup{x−⊥ | x ∈ P, f(x) = 1} = sup{x ∈ P | f(x) = 1} − ⊥ ,

from whi
h we obtain (33).

Finally, we will need the following slight generalisation of Lemma 1 and Proposition 6:

Lemma 15. Let the poset P have an element b whi
h is 
omparable to every element of P : for all x ∈ P ,

x = b or x < b or x > b. Then for any a, c ∈ P su
h that a < b < c:

� Every fun
tion f : P → R satis�es PV[a,c](f) = PV[a,b](f) + PV[b,c](f), and similarly for NV and TV .

� Every bounded, non-negative and de
reasing fun
tion f : P → R satis�es S[a,c](f) = S[a,b](f) + S[b,c](f);

if P is bounded, every BV fun
tion f : P → R satis�es that equality.

The proof uses the same argument as those of Lemma 1 and Proposition 6 given in Lemma 2 and Proposition 10

of [18℄: given a stri
tly in
reasing sequen
e in S(a, c), inserting b inside it (if b does not belong to it) gives

a stri
tly in
reasing sequen
e that is larger, and this 
an only in
rease the fun
tion variation by (15) and

summation by (28); then applying (14) for the variation leads to the inequality PV[a,c](f) ≤ PV[a,b](f) +

PV[b,c](f), and similarly forNV and TV , while (27) for the summation will give S[a,c](f) ≤ S[a,b](f)+S[b,c](f)

(for f bounded, non-negative and de
reasing). The equality follows then from Lemma 1 and Proposition 6.

For f BV, we have f = g − h for g, h bounded, non-negative and de
reasing, with S[a,c](g) = S[a,b](g) +

S[b,c](g) and S[a,c](h) = S[a,b](h) + S[b,c](h), so

S[a,c](f) = S[a,c](g)− S[a,c](h) =
(

S[a,b](g) + S[b,c](g)
)

−
(

S[a,b](h) + S[b,c](h)
)

=
(

S[a,b](g)− S[a,b](h)
)

+
(

S[b,c](g)− S[b,c](h)
)

= S[a,b](f) + S[b,c](f) .

4 De
omposition of integer-valued fun
tions

We will now 
onsider the de
omposition of an integer-valued fun
tion of bounded variation into a sum and

di�eren
e of in
reasing binary fun
tions. In other words, for f : P → Z of bounded variation, we will obtain

a de
omposition f =
∑n
i=1 λifi, where for ea
h i = 1, . . . , n, fi is an in
reasing fun
tion P → {0, 1} and

λi = ±1. Morever, when f is P → {0, 1}, we have f1 > · · · > fn and λi = (−1)i−1
, we get an alternating

sum and di�eren
e of a de
reasing sequen
e of in
reasing binary fun
tions, 
f. (10).

We will use su
h a de
omposition to 
ompute the �at extension of a non-in
reasing operator on binary im-

ages: a linear 
ombination of in
reasing operators on binary images will extend to the same linear 
ombination

of their �at extensions. This will be possible when the operator is of uniform bounded variation.

We start by de
omposing a fun
tion P → {0, . . . , n} (where n > 0) into a sum of binary fun
tions, using

the method of threshold summation of [5, 24℄, as in (9). For f : P → N and t ∈ N, let ξt(f) = χXt(f) be the


hara
teristi
 fun
tion (6) of the threshold set (2) Xt(f):

ξt(f) : P → {0, 1} : x 7→

{

1 if f(x) ≥ t ,

0 if f(x) < t .
(34)

The following was obtained in Lemma 6 of [18℄ (ex
ept the �if� part of the last senten
e, whi
h is straightfor-

ward):
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Lemma 16. Let P be poset, let f : P → {0, . . . , n} (n ∈ N), and let f1, . . . , fN : P → {0, 1}. Then the

following two statements are equivalent:

1. f1 ≥ · · · ≥ fN and f =
∑n
i=1 fi.

2. fi = ξi(f) for i = 1, . . . , n.

Furthermore, f is in
reasing if and only if ξi(f) is in
reasing for ea
h i = 1, . . . , n.

Let the poset P have least element ⊥. Re
all from (23) the positive in
rement fP and negative in
rement fN

of a fun
tion f :

∀ x ∈ P,
fP (x) =

[

f(⊥)
]+

+ pv[f ](x) =
[

f(⊥)
]+

+ PV[⊥,x](f) ,

fN (x) =
[

f(⊥)
]−

+ nv[f ](x) =
[

f(⊥)
]−

+NV[⊥,x](f) .

Combining Proposition 4 with Lemma 16, we get the following:

Proposition 17. Let P be poset with least element ⊥, and let f : P → Z be of bounded variation. Let

m = maxx∈P fP (x) and n = maxx∈P fN (x). Then there are m+n in
reasing fun
tions g1, . . . , gm, h1, . . . , hn :

P → {0, 1} su
h that g1 ≥ · · · ≥ gm, h1 ≥ · · · ≥ hn and f =
∑m
i=1 gi −

∑n
j=1 hj .

Proof. Here fP and fN are bounded fun
tions P → N, hen
e they rea
h a maximum, respe
tively m and

n, both in N. By Proposition 4, fP and fN are in
reasing and f = fP − fN , 
f. (24). Taking gi = ξi(fP )

(i = 1, . . . ,m) and hj = ξj(fN ) (j = 1, . . . , n), the result follows by Lemma 16.

Let us now 
onsider binary fun
tions. For a fun
tion f : P → {0, 1}, we have f(⊥) ≥ 0, so
[

f(⊥)
]+

= f(⊥)

and

[

f(⊥)
]−

= 0. Thus (23) be
omes here:

and
fP = f(⊥) + pv[f ]

fN = nv[f ] .
(35)

De�ne

fT = fP + fN = f(⊥) + tv[f ] . (36)

For f : P → {0, 1}, de�ne the fun
tion I(f) : P → {0, 1} by

∀ x ∈ P, I(f)(x) = max{f(y) | y ∈ P, y ≤ x} .

Then I(f) is the least in
reasing fun
tion g : P → {0, 1} su
h that g ≥ f . Note that sin
e I(f) ≥ f , and both

f and I(f) are P → {0, 1}, I(f)− f will be a fun
tion P → {0, 1}.

In Theorem 8 of [18℄ we obtained the following important result:

Theorem 18. Let P be poset with least element ⊥, and let f : P → {0, 1} be of bounded variation, with

maxx∈P fT (x) = v > 0. Then there are v in
reasing fun
tions f1, . . . , fv : P(E) → {0, 1} su
h that f1 > f2 >

· · · > fv > 0,

f = f1 − f2 + · · ·+ (−1)v−1fv , (37)

and for ea
h s = 1, . . . , v,

fs = ξs(fT ) =







ξ s+1

2

(fP ) if s is odd ,

ξ s
2
(fN ) if s is even ;

(38)

moreover,

fs = I
(

(−1)s−1f +

s−1
∑

i=1

(−1)s−1−ifi

)

. (39)

Furthermore, given another de
omposition f = g1 − g2 + · · · + (−1)w−1gw, with g1, . . . , gw : P(E) → {0, 1}

in
reasing and g1 ≥ g2 ≥ . . . ≥ gw, then w ≥ v and gs ≥ fs for s = 1, . . . , v. Conversely, any fun
tion

f : P → {0, 1} having a de
omposition of the form (37) for in
reasing f1, . . . , fv : P(E) → {0, 1} is of bounded

variation.
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The �rst elements of the sequen
e (38) are:

f1 = ξ1(fT ) = ξ1(fP ) ,

f2 = ξ2(fT ) = ξ1(fN ) ,

f3 = ξ3(fT ) = ξ2(fP ) ,

f4 = ξ4(fT ) = ξ2(fN ) .

Then the �rst elements of the sequen
e (39) are:

f1 = I(f) ,

f2 = I(f1 − f) ,

f3 = I(f2 − f1 + f) ,

f4 = I(f3 − f2 + f1 − f) .

Intuitively, we take f1 = I(f) = ξ1(fT ), then f1 − f has a smaller variation than f , and we get by re
urren
e

the de
omposition f1 − f = f2 − f3 + · · ·+ (−1)v−2fv , with ea
h fi as in (39).

Let us 
omplement the last senten
e of the above theorem (this result is new):

Proposition 19. Let P be poset with least element ⊥, and let the fun
tion f : P → Z have a de
omposition

of the form (37), that is,

∑u
i=1(−1)i−1fi for v in
reasing fun
tions f1, . . . , fv : P(E) → {0, 1} su
h that

f1 > f2 > · · · > fv > 0. Then f is P → {0, 1}, of bounded variation, and f ≤ f1.

Proof. Let us show by indu
tion on v that f is P → {0, 1} and f ≤ f1. For v = 1, f = f1 and the result holds.

Suppose now that v > 1 and that the result holds for v− 1. Let g =
∑v
i=2(−1)ifi; by indu
tion hypothesis, g

is P → {0, 1} and g ≤ f2; sin
e f2 < f1, we have g ≤ f1. Thus, for all x ∈ P , we have 0 ≤ g(x) ≤ f1(x) ≤ 1,

from whi
h we dedu
e that 0 ≤ f1(x) − g(x) ≤ f1(x) ≤ 1. As f = f1 − g, we get thus 0 ≤ f(x) ≤ f1(x) ≤ 1,

and the result follows for v. Now, f is BV by the last senten
e of Theorem 18.

5 Generalised �at morphologi
al operators

The three pre
eding se
tions provide a mathemati
al framework for our generalised theory of �at morphologi
al

operators. Our new de�nition of the �at extension of an operator on binary images deals 
orre
tly with the


ase where the operator is not in
reasing. Quite generally, we will 
onsider not only operators P(E) → P(E)

(transforming binary images), but also operators P(E) → KE
for a �nite interval K ⊆ Z; this o

urs for

instan
e when one makes measurements on binary images, see for example the morphologi
al Lapla
ian (12).

In the 
ase where image intensities are in a 
losed interval in R
m

or Z
m
, for any in
reasing operator

P(E) → P(E), the new de�nition of its �at extension will 
oin
ide with the 
lassi
al one [15, 16℄. For

operators that are not in
reasing, the properties of the �at extension given in [15, 16℄ for the in
reasing 
ase

will not always be satis�ed.

5.1 Basi
 de�nitions and examples

We spe
ify our framework for images. Let E be the spa
e of points. Image values will be reals or integers

(for grey-level images), or ve
tors with real or integer 
oordinates (for multivalued images). Formally, let

m ≥ 1, and for i = 1, . . . , m, let either Ci = R or Ci = uiZ for some real ui > 0 (usually ui = 1); now let

U = C1 × · · · × Cm, with 
omponentwise or marginal ordering (1). Note that there are other possible orders

on U , in
luding total orders (su
h as the lexi
ographi
 order), but the 
omponentwise order is mathemati
ally

easier to deal with, it allowed us to obtain a 
omponentwise de
omposition of the summation, see Theorem 10,

whi
h will be applied to �at operators, see Proposition 30. Then all images, those given as input to �at

operators, as well as those obtained as the output of operators, will have their values in U . The set U has two

important properties:
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� It is a 
onditionally 
omplete latti
e for the 
omponentwise order: every subset of U having an upper

bound (resp., a lower bound) will have a supremum (resp., in�mum). In parti
ular, every 
losed interval

[a, b] ⊂ U will be a 
omplete latti
e where the supremum and in�mum operations are the 
omponentwise

numeri
al sup and inf operations.

� It is a module: it has the operations of addition and subtra
tion, with neutral 0 = (0, . . . , 0), and of s
alar

multipli
ation with s
alars in Z. Then for any bounded, non-negative and de
reasing fun
tion f : U → Z

and any stri
tly in
reasing sequen
e (s0, . . . , sn) in U , the summation S(s0,...,sn)(f) will belong to U .

This implies that for any interval [a, b] ⊂ U (a ≤ b) and for any bounded, non-negative and de
reasing fun
tion

f : [a, b] → Z, the summation S[a,b](f) will be a supremum of elements of U , bounded by (b − a)f(a), hen
e

it will belong to U .

In order to ex
lude in�nite values in our summations, all input images will have bounded values, so we


hoose two bounds ⊥,⊤ ∈ U , with ⊥ < ⊤, and 
onsider the interval [⊥,⊤] = {v ∈ U | ⊥ ≤ v ≤ ⊤}. Now

⊥ = (⊥1, . . . ,⊥n) and ⊤ = (⊤1, . . . ,⊤n), so

[⊥,⊤] = [⊥1,⊤1]× · · · × [⊥m,⊤m] ,

where [⊥i,⊤i] = {v ∈ Ci | ⊥i ≤ v ≤ ⊤i} (i = 1, 1, . . . ,m). Note that we do not ne
essarily 
hoose ⊥ = 0 =

(0, . . . , 0); indeed, some modalities use a range of intensities that 
an in
lude negative values, for instan
e,

CT images have values in Houns�eld units, whi
h 
orrespond to the radiodensity of the obje
ts. Sin
e ea
h

[⊥i,⊤i] is a 
omplete 
hain, [⊥,⊤] is a 
ompletely distributive 
omplete latti
e [16℄.

We will apply �at operators to images E → V , where V is a subset of the interval [⊥,⊤] having ⊥ and ⊤

as least and greatest elements: {⊥,⊤} ⊆ V ⊆ [⊥,⊤]. Then the output of �at operators will be images E → U

(not ne
essarily E → V ). We have some �exibility in the 
hoi
e of the set V of image values. We make the

following two requirements:

A. The summation S must be additive on V (we saw in Example 12 that this does not hold for some bounded

posets in Z
m
). This is ne
essary in order to de�ne the summation of any BV fun
tion, see Theorem 8.

It also implies that given a de
omposition of an operator on binary images as a linear 
ombination of

operators on binary images, we obtain the same de
omposition with the �at extensions, see (10,11).

B. The set V must be 
losed under non-empty 
omponentwise numeri
al supremum. By Proposition 20

below, this will guarantee that for in
reasing operators on binary images, the new de�nition of the �at

extension to images E → V will 
oin
ide with the 
lassi
al one in [16℄.

We give here two 
ases where both requirements are satis�ed:

1. The standard 
ase, where V = [⊥,⊤]. Here V = V1 × · · · × Vn for Vi = [⊥i,⊤i] (i = 1, . . . , n). Hen
e V is

a produ
t of 
hains, so the summation will be additive on [⊥,⊤] by Corollary 11.

2. The sub-standard 
ase, where V is a 
omplete sublatti
e of [⊥,⊤], in other words it is 
losed under the


omponentwise numeri
al supremum and in�mum operations. Then V is a 
losure range on [⊥,⊤], and the

summation is additive on [⊥,⊤] (whi
h is the standard 
ase, item 1), so by Proposition 13, the summation

will be additive on V .

We re
all from Se
tions 2 and 3 the 
onvention that for a fun
tion f de�ned on V , when we 
onsider the

variation and the summation of f over the whole of V , we 
an omit the subs
ript [⊥,⊤] in the formulas,

in other words: PV[⊥,⊤](f), NV[⊥,⊤](f), TV[⊥,⊤](f) and S[⊥,⊤](f) 
an be abbreviated into PV (f), NV (f),

TV (f) and S(f).

We introdu
e here a new 
onvention. Throughout Se
tions 2 and 3, there was no ambiguity in the notation

TV[a,b](f) and S[a,b](f) about the variable over whi
h we measure the variation or make the summation, sin
e

we assumed that f is a fun
tion of a single variable. Similarly, for a real fun
tion of one variable, we 
an write

∫ b

a
f for

∫ b

a
f(x) dx. Now we will en
ounter fun
tions of several variables, and we will have to spe
ify over

whi
h variable we 
onsider the variation or summation of the fun
tion. Similarly, for a real fun
tion of three

variables,

∫ b

a
f(x, y, z) dy indi
ates that the integration is made on the se
ond variable y. Given an expression

W in several variables, a variable x appearing in W and a poset P , we will write �W | x ∈ P � to spe
ify that

the variation or summation of W is over the variable x ranging over P ; in other words TV[a,b](W | x ∈ P )

and S[a,b](W | x ∈ P ) designate the total variation TV[a,b](f) and summation S[a,b](f) for the fun
tion

f : P ∩ [a, b] → R : x 7→W .
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Re
all from the Introdu
tion the 
hara
teristi
 fun
tion χX of a set X ∈ P(E), 
f. (6); then for an

operator ψ : P(E) → P(E), we have the operator χψ : P(E) → {0, 1}E : X 7→ χψ(X). Given a fun
tion

F : E → V , for ea
h v ∈ V we have the threshold set Xv(F ), 
f. (2); this set de
reases when v in
reases.

Now with our new 
onvention, the three formulas (7,8,9) for the �at extension by threshold summation

will unify into

ψT (F )(p) = ⊥+ S
(

χψ(Xt(F ))(p)
∣

∣ t ∈ T
)

.

Here we summed over the variable t an expression depending also on the fun
tion F and the point p ∈ E.

More generally, we 
an express the �at extension ψV of an in
reasing binary image transformation ψ :

P(E) → P(E), see (3,4), in terms of a summation. The following result generalises the threshold de
omposition

method (9) introdu
ed in [5, 24℄:

Proposition 20. Let V ⊆ [⊥,⊤]. Given an in
reasing operator ψ : P(E) → P(E), an image F : E → V and

a point p ∈ E,

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

,

where we set sup ∅ = ⊥ on the right side of the equation. If V is 
losed under 
omponentwise numeri
al

supremum (it is then a 
omplete latti
e), we get

ψV (F )(p) = ⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

,

where ψV is the �at extension of ψ to V E.

Proof. The set Xv(F ) de
reases when v in
reases, and the operator ψ is in
reasing; hen
e the set ψ(Xv(F ))

also de
reases when v in
reases, so for any p ∈ E, the fun
tion V → {0, 1} : v 7→ χψ(Xv(F ))(p) is de
reasing.

We apply Proposition 14, so (33) gives:

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

v ∈ V
∣

∣ χψ(Xv(F ))(p) = 1
}

= sup
{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

.

If V is 
losed under 
omponentwise numeri
al supremum, then the latter 
oin
ides with the latti
e-theoreti
al

supremum operation in V , so

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

=
∨

{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

,

whi
h gives ψV (F )(p) by (4).

This result 
an be taken as the basis for the de�nition of the �at extension of any operator on P(E). But

our theory requires �rst to distinguish two types of operators in image pro
essing. On the one hand there

are operators su
h as the opening, 
losing, median �ltering and Gaussian smoothing, whi
h map an image in

V E to another image in V E that is supposed to show the same obje
ts; we 
all su
h an operator V E → V E

an image transformation. On the other hand, there are operators like the gradient or the Lapla
ian, whi
h

are not intended to produ
e viewable images, and indeed do not ne
essarily preserve the interval V of values,

for instan
e, they 
an generate negative values from positive grey-levels; we 
all su
h an operator an image

measurement.

Let us formalise this distin
tion in the 
ase of binary images. A binary image transformation is a map

P(E) → P(E); for instan
e, the dilation, erosion, opening and 
losing by a stru
turing element. A binary image

measurement is a map P(E) → KE
for a �nite interval K ⊂ Z; for instan
e, the morphologi
al Lapla
ian

(12). Obviously, every binary image transformation ψ 
orresponds to the binary image measurement χψ, with

K = {0, 1}.

Given a binary image measurement µ : P(E) → KE
, we de�ne the no-shift �at extension µ−V of µ by

setting for any image F : E → V and point p ∈ E:

µ−V (F )(p) = S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

, (40)
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provided that the summation is well-de�ned, that is, the summed fun
tion v 7→ µ(Xv(F ))(p) is of bounded

variation: TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

< ∞. This question will be analysed in the next subse
tion. Note that

if V has �nite height, in parti
ular if V is �nite, then this fun
tion will indeed be of bounded variation, see

Proposition 23 below. On the other hand, when V is an interval in R
m
, this will not ne
essarily be the 
ase,

see Example 25 below.

Sin
e the summation on V is additive (requirement A), the no-shift �at extension will be linear on the

operator µ (see Theorem 8): for two s
alars λ1, λ2 and two binary image measurements µ1, µ2,

(

λ1µ1 + λ2µ2
)−V

= λ1µ
−V
1 + λ2µ

−V
2 .

Moreover, for F : E → V , µ−V (F ) will have bounded values (in U). As minK ≤ µ(Xv(F ))(p) ≤ maxK for

all v ∈ V , S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

will be bounded below by S
(

minK
∣

∣ v ∈ V
)

= (⊤−⊥)minK and above

by S
(

maxK
∣

∣ v ∈ V
)

= (⊤−⊥)maxK, that is,

(⊤−⊥)minK ≤ µ−V (F )(p) ≤ (⊤ −⊥)maxK . (41)

Given a binary image transformation ψ : P(E) → P(E), we de�ne the shifted �at extension ψ+V
of ψ by

setting for any image F : E → V and point p ∈ E:

ψ+V (F )(p) = ⊥+ (χψ)−V (F )(p) = ⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

, (42)

again provided that the summation is well-de�ned. Assuming V to be 
losed under 
omponentwise numeri
al

supremum (requirement B), for any in
reasing operator ψ, this de�nition (42) will by Proposition 20 be

equivalent to the usual de�nition (3,4). Without requirement B, this is not true:

Example 21. Let U = Z
2
and V =

{

(0, 0), (1, 0), (0, 1), (2, 2)
}

; here ⊥ = (0, 0) and ⊤ = (2, 2), and V is

a 
omplete latti
e with supremum

∨
{

(1, 0), (0, 1)
}

= (1, 0) ∨ (0, 1) = (2, 2), distin
t from the 
omponentwise

numeri
al supremum sup
{

(1, 0), (0, 1)
}

= (1, 1). Let ∅ ⊂ A ⊂ E, and let F : E → V with F (p) = (1, 0)

for p ∈ A and F (p) = (0, 1) for p ∈ E \ A. We have X(0,0)(F ) = E, X(1,0)(F ) = A, X(0,1)(F ) = E \ A,

and X(2,2)(F ) = ∅. Take an extensive dilation δ on P(E), so δ(E) = E (we have δ(∅) = ∅ anyway). Then

δ(X(0,0)(F )) = E, δ(X(1,0)(F )) = δ(A), δ(X(0,1)(F )) = δ(E \ A), and δ(X(2,2)(F )) = ∅. Now, for p ∈

δ(A) ∩ δ(E \A), (4) gives δV (F )(p) =
∨
{

(1, 0), (0, 1)
}

= (2, 2), while

S
(

χδ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

1 · [(1, 0)− (0, 0)] + 0 · [(2, 2)− (1, 0)],

1 · [(0, 1)− (0, 0)] + 0 · [(2, 2)− (0, 1)]
}

= sup
{

(1, 0), (0, 1)
}

= (1, 1) ;

hen
e (42) will give δ+V (F )(p) = (1, 1) 6= δV (F )(p).

Sin
e the measurement χψ has K = {0, 1}, here (41) be
omes

0 ≤ (χψ)−V (F )(p) ≤ ⊤ −⊥ ,

hen
e (42) gives

⊥ ≤ ψ+V (F )(p) ≤ ⊤ . (43)

Thus ψ+V
is an operator V E → [⊥,⊤]E . In the standard 
ase V = [⊥,⊤], we get ψ+V (F ) ∈ V E . This holds

also when ψ in
reasing, sin
e ψ+V (F ) = ψV (F ), where ψV (F ) ∈ V E by [16℄. On the other hand, this is not

ne
essarily true for a non-in
reasing operator in the non-standard 
ase:

Example 22. Let U = Z
2
and V = {(0, 0), (2, 1), (2, 3), (4, 4)

}

; here ⊥ = (0, 0) and ⊤ = (4, 4). As V is a


hain, it is 
losed under 
omponentwise numeri
al supremum, and S is additive on V . Let ∅ ⊂ A ⊂ E, and let

F : E → V with F (p) = (2, 3) for p ∈ A and F (p) = (2, 1) for p ∈ E \A. We have X(0,0)(F ) = X(2,1)(F ) = E,

X(2,3)(F ) = A, and X(4,4)(F ) = ∅. Take an extensive dilation δ and an anti-extensive erosion ε on P(E), so

δ(E) = E and ε(∅) = ∅ (we have δ(∅) = ∅ and ε(E) = E anyway). Consider the non-in
reasing operator on

P(E) given by their di�eren
e, δ\ε : X 7→ δ(X)\ε(X). Then (δ\ε)(X(0,0)(F )) = (δ\ε)(X(2,1)(F )) = E\E = ∅,
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(δ \ ε)(X(2,3)(F )) = δ(A) \ ε(A) and (δ \ ε)(X(4,4)(F )) = ∅ \ ∅ = ∅. Thus for p ∈ δ(A) \ ε(A) we have

χ(δ \ ε)(Xv(F ))(p) = 1 for v = (2, 3) and 0 for v 6= (2, 3), so

S
(

χ(δ \ ε)(Xv(F ))(p)
∣

∣ v ∈ V
)

= 0 · [(2, 1)− (0, 0)] +

1 · [(2, 3)− (2, 1)] + 0 · [(4, 4)− (2, 3)] = (2, 3)− (2, 1) = (0, 2) ;

hen
e (42) will give (δ \ ε)+V (F )(p) = (0, 2) /∈ V .

We end this subse
tion by des
ribing some well-known examples of non-in
reasing �at operators given in the

literature. For the sake of simpli
ity, we 
an assume that E is the digital spa
e Z
n
and that V is an interval

[⊥,⊤] in R
m

or Z
m

(m ≥ 1), thus we are in the standard 
ase. Then V will be a 
ompletely distributive


omplete latti
e, whi
h is a ne
essary requirement for obtaining the usual properties of in
reasing �at operators

[16℄. Moreover, for any in
reasing operator ψ, Proposition 20 gives ψ+V = ψV : the shifted �at extension of ψ


oin
ides with the standard �at extension a

ording to [16℄. ForX ∈ P(E), write Xc = E\X (the 
omplement

of X) and X̌ = {−x | x ∈ X} (the symmetri
al of X). Re
all from (5) the dilation δB and erosion εB by a

stru
turing element B ∈ P(E); we assume that B 6= ∅. Write id for the identity operator on P(E).

When B is the digital neighbourhood of the origin (origin in
luded), δB(X) \X is the outer border of X

(set of all points of Xc
neighbouring at least one point of X), while X \ εB(X) is the inner border of X (set

of all points of X neighbouring at least one point of Xc
); their disjoint union δB(X) \ εB(X) is the border of

X . We 
an generalise this to any symmetri
al stru
turing element B 
ontaining the origin, and we get thus

the three image transformations δB \ id, id \ εB and δB \ εB . Sin
e B 
ontains the origin, δB is extensive and

εB is anti-extensive, that is, εB(X) ⊆ X ⊆ δB(X) for all X ∈ P(E), so we get:

χ(δB \ id) = χδB − χid , χ(id \ εB) = χid− χεB ,

χ(δB \ εB) = χδB − χεB = χ(δB \ id) + χ(id \ εB) .

From (40,42) and the linearity of summation, we derive:

[

χ(δB \ id)
]−V

= δ+VB − id
+V , (δB \ id)+V = ⊥ + δ+VB − id

+V ,
[

χ(id \ εB)
]−V

= id
+V − ε+VB , (id \ εB)

+V = ⊥+ id
+V − ε+VB ,

[

χ(δB \ εB)
]−V

= δ+VB − ε+VB , (δB \ εB)
+V = ⊥+ δ+VB − ε+VB .

Here id
+V

will be the identity operator on V E , while δ+VB and ε+VB will be the standard �at dilation and

erosion δVB and εVB based on 
omputing a lo
al supremum and in�mim respe
tively, see [16℄. The three

operators δ+VB − id
+V

, id
+V − ε+VB and δ+VB − ε+VB are 
alled the external gradient, internal gradient

and Beu
her gradient (or morphologi
al gradient) respe
tively [22℄; they are morphologi
al variants of the

traditional Roberts, Prewitt or Sobel gradients based on linear 
onvolution.

The Lapla
ian on binary images (12) is the image measurement P(E) → {−1, 0,+1}E de�ned by

χ(δB \ id)− χ(id \ εB) = χδB + χεB − 2χid .

Its no-shift �at extension is then the morphologi
al Lapla
ian:

[

χ(δB \ id)
]−V

−
[

χ(id \ εB)
]−V

= δ+VB + ε+VB − 2id+V .

Take now any non-empty stru
turing element B, and 
onsider the opening and 
losing by B,

γB : P(E) → P(E) : X 7→ (X ⊖B)⊕ B = δB(εB(X)) ,

ϕB : P(E) → P(E) : X 7→ (X ⊕B)⊖B = εB(δB(X)) .

Then ϕB is extensive and γB is anti-extensive, we have γB(X) ⊆ X ⊆ ϕB(X) for all X ∈ P(E). The set

ϕB(X) \X shows all portions of Xc
that are too narrow to 
ontain a translate of B̌, while X \ γB(X) shows

all portions of X that are too narrow to 
ontain a translate of B ; their disjoint union ϕB(X) \ γB(X) will

show both. As with the gradient, we get:

χ(id \ γB) = χid− χγB , χ(ϕB \ id) = χϕB − χid ,

χ(ϕB \ γB) = χϕB − χγB = χ(ϕB \ id) + χ(id \ γB) .
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Then we obtain their no-shift �at extensions:

[

χ(id \ γB)
]−V

= id
+V − γ+VB , (id \ γB)

+V = ⊥ + id
+V − γ+VB ,

[

χ(ϕB \ id)
]−V

= ϕ+V
B − id

+V , (ϕB \ id)+V = ⊥+ ϕ+V
B − id

+V ,
[

χ(ϕB \ γB)
]−V

= ϕ+V
B − γ+VB , (ϕB \ γB)+V = ⊥+ ϕ+V

B − γ+VB .

Here γ+VB = δ+VB ε+VB = δVBε
V
B and ϕ+V

B = ε+VB δ+VB = εVBδ
V
B , the �at opening and 
losing, are obtained

by 
omposing the �at erosion and dilation, see [16℄. The three operators id
+V − γ+VB , ϕ+V

B − id
+V

and

ϕ+V
B − γ+VB are 
alled the white top-hat, bla
k top-hat and self-
omplementary top-hat respe
tively [22℄; the

same names 
an also be used for their binary 
ounterparts id \ γB , ϕB \ id and ϕB \ γB . In the 
ase of

grey-level or 
olour images, the white top-hat shows narrow bright zones, the bla
k top-hat shows narrow

dark zones, and the self-
omplementary top-hat shows both.

The hit-or-miss transform uses a pair (A,B) of stru
turing elements, and looks for all positions where

A 
an be �tted within a �gure X , and B within the ba
kground Xc
[20℄, in other words it is the operator

HMT(A,B) : P(E) → P(E) de�ned by

HMT(A,B)(X) = {p ∈ E | Ap ⊆ X and Bp ⊆ Xc}

= εA(X) ∩ εB(X
c) = εA(X) \ δB̌(X) .

One assumes that A ∩B = ∅, otherwise we have always HMT(A,B)(X) = ∅. We 
an write HMT(A,B)(X) =

εA(X) \
(

δB̌(X) ∩ εA(X)
)

, where we always have δB̌(X) ∩ εA(X) ⊆ εA(X). Thus

χHMT(A,B) = χεA − χ(δB̌ ∩ εA) = χεA − (χδB̌ ∧ χεA) ,

where ∧ is the meet (binary in�mum) operation. Now (δB̌ ∩ εA)
+V = δ+V

B̌
∧ ε+VA [16℄, hen
e we obtain:

[

χHMT(A,B)

]−V
= ε+VA − (δB̌ ∩ εA)

+V = ε+VA − (δ+V
B̌

∧ ε+VA ) ,

HMT+V
(A,B)

= ⊥+ ε+VA − (δB̌ ∩ εA)
+V = ⊥+ ε+VA − (δ+V

B̌
∧ ε+VA ) .

Thus for any F : E → V and p ∈ E we have:

[

χHMT(A,B)

]−V
(F )(p) = ε+VA (F )(p)−min

[

δ+V
B̌

(F )(p), ε+VA (F )(p)
]

= max
[

ε+VA (F )(p)− δ+V
B̌

(F )(p), 0
]

.

In the 
ase of images with dis
rete grey-levels (V = T = {t0, . . . , t1} ⊂ Z), Soille's un
onstrained hit-or-miss

transform [22℄ was de�ned, for an input grey-level image F , by 
omputing at every point p ∈ E the length of

the interval

{t ∈ T | p ∈ HMT(A,B)(Xt(F ))} = {t ∈ T | p ∈ εA(Xt(F )), p /∈ δB̌(Xt(F ))} ,

that is, the summation S
(

χHMT(A,B)(Xt(F ))(p)
∣

∣ t ∈ T
)

. Thus the no-shift �at extension

[

χHMT(A,B)

]−V

is exa
tly Soille's un
onstrained hit-or-miss transform. This operator was further analysed in [12℄, where it

was extended to 
ontinuous grey-levels (T ⊂ R) and to grey-level stru
turing fun
tions instead of stru
turing

elements. This paper gave a general survey of the various types of hit-or-miss transforms for grey-level images.

These examples of non-in
reasing �at grey-level operators, namely the external, internal and Beu
her

gradient, the morphologi
al Lapla
ian, the white, bla
k, and self-
omplementary top-hat, and Soille's un
on-

strained hit-or-miss transform, have previously been de�ned in an intuitive way as a grey-level extension of

the 
orresponding set operators. No formal theory for their 
onstru
tion was given, ex
ept in [12℄ for the

spe
i�
 
ase of the hit-or-miss transform.

Note that their form given in the literature always 
oin
ides with the no-shift �at extension (χψ)−V of

the 
orresponding binary image transformation ψ, rather than the shifted one ψ+V = ⊥ + (χψ)−V . Indeed,

most authors impli
itly assume image intensities to be between 0 and 255, in other words, ⊥ = 0, so the

intensity shift by ⊥ does not matter.
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5.2 Bounded variation of image measurements

We have now to analyse 
onditions for the summation S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

of (40) to be well-de�ned, in

other words for the summed fun
tion to have bounded variation: TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

< ∞. Then the

no-shift �at extension (40), and the shifted one (42) for µ = χψ, will be well-de�ned.

Re
all from Subse
tion 1.3 h(V ), the height of V , that is, the supremum of the lengths of all 
hains in P ;

for a �nite interval K ⊂ Z we have similarly its height h(K) = maxK −minK.

Now the total variation of µ(Xv(F ))(p) on v ∈ V 
an be bounded either by h(K)h(V ), or by the total

variation of µ(Z)(p) on Z ∈ P(E):

Proposition 23. Let µ : P(E) → KE
be a binary image measurement, for a �nite interval K ⊂ Z. Then for

any F ∈ V E and p ∈ E, TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ min
(

h(K)h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

)

.

Proof. Let F ∈ V E and 
onsider a stri
tly in
reasing sequen
e (s0, . . . , sn) in V . Then for i = 1, . . . , n,
∣

∣µ(Xsi(F ))(p)− µ(Xsi−1 (F ))(p)
∣

∣ ≤ h(K), while obviously n ≤ h(V ). Hen
e

TV(s0,...,sn)
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

n
∑

i=1

∣

∣µ(Xsi(F ))(p)− µ(Xsi−1 (F ))(p)
∣

∣ ≤

n
∑

i=1

h(K) ≤ h(K)h(V ) .

Sin
e TV(s0,...,sn)(µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)h(V ) for every stri
tly in
reasing sequen
e (s0, . . . , sn) in V ,

by taking the supremum on su
h sequen
es, we dedu
e that TV (µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)h(V ).

Now Xsi(F ) de
reases when i in
reases from 1 to n. We eliminate in the sequen
e s0, . . . , sn all si with

Xsi(F ) = Xsi−1(F ), we obtain thus a subsequen
e (t0, . . . , tm), where m ≤ n, su
h that Xt0(F ) ⊃ · · · ⊃

Xtm(F ). For j = 0, . . . ,m, let Zj = Xtm−j (F ), so Z0 ⊂ · · · ⊂ Zm. Then (with the 
hange of variable

k = m− j + 1 at the end of the se
ond line),

TV(s0,...,sn)
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

n
∑

i=1

∣

∣µ(Xsi(F ))(p)− µ(Xsi−1(F ))(p)
∣

∣

=

m
∑

j=1

∣

∣µ(Xtj (F ))(p)− µ(Xtj−1
(F ))(p)

∣

∣ =

m
∑

j=1

∣

∣µ(Zm−j)(p)− µ(Zm−j+1)(p)
∣

∣ =

1
∑

k=m

∣

∣µ(Zk−1)(p)− µ(Zk)(p)
∣

∣

=

m
∑

k=1

∣

∣µ(Zk)(p)− µ(Zk−1)(p)
∣

∣ = TV(Z0,...,Zm)

(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

By taking the supremum on all stri
tly in
reasing sequen
es (s0, . . . , sn), we obtain TV
(

µ(Xv(F ))(p)
∣

∣ v ∈

V
)

≤ TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Remark 24. When h(K) = 1, that is, K = {k, k + 1} for some k ∈ Z (for instan
e, if µ = χψ for a binary

image transformation ψ : P(E) → P(E)), then the bound given in Proposition 23 is the best possible: for any

natural u ≤ min
(

h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

, there exists F ∈ V E su
h that TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

u, so we get supF∈V E TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= min
(

h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Indeed, there is a stri
tly in
reasing sequen
e Y0 ⊂ · · · ⊂ Yn in P(E) su
h that TV(Y0,...,Yn)

(

µ(Z)(p)
∣

∣

Z ∈ {Y0, . . . , Yn}
)

= u. By eliminating all terms Yi su
h that µ(Yi)(p) = µ(Yi−1)(p), we obtain a subsequen
e

(X0, . . . , Xm) su
h that for i = 1, . . . ,m we have µ(Xi)(p) 6= µ(Xi−1)(p); as h(K) = 1, the sequen
e of

µ(Xi)(p), i = 1, . . . ,m, alternates between the two elements of K, so |µ(Xi)(p) − µ(Xi−1)(p)| = 1; as the

sequen
e has total variation u, we have m = u. We 
an assume that Xu = E, otherwise: if µ(Xu)(p) =

µ(E)(p), then we repla
e Xu by E in the sequen
e, while if µ(Xu)(p) 6= µ(E)(p), then we repla
e the sequen
e

(X0, . . . , Xu) by (X1, . . . , Xu, E), and rename it (X0, . . . , Xu). There is also a stri
tly in
reasing 
hain t0 <

· · · < tu in V , and we 
an assume that t0 = ⊥ and tu = ⊤. De�ne F : E → V by F (p) = tu if p ∈ X0,

and F (p) = tu−i if p ∈ Xi \Xi−1 (i = 1, . . . , u). We see (by indu
tion on i) that p ∈ Xi i� F (p) ≥ tu−i, so

Xtu−i(F ) = Xi (i = 0 . . . , u). Then, as total variation is self-dual for the order on V ,

u = TV(X0,...,Xu)

(

µ(Z)(p)
∣

∣ Z ∈ {X0, . . . , Xu}
)
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= TV(tu,...,t0)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

= TV(t0,...,tu)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

.

For any v ∈ V , let ϕ(v) be the least ti (i = 0 . . . , u) su
h that ti ≥ v (sin
e tu = ⊤, su
h a ti always exists);

then Xv(F ) = Xϕ(v)(F ). As ϕ is a 
losure operator on V , Proposition 13 gives

TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= TV(t0,...,tu)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

.

From Proposition 23 we see that when V has �nite height, for instan
e if V is �nite, then TV
(

µ(Xv(F ))(p)
∣

∣

v ∈ V
)

≤ h(K)h(V ) < ∞, so the fun
tion µ(Xv(F ))(p)
∣

∣ v ∈ V is summable and the �at extension µ−V is

well-de�ned. However, when V has in�nite height, there are fun
tions F : E → V su
h that TV
(

µ(Xv(F ))(p)
∣

∣

v ∈ V
)

= ∞, so the fun
tion is not summable:

Example 25. Let E = V = [0, 1] ⊂ R and let F : E → V : x 7→ 1 − x; then for v ∈ V , Xv(F ) = [0, 1 − v].

Partition [0, 1] into two dense sets A and B. For every X ∈ P(E), supX ∈ E (where we set sup ∅ = 0).

De�ne ψ : P(E) → P(E) by ψ(X) = E if 1− supX ∈ A and ψ(X) = ∅ if 1− supX ∈ B. Then for any p ∈ E,

χψ(Xv(F ))(p) = 1 if v ∈ A, and = 0 if v ∈ B. As A and B are dense in V , for any n > 0 there is a stri
tly

in
reasing sequen
e (v1, . . . , v2n) ∈ V su
h that vi ∈ A for i odd and vi ∈ B for i even, in other words the

sequen
e alternates between A and B. Then χψ(Xv(F ))(p) alternates between 1 and 0 on this sequen
e, that

is, TV(v1,...,v2n)
(

χψ(Xv(F ))(p)
∣

∣ v ∈ {v1, . . . , v2n}
)

= 2n. It follows that TV
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= ∞.

We 
onsider now a 
ondition that puts a limit on the variation of the fun
tion P(E) → K : Z 7→ µ(Z)(p).

Let us say that µ is lo
al if for any p ∈ E there exists a �nite W (p) ∈ P(E) su
h that for any Z ∈ P(E),

µ(Z)(p) = µ
(

Z ∩W (p)
)

(p). For instan
e, the dilation, erosion, opening and 
losing by a �nite stru
turing

element, and the hit-or-miss transform by two �nite stru
turing elements, are lo
al.

Proposition 26. Let µ : P(E) → KE
be a binary image measurement, for a �nite interval K ⊂ Z. If µ is

lo
al, then for any p ∈ E,

TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

= TV
(

µ(X)(p)
∣

∣ X ∈ P(W (p))
)

≤ h(K)|W (p)| .

Proof. Let (Z0, . . . , Zn) be a stri
tly in
reasing sequen
e in P(E). If we remove from that sequen
e all Zi

su
h that Zi ∩W (p) = Zi−1 ∩W (p), we obtain a subsequen
e (Y0, . . . , Ym) su
h that the sequen
e

(

Y0 ∩

W (p), . . . , Ym ∩W (p)
)

is stri
tly in
reasing. Sin
e µ is lo
al,

TV(Z0,...,Zn)

(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

=

n
∑

i=1

∣

∣µ(Zi)(p)− µ(Zi−1)(p)
∣

∣ =

n
∑

i=1

∣

∣µ
(

Zi ∩W (p)
)

(p)− µ
(

Zi−1 ∩W (p)
)

(p)
∣

∣ =

m
∑

j=1

∣

∣µ
(

Yj ∩W (p)
)

(p)− µ
(

Yj−1 ∩W (p)
)

(p)
∣

∣ .

Now P(W (p)), ordered by in
lusion, has height |W (p)|, so the stri
tly in
reasing sequen
e Yj ∩W (p) (j =

0, . . . ,m) has length at most |W (p)|, thus m ≤ |W (p)|. Hen
e

m
∑

j=1

∣

∣µ
(

Yj ∩W (p)
)

(p)− µ
(

Yj−1 ∩W (p)
)

(p)
∣

∣ ≤ h(K)m ≤ h(K)|W (p)| .

The result follows.

Therefore, when a binary image measurement µ is lo
al, for any F ∈ V E and p ∈ E, Proposition 23 gives

TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)|W (p)|, so the �at extension µ−V will be well-de�ned.

Let us say that the binary image measurement µ is of uniform bounded variation if supp∈E TV
(

µ(Z)(p)
∣

∣

Z ∈ P(E)
)

< ∞. This property is stronger than the having TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

�nite for all p ∈ E

(whi
h is the su�
ient 
ondition we gave for the �at extension µ−V to be well-de�ned), as shown by the

following example:
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Example 27. Let E = N, and de�ne the binary image transformation ψ : P(E) → P(E) as follows: ∀Z ∈

P(E),

ψ(Z) =















N if X is in�nite,

{0, . . . , |X|} ∪ (2N+ 1) if X is �nite and |X| is odd,

{0, . . . , |X|} ∪ 2N if X is �nite and |X| is even.

Here 2N and 2N+1 are the sets respe
tively of even and of odd naturals. Then for a growing sequen
e of sets

(Xn)n∈N, where |Xn| = n, for every m ∈ E we have m ∈ ψ(Xn) if n has the same parity as m or if n ≥ m.

Thus χψ(Xn)(m) alternates for n ≤ m, hen
e we get TV
(

χψ(Z)(m)
∣

∣ Z ∈ P(E)
)

= m. Therefore χψ has

bounded variation at every point, but is not of uniform bounded variation.

By Proposition 26, a lo
al binary image measurement will be of uniform bounded variation if supp∈E |W (p)| <

∞; this is for instan
e the 
ase when E = R
n
or Z

n
and the lo
al operator µ is translation-invariant, be
ause

here W (p) = Bp, the translate by p of a �xed �nite stru
turing element B.

Now uniform bounded variation is pre
isely the ne
essary and su�
ient 
ondition for a binary image

measurement µ to take the form of a sum and di�eren
e of 
hara
teristi
 fun
tions of in
reasing binary image

transformations:

µ =

m
∑

i=1

χηi −

n
∑

j=1

χθj , for η1, . . . , ηm, θ1, . . . , θn : P(E) → P(E), whi
h are all in
reasing . (44)

Proposition 28. A binary image measurement µ : P(E) → KE
(for a �nite interval K ⊂ Z) has a de
om-

position of the form (44) if and only if it is of uniform bounded variation. More pre
isely:

1. Given a de
omposition of the form (44), we have supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ m and

supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ n.

2. For µ of uniform bounded variation, there is a de
omposition of the form (44) with m ≤ [maxK]+ +

supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

and n ≤ [minK]− + supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Proof. Let p ∈ E. In a de
omposition of the form (44), ea
h map P(E) → {0, 1} : Z 7→ χηi(Z)(p) (i =

1, . . . ,m) and Z 7→ χθj(Z)(p) (j = 1, . . . , n), when applied to an in
reasing sequen
e of sets, has a unique

variation from 0 to 1. Thus PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ m and NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ n. Hen
e item 1

holds.

Let now µ be of uniform bounded variation. For ea
h p ∈ E, we apply Proposition 17 to fp : P(E) →

K : Z 7→ µ(Z)(p). We have the positive and negative in
rements f
p
P and f

p
N , see (23), given by setting for

X ∈ P(E):

fpP (X) = [µ(∅)(p)]+ + PV[∅,X](µ(Z)(p)
∣

∣ Z ∈ P(E)
)

,

fpN (X) = [µ(∅)(p)]− +NV[∅,X](µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Let m = sup{fpP (X) | X ∈ P(E), p ∈ E} and n = sup{fpN (X) | X ∈ P(E), p ∈ E}. We have then

m ≤ [maxK]+ + supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

,

n ≤ [minK]− + supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

We take the in
reasing fun
tions g1, . . . , gm, h1, . . . , hn : P → {0, 1} as in Proposition 17, and we have

fp =
∑m
i=1 gi−

∑n
j=1 hj . We de�ne then for any Z ∈ P(E): χηi(Z)(p) = gi(Z) (i = 1, . . . ,m) and χθj(Z)(p) =

hj(Z) (j = 1, . . . , n). This de�nition, made for ea
h p ∈ E, gives thus the binary image transformations ηi

and θj . Sin
e for ea
h p ∈ E, χηi(Z)(p) and χθj(Z)(p) are in
reasing in Z, and µ(Z)(p) =
∑m
i=1 χηi(Z)(p)−

∑n
j=1 χθj(Z)(p), the maps ηi and θj are in
reasing and (44) holds.

Proposition 29. A binary image measurement µ : P(E) → KE
(for a �nite interval K ⊂ Z) has a de
om-

position of the form

µ =

n
∑

i=1

(−1)i−1χψi ,
ψ1, . . . , ψn : P(E) → P(E)

all in
reasing, with ψ1 > · · · > ψn ,
(45)
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if and only if µ is of uniform bounded variation and there is a binary image transformation ψ : P(E) → P(E)

su
h that µ = χψ.

Proof. If µ is of uniform bounded variation and µ = χψ for ψ : P(E) → P(E), we apply the same argument

as in Proposition 28, but using Theorem 18 instead of Proposition 17, whi
h gives thus (45) in pla
e of (44).

Conversely, if (45) holds, we use Proposition 19 in the argument.

5.3 General properties

We will give some mathemati
al properties of �at extension, following Se
tion 3 of [16℄. We 
onsider �rst

the standard 
ase, see Subse
tion 5.1: V = [⊥,⊤], a 
losed interval in the module U = C1 × · · · × Cm; thus

V = V1 × · · · × Vn for Vi = [⊥i,⊤i] (i = 1, . . . , n). For instan
e, in multivalued images, V = Tn (n > 1), for

a 
losed interval T .

Re
all from (30) the i-th proje
tion πi : V → Vi : (v1, . . . , vn) 7→ vi for i = 1, . . . , n; it 
an naturally

be extended to a proje
tion Πi : V
E → V Ei : F 7→ Πi(F ) from images having values in V to images with

values in Vi, by applying it pointwise: Πi(F )(p) = πi
(

F (p)
)

. For instan
e, if V 
onsists of RGB 
olours and

π1 proje
ts a 
olour on its red 
omponent, then Π1 will asso
iate to a 
oulour image its red layer. We obtain

the same result as Proposition 12 of [16℄: a �at operator is obtained by applying that �at operator on ea
h

proje
tion. For instan
e, a RGB 
olour Lapla
ian is obtained by applying the intensity Lapla
ian to ea
h R,

G and B layer.

Proposition 30. Assume the standard 
ase. Let F : E → V . For every binary image measurement µ we

have Πi
(

µ−V (F )
)

= µ−Vi
(

Πi(F )
)

for all i = 1, . . . , n. For every binary image transformation ψ we have

Πi
(

ψ+V (F )
)

= ψ+Vi
(

Πi(F )
)

for all i = 1, . . . , n.

Proof. Let p ∈ E. By (40), µ−V (F )(p) = S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

. We apply the de�nition of proje
tion,

then by Theorem 10 we get:

Πi
(

µ−V (F )
)

(p) = πi
(

µ−V (F )(p)
)

= πi

(

S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

)

= S[⊥i,⊤i]

(

µ(Xη⊥
i
(t)(F ))(p)

∣

∣ t ∈ Vi
)

,

where by (31) we have η⊥i (t) = (⊥1, . . . ,⊥i−1, t,⊥i+1, . . . ,⊥n). Now for any q ∈ E, we have q ∈ Xη⊥
i
(t)(F )

i� F (q) ≥ η⊥i (t), i�

(

π1(F (q)), . . . , πn(F (q))
)

≥ (⊥1, . . . ,⊥i−1, t,⊥i+1, . . . ,⊥n) ,

that is, i� Πi(F )(q) = πi(F (q)) ≥ t, in other words q ∈ Xt(Πi(F )). Hen
e Xη⊥
i
(t)(F ) = Xt(Πi(F )), and the

above with (40) again gives:

Πi
(

µ−V (F )
)

(p) = S[⊥i,⊤i]

(

µ(Xη⊥
i
(t)(F ))(p)

∣

∣ t ∈ Vi
)

=

S[⊥i,⊤i]

(

µ
(

Xt(Πi(F ))
)

(p)
∣

∣ t ∈ Vi
)

= µ−Vi
(

Πi(F )
)

(p) .

As the equality holds for any p ∈ E, we dedu
e the identity Πi
(

µ−V (F )
)

= µ−Vi
(

Πi(F )
)

. Now for a binary

image transformation ψ, we apply (42), so

Πi
(

ψ+V (F )
)

= Πi
(

⊥+ [χψ]−V (F )
)

=

⊥i +Πi
(

[χψ]−V (F )
)

= ⊥i + [χψ]−Vi (F ) = ψ+Vi
(

Πi(F )
)

.

In Subse
tion 5.1 we 
onsidered also the sub-standard 
ase, where V is a 
omplete sublatti
e of [⊥,⊤]. The

following result shows that for �at operators, the sub-standard 
ase redu
es to the standard 
ase.
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Proposition 31. Let W be a 
omplete sublatti
e of V and let F : E → W . For every binary image mea-

surement µ we have µ−W (F ) = µ−V (F ), and for every binary image transformation ψ we have ψ+W (F ) =

ψ+V (F ).

Proof. We refer to Lemma 3 of [16℄: for any v ∈ V , let s(v, F ) = inf{F (p) | p ∈ Xv(F )}; then s(v, F ) ≥ v

and Xs(v,F )(F ) = Xv(F ). Sin
e all F (p) ∈ W , we dedu
e that s(v, F ) ∈ W . Let ϕ be the 
losure operator


orresponding to the 
losure range W , in other words, for any v ∈ V , ϕ(v) is the least w ∈ W su
h that

w ≥ v. Then v ≤ ϕ(v) ≤ s(v, F ), hen
e Xv(F ) ⊇ Xϕ(v)(F ) ⊇ Xs(v,F )(F ) = Xv(F ), thus Xϕ(v)(F ) = Xv(F ).

Let p ∈ E. We apply Proposition 13 with P = V , M = W and f : W → Z : w 7→ µ(Xw(F ))(p). Then

fϕ is the map V → Z : v 7→ µ(Xϕ(v)(F ))(p). As Xϕ(v)(F ) = Xv(F ), we have fϕ : v 7→ µ(Xv(F ))(p). As the

summation S is additive on V , it will be additive on W , f has the same bounded variation as fϕ, and we

get S(fϕ) = S(f), that is, S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= S
(

µ(Xw(F ))(p)
∣

∣ w ∈ W
)

. By (41), this means that

µ−W (F )(p) = µ−V (F )(p).

Finally, (42) gives ψ+W (F )(p) = ⊥+ (χψ)−W (F )(p) = ⊥+ (χψ)−V (F )(p) = ψ+V (F )(p).

A parti
ular 
ase is W = {⊥,⊤}. Images E → {⊥,⊤} are binary, they 
orrespond to subsets of E. For any

A ∈ P(E), de�ne B⊤
⊥ [A] : E → W by B⊤

⊥ [A] = ⊥+ (⊤−⊥)χA, in other words:

∀ p ∈ E, B⊤
⊥ [A](p) =

{

⊤ if p ∈ A ,

⊥ if p /∈ A .
(46)

Then for every F : E → {⊥,⊤}, we have F = B⊤
⊥ [A] for A = F−1(⊤) = X⊤(F ). Now a �at operator will

behave on B⊤
⊥ [A] as the 
orresponding set operator on A. The following result generalises Proposition 15 of

[16℄:

Corollary 32. Let A ∈ P(E). For any binary image measurement µ we have µ−V (B⊤
⊥ [A]) = (⊤− ⊥)µ(A).

For any binary image transformation ψ we have ψ+V (B⊤
⊥ [A]) = B⊤

⊥ [ψ(A)].

Proof. The summation S{⊥,⊤}(f) of a fun
tion f : {⊥,⊤} → R redu
es to (⊤ −⊥)f(⊤). Thus, by (40) and

Proposition 31, we get:

µ−V (B⊤
⊥ [A]) = µ−{⊥,⊤}(B⊤

⊥ [A]) = S{⊥,⊤}

(

µ(Xv(B
⊤
⊥ [A]))(p)

∣

∣ v ∈ {⊥,⊤}
)

=

(⊤−⊥)µ(X⊤(B⊤
⊥ [A])) = (⊤−⊥)µ(A) .

By (42), we derive with µ = χψ:

ψ+V (B⊤
⊥ [A])(p) = ⊥+ (χψ)−V (B⊤

⊥ [A])(p) = ⊥+ (⊤−⊥)χψ(A) = B⊤
⊥ [ψ(A)] .

A spe
ial 
ase is given by ⊥ = 0 and ⊤ = 1. Here B1
0 [A] = χA, see (6), and we get µ−{0,1}(χA) = µ(A) and

ψ+{0,1}(χA) = χψ(A). The following generalises Corollary 29 of [16℄:

Corollary 33. For any two binary image measurements µ1, µ2 we have µ1 ≤ µ2 ⇔ µ−V1 ≤ µ−V2 . For any

two binary image transformation ψ1, ψ2 we have ψ1 ≤ ψ2 ⇔ ψ+V
1 ≤ ψ+V

2 . In parti
ular, the two maps

µ 7→ µ−V and ψ 7→ ψ+V
are inje
tive.

Proof. Sin
e summation is in
reasing on BV fun
tions, we have µ1 ≤ µ2 ⇒ µ−V1 ≤ µ−V2 and ψ1 ≤ ψ2 ⇒

ψ+V
1 ≤ ψ+V

2 . Conversely, if µ−V1 ≤ µ−V2 , then by Corollary 32 we get for any A ∈ P(E): (⊤ − ⊥)µ1(A) =

µ−V1 (B⊤
⊥ [A]) ≤ µ−V2 (B⊤

⊥ [A]) = (⊤−⊥)µ2(A), that is, µ1(A) ≤ µ2(A); hen
e µ1 ≤ µ2. Similarly ψ+V
1 ≤ ψ+V

2

gives B⊤
⊥ [ψ1(A)] = ψ+V

1 (B⊤
⊥ [A]) ≤ ψ+V

2 (B⊤
⊥ [A]) = B⊤

⊥ [ψ2(A)], so by (46) we get ψ1(A) ⊆ ψ2(A); hen
e

ψ1 ≤ ψ2. Now

µ−V1 = µ−V2 ⇐⇒
(

µ−V1 ≤ µ−V2 and µ−V2 ≤ µ−V1

)
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⇐⇒
(

µ1 ≤ µ2 and µ2 ≤ µ1
)

⇐⇒ µ1 = µ2 .

We show similarly that ψ+V
1 = ψ+V

2 ⇔ ψ1 = ψ2. Thus the two maps µ 7→ µ−V and ψ 7→ ψ+V
are

inje
tive.

It is known that for images with values in a �nite 
hain, usual �at operators (median �lter, dilation, erosion,

opening or 
losing by a non-empty stru
turing element) do not 
reate new values in an image. This is not

true for images with values in an in�nite 
hain or a produ
t of 
hains. The topi
 of image values generated by

in
reasing �at operators was analysed pre
isely in [16℄, see its Proposition 13 and Theorem 19, then its Sub-

se
tion 3.3 for more details. We summarise these results. Let ψ be an in
reasing binary image transformation;

then for any F : E → V and p ∈ E:

1. ψV (F )(p) is a supremum of in�ma of F (q) (q ∈ E).

2. If p ∈ ψ(∅), then in item 1 the empty in�mum appears as an argument to the supremum, and ψV (F )(p) =

⊤.

3. If p ∈ E \ ψ(E), then in item 1 the supremum is empty, and ψV (F )(p) = ⊥.

4. If p ∈ ψ(E) \ ψ(∅), then in item 1 the supremum and all in�ma are non-empty, and F (p) lies between
∧

{F (q) | q ∈ E} and

∨

{F (q) | q ∈ E}.

Thus, from item 1, ψV (F )(p) belongs to the 
omplete sublatti
e of V generated by {F (q) | q ∈ E}. More

spe
i�
ally, following item 4, when p ∈ ψ(E) \ ψ(∅), ψV (F )(p) belongs to the least subset of V 
ontaining

{F (q) | q ∈ E} and 
losed under non-empty supremum and in�mum; this set is a 
omplete latti
e, however

its least and greatest elements 
an di�er from ⊥ and ⊤.

For operators that are not in
reasing, the �at extension will involve not only latti
e-theoreti
al operations,

but also arithmeti
al ones, see for instan
e Example 22. We obtain the following result for binary image

measurements:

Proposition 34. Let W be a non-empty subset of V , 
losed under non-empty (numeri
al) supremum and

in�mum, with least element ⊥0 = infW and greatest element ⊤0 = supW . Then S is additive on W , and for

any F : E → W and for any binary image measurement µ, we have

µ−V (F ) = (⊥0 −⊥)µ(E) + µ−W (F ) + (⊤− ⊤0)µ(∅) . (47)

Proof. Sin
eW is a 
omplete sublatti
e of [⊥0,⊤0], S is additive onW by Proposition 13. LetX = W∪{⊥,⊤}.

Then X is the 
omplete sublatti
e of V generated by W , and by Proposition 31, µ−X = µ−V . Clearly ⊥0
is


omparable to every other element of X : ⊥ ≤ ⊥0 ≤ ⊤ and ⊥0 ≤ x for any x ∈W ; similarly ⊤0 is 
omparable

to every other element of X . Let f : X → R; if ⊥ < ⊥0
, Lemma 15 gives S[⊥,⊤](f) = S[⊥,⊥0](f) +

S[⊥0,⊤](f), while this equality obviously holds if ⊥ = ⊥0
; similarly, S[⊥0,⊤](f) = S[⊥0,⊤0](f) + S[⊤0,⊤](f);

thus S[⊥,⊤](f) = S[⊥,⊥0](f) + S[⊥0,⊤0](f) + S[⊤0,⊤](f). Applying this to the map v 7→ µ(Xv(F ))(p), with

(40) we get

µ−X (F )(p) = S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊥,⊥0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

+S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

+ S[⊤0,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

.

Sin
e F has values in the interval [⊥0,⊤0], we get Xv(F ) = E for v ∈ [⊥,⊥0] and Xv(F ) = ∅ for v > ⊤0.

Thus

S[⊥,⊥0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊥,⊥0]

(

µ(E)(p)
∣

∣ v ∈ X
)

= (⊥0 −⊥)µ(E)(p)

and

S[⊤0,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊤0,⊤]

(

µ(∅)(p)
∣

∣ v ∈ X
)

= (⊤ −⊤0)µ(∅)(p) .

On the other hand, (40) gives

S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

=

S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈W
)

= µ−W (F )(p) .
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Combining together the above equalities, we get

µ−X (F )(p) = (⊥0 −⊥)µ(E)(p) + µ−W (F )(p) + (⊤− ⊤0)µ(∅)(p) ,

and this for any p ∈ E. Sin
e µ−X = µ−V , (47) holds.

As we noti
ed in [16℄, when E = R
n
or Z

n
and the in
reasing binary image transformation ψ is translation-

invariant, ψ(E) and ψ(∅)must be equal to E or ∅; thus either (a) ψ(E) = E and ψ(∅) = ∅, (b) ψ is the 
onstant

E map, or (
) ψ is the 
onstant ∅ map. Hen
e the two joint 
onditions ψ(E) = E and ψ(∅) = ∅ appear as a

standard requirement for in
reasing binary image transformations. Indeed, from item 4 above, they guarantee

that ea
h ψV (F )(p) will be a non-empty supremum of non-empty in�ma of values F (q) (q ∈ E). In parti
ular

ψV will preserve 
onstant fun
tions, and for a fun
tion F with values in an interval [a, b], ψV (F ) will have

values in that interval.

Let us now 
onsider the 
orresponding requirements for a binary image measurement µ, whi
h is not

ne
essarily in
reasing. We remark that when E = R
n
or Z

n
and µ is translation-invariant, µ(E) and µ(∅) will

be 
onstant, but there is a priori no ordering between them. In view of (47), we will require µ(∅) = ∅, so that

values above ⊤0 will not in�uen
e the result. If we restri
t ourselves to the no-shift �at extension, then we

will require µ(E) = ∅, so that µ−V 
oin
ides with µ−W .

On the other hand, for a binary image transformation ψ, if we 
onsider the shifted �at extension ψ+V

rather than the no-shift �at extension (χψ)−V , preserving an interval of image values requires both ψ(E) = E

and ψ(∅) = ∅:

Proposition 35. For any binary image transformation ψ, the following three 
onditions are equivalent:

1. ψ(E) = E and ψ(∅) = ∅.

2. Given a, b ∈ V with a ≤ b, for any F : E → V su
h that a ≤ F (p) ≤ b for all p ∈ E, we get

a ≤ ψ+V (F )(p) ≤ b for all p ∈ E

3. ψ+V
preserves all 
onstant fun
tions: for any a ∈ V , let Ca : E → V : p 7→ a; then ψ+V (Ca) = Ca.

Proof. 1 implies 2: Suppose that ψ(E) = E and ψ(∅) = ∅. We apply Proposition 34 with W = [a, b].

Here (47) gives (χψ)−V (F ) = (a − ⊥)χE + (χψ)−W (F ) + (⊤ − b)χ∅, where χE is 
onstant 1 and χ∅ is


onstant 0, in other words for any p ∈ E we have (χψ)−V (F )(p) = (a − ⊥) + (χψ)−W (F )(p), so (42) gives

ψ+V (F )(p) = ⊥ + (χψ)−V (F )(p) = a + (χψ)−W (F )(p). Now (41) gives 0 ≤ (χψ)−W (F )(p) ≤ b − a, so

a ≤ ψ+V (F )(p) ≤ b.

2 implies 3 by taking b = a.

3 implies 1: Take any a ∈ V , and let W = {a}; then χψ−W (Ca) is 
onstant 0, sin
e we make a summation

over the interval [a, a]. Then (47) with F = Ca gives (χψ)−V (Ca) = (a−⊥)χψ(E)+ 0+ (⊤− a)χψ(∅), so for

any p ∈ E, (42) and the requirement that ψ+V (Ca) = Ca give

a = Ca(p) = ψ+V (Ca)(p) = ⊥+ (χψ)−V (Ca)(p) =

⊥+ (a− ⊥)χψ(E)(p) + (⊤− a)χψ(∅)(p) .

Applying this equality to a = ⊥ gives ⊥ = ⊥ + (⊤ − ⊥)χψ(∅)(p), so χψ(∅)(p) = 0 for all p ∈ E, that is,

ψ(∅) = ∅. Applying it to a = ⊤ gives ⊤ = ⊥ + (⊤ − ⊥)χψ(E)(p), so χψ(E)(p) = 1 for all p ∈ E, that is,

ψ(E) = E.

Let E = R
n
or Z

n
, and 
onsider a translation-invariant binary image transformation ψ of bounded variation;

then it will be of uniform bounded variation. Thus, Proposition 29 will give by (45) a de
omposition χψ =
∑n
i=1(−1)i−1χψi, where ψ1, . . . , ψn are in
reasing a binary image transformations and ψ1 > · · · > ψn. Now

ψ1, . . . , ψn will also be translation-invariant, so we have ψi(E) = E unless ψi is 
onstant ∅, and ψi(∅) = ∅

unless ψi is 
onstantE. Sin
e the 
onstant ∅map is redundant in su
h a de
omposition, we will have ψi(E) = E

for i = 1, . . . , n. Hen
e ψ(E) = E if n is odd, and ψ(E) = ∅ if n is even. If ψi(∅) = ∅ for all i, then ψ(∅) = ∅. If

ψi(∅) = E for some i, then ψi is the 
onstant E map, and as it is the greatest possible map, we ne
essarily have

i = 1, and ψi(∅) = ∅ for i ≥ 2, so ψ(∅) = E. Then ψ involves a 
omplementation, we have ψ(X) = θ(X)c for
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all X ∈ P(E), where θ is the translation-invariant binary image transformation given by χθ =
∑n
i=2(−1)iχψi,

with θ(∅) = ∅.

Extrapolating this dis
ussion to the 
ase where we do not have translation-invarian
e, for a binary image

transformation ψ of uniform bounded variation, we will suppose that both ψ(E) and ψ(∅) are equal to either

E or ∅. In the 
ase where ψ(∅) = E, we have then ψ(X) = θ(X)c for all X ∈ P(E), with θ(∅) = ∅ (and again

θ(E) will be either E or ∅); we get then (χψ)−V = (⊤−⊥)− (χθ)−V .

5.4 Flat zones and 
onne
ted operators

In an image F : E → V , a �at zone is a 
onne
ted subet of E on whi
h F is 
onstant, and whi
h is maximal

for the in
lusion; in other words, it is a 
onne
ted 
omponent of F−1(v) for some v ∈ V . An operator Ψ

transforming images is said to be 
onne
ted if for every image F , ea
h �at zone of F is in
luded in a �at zone

of Ψ(F ); equivalently, given any 
onne
ted subset C of E, if F is 
onstant on C, then Ψ(F ) will be 
onstant

on C. This de�nition depends on the de�nition of 
onne
tivity 
hosen for subsets of E: we 
all �
onne
ted

set� one belonging to a given 
onne
tion [17, 21℄.

In Proposition 27 of [16℄, we showed that for an in
reasing binary image transformationψ, if ψ is 
onne
ted,

then its �at extension ψV is 
onne
ted. We will generalise this result to non-in
reasing operators, but we will

also analyse deeper the notion of �at zones and its relation to 
onne
tions.

Re
all [21℄ that a 
onne
tion on P(E) is a a family C ⊆ P(E) that 
omprises the empty set and all

singletons (∅ ∈ C and for all p ∈ E, {p} ∈ C), su
h that for any B ⊆ C su
h that

⋂

B 6= ∅, we have
⋃

B ∈ C.

Elements of C are said to be 
onne
ted. For any X ∈ P(E), a 
onne
ted 
omponent of X a

ording to C is

any non-empty 
onne
ted subset of X , whi
h is maximal for in
lusion: C ∈ C, ∅ 6= C ⊆ X , and ∀C′ ∈ C,

C ⊆ C′ ⊆ X ⇒ C′ = C. Then the 
onne
ted 
omponents of X form a partition of X [17℄. When it is

ne
essary to spe
ify whi
h 
onne
tion is used (for instan
e, if we 
ompare several 
onne
tions), we will say a

C-
onne
ted set and a C-
onne
ted 
omponent.

One 
an derive a 
onne
tion from another. A well-known example is the 
onne
tion by dilation [21℄. Let

C be a 
onne
tion on P(E), and let δ be an extensive dilation on P(E) su
h that the dilation of a singleton is


onne
ted: ∀ p ∈ E, p ∈ δ({p}) ∈ C. For instan
e, when E = R
n
or E = Z

n
, δ is the dilation by a 
onne
ted

stru
turing element 
ontaining the origin: δ = δB , where o ∈ B ∈ C. Let Cδ = {X ∈ P(E) | δ(X) ∈ C}.

Then Cδ is a 
onne
tion and C ⊆ Cδ. In pra
ti
e, the elements of Cδ are either C-
onne
ted sets, or 
lusters

of C-
onne
ted sets, see Figure 8. For any X ∈ P(E), ea
h Cδ-
onne
ted 
omponent A of X 
orresponds

bije
tively to a C-
onne
ted 
omponent B of δ(X) by the two re
ipro
al relations B = δ(A) and A = B ∩X .

Given a fun
tion F : E → A and a set X ⊆ E, we say that F is �at on X , and write fl(F,X), if there

is some a ∈ A su
h that for all x ∈ X we have F (x) = a. We extend this notion from fun
tions E → A to

subsets of E, thanks to the 
hara
teristi
 fun
tion: given F ∈ P(E), F is �at on X i� χF is �at on X , where

χF is E → {0, 1}E ; in other words, either X ⊆ F , or X ⊆ E \ F .

Given two sets of image values A and B (not ne
essarily distin
t), and a map Ψ : AE → BE (transforming

F : E → A into Ψ(F ) : E → B), the �atness preservation set of Ψ is the set FP (Ψ) of all X ⊆ E su
h that

for any F : E → A, if F is �at on X , then Ψ(F ) is �at on X :

FP (Ψ) =
{

X ∈ P(E) | ∀F ∈ AE , fl(F,X) ⇒ fl(Ψ(F ),X)
}

. (48)

By the above identi�
ation of a set with its 
hara
teristi
 fun
tion, for a binary image measurement µ : P(E) →

KE
, FP (µ) = FP (µχ−1), where χ−1 : {0, 1}E → P(E) is the inverse of the 
hara
teristi
 fun
tion, mapping

a binary fun
tion onto its support, so µχ−1
is {0, 1}E → KE

. Similarly, for a binary image transformation

ψ : P(E) → P(E), FP (ψ) = FP (χψχ−1), where χψχ−1
is {0, 1}E → {0, 1}E.

Now the usual notion that an operator Ψ is 
onne
ted with respe
t to a given 
onne
tion C on P(E),

simply means that C ⊆ FP (Ψ). That su
h a notion has been put forward in relation to 
onne
tions is justi�ed

by the following result:

Proposition 36. For Ψ : AE → BE, FP (Ψ) is a 
onne
tion.



Christian RONSE, General theory of non-in
reasing �at morphologi
al operators 35

Proof. Let the set X be empty or a singleton. For any fun
tion G de�ned on E, trivially fl(G,X); thus for any

F ∈ AE , fl(F,X) and fl(Ψ(F ),X) both hold true; hen
e X ∈ FP (Ψ). Thus the empty set and all singletons

belong to FP (Ψ).

Let B ⊆ FP (Ψ) su
h that

⋂

B 6= ∅; if B is empty, then

⋃

B = ∅ ∈ FP (Ψ). We assume thus that B is

non-empty; set C =
⋃

B and 
hoose p ∈
⋂

B. Suppose that for some F : E → A we have fl(F, C); then for

any B ∈ B, we have B ⊆ C, so fl(F,B); as B ∈ FP (Ψ), we dedu
e that fl(Ψ(F ), B). Now for any x ∈ C,

there is some B ∈ B su
h that x ∈ B, and as p ∈ B and fl(Ψ(F ), B), we get Ψ(F )(x) = Ψ(F )(p); thus Ψ(F )

is �at on C. We have thus shown that fl(F, C) ⇒ fl(Ψ(F ), C); therefore
⋃

B = C ∈ FP (Ψ).

This result also indi
ates that we are not bound to a parti
ular 
hoi
e of 
onne
tion on sets: when one says

that an operator Ψ is 
onne
ted with respe
t to a given 
onne
tion C, this simply means that C ⊆ FP (Ψ);

however, the 
onne
tion FP (ψ) 
an be greater than C, whi
h means then that ψ 
an be 
onne
ted with respe
t

to a wider 
onne
tivity. We illustrate this with the 
onne
tion by dilation:

B

14.5

7

(a)

(b) (c) (d)
10

Fig. 8: (a) The 
onne
ted stru
turing element B 
entered about the origin (shown as a bla
k dot); we take δ = δB . (b)

The set X, shown in bla
k. (
) The dilation δ(X), shown in grey and surrounding X in bla
k, has 3 C-
onne
ted 
ompo-

nents; thus, in (b) we delineate with dashed lines the 3 
orresponding Cδ
-
onne
ted 
omponents of C; they are 
lusters

of C-
onne
ted 
omponents. Next to ea
h C-
onne
ted 
omponent of δ(X), we give the ration of its area to that of B.

(d) We apply to δ(X) the area opening with threshold equal to 9 times the area of B, whi
h eliminates one C-
onne
ted


omponent of δ(X); the tra
e on X gives ψ(X), where one Cδ
-
onne
ted 
omponent has been eliminated.

Example 37. Take a 
onne
tion C on P(E) and a dilation δ on P(E) su
h that ∀ p ∈ E, p ∈ δ({p}) ⊆ C.

Let γn be the area opening (w.r.t. C) with area threshold n: for any X ∈ P(E), γn(X) is the union of all

C-
onne
ted 
omponents of X whose measure (area or volume) is at least n. Given A ∈ Cδ, let us say that

A is large if δ(A) has measure at least n, and small otherwise. Consider the operator ψ on P(E) given by

ψ(X) = X ∩ γn(δ(X)). The behaviour of ψ is illustrated in Figure 8: it will remove all small Cδ-
onne
ted


omponents of a set. Then ψ is a 
onne
ted operator for the 
onne
tion Cδ, but FP (ψ) is a larger 
onne
tion.

Let D be the set of all A ∈ P(E) su
h that either A ∈ Cδ, or all Cδ-
onne
ted 
omponents of A are large.

Then D is a 
onne
tion, and we have Cδ ⊂ D ⊆ FP (ψ). We 
onje
ture that for E = Z
n
, C the graph


onne
tivity given by one of the usual translation-invariant adja
en
ies, and δ = δB for o ∈ B ∈ C, we must

have FP (ψ) = D.

The following generalises Proposition 27 of [16℄, and its proof is similar:

Proposition 38. For any binary image measurement µ : P(E) → KE
, we have FP (µ) ⊆ FP (µ−V ). For

any binary image transformation ψ : P(E) → P(E), we have FP (ψ) ⊆ FP (ψ+V ).

Proof. Let C ∈ FP (µ); take any F : E → V su
h that fl(F, C); thus there is some a ∈ V su
h that

F (x) = a for all x ∈ C. For any v ∈ V , from (2) we have either a ≥ v and C ⊆ Xv(F ), or a 6≥ v and

C ⊆ E \ Xv(F ); in other words Xv(F ) is �at on C; as C ∈ FP (µ), fl(Xv(F ), C) implies fl(µ(Xv(F )), C),
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so the value of µ(Xv(F ))(p) is the same for all p ∈ C. Thus the summation S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

has

the same value for all p ∈ C, and by (40), this means that µ−V (F ) is �at on C. We have thus shown that

fl(F, C) ⇒ fl(µ−V (F ), C), so C ∈ FP (µ−V ). Therefore FP (µ) ⊆ FP (µ−V ).

Let C ∈ FP (ψ) = FP (χψ); then the above with µ = χψ gives C ∈ FP ((χψ)−V ). Thus, for any

F : E → V su
h that F is �at on C, (χψ)−V (F ) will be �at on C. Now adding the 
onstant ⊥ does not


hange the �atness, so by (42), ψ+V (F ) = ⊥+(χψ)−V (F ) will be �at on C. So fl(F, C) ⇒ fl(ψ+V (F ), C),

and C ∈ FP (ψ+V ). Therefore FP (ψ) ⊆ FP (ψ+V ).

An example of non-in
reasing 
onne
ted �at operator is the white top-hat by re
onstru
tion. Given a 
on-

ne
ted stru
turing element B, the opening γrB by B by re
onstru
tion asso
iates to a set X the geodesi
al

re
onstru
tion from the marker γB(X) in the mask X , in other words it will keep all 
onne
ted 
omponents

of X whi
h 
ontain a translate of B. The set di�eren
e id\ γrB will sele
t in X all 
onne
ted 
omponents that

are too narrow to 
ontain a translate of B. Its �at extension
[

χ(id \ γrB)
]−V

= id
+V − (γrB)

+V
extra
ts from

a grey-level image its bright regions that are narrow relatively to B.

Anti-extensive 
onne
ted operators have been analysed in the 
ontext of the max-tree [19℄. We 
onsider

images with grey-level values in an integer interval: V = {hmin, . . . , hmax} ⊂ Z. We assume that E ∈ C.

Given an image F : E → V , we 
onstru
t a dire
ted tree whose nodes are all 
onne
ted 
omponents of the

thresholdings Xh(F ) for all h ∈ V ; the root is E = Xhmin
(F ); given a 
onne
ted 
omponent A of Xh(F ) (we

say that A is at level h), the 
hildren nodes of A will be all 
onne
ted 
omponents of Xh+1(F ) (nodes at level

h + 1) in
luded in A. We asso
iate to node A at level h the set of points of A having value h, those with

higher values will be asso
iated to its des
endant nodes. If all points in A have value > h, then A is in fa
t a


onne
ted 
omponent of Xh+1(F ), it 
oin
ides with its 
hild node at level h+ 1, so we remove the node A at

level h, its parent node be
omes thus the parent of A at level h+ 1.

An anti-extensive 
onne
ted operator on sets removes some 
onne
ted 
omponents of a set. Applied to a

thresholding Xh(F ), it will remove some of its 
onne
ted 
omponents, in other words some nodes of the max-

tree. There are then several methods to re
onstru
t the �ltered image from the pruned tree. The dire
t method

a
ts by threshold superposition; for an in
reasing operator on sets, it gives thus the usual �at extension. When

the operator is not in
reasing, there are two variants trying to give it a behaviour similar to the in
reasing


ase: the min method will further remove all des
endant nodes of a removed node, while the max method will


ountera
t the removal of a node if one of its des
endants is not removed.

In [23℄, a fourth method was introdu
ed, the substra
tive one. It gives to a node the grey-level 
orrespond-

ing to the subtra
tion of its level and that of its parent, then sums all these grey-levels. This 
orresponds to

our de�nition of the �at extension by threshold summation, and indeed equation (8) of [23℄ gives exa
tly the

�at operator ψ+
in the 
ase where ψ is an attribute thinning, that is, an idempotent anti-extensive 
onne
ted

operator that a
ts independently on ea
h 
onne
ted 
omponent of a set and removes those that do not satisfy

some 
riterion.

In [25℄, 
onne
ted operators have been extended from the spatial domain to the domain of the max-tree.

6 Con
lusion and perspe
tives

The 
lassi
al theory of �at morphology [16℄ extends any in
reasing operator on sets (or binary images) to an

in
reasing �at operator on grey-level or multi-valued images (more pre
isely, fun
tions de�ned on sets and

with values in a 
omplete latti
e). It relies on three steps: from a fun
tion F , build the sta
k of thresholdings,

Xv(F )(v∈V ), then apply the in
reasing set operator ψ to all thresholdings Xv(F ), and �nally superpose the

resulting sta
k ψ(Xv(F ))(v∈V ) by using a latti
e-theoreti
al supremum.

We have presented an alternative approa
h to �at morphology, whi
h 
an be applied to a wider family

of operators on sets, in parti
ular to non-in
reasing ones, su
h as the hit-or-miss transform, the top-hat and

the Beu
her gradient. Here the last step of superposition is repla
ed by a summation, an idea �rst proposed

in [5, 24℄ in the 
ase of bounded integer grey-levels. We have thus elaborated an extensive theory of fun
tion

summation in a poset [18℄, whi
h requires the fun
tions to be of bounded variation. It 
an be applied to
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fun
tions with values in a 
losed interval in R
m

or Z
m
, in other words to grey-level or multivalued images,

with either dis
rete or analog values. In the 
ase of in
reasing set operators, the new de�nition of �at extension

gives the same result as the traditional one.

While 
lassi
al �at morphology gives a �at extension of in
reasing operators P(E) → P(E) (or {0, 1}E →

{0, 1}E), our theory gives the �at extension of fun
tions P(E) → KE
(or {0, 1}E → KE

) for any �nite interval

K in
luded in Z, so it 
an be applied to fun
tions with non-binary values, su
h as the morphologi
al Lapla
ian.

Now, sin
e the summation is a linear operation, given a fun
tion P(E) → KE
whi
h is a linear 
ombination

of in
reasing fun
tions P(E) → {0, 1}E, its �at extension will be the same linear 
ombination of the �at

extensions of the latter fun
tions. For instan
e, the �at extension of the set di�eren
e between an extensive

dilation and an anti-extensive erosion on sets will be the arithmeti
al subtra
tion of the 
orresponding �at

dilation and erosion on fun
tions.

There should be no 
ompli
ation in relaxing the 
ondition K ⊂ Z to K ⊂ ( 1d )Z for some d > 1. We


an thus apply our theory to linear 
ombinations with rational 
oe�
ients of morphologi
al operators on

binary images. There have been several works on image �lters built by 
ombining linear and morphologi
al

operations, see for instan
e [2, 3, 11℄, and they 
ould thus be integrated into our framework.

For instan
e, in the dis
rete spa
e Z
n
, the 
onvolution by a �nite mask M is a linear 
ombination of

translations: F ∗M = supp∈supp(M)M(p) · Tp(F ), where supp(M) is the support of the mask M , and for

p ∈ supp(M),M(p) is the mask value at p and Tp is the translation by p. Sin
e the translation is an in
reasing

operator on sets, so a �at operator on fun
tions, 
onvolution by the �nite mask M is a linear 
ombination of

�at morphologi
al operators, and it enters into our framework; in fa
t, the 
onvolution byM for grey-level or

multivalued fun
tions is the �at extension of that same 
onvolution for binary images.

We have analysed some general properties of �at operators, su
h as 
ompatibility with proje
tion on one

value in the 
ase of multivalued images, and preservation of intervals of values. We have also been able to

show that the �at extension of a 
onne
ted operator on sets is a 
onne
ted operator on fun
tions.

There are other properties that were established in [16℄ for the �at extension of in
reasing set operators, in

parti
ular its relation with 
ombinations of operators (
omposition, union and interse
tion). These properties

do not extend fully to the general 
ase, but we 
an obtain weaker properties. Also the notion of duality

be
omes rather 
omplex in the 
ase of non-in
reasing operators. These problems 
an be analysed and solved

through the use of 
ompli
ated mathemati
al te
hniques, and they will be dealt with in our se
ond paper,

where we will also analyse linear operators and �hybrid �lters� 
ombining linear and morphologi
al operators.
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