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Abstrat: Flat morphology is a general method for obtaining inreasing operators on grey-level or multivalued

images from inreasing operators on binary images (or sets). It relies on threshold staking and superposition;

equivalently, Boolean max and min operations are replaed by lattie-theoretial sup and inf operations.

In this paper we onsider the onstrution a �at operator on grey-level or olour images from an operator on

binary images that is not inreasing. Here grey-level and olour images are funtions from a spae to an interval

in R
m
or Z

m
(m ≥ 1). Two approahes are proposed. First, we an replae threshold superposition by threshold

summation. Next, we an deompose the non-inreasing operator on binary images into a linear ombination

of inreasing operators, then apply this linear ombination to their �at extensions. Both methods require the

operator to have bounded variation, and then both give the same result, whih onforms to intuition. Our

approah is very general, it an be applied to linear ombinations of �at operators, or to linear onvolution

�lters.

Our work is based on a mathematial theory of summation of real-valued funtions of one variable ranging in

a poset.

In a seond paper, we will study some partiular properties of non-inreasing �at operators.
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1 Introdution

Mathematial morphology [10, 20, 21, 22℄ is a branh of image proessing, that relies on lattie-theoretial

and geometrial operations. It is used for proessing binary, grey-level and multivalued images, as well as

many other imaging strutures.

It was initially developed in the framework of binary images, and later generalised to grey-level and

multivalued images. The mostly used morphologial operators on grey-level (or multivalued) images are the

so-alled �at operators, for instane those using �at struturing elements. They are obtained from operators on

binary images through the method of �at extension [16℄. For instane a grey-level �at dilation (resp., erosion)

applies at eah point a loal supremum (resp., in�mum) of grey-levels. Another �at operator is the median

�lter. A fundamental limitation of this method is that it is restrited to inreasing operators, in other words

operators that preserve the inlusion order. Thus, it annot be applied to non-inreasing operators suh as

the morphologial gradient and Laplaian, or the hit-or-miss transform, although many authors have given

grey-level versions of these operators in an ad ho manner.

The purpose of this paper is to generalise the �at extension to non-inreasing operators. Subsetion 1.1

realls the lassial theory of the �at extension of binary operators, then the simple example of the di�erene

between a dilation and an erosion shows how this method fails for non-inreasing operators. Subsetion 1.2
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introdues two equivalent approahes for obtaining the �at extension of a non-inreasing operator: �rst, replae

threshold superposition by threshold summation; seond, deompose the non-inreasing operator into a linear

ombination of inreasing operators, and take this linear ombination with their �at extensions.

The paper requires a substantial mathematial bakground, whih was initiated in [18℄. The two proposed

approahes require the operator to be of bounded variation: this ondition is studied in Setion 2. Setion 3

introdues a theory of summation on posets, whih gives a kind of Riemann integral. Setion 4 studies the

deompositions of funtions into linear ombinations of inreasing funtions.

Then Setion 5 applies this theory to the �at extension of operators on binary images, not only operators

P(E) → P(E), but also P(E) → KE
for a �nite interval K ⊂ Z. Setion 6 onludes and introdues some

perspetives, some of whih will be dealt with in a seond paper.

1.1 Flat extension by threshold superposition

We use the standard lattie-theoretial terminology of [16℄. See Subsetion 1.3 for more details.

Consider a spae of points E, whih an be the Eulidean (E = R
n
) or digital (E = Z

n
) spae, or a subset

of suh a spae. Image intensities are numerial values, they range in a losed subset T of R = R∪{−∞,+∞};

for example in the digital ase, one an take T to be an interval in Z = Z ∪ {−∞,+∞}. Then one models

binary images as subsets of E, grey-level images as numerial funtions E → T , and multivalued images (e.g.,

olour, multispetral, or multimodal images) as funtions E → Tm for some integer m > 1. Write P(E) for

the set of all subsets of E (i.e., binary images), TE and (Tm)E for the set of maps E → T and E → Tm

respetively.

An operator is a map transforming an image into an image. There are for instane operators on binary,

grey-level images or multivalued images, that is, maps P(E) → P(E), TE → TE or (Tm)E → (Tm)E .

There an also be operators between di�erent families of images, for instane thresholding is an operator

TE → P(E).

An operator ψ : P(E) → P(E) on binary images is said to be inreasing (or isotone) if it preserves the

inlusion order: for X,Y ∈ P(E), X ⊆ Y ⇒ ψ(X) ⊆ ψ(Y ). There is a systemati method for onstruting an

operator on grey-level or multivalued images from an inreasing operator on binary images: the �at extension.

Let us brie�y reall from [16℄ how this is done.

Let us write V for the set of image values; we assume that V = T (for grey-level images) or V = Tm (for

multivalued images), where T is a losed interval in Z or R. Then V is partially ordered, numerially for T ,

and omponentwise for Tm:

(x1, . . . , xm) ≤ (y1, . . . , ym) ⇐⇒ xi ≤ yi for i = 1, . . . ,m . (1)

Note that there are other possible orders on Tm, but the omponentwise order is mathematially easier, with

it we ould obtain results for multivalued images, see Theorem 10 and Proposition 30. Now, V onstitutes

a omplete lattie [1℄ (every subset of V has a supremum and an in�mum for the order). Write ⊥ and ⊤

for the least and greatest elements of V , and
∨

for the supremum operation in V ; when V = T ,
∨

is the

numerial supremum, and when V = Tm, it is the omponentwise numerial supremum. Thus, V E will be a

omplete lattie, whose order, supremum and in�mum are obtained by applying those of V pointwise: F ≤ G

i� F (p) ≤ G(p) for all p ∈ E, and for Fi ∈ V E , i ∈ I ,
∨

i∈I Fi is the funtion E → V : p 7→
∨

i∈I Fi(p).

For an image F : E → V and v ∈ V , the threshold set [10℄ is

Xv(F ) = {p ∈ E | F (p) ≥ v} . (2)

The set Xv(F ) is dereasing in v: w > v ⇒ Xw(F ) ⊆ Xv(F ), in other words threshold sets form a stak

[15, 16℄. We illustrate suh a stak in Figure 1 for E = R and V = T = [a, b], a bounded interval in R: the

sets {t} × Xt(F ) for t ∈ T pile up.

For B ⊆ E and v ∈ V , the ylinder of base B and level v is the funtion CB,v given by

∀ p ∈ E, CB,v(p) =

{

v if p ∈ B ,

⊥ if p /∈ B .
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Fig. 1:Here E = R and V = T = [a, b] ⊂ R. The hypograph of F is the set {(h, t) ∈ E×T | t ≤ F (h)}, and its horizontal

ross-setions are the sets {t} × Xt(F ) for t ∈ T .

Then every funtion F : E → V is the upper envelope of the sets {v} ×Xv(F ), in other words the supremum

of ylinders

F =
∨

v∈V

CXv(F ),v .

Consider now an inreasing operator ψ : P(E) → P(E) on binary images, so X ⊆ Y ⇒ ψ(X) ⊆ ψ(Y ).

Then for any F : E → V , the sets ψ (Xv(F )) derease with v, thus they form a stak. We an take the upper

envelope of the sets {v} × ψ (Xv(F )), that is:

ψV (F ) =
∨

v∈V

Cψ(Xv(F )),v . (3)

For every point p ∈ E we have:

ψV (F )(p) =
∨

{

v ∈ V | p ∈ ψ(Xv(F ))
}

. (4)

Then ψV : V E → V E : F 7→ ψV (F ) is the �at operator orresponding to ψ, or the �at extension of ψ [15, 16℄.

We illustrate this onstrution in Figure 2 for the example of Figure 1, where the operator ψ is �rst the

dilation δB , then the erosion εB by a struturing element B ∈ P(E) [10, 20℄: for any X ∈ P(E),

δB(X) = X ⊕B =
⋃

b∈B

Xb and εB(X) = X ⊖B =
⋂

b∈B

X−b ; (5)

here Xb = {x+ b | x ∈ X} is the translate of X by b.

Now if we take a non-inreasing operator, this approah does not work orretly. The sets ψ (Xv(F )) do

not anymore form a stak, sine they do not derease with v. Consider the example of Figure 1, and let the

operator ψ be the set di�erene between the dilation δ and erosion ε of Figure 2. As shown in Figure 3, the

staking approah of (3,4) gives for F the same result as the �at extension of the dilation: [δ\ε]T (F ) = δT (F ).

More generally, for a funtion G, we will have δT (G) ≥ [δ \ ε]T (G) ≥ δT (G) − εT (G), see Figure 4.

However intuition tells us that sine here the erosion is inluded in the dilation, the �at extension of

their set-theoretial di�erene should be the arithmetial di�erene of their �at extensions: [δ \ ε]T (F ) =

δT (F ) − εT (F ). This aords with ommon pratie, as indeed the Beuher gradient [20℄ of an image is

de�ned as δ(X) \ ε(X) for a binary image X and δT (F )− εT (F ) for a grey-level image F , where δ and ε are

the dilation and erosion by a point neighbourhood.

1.2 Threshold summation and linear ombination of inreasing operators

The solution to our problem was hinted at in Setion V.2 of [14℄; in fat, it proposed two equivalent methods for

obtaining the �at extension of a non-inreasing binary operator. Although the point of view of that paper was
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T F(  )δ

tt{ } δ (   )x (         )X E
a

T

b δ = dilation by

F

T F(  )ε

t(   )t{ } Xx ε (         ) E

T

a

b erosion byε = 

F

Fig. 2: Again E = R and V = T = [a, b] ⊂ R. The funtion F of Figure 1 is shown dashed. Here the operators are

the dilation δ (left) and erosion ε (right) by a segment entered about the origin (shown as a big dot). The sets {t} ×

δ (Xt(F )) (left) and {t} × ε (Xt(F )) (right) pile up, their upper envelopes are the funtions δT (F ) and εT (F ).

{ }t ψ Xtx (         )(   )F

E

T
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b ψT F(  ) ψ = dilation \ erosion by

Fig. 3: Still E = R and V = T = [a, b], and the above funtion F is shown dashed. Here ψ(X) = δ(X) \ ε(X) for the

dilation δ and the erosion ε by a segment entered about the origin. The sets {t} × ψ (Xt(F )) do not pile up orretly.

stritly �nitary (with only �nite struturing elements or �lter windows, and �nitely many images intensities),

and restrited to grey-level images (V = T ), the approah an be extended to our general framework. This

paper proposed two di�erent ideas that will �nally lead to the same result.

Let us (temporarily) restrit ourselves to grey-level images (V = T ). The �rst idea is that the sets

ψ (Xt(F )) (t ∈ T ) should not be superposed by a supremum of ylinders, but numerially summed or integrated

over t ∈ T , following the threshold deomposition method introdued by [5℄ for median �lters, and extended

in [24℄ to arbitrary �at operators.

In order to avoid long or imbriated subsripts, for any X ∈ P(E), we will write χX , rather than the

usual χX , for the harateristi funtion of X :

∀X ∈ P(E), ∀ p ∈ E, χX(p) =

{

1 if p ∈ X ,

0 if p /∈ X .
(6)

Then, given an operator ψ : P(E) → P(E), for any X ∈ P(E) we write χψ(X) for the harateristi funtion

of ψ(X); in other words, we have the map χψ : P(E) → {0, 1}E , whih is the omposition of ψ : P(E) → P(E)

followed by χ : P(E) → {0, 1}E.

Given an inreasing operator ψ : P(E) → P(E), we have for any F ∈ TE and p ∈ E:

� in the disrete ase T = {t0, . . . , tn}, where ⊥ = t0 < · · · < tn = ⊤:

ψT (F )(p) = ⊥+

n
∑

i=1

(ti − ti−1)χψ(Xti(F ))(p) . (7)
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Fig. 4:The same operator ψ as in Figure 3, but with another funtion G. Here δT (G) − εT (G) would give the height of

the union of all sets {t} × ψ (Xt(F )).

� in the ontinuous ase T = [⊥,⊤]:

ψT (F )(p) = ⊥+

⊤
∫

⊥

χψ(Xt(F ))(p) dt . (8)

In fat, in [5, 24℄ it was assumed that T = {0, . . . , n}, so there (7) took the form

ψT (F )(p) =

n
∑

i=1

χψ(Xi(F ))(p) . (9)

Then one ould take (7,8) as the de�nition of the �at extension of any operator, inreasing or not. For our

example with ψ given by ψ(X) = δ(X) \ ε(X), as ε(X) ⊆ δ(X) for all X ∈ P(E), we have χ
[

δ(X) \ ε(X)
]

=

χδ(X)−χε(X), and by the linearity of summation and integration, (7,8) gives [δ\ε]T (F ) = ⊥+δT (F )−εT (F );

when ⊥ = 0 (whih is often the ase in pratie), we get [δ \ ε]T (F ) = δT (F ) − εT (F ). This is exatly what

intuition tells us: the arithmetial di�erene is the extension to numerial funtions of the set di�erene X \Y

for Y ⊆ X .

The two equations (7,8) should be extended to multivalued images (V = Tm) and uni�ed into a single

equation valid for both disrete and ontinuous numerial values. Indeed, our ontributed artile [18℄ at the

Kiselmanfest of 2006 is devoted to suh a generalisation: we introdued an analogue of the Riemann integral

for funtions de�ned on a poset (partially ordered set) inluded in R
m

or Z
m

(m ≥ 1), we alled it funtion

summation; it relies on the order and the ompatibility of the operations of addition, subtration and salar

multipliation (in R
m

or Z
m
) with that order. Its appliation to thresholded grey-level images gives (7) for

disrete grey-levels and (8) for ontinuous grey-levels; moreover, in the ase of an inreasing operator, for

image values in an interval in R
m

or Z
m
, the result is equivalent to �at extension, in other words threshold

summation (7,8) is equivalent to threshold staking (4).

Now this funtion summation was de�ned only for funtions that are linear ombinations of bounded,

non-negative and dereasing (or inreasing) funtions, in other words funtions with bounded variation; thus

we analysed this property in [18℄. We do not exlude the possibility of extending our funtion summation to

funtions de�ned on a poset, whih do not have bounded variation; this ould possibly be ahieved by using

measure theory and the methodology of the Lebesgue integral, but that is beyond the sope of our study.

The seond idea of [14℄ is that a funtion with binary values should be expressed as a linear ombination

of inreasing binary-valued funtions. We proposed there to deompose a funtion f : {0, 1}n → {0, 1}

into an alternating sum and di�erene of a dereasing sequene of inreasing binary funtions, that is, into

f1−f2 +f3 −· · ·+(−1)r−1fr, where r is an integer > 0, eah funtion fi : {0, 1}
n → {0, 1} is inreasing, and

f1 > · · · > fr . This was stated without justi�ation, the details were announed to appear in a manusript

in preparation, whih was never written ... until the result was proven in a more general form in [18℄, see
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Setion 4, in partiular Theorem 18. Now for ψ : P(E) → P(E), we would like to have a similar deomposition

χψ = χψ1 − χψ2 + χψ3 + · · · (−1)r−1χψr , (10)

where the ψi (i = 1, . . . , r) form a dereasing sequene of inreasing operators P(E) → P(E); then we would

dedue from it the same deomposition for the �at extension (assuming ⊥ = 0):

ψV = ψV1 − ψV2 + ψV3 + · · · (−1)r−1ψVr . (11)

However, in an in�nite spae E, suh a deomposition is not guaranteed. Indeed, as ψ1, . . . , ψr are inreasing,

given an inreasing sequene (Xn)n∈N in P(E), for any p ∈ E and i = 1, . . . , r, the sequene χψi(Xn)(p) an

hange at most one, from 0 to 1, hene for the deomposition (10), the sequene χψ(Xn)(p) should hange

at most r times, alternating between 0 and 1. However, for an in�nite spae E, it is easy to �nd an operator

ψ suh that the sequene χψ(Xn)(p) will endlessly alternate between 0 and 1.

We will indeed see that the neessary and su�ient ondition for a deomposition of the form (10) is that

the funtions P(E) → {0, 1} : X 7→ χψ(X)(p) for p ∈ E are of uniform bounded variation, in other words the

same bound holds for their total variation for all p ∈ E. This will imply in partiular that for every F : E → V

and p ∈ E, the funtion v 7→ χψ (Xv(F )) (p) will have its summation well-de�ned, in other words the formula

generalising (7,8) will be valid. In fat, assuming ⊥ = 0, we will then have the orresponding deomposition

(11).

We see thus that bounded variation is at the ore of the theory of the �at extension of non-inreasing

set operators, and it was the main theme of [18℄. This work onstitutes the mathematial basis for our study,

and the next three setions will mostly summarise the main onepts and results of that paper, although

we present a few new results. Setion 2 studies bounded variation of funtions de�ned on an arbitrary poset

(partially ordered set) and with real or integer values. Then Setion 3 de�nes a summation for real-valued

funtions de�ned on a poset inluded in R
m

or Z
m
, m ≥ 1. For m = 1, this summation gives the integral

in the ontinuous ase, and a sum similar to (7) in the disrete ase. For m > 1, there will be a summation

along eah oordinate; for instane, in R
3
, given ai ≤ bi for i = 1, 2, 3, the summation of f from (a1, a2, a3)

to (b1, b2, b3) will be

(

b1
∫

a1

f(t, a2, a3) dt ,

b2
∫

a2

f(a1, t, a3) dt ,

b3
∫

a3

f(a1, a2, t) dt
)

.

Next, Setion 4 studies the deomposition of integer-valued funtions into a linear ombination of inreasing

binary funtions; in the ase where the funtion to be deomposed has binary values, we get an alternating

sum and di�erene of a dereasing sequene of inreasing binary funtions, f. (10).

Setion 5 applies the mathematial results of the three preeding setions to the theory of the �at extension

of operators on binary images, that is, operators P(E) → P(E), or more generally P(E) → KE
for a �nite

interval K ⊂ Z, suh as for instane the morphologial Laplaian:

χδ + χε− 2χid : P(E) → {−1, 0, 1}E : X 7→ χδ(X) + χε(X)− 2χX , (12)

where id is the identity operator on P(E), while δ and ε are the dilation and erosion by a point neighbourhood.

Our approah relies on threshold summation, and in the ase of inreasing operators P(E) → P(E), it gives

the same result as the original threshold staking method. We will see that several examples of non-inreasing

�at operators for grey-level images informally given in the literature belong to our framework: the external,

internal and Beuher gradient, the morphologial Laplaian, the white, blak, and self-omplementary top-

hat, and �nally Soille's unonstrained hit-or-miss transform. We will also give some general properties of

�at operators, whih are rather similar to those given in [16℄ in the ase of inreasing operators. Finally the

onlusion summarises our �ndings and proposes some possible extensions of our theory.

Note that our approah ombines linear operations (summation, linear ombination) with non-linear ones

(thresholding); thus the resulting �at operators are generally non-linear (for instane, the usual operators

of mathematial morphology). However, we an also obtain �at operators that are linear; for instane, the

identity and spatial translations are linear �at operators, so the onvolution by a �nite mask, whih is a
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linear ombination of translations, will be a linear �at operator, whih will be inreasing only when the mask

oe�ients are all non-negative.

Given the length of our study, we have split our work into two parts. In a seond paper, we will onsider

duality and study some properties of �at operators, where the non-inreasing ase di�ers from the inreasing

one, for instane the �at extension of a supremum, in�mum or omposition of operators.

1.3 Mathematial preliminaries

We reall here some basi notions from the theory of posets and latties [1, 4, 7℄. A poset is a set P with a

partial order relation ≤ (re�exive, antisymmetri and transitive); write < for the orresponding strit partial

order, that is, x < y ⇔ (x ≤ y and x 6= y). Two elements x and y of P are said to be omparable if either

x < y or x = y or x > y. We say that the order ≤ is total if x and y are omparable for all x, y ∈ P ; then P

is alled a hain. A �nite hain v0 < · · · < vn in a poset P has length n; the height of P , written h(P ), is the

supremum of the lengths of all hains inluded in P ; if there is no upper bound on hain lengths in P , we get

h(P ) = ∞. For a, c ∈ P , we say that c overs a if a < c and there is no b ∈ P with a < b < c. Given a, b ∈ P

suh that a ≤ b, let [a, b] = {x ∈ P | a ≤ x ≤ b}, we all it the losed interval between a and b.

A bounded poset is one having a least element and a greatest element; a poset is bounded by a, b if its

least element is a and its greatest element is b.

Given two posets P and Q (equal or di�erent), a map ψ : P → Q is inreasing (or isotone) if for all

x, y ∈ P , x ≤ y ⇒ ψ(x) ≤ ψ(y); it is dereasing (or antitone) if for all x, y ∈ P , x ≤ y ⇒ ψ(x) ≥ ψ(y).

A map ψ : P → P is extensive if for all x ∈ P we have x ≤ ψ(x); it is idempotent if for all x ∈ P we have

ψ(ψ(x)) = ψ(x).

A losure map on P [4, 7℄ is a map ϕ : P → P that is inreasing, extensive, and idempotent. Equivalently,

for all x, y ∈ P , x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y). A losure range on P [4℄ is a subset M of P suh that for

every x ∈ P , the set of all y ∈M suh that y ≥ x is non-empty and has a least element. There is a bijetion

between losure maps and losure ranges on P , where a losure map ϕ and a losure range M orrespond by

two reiproal relations: M = {ϕ(x) | x ∈ P}, and for every x ∈ P , ϕ(x) is the least y ∈ M suh that y ≥ x.

Note that when P has a greatest element ⊤, we always have ⊤ ∈M and ϕ(⊤) = ⊤.

For Q ⊆ P , a lower bound (resp., upper bound) of Q is any x ∈ P suh that for all y ∈ Q, x ≤ y (resp.,

x ≥ y). The greatest lower bound of Q is a lower bound of Q greater than any other lower bound; if it exists,

it is unique. One de�nes similarly the least upper bound of Q. Then P is a lattie if every pair {x, y} in P has

a least upper bound, alled the join of x, y and written x ∨ y, and a greatest lower bound, alled the meet of

x, y and written x∧ y. Now P is a omplete lattie if every subset Q of P has a least upper bound, alled the

supremum of Q and written

∨

Q, and a greatest lower bound, alled the in�mum of Q and written

∧

Q; in

partiular it has a least element ⊥ =
∧

P =
∨

∅ and a greatest element ⊤ =
∨

P =
∧

∅.

Of partiular interest are latties of numbers and of vetors. Every interval in Z, every losed interval [a, b]

in R, the ompletions Z = Z ∪ {−∞,+∞} and R = R ∪ {−∞,+∞} are omplete latties for the numerial

order; all of them have the same non-empty supremum and in�mum operations, whih oinide with the

usual numerial supremum and in�mum; we will thus write supQ and inf Q rather than

∨

Q and

∧

Q for a

non-empty Q ⊆ R. The empty numerial supremum and in�mum, sup ∅ and inf ∅, have no a priori values,

they are generally de�ned as the least and greatest elements of the interval under onsideration. For m > 1,

Z
m

and R
m
, as well as any losed interval in Z

m
or R

m
, are omplete latties for the omponentwise order

(1); their non-empty supremum and in�mum, again written sup and inf , orrespond to taking the numerial

supremum and in�mum omponentwise: writing xi for the i-th oordinate of x ∈ R (i = 1, . . . , n), for any

non-empty Q ⊆ R
m

we have

(

supQ
)

i
= sup{xi | x ∈ Q} and similarly for the in�mum.

A onditionally omplete lattie is a lattie where every subset having an upper bound has a least upper

bound (supremum), and every subset having a lower bound has a greatest lower bound (in�mum). For instane,

Z and R are onditionally omplete latties for the numerial order, while for m > 1, Zm and R
m

are

onditionally omplete latties for the omponentwise order.
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In a omplete lattie P , one alls an inf-losed subset of P a subset M of P suh that for any subset Q

of M ,

∧

Q ∈ M ; in partiular, it ontains the empty in�mum, that is, the greatest element: ⊤ =
∧

∅ ∈ M .

In fat, M is inf-losed if and only if it is a losure range; it is then a omplete lattie, with the same

in�mum operation as in P , but with the supremum of Q ⊆ M given by ϕ
(
∨

Q
)

, where ϕ is the losure map

orresponding to M . One de�nes similarly a sup-losed subset of P : Q ⊆ M ⇒
∨

Q ∈ M ; then ⊥ ∈ M

and M is a omplete lattie. A omplete sublattie of P is a subset Q of P whih is a omplete lattie with

the same supremum and in�mum operations as in P , in other words, Q is both inf-losed and sup-losed; it

ontains in partiular the empty supremum and in�mum, that is, the least and greatest elements: ⊥,⊤ ∈ Q.

2 Bounded variation in a poset

Bounded variation is a lassial topi in funtions R → R, see for example Setion 3.5 of [6℄. We summarise

here Setion 2 of [18℄, with minor orretions and improvements, and we add some examples. The most

important results of this setion are Proposition 4 and Corollary 5, together with the disussion of duality

following them.

Let P be a poset. In pratie, P an be P(E), the set of parts of a spae E (ordered by inlusion), or a

losed interval T in R, or P = Tm (ordered omponentwise). We will onsider funtions P → R.

Every funtion P → R has its positive, negative and total variation, and when the latter is bounded, we

say that the funtion has bounded variation. The bounded variation of funtions P → R has been studied in

[8, 9℄ in the restrited ase where the order ≤ is total.

For x ∈ R, let [x]+ and [x]− be the positive and negative parts of x:

[x]+ = max(x, 0) =

{

x if x ≥ 0 ,

0 if x ≤ 0 ;

and

[x]− = [−x]+ = max(−x, 0) =

{

|x| if x ≤ 0 ,

0 if x ≥ 0 .

Then x = [x]+ − [x]− and |x| = [x]+ + [x]−.

A stritly inreasing sequene in P is a (n + 1)-tuple (s0, . . . , sn), where n ∈ N, s0, . . . , sn ∈ P and

s0 < · · · < sn. The set of suh sequenes is ordered by inlusion, where (r0, . . . , rm) is inluded in (s0, . . . , sn)

i� {r0, . . . , rm} ⊆ {s0, . . . , sn}, that is, i� (r0, . . . , rm) = (sj0 , . . . , sjm) for 0 ≤ j0 < · · · < jm ≤ n; we say

then that (r0, . . . , rm) is a sub-sequene of (s0, . . . , sn), and write (r0, . . . , rm) ⊆ (s0, . . . , sn).

Let f : P → R. For any stritly inreasing sequene, we de�ne the positive, negative and total variation

of f on it:

PV(s0,...,sn)(f) =

n
∑

i=1

[

f(si)− f(si−1)
]+

,

NV(s0,...,sn)(f) =

n
∑

i=1

[

f(si)− f(si−1)
]−

,

TV(s0,...,sn)(f) =

n
∑

i=1

∣

∣f(si)− f(si−1)
∣

∣ .

(13)

These three numbers are non-negative. Then onatenating stritly inreasing sequenes adds their variations,

in other words, a stritly inreasing sequene (s0, . . . , sm+n) (where m,n ≥ 0) satis�es:

PV(s0,...,sm+n)(f) = PV(s0,...,sm)(f) + PV(sm,...,sm+n)(f) ,

NV(s0,...,sm+n)(f) = NV(s0,...,sm)(f) +NV(sm,...,sm+n)(f) ,

TV(s0,...,sm+n)(f) = TV(s0,...,sm)(f) + TV(sm,...,sm+n)(f) .

(14)
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It follows (see Lemma 1 of [18℄) that taking a sub-sequene of a stritly inreasing sequene dereases its

variations:

if (r0, . . . , rm) ⊆ (s0, . . . , sn)

then PV(r0,...,rm)(f) ≤ PV(s0,...,sn)(f) ,

NV(r0,...,rm)(f) ≤ NV(s0,...,sn)(f) ,

and TV(r0,...,rm)(f) ≤ TV(s0,...,sn)(f) .

(15)

Let a, b ∈ P with a < b. Consider the interval [a, b] = {x ∈ P | a ≤ x ≤ b}. Let S(a, b) be the set of

stritly inreasing sequenes in P that start in a and end in b:

S(a, b) = {(s0, . . . , sn) | n ∈ N, a = s0 < · · · < sn = b} . (16)

Taking the supremum of variations (13) for all sequenes in S(a, b), one obtains the positive, negative and

total variation of f on [a, b], written PV[a,b](f), NV[a,b](f) and TV[a,b](f) respetively:

PV[a,b](f) = sup{PV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} ,

NV[a,b](f) = sup{NV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} ,

TV[a,b](f) = sup{TV(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)} .

(17)

Note that these three variations an be in�nite; they are thus in the interval [0,+∞]. The identity x =

[x]+ − [x]− gives for any (s0, . . . , sn) ∈ S(a, b):

PV(s0,...,sn)(f)−NV(s0,...,sn)(f) =

n
∑

i=1

(

f(si)− f(si−1)
)

= f(b) − f(a) ,

that is,

PV(s0,...,sn)(f) + f(a) = NV(s0,...,sn)(f) + f(b) . (18)

Taking the supremum over all (s0, . . . , sn) ∈ S(a, b), we get

for a < b : PV[a,b](f) + f(a) = NV[a,b](f) + f(b) . (19)

Now the identity |x| = [x]+ + [x]− gives for any (s0, . . . , sn) ∈ S(a, b):

TV(s0,...,sn)(f) = PV(s0,...,sn)(f) +NV(s0,...,sn)(f) . (20)

Then (18) gives TV(s0,...,sn)(f) = 2NV(s0,...,sn)(f) + f(b) − f(a), so by taking the supremum over all

(s0, . . . , sn) ∈ S(a, b), we get TV[a,b](f) = 2NV[a,b](f) + f(b)− f(a), and by (19) we get:

TV[a,b](f) = PV[a,b](f) +NV[a,b](f) . (21)

NB. In [18℄ we inorretly derived (21) from (20) by taking the suprema over all (s0, . . . , sn) ∈ S(a, b), but a

supremum of sums does not neessarily oinide with the sum of suprema.

By (19), PV[a,b](f) and NV[a,b](f) are either both �nite or both in�nite. We say that f is of bounded

variation on [a, b] (or brie�y, f is BV [a, b]) if TV[a,b](f) is �nite, in other words, PV[a,b](f) and NV[a,b](f)

are both �nite. Then the terms of (19) are �nite, so

for a < b and f BV [a, b] : PV[a,b](f) −NV[a,b](f) = f(b)− f(a) . (22)

The following (Lemma 2 of [18℄) generalises a remark in Setion 3.5 of [6℄:

Lemma 1. Let P be poset, let a, c ∈ P , where a < c but c does not over a, and let f : P → R. Then

PV[a,c](f) = sup
a<b<c

[

PV[a,b](f) + PV[b,c](f)
]

,

NV[a,c](f) = sup
a<b<c

[

NV[a,b](f) +NV[b,c](f)
]

,

TV[a,c](f) = sup
a<b<c

[

TV[a,b](f) + TV[b,c](f)
]

.
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If P is a hain, then for every b ∈ P suh that a < b < c, we have

PV[a,c](f) = PV[a,b](f) + PV[b,c](f) ,

NV[a,c](f) = NV[a,b](f) +NV[b,c](f) ,

TV[a,c](f) = TV[a,b](f) + TV[b,c](f) .

When P is not a hain, the seond statement in the lemma is generally false.

Example 2. Let V = {0, 1, 2}2, and de�ne f : P → R by f(2, 0) = 1, f(0, 2) = −1, and f(x, y) = 0 for

all (x, y) ∈ V \ {(2, 0), (0, 2)}. Only stritly inreasing hains passing through (2, 0) or (0, 2) an have a non-

zero variation. Thus PV[(0,0),(1,1)](f) = NV[(0,0),(1,1)](f) = PV[(1,1),(2,2)](f) = NV[(1,1),(2,2)](f) = 0, while

PV[(0,0),(2,2)](f) = NV[(0,0),(2,2)](f) = 1.

Lemma 1 implies in partiular that PV[a,b](f), NV[a,b](f) and TV[a,b](f) inrease when the interval [a, b]

inreases, in other words when a dereases and b inreases. In the limiting ase where a = b, S(a, a) ontains

the unique sequene a = s0, and then trivially PV[a,a](f) = NV[a,a](f) = TV[a,a](f) = 0. Thus (19,21,22) are

true for a ≤ b, as well as Lemma 1 for a ≤ b ≤ c, inluding in the ase of equality a = b or b = c.

We will say that f is of bounded variation on P (or brie�y, f is BV ) if sup{TV[a,b](f) | a, b ∈ P, a < b} <

∞; in other words, all PV[a,b](f) and NV[a,b](f) (a, b ∈ P , a < b) are all bounded by some real M .

When P is bounded by ⊥,⊤, we will write PV (f), NV (f) and TV (f) for PV[⊥,⊤](f), NV[⊥,⊤](f) and

TV[⊥,⊤](f) respetively. Then f is of bounded variation on P i� TV (f) <∞, that is, both PV (f) and NV (f)

are �nite. If P has �nite height and f is bounded (in partiular, if P is �nite), then f will be of bounded

variation; when one of these two onditions is not satis�ed, f an have unbounded variation:

Example 3. (a) Let P = P(Z), ordered by inlusion, and let f : P → {0, 1} be de�ned by f(X) = 1 if X

is a segment of odd length, and f(X) = 0 otherwise. Here f is bounded, but P has in�nite height. Then f is

not of bounded variation, beause for Yt = {0, . . . , t} (t = 0, 1, 2, 3, . . .), Yt is inreasing in t, and f(Yt) will

endlessly alternate between 1 and 0, so supt∈N PV[Y0,Yt](f) = supt∈NNV[Y0,Yt](f) = ∞.

(b) Let P = {⊥,⊤} ∪ {an | n ∈ N}, with the order relation given by ⊥ < an < ⊤ for all n ∈ N; let

f : P → N be given by f(⊥) = f(⊤) = 0 and f(an) = n for n ∈ N. Here P has �nite height, but f is

unbounded. For n ∈ N we have PV(⊥,an,⊤)(f) = NV(⊥,an,⊤)(f) = n, so PV (f) = NV (f) = ∞

Assume now that P has a least element ⊥. We de�ne the positive, negative and total variation funtions

pv[f ], nv[f ], tv[f ] : P → [0,∞] as follows:

∀ x ∈ P, pv[f ](x) = PV[⊥,x](f) , nv[f ](x) = NV[⊥,x](f)

and tv[f ](x) = TV[⊥,x](f) = PV[⊥,x](f) +NV[⊥,x](f) .

Note that pv[f ](⊥) = nv[f ](⊥) = tv[f ](⊥) = 0. Next, we de�ne fP and fN , the positive and negative

inrements of f , by

∀ x ∈ P,
fP (x) =

[

f(⊥)
]+

+ pv[f ](x) ,

fN (x) =
[

f(⊥)
]−

+ nv[f ](x) .
(23)

We have then the following (see Proposition 4 of [18℄):

Proposition 4. Let P be poset with least element ⊥, and let f : P → R. Then:

1. pv[f ] and nv[f ] are inreasing.

2. For x ∈ P , pv[f ](x) + f(⊥) = nv[f ](x) + f(x); if f is BV [⊥, x], then

f(x) = f(⊥) + pv[f ](x) − nv[f ](x) = fP (x)− fN (x) . (24)

3. f is inreasing i� nv[f ] = 0, i� for all x ∈ P , f(x) = f(⊥) + pv[f ](x).

4. f is dereasing i� pv[f ] = 0, i� for all x ∈ P , f(x) = f(⊥)− nv[f ](x).

5. If f = g − h for g, h : P → R non-negative and inreasing, then for all x ∈ P we have pv[f ](x) ≤

g(x)− g(⊥), nv[f ](x) ≤ h(x)− h(⊥), fP (x) ≤ g(x) and fN (x) ≤ h(x).
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NB. In [18℄, the equation (24) was given under the ondition that f is BV (on P ) instead of now BV[⊥, x],

and the seond �i�� in items 3 and 4 was given under the ondition that f is BV, whih is now removed.

Indeed, the proof only requires that f has bounded variation on the interval [0, x] (not on P ); now for x ∈ P ,

eah of the four equalities nv[f ](x) = 0, f(x) = f(⊥) + pv[f ](x), pv[f ](x) = 0, and f(x) = f(⊥) − nv[f ](x)

given in items 3 and 4 implies that pv[f ](x) and nv[f ](x) annot be both in�nite, and then from (19) we

dedue that pv[f ](x) and nv[f ](x) are both �nite, hene f is BV[⊥, x], whih is su�ient for the proof.

Combining items 1, 2 and 5, we dedue (Corollary 5 of [18℄):

Corollary 5. Let P be poset with least element ⊥, and let f : P → R. Then f is of bounded variation i�

there exist g, h : P → R bounded, non-negative and inreasing, suh that f = g − h, and then the least suh g

and h are fP and fN .

A similar result was given in [8℄ when P is a hain.

The priniple of duality states that for a set P with a partial order relation ≤, the inverse relation ≥

is also a partial order, so every statement has a dual where one exhanges ≤ with ≥, least element ⊥ with

greatest element ⊤, et. Here positive and negative variation are exhanged, that is, PV[a,b](f) orresponds

to NV[b,a](f) in the dual poset. Now, if P has a greatest element ⊤, we obtain the dual positive and negative

variation funtions pv∗[f ], nv∗[f ] : P → [0,∞] given by

∀ x ∈ P, pv∗[f ](x) = NV[x,⊤](f) and nv∗[f ](x) = PV[x,⊤](f) .

They are dereasing, and pv∗[f ](⊤) = nv∗[f ](⊤) = 0. We have then the dual positive and negative inrements

of f ,

∀ x ∈ P,
f∗P (x) =

[

f(⊤)
]+

+ pv∗[f ](x) ,

f∗N (x) =
[

f(⊤)
]−

+ nv∗[f ](x) .
(25)

Now, for f BV we have the dual of (24):

f(x) = f(⊤) + pv∗[f ](x) − nv∗[f ](x) = f∗P (x)− f∗N (x) .

The dual of Corollary 5 is: let P have greatest element ⊤; then f : P → R is BV i� f is the di�erene of two

bounded, non-negative and dereasing funtions P → R. We illustrate suh a deomposition in Figure 5.

In fat, given two bounded non-negative funtions g, h : P → R, for some M > 0 we have 0 ≤ g, h ≤ M ,

then the two funtions g′ = M−h and h′ =M−g are bounded and non-negative, they satisfy 0 ≤ g′, h′ ≤ M ;

moreover, g′−h′ = g−h; now g and h are inreasing i� g′ and h′ are dereasing. Thus we an onsider either

deomposition f = g − h or f = g′ − h′.

RI

RI

f = g − h

f

g

−h

Fig. 5: Left: a BV funtion f . We have f = g−h for g = f∗
P

and h = f∗
N
, f. (25). Right: we show g and −h. When f de-

reases, g dereases while h remains onstant; when f inreases, −h inreases (so h dereases) while g remains onstant.
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Note that when P is bounded by ⊥,⊤, every inreasing or dereasing funtion f is bounded: for f

inreasing, f(⊥) ≤ f(x) ≤ f(⊤), while for f dereasing, f(⊤) ≤ f(x) ≤ f(⊥).

Let us brie�y mention an appliation of bounded variation to signal proessing. Rohwer and Wild [13℄

onsidered funtions Z → R and �at morphologial operators on suh funtions, in partiular those built from

the losing Un and opening Ln by a segment of length n+ 1 (for n > 0); they showed that for any funtion

f : Z → R and any operator ψ obtained by omposing in any order some Un and Ln for n > 0, we have

TV (f) = TV
(

ψ(f)
)

+ TV
(

f − ψ(f)
)

.

3 Funtion summation in numerial and multivalued posets

Here we summarise Setion 4 of [18℄, but we also add some new material: �rst, ounterexamples (Figure 7 and

Example 12), then an important property, Proposition 13, and �nally, some tehnial results (Proposition 14

and Lemma 15). The most important results of this setion are Theorem 8, Theorem 10, Corollary 11 and

Proposition 13.

We will de�ne a summation of real-valued funtions de�ned on a poset of real numbers or vetors with

real oordinates. This leads to a sum as in (7) when the poset is a disrete hain in R, and to an integral

as in (8) when the poset is an interval in R. When the poset is a produt of hains, the summation will be

made along eah oordinate of the vetors. Our results will be used in our new de�nition of �at morphologial

operators and the analysis of their properties.

We assume that the poset P is a subset of R
m

(m ≥ 1), with omponentwise ordering, f. (1). The

standard ase (assumed in most studies) is the one where we hoose in R
m

(resp., in Z
m
) a bottom value ⊥

and a top value ⊤, with ⊥ < ⊤, and take for P the interval [⊥,⊤] (resp., the disrete interval [⊥,⊤] ∩ Z
m
).

Choosing ⊥ = 0 = (0, . . . , 0) makes formulas simpler, but we will not restrit ourselves to that hoie. Then

we onsider funtions P → R.

In our theory, a entral role is played by bounded, non-negative and dereasing funtions. Note that if P

has a least element ⊥, then a dereasing funtion f : P → R is bounded by f(⊥).

Consider a funtion f : P → R that is bounded, non-negative and dereasing. For a stritly inreasing

sequene (s0, . . . , sn) in P , de�ne the summation

S(s0,...,sn)(f) =

n
∑

i=1

f(si)(si − si−1) . (26)

We illustrate in Figure 6 this onstrution for P being an interval in R.
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s5sss1 2 3 4s

f

RI

P

Fig. 6: The funtion f is bounded, non-negative and dereasing. The hathed area represents S(s0,...,s6)
(f) for a stritly

inreasing sequene (s0, . . . , s6) with s0 = ⊥ and s6 = ⊤.
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Then, as we had for variations, see (14), onatenating stritly inreasing sequenes adds their summations,

in other words, a stritly inreasing sequene (s0, . . . , sm+n) (where m,n ≥ 0) satis�es:

S(s0,...,sm+n)(f) = S(s0,...,sm)(f) + S(sm,...,sm+n)(f) . (27)

And as we had for variations, see (15), taking a sub-sequene of a stritly inreasing sequene leads to a

smaller summation (see Lemma 9 of [18℄):

if (r0, . . . , rm) ⊆ (s0, . . . , sn)

then S(r0,...,rm)(f) ≤ S(s0,...,sn)(f) .
(28)

Reall from (16) the set S(a, b) of stritly inreasing sequenes in P starting in a and ending in b (where

a, b ∈ P and a < b). Again, let f : P → R be bounded, non-negative and dereasing. In the de�nition (26) of

S(s0,...,sn)(f), we assoiate to the interval [si−1, si] the term f(si)(si − si−1); when P is a real interval, this

term is an approximation from below of the integral of f on that interval, so S(s0,...,sn)(f) approximates the

integral of f from below, see Figure 6. Thus, for a, b ∈ P with a < b, we de�ne the summation of f over the

interval [a, b] as the supremum of summations over all sequenes in S(a, b):

S[a,b](f) = sup
{

S(s0,...,sn)(f) | (s0, . . . , sn) ∈ S(a, b)
}

. (29)

Note that this supremum sup is taken in R
m

(or Z
m
), in other words, by taking omponentwise the numerial

supremum. That is why we write sup instead of

∨

for the supremum. It is easily seen that this summation

is non-negative and bounded: given M > 0 suh that all x ∈ P satisfy 0 ≤ f(x) ≤ M , we dedue from (26)

that 0 ≤ S[a,b](f) ≤M(b− a). Similarly, the summation is inreasing on the funtion f : if f(x) ≤ g(x) for all

x ∈ P , then S[a,b](f) ≤ S[a,b](g).

For a = b, S(a, a) = {a} and S[a,a](f) = 0. When P is bounded by ⊥,⊤, we will write S(f) for S[⊥,⊤](f),

the summation of f over P . The following result (Proposition 10 of [18℄) is the analogue of Lemma 1 for

summation instead of variation:

Proposition 6. Let f : P → R be bounded, non-negative and dereasing, and let a, c ∈ P , where a < c but c

does not over a. Then

S[a,c](f) = sup
a<b<c

[

S[a,b](f) + S[b,c](f)
]

.

If P is a hain, then for every b ∈ P suh that a < b < c, we have

S[a,c](f) = S[a,b](f) + S[b,c](f) .

The seond equality is spei� to hains, for instane it does not hold in R
m
and Z

m
form > 1, see Corollary 11

and the example in R
3
following it.

3.1 Additive summation

In order to extend summation to funtions that are not neessarily non-negative and dereasing, we will

onsider the summation of a linear ombination of bounded, non-negative and dereasing funtions. This will

lead to the ondition that S is additive on P . We �rst have the following general property (Lemma 11 of [18℄):

Lemma 7. Let f, g : P → R be bounded, non-negative and dereasing, let a, b ∈ P with a < b, and take a

salar λ ≥ 0. Then:

1. λf is bounded, non-negative and dereasing and S[a,b](λf) = λS[a,b](f).

2. f + g is bounded, non-negative and dereasing and S[a,b](f + g) ≤ S[a,b](f) + S[a,b](g).

We say that S is additive on P if for all bounded, non-negative and dereasing funtions f, g : P → R, and

all a, b ∈ P with a < b, we have S[a,b](f + g) = S[a,b](f) +S[a,b](g). This property is fundamental, as it allows

to extend the de�nition of the summation S[a,b] to funtions of bounded variation.



14 Christian RONSE, General theory of non-inreasing �at morphologial operators

Indeed, we saw after Corollary 5 that, assuming that P is bounded, a funtion f : P → R is of bounded

variation i� there are two bounded, non-negative and dereasing funtions g, h : P → R suh that f = g − h.

We an then de�ne the summation of f as S[a,b](f) = S[a,b](g)−S[a,b](h). But this de�nition should not depend

on the hoie of g and h. Suppose two deompositions f = g1−h1 = g2−h2; then we have g1+h2 = g2+h1,

and the additivity gives

S[a,b](g1) + S[a,b](h2) = S[a,b](g1 + h2) = S[a,b](g2 + h1) = S[a,b](g2) + S[a,b](h1) ,

hene S[a,b](g1) − S[a,b](h1) = S[a,b](g2) − S[a,b](h2). Then this extension of S[a,b] to funtions of bounded

variation will be a linear operator (Theorem 12 of [18℄):

Theorem 8. Let P be a bounded poset. Suppose that S is additive on P . For any f : P → R of bounded

variation, given a deomposition f = g − h for g, h : P → R bounded, non-negative and dereasing, de�ne

S[a,b](f) = S[a,b](g)−S[a,b](h). Then S[a,b](f) does not depend on the hoie of g and h in the deomposition,

and S[a,b] is a linear operator on the module of funtions with bounded variation: for f1, f2 : P → R of bounded

variation and λ1, λ2 ∈ R,

S[a,b](λ1f1 + λ2f2) = λ1S[a,b](f1) + λ2S[a,b](f2) .

A onsequene of this result is that summation is inreasing on funtions of bounded variation. Let f and g

be two BV funtions suh that f ≥ g. Then f = g + h for some h ≥ 0, and by de�nition (26,29) we have

S[a,b](h) ≥ 0, so

S[a,b](f) = S[a,b](g + h) = S[a,b](g) + S[a,b](h) ≥ S[a,b](g) .

In view of Theorem 8 and Corollary 5, we will require the poset P to be bounded, and the summation S

to be additive on P . We will desribe later (see Figure 7 and Example 12) a family of posets inluded in Z
2
,

for whih the summation is not additive. However, we have shown that summation is additive for a hain (a

totally ordered set) or a diret produt of hains, for instane for the usual posets of real values or real-valued

vetors in an interval. We onsider �rst a hain (see Proposition 13 and Corollary 14 of [18℄):

Proposition 9. If P is a bounded hain, then S is additive on P . Given f : P → R of bounded variation:

1. If P is a �nite hain, P = {t0, . . . , tn} with t0 < · · · < tn, then for 0 ≤ u < v ≤ n, S[tu,tv](f) =
∑v
i=u+1 f(ti)(ti − ti−1).

2. If P is a losed real interval, P = [⊥,⊤] ⊂ R, then for a, b ∈ P with a < b, S[a,b](f) =
∫ b

a
f(t) dt.

In the ase of real funtions, our de�nition of the summation of a funtion is very similar to that of the

Riemann integral. Now a real funtion is Riemann integrable i� it is ontinuous almost everywhere, that is,

the set of its disontinuities has Lebesgue measure zero. As a dereasing real funtion is ontinuous almost

everywhere (see Setion 3.5 of [6℄), it follows that any real funtion of bounded variation is ontinuous almost

everywhere, hene Riemann integrable. Note that the sum in item 1 an be onsidered as a disrete analogue

of the integral in item 2.

We will now onsider the ase where P is a produt of hains, and we will see below that S does not

resemble the lassial multi-dimensional real integral, nor the omplex integral.

Let P = P1 × · · · × Pm, the artesian produt of posets P1, . . . , Pm, with omponentwise ordering,

see (1). If eah Pi is bounded by ⊥i,⊤i, then P will be bounded by ⊥,⊤, where ⊥ = (⊥1, . . . ,⊥m) and

⊤ = (⊤1, . . . ,⊤m). For eah i = 1, . . . ,m we de�ne the i-th projetion

πi : P1 × · · · × Pm → Pi : (x1, . . . , xm) 7→ xi . (30)

Sine eah Pi is inluded in R
k
for some k ≥ 1, we an extend this de�nition of the projetion πi to linear

ombinations of elements of P , hene to the summation of a funtion on a hain,

πi
(

S(s0,...,sn)(f)
)

=

n
∑

j=1

f(sj)
(

πi(sj)− πi(sj−1)
)

,
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f. (26), and �nally to the summation over an interval, f. (29). Given a = (a1, . . . , am) ∈ P , de�ne the i-th

embedding through a:

ηai : Pi → P1 × · · · × Pm : x 7→ (a1, . . . , ai−1, x, ai+1, . . . , am) , (31)

in other words πi(η
a
i (x)) = x and πj(η

a
i (x)) = aj for j 6= i. Now for f : P → R, we write fηai rather than

f ◦ ηai for their omposition, in other words:

fηai : Pi → R : x 7→ f(ηai (x)) = f(a1, . . . , ai−1, x, ai+1, . . . , am) . (32)

We obtain then the following important result (see Proposition 15 and Corollary 16 of [18℄):

Theorem 10. Let P = P1 ×· · ·×Pm, where eah Pi is a poset (i = 1, . . . ,m), with the omponentwise order

on P . Let f : P → R be bounded, non-negative and dereasing, and let a = (a1, . . . , am), b = (b1, . . . , bm) ∈ P

with a < b. Then for eah i = 1, . . . ,m, πi(S[a,b](f)) = S[ai,bi](fη
a
i ), with fη

a
i given by (32).

Moreover, if eah Pi is bounded and S is additive on eah Pi (i = 1, . . . ,m), then S is additive on P , and

the identity πi(S[a,b](f)) = S[ai,bi](fη
a
i ) holds for any f : P → R of bounded variation.

Geometrially speaking, this result means that eah projetion πi(S[a,b](f)) is obtained by summing f along

the line segment parallel to the i-th axis of P , joining a = (a1, . . . , am) to (a1, . . . , ai−1, bi, ai+1, . . . , am). In

partiular S[a,b](f) is ompletely determined by the restrition of f to the m lines through a parallel to the

axes.

We illustrate this result with two very simple examples. First, let P = {0, 1}4, a = (0, 0, 0, 1) and

b = (0, 1, 1, 1); then, for any f : P → R, S[a,b](f) =
(

0, f(0, 1, 0, 1), f(0, 0, 1, 1), 0
)

. Seond, let P = {0, 1, 2}5,

a = (0, 0, 0, 1, 1) and b = (0, 1, 2, 2, 1); then, for any f : P → R, S[a,b](f) = (z1, z2, z3, z4, z5), where z1 = z5 =

0, z2 = f(0, 1, 0, 1, 1), z3 = f(0, 0, 1, 1, 1) + f(0, 0, 2, 1, 1), and z4 = f(0, 0, 0, 2, 1).

More generally, if eah Pi is a hain, from Proposition 9 we derive the following (Corollary 17 of [18℄):

Corollary 11. Let P = P1×· · ·×Pm, where eah Pi is a bounded hain (i = 1, . . . , m), with the omponent-

wise order on P . Then S is additive on P . Let f : P → R be of bounded variation, and take a = (a1, . . . , am),

b = (b1, . . . , bm) ∈ P with a < b, and set S[a,b](f) = (σ1, . . . , σm), that is, σi = πi(S[a,b](f)) for i = 1, . . . ,m.

Then:

1. If Pi is a �nite hain, Pi = {t0, . . . , tn} with t0 < · · · < tn, then for ai = tu and bi = tv (0 ≤ u ≤ v ≤ n),

σi =
∑v
h=u+1 fη

a
i (th)(th − th−1).

2. If Pi is a real interval, P = [⊥i,⊤i] ⊂ R, then σi =
∫ bi
ai
fηai (t) dt.

Let us illustrate this in the ase where m = 3. Let P = R
3
, with omponentwise ordering. Let a = (a1, a2, a3)

and b = (b1, b2, b3) two points of P , with a1 < b1, a2 < b2 and a3 < b3. Then for a BV funtion f ,

S[a,b](f) =
(

b1
∫

a1

f(t, a2, a3) dt ,

b2
∫

a2

f(a1, t, a3) dt ,

b3
∫

a3

f(a1, a2, t) dt
)

.

For a < b < c we will generally have S[a,c](f) 6= S[a,b](f) + S[b,c](f), beause

π1
(

S[a,c](f)
)

=

c1
∫

a1

f(t, a2, a3) dt =

b1
∫

a1

f(t, a2, a3) dt+

c1
∫

b1

f(t, a2, a3) dt ,

while

π1
(

S[a,b](f) + S[b,c](f)
)

=

b1
∫

a1

f(t, a2, a3) dt+

c1
∫

b1

f(t, b2, b3) dt ,
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and similarly for π2 and π3. We see thus that in Proposition 6, the seond equality is spei� to hains. We

have a similar result for P = Z
3
, here

S[a,b](f) =
(

b1
∑

t=a1+1

f(t, a2, a3) ,

b2
∑

t=a2+1

f(a1, t, a3) ,

b3
∑

t=a3+1

f(a1, a2, t)
)

.

We give now a family of bounded posets inluded in Z
2
, with omponentwise ordering, on whih S is not

additive; it inludes several non-distributive latties, whih are not sublatties of Z
2
.

(2,2)

(2,0) (0,2)

(0,0)

(1,1)

(2,1) (1,2)

(0,2)

(2,2)

(2,0)
(1,1)

(0,0)

(a) (b) (c) (d)

1

11 0 0 0

2

2

f g

Fig. 7: (a) and (b): the two latties P0 and P1 of Example 12. () and (d): the values of f and g respetively, on the least

element (0, 0) and its 3 overs (2, 0), (1, 1) and (0, 2); f and g have value 0 on all other elements of the lattie.

Example 12. Let P be a �nite poset inluded in Z
2
, with omponentwise ordering, f. (1), with least element

⊥ = (0, 0) and greatest element ⊤ = (2, 2), suh that the elements of P overing (0, 0) are (2, 0), (1, 1) and

(0, 2), all other elements of P being above one of these three. Note that that the in�mum in P of (1, 1) and

(0, 2) is (0, 0), while it is (0, 1) in Z
2
. Thus, if P is a lattie, then its in�mum does not oinide with the

numerial in�mum in Z
2
, so P is not a sublattie of Z

2
. We give two examples of suh latties:

� P0 = {⊥ = (0, 0), (2, 0), (1, 1), (0, 2), (2, 2) = ⊤}, see Figure 7 (a). Here P0 is a lattie isomorphi to

the �diamond� lattie (see M5 in Chapter 1 of [1℄ and M3 in Chapter 2 of [7℄); it is modular but not

distributive.

� P1 = {⊥ = (0, 0), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2) = ⊤}, see Figure 7 (b). Here P1 is the subset of

Z
2
generated by all non-empty suprema of (0, 0), (2, 0), (1, 1) and (0, 2), in other words, the sup-losed

subset of {0, 1, 2}2 generated by them; it is a lattie, whih is not modular, beause it has the sublattie

{(0, 0), (2, 0), (0, 2), (1, 2), (2, 2)} isomorphi to the �pentagon� lattie (see N5 in Chapter 1 of [1℄ and in

Chapter 2 of [7℄).

For any suh poset P , de�ne the two bounded, non-negative and dereasing funtions f, g : P → R as follows,

see Figure 7 (,d): for any x ∈ P ,

f(x) =

{

1 if x = (0, 0), (2, 0), or (0, 2) ,

0 otherwise ;

g(x) =

{

2 if x = (0, 0) or (1, 1) ,

0 otherwise .

For a stritly inreasing hain starting in ⊥ = (0, 0) and ending in ⊤ = (2, 2), the summation of f on this

hain aording to (26) either is equal to 0, or has an element x > (0, 0) with f(x) > 0, namely x = (2, 0) or

(0, 2), and it is then the unique non-zero ontribution to the sum. Thus

S(f) = sup
{

f(2, 0) · (2, 0), f(0, 2) · (0, 2)
}

= sup
{

1 · (2, 0), 1 · (0, 2)
}

= (2, 2) .

(Here f(2, 0) and f(0, 2) are salars while (2, 0) and (0, 2) are vetors, and the dot designates the salar

multipliation of a salar by a vetor.) Similarly, for the summation of g, a non-zero value on x > (0, 0) arises

only for x = (1, 1), so

S(g) = g(1, 1) · (1, 1) = 2 · (1, 1) = (2, 2) .



Christian RONSE, General theory of non-inreasing �at morphologial operators 17

For the summation of f + g, a non-zero value on x > (0, 0) arises only for x = (2, 0), (1, 1), or (0, 2), so

S(f + g) = sup
{(

f(x) + g(x)
)

· x
∣

∣ x = (2, 0), (1, 1), (0, 2)
}

= sup
{

1 · (2, 0), 2 · (1, 1), 1 · (0, 2)
}

= (2, 2) .

Therefore S(f + g) = (2, 2) < (4, 4) = S(f) + S(g), and S is not additive on P .

Given a produt V of bounded hains, S is additive on V , but S will not neessarily be additive on a sup-losed

subset of V , as we saw with the above example P1. However, S will be additive on an inf-losed subset of V .

Reall from Subsetion 1.3 the two orresponding notions of a losure map and a losure range. When P is a

omplete lattie (for instane, a produt of omplete hains), a losure range is an inf-losed set.

Proposition 13. Let P be a poset bounded by ⊥,⊤, let M be a losure range on P suh that ⊥ ∈ M , and

let ϕ be the orresponding losure map on P . For any f : M → R, de�ne fϕ : P → R by fϕ(x) = f(ϕ(x)).

Then f is the restrition of fϕ to M , and for any a, b ∈M suh that a < b we have PV[a,b](fϕ) = PV[a,b](f)

and NV[a,b](fϕ) = NV[a,b](f). In partiular, if f is of bounded variation, then fϕ is of bounded variation.

If S is additive on P , then it is additive on M , and for f : M → R of bounded variation, S[a,b](f) =

S[a,b](fϕ).

Proof. Sine M is a losure range, ⊤ ∈ M . Let f : M → R. For x ∈ M , ϕ(x) = x, so fϕ(x) = f(ϕ(x)) =

f(x), hene f is the restrition of fϕ to M . Let a, b ∈ M suh that a < b. We onsider the set S(a, b) of

stritly inreasing sequenes in P that start in a and end in b, that is, (s0, . . . , sn) with a = s0 < · · · <

sn = b; write S(a, b)M for its restrition to M , that is, sequenes with s0, . . . , sn ∈ M . For (s0, . . . , sn) ∈

S(a, b)M , we have fϕ(si) = f(si) for i = 0, . . . , n, so (13) gives PV(s0,...,sn)(f) = PV(s0,...,sn)(fϕ) and

NV(s0,...,sn)(f) = NV(s0,...,sn)(fϕ). As S(a, b)M ⊆ S(a, b), the supremum on sequenes in S(a, b)M is smaller

than the one on sequenes in S(a, b), so (17) gives PV[a,b](f) ≤ PV[a,b](fϕ) and NV[a,b](f) ≤ NV[a,b](fϕ). Now

for (s0, . . . , sn) ∈ S(a, b), we have ϕ(s0), . . . , ϕ(sn) ∈ M and f(ϕ(si)) = fϕ(si) for i = 0, . . . , n. Whenever

ϕ(si) = ϕ(si−1), we have f(ϕ(si))− f(ϕ(si−1)) = 0 and f(ϕ(si+1))− f(ϕ(si)) = f(ϕ(si+1))− f(ϕ(si−1)), so

we an eliminate ϕ(si) from the sequene without hanging the results in the formulas of (13). Thus we obtain

from (ϕ(s0), . . . , ϕ(sn)) a redued sequene (t0, . . . , tm) ∈ S(a, b)M with PV(s0,...,sn)(fϕ) = PV(t0,...,tm)(f)

and NV(s0,...,sn)(fϕ) = NV(t0,...,tm)(f). As eah (s0, . . . , sn) ∈ S(a, b) gives suh a (t0, . . . , tm) ∈ S(a, b)M ,

(17) gives PV(s0,...,sn)(fϕ) ≤ PV[a,b](f), hene PV[a,b](fϕ) ≤ PV[a,b](f), and in the same way NV[a,b](fϕ) ≤

NV[a,b](f). The equality follows from the double inequality.

For the summation, we suppose �rst that f is bounded, non-negative and dereasing. For x, y ∈ P with

x ≤ y, we have ϕ(x) ≤ ϕ(y), hene fϕ(x) = f(ϕ(x)) ≥ f(ϕ(y)) = fϕ(y), so fϕ is dereasing. As fϕ takes

values of f , it is bounded and non-negative.

For (s0, . . . , sn) ∈ S(a, b)M , we have (s0, . . . , sn) ∈ S(a, b), and for eah si (i = 0, . . . , n), we have

fϕ(si) = f(si); hene S(s0,...,sn)(f) = S(s0,...,sn)(fϕ). As S(a, b)M ⊆ S(a, b), we dedue from (29) that

S[a,b](f) ≤ S[a,b](fϕ). Consider now a sequene (s0, . . . , sn) ∈ S(a, b), but not in S(a, b)M . Let k be the

greatest i suh that si /∈ M ; as s0 = a and sn = b, both in M , we have 0 < k < n; sine sk+1 ∈ M , we have

sk < ϕ(sk) ≤ sk+1. First ase: if ϕ(sk) = sk+1, then fϕ(sk) = f(ϕ(sk)) = f(sk+1) = fϕ(sk+1), so

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) =

fϕ(sk+1)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) = fϕ(sk+1)(sk+1 − sk−1) .

Then (26) gives S(s0,...,sn)(fϕ) = S(s0,...,sk−1,sk+1,...,sn)(fϕ): we remove sk from the sequene, keeping the

summation equal. Seond ase: if ϕ(sk) 6= sk+1, then sk < ϕ(sk) < sk+1 and as f is dereasing, fϕ(ϕ(sk)) =

fϕ(sk) = f(ϕ(sk)) ≥ f(sk+1) = fϕ(sk+1), so

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(sk+1 − sk) =

fϕ(sk)(sk − sk−1) + fϕ(sk+1)(ϕ(sk)− sk) + fϕ(sk+1)(sk+1 − ϕ(sk)) ≤

fϕ(ϕ(sk))(sk − sk−1) + fϕ(ϕ(sk))(ϕ(sk)− sk) + fϕ(sk+1)(sk+1 − ϕ(sk)) =

fϕ(ϕ(sk))(ϕ(sk)− sk−1) + fϕ(sk+1)(sk+1 − ϕ(sk)) .
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Then (26) gives S(s0,...,sn)(fϕ) ≤ S(s0,...,sk−1,ϕ(sk),sk+1,...,sn)(fϕ): in the sequene, we replae sk by ϕ(sk),

whih inreases the summation. In both ases we have redued the number of terms of the sequene whih

do not belong to M , with the summation getting greater or equal. We repeat this modi�ation until we get

a redued sequene (t0, . . . , tm) ∈ S(a, b)M suh that S(s0,...,sn)(fϕ) ≤ S(t0,...,tm)(fϕ) = S(t0,...,tm)(f). We

dedue then from (29) that S(s0,...,sn)(fϕ) ≤ S[a,b](f), hene S[a,b](fϕ) ≤ S[a,b](f). From both inequalities,

the equality S[a,b](fϕ) = S[a,b](f) follows.

Now let f, g : M → R be both bounded, non-negative and dereasing; then f + g is bounded, non-

negative and dereasing. For x ∈ P , (f + g)ϕ(x) = (f + g)(ϕ(x)) = f(ϕ(x)) + g(ϕ(x)) = fϕ(x) + gϕ(x), thus

(f + g)ϕ = fϕ + gϕ. By the above, we have S[a,b](f) = S[a,b](fϕ), S[a,b](g) = S[a,b](gϕ), and S[a,b](f + g) =

S[a,b]((f + g)ϕ) = S[a,b](fϕ + gϕ). If S is additive on P , then S[a,b](fϕ + gϕ) = S[a,b](fϕ) + S[a,b](gϕ)

(beause fϕ and gϕ are bounded, non-negative and dereasing). We get then S[a,b](f +g) = S[a,b]((f+g)ϕ) =

S[a,b](fϕ + gϕ) = S[a,b](fϕ) + S[a,b](gϕ) = S[a,b](f) + S[a,b](g), hene S is additive on M .

Let now f : M → R be of bounded variation. By the dual form of Corollary 5, there are two bounded,

non-negative and dereasing funtions g, h : M → R suh that f = g − h. By the above, gϕ and hϕ are

bounded, non-negative and dereasing, S[a,b](gϕ) = S[a,b](g) and S[a,b](hϕ) = S[a,b](h). Now for x ∈ P ,

fϕ(x) = f(ϕ(x)) = (g − h)(ϕ(x)) = g(ϕ(x)) − h(ϕ(x)) = gϕ(x)− hϕ(x), so fϕ = gϕ − hϕ; by the dual form

of Corollary 5, fϕ is of bounded variation (but this follows also from the equality of the positive and negative

variations, see above). By de�nition, S[a,b](f) = S[a,b](g) − S[a,b](h) and S[a,b](fϕ) = S[a,b](gϕ) − S[a,b](hϕ);

as S[a,b](gϕ) = S[a,b](g) and S[a,b](hϕ) = S[a,b](h), we dedue that S[a,b](fϕ) = S[a,b](f).

A partiular ase arises when P is a omplete lattie and M is both sup-losed and inf-losed, in other words

it is a omplete sublattie of P . This implies that the summation is additive on any omplete sublattie of a

losed interval in R
m

or Z
m
.

We illustrate this result with a simple example. Let ⊥,⊤ ∈ R with ⊥ < ⊤, and let P = [⊥,⊤], ordered

numerially. Let M be a �nite hain in P , bounded by ⊥,⊤, M = {⊥ = t0, . . . , tk = ⊤}; then M is a losure

range on P , the orresponding losure map ϕ is de�ned by ϕ(t0) = t0 and ϕ(x) = ti for ti−1 < x ≤ ti,

i = 1, . . . , k. For a map f : M → R, fϕ will be the step funtion with fϕ(x) = f(ti) for ti−1 < x ≤ ti,

i = 1, . . . , k. Then
∫ ⊤
⊥
fϕ(x) dx = S(fϕ) = S(f) =

∑k
i=1 f(ti)(ti − ti−1). The integral of a step funtion

redues to the sum of produts of the width and height of steps.

The above result will be useful in our study of �at operators, when we will onsider the restrition of

images values to a omplete sublattie of the original lattie of values: then the de�nitions of suh an operator

for both latties will oinide.

3.2 Further properties

We end with two tehnial results that will be used in our analysis of the properties of �at operators.

The following proposition (impliit in [18℄) will imply that for an inreasing operator on binary images,

given image intensities forming a omplete sublattie of the interval [⊥,⊤] in R
m

or Z
m
, �at extension by

threshold summation leads to the same result as �at extension by threshold staking.

Proposition 14. Let P be bounded by ⊥,⊤. For any dereasing funtion f : P → {0, 1},

⊥+ S(f) = sup{x ∈ P | f(x) = 1} , (33)

where we set sup ∅ = ⊥ on the right side of the equation.

Proof. Let (s0, . . . , sn) ∈ S(⊥,⊤). If f(si) = 0 for eah i = 1, . . . , n, then S(s0,...,sn)(f) = 0. If there is some

i = 1, . . . , n suh that f(si) = 1, let u be the greatest suh i; as f is dereasing, f(si) = 1 for i ≤ u and

f(si) = 0 for i > u, so we get S(s0,...,sn)(f) =
∑u
i=1(si − si−1) = su − s0 = su −⊥, where f(su) = 1.

If f(x) = 0 for all x ∈ P , then sup{x ∈ P | f(x) = 1} = sup ∅ = ⊥; now for every (s0, . . . , sn) ∈ S(⊥,⊤),

S(s0,...,sn)(f) = 0, hene S(f) = 0. Therefore (33) holds in this ase.
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If f(x) = 1 for all x ∈ P , then sup{x ∈ P | f(x) = 1} = ⊤; now for every (s0, . . . , sn) ∈ S(⊥,⊤),

S(s0,...,sn)(f) = sn −⊥ = ⊤−⊥, hene S(f) = ⊤−⊥. Therefore (33) holds in this ase.

Suppose �nally that there are x, y ∈ P with f(x) = 0 and f(y) = 1, in other words f(⊥) = 1 and

f(⊤) = 0. For (s0, . . . , sn) ∈ S(⊥,⊤), we have S(s0,...,sn)(f) = su −⊥, where u is the greatest i ∈ {1, . . . , n}

with f(si) = 1. Conversely, take any x ∈ P with f(x) = 1; if x = ⊥, then (⊥,⊤) ∈ S(⊥,⊤) and S(⊥,⊤)(f) =

0 = x − ⊥; on the other hand if x 6= ⊥, then ⊥ < x < ⊤, (⊥, x,⊤) ∈ S(⊥,⊤) and S(⊥,x,⊤)(f) = x − ⊥.

Therefore the set of all S(s0,...,sn)(f) for (s0, . . . , sn) ∈ S(⊥,⊤) oinides with the set of all x−⊥ for x ∈ P

with f(x) = 1. Taking the supremum of both sets, we get

S(f) = sup{x−⊥ | x ∈ P, f(x) = 1} = sup{x ∈ P | f(x) = 1} − ⊥ ,

from whih we obtain (33).

Finally, we will need the following slight generalisation of Lemma 1 and Proposition 6:

Lemma 15. Let the poset P have an element b whih is omparable to every element of P : for all x ∈ P ,

x = b or x < b or x > b. Then for any a, c ∈ P suh that a < b < c:

� Every funtion f : P → R satis�es PV[a,c](f) = PV[a,b](f) + PV[b,c](f), and similarly for NV and TV .

� Every bounded, non-negative and dereasing funtion f : P → R satis�es S[a,c](f) = S[a,b](f) + S[b,c](f);

if P is bounded, every BV funtion f : P → R satis�es that equality.

The proof uses the same argument as those of Lemma 1 and Proposition 6 given in Lemma 2 and Proposition 10

of [18℄: given a stritly inreasing sequene in S(a, c), inserting b inside it (if b does not belong to it) gives

a stritly inreasing sequene that is larger, and this an only inrease the funtion variation by (15) and

summation by (28); then applying (14) for the variation leads to the inequality PV[a,c](f) ≤ PV[a,b](f) +

PV[b,c](f), and similarly forNV and TV , while (27) for the summation will give S[a,c](f) ≤ S[a,b](f)+S[b,c](f)

(for f bounded, non-negative and dereasing). The equality follows then from Lemma 1 and Proposition 6.

For f BV, we have f = g − h for g, h bounded, non-negative and dereasing, with S[a,c](g) = S[a,b](g) +

S[b,c](g) and S[a,c](h) = S[a,b](h) + S[b,c](h), so

S[a,c](f) = S[a,c](g)− S[a,c](h) =
(

S[a,b](g) + S[b,c](g)
)

−
(

S[a,b](h) + S[b,c](h)
)

=
(

S[a,b](g)− S[a,b](h)
)

+
(

S[b,c](g)− S[b,c](h)
)

= S[a,b](f) + S[b,c](f) .

4 Deomposition of integer-valued funtions

We will now onsider the deomposition of an integer-valued funtion of bounded variation into a sum and

di�erene of inreasing binary funtions. In other words, for f : P → Z of bounded variation, we will obtain

a deomposition f =
∑n
i=1 λifi, where for eah i = 1, . . . , n, fi is an inreasing funtion P → {0, 1} and

λi = ±1. Morever, when f is P → {0, 1}, we have f1 > · · · > fn and λi = (−1)i−1
, we get an alternating

sum and di�erene of a dereasing sequene of inreasing binary funtions, f. (10).

We will use suh a deomposition to ompute the �at extension of a non-inreasing operator on binary im-

ages: a linear ombination of inreasing operators on binary images will extend to the same linear ombination

of their �at extensions. This will be possible when the operator is of uniform bounded variation.

We start by deomposing a funtion P → {0, . . . , n} (where n > 0) into a sum of binary funtions, using

the method of threshold summation of [5, 24℄, as in (9). For f : P → N and t ∈ N, let ξt(f) = χXt(f) be the

harateristi funtion (6) of the threshold set (2) Xt(f):

ξt(f) : P → {0, 1} : x 7→

{

1 if f(x) ≥ t ,

0 if f(x) < t .
(34)

The following was obtained in Lemma 6 of [18℄ (exept the �if� part of the last sentene, whih is straightfor-

ward):
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Lemma 16. Let P be poset, let f : P → {0, . . . , n} (n ∈ N), and let f1, . . . , fN : P → {0, 1}. Then the

following two statements are equivalent:

1. f1 ≥ · · · ≥ fN and f =
∑n
i=1 fi.

2. fi = ξi(f) for i = 1, . . . , n.

Furthermore, f is inreasing if and only if ξi(f) is inreasing for eah i = 1, . . . , n.

Let the poset P have least element ⊥. Reall from (23) the positive inrement fP and negative inrement fN

of a funtion f :

∀ x ∈ P,
fP (x) =

[

f(⊥)
]+

+ pv[f ](x) =
[

f(⊥)
]+

+ PV[⊥,x](f) ,

fN (x) =
[

f(⊥)
]−

+ nv[f ](x) =
[

f(⊥)
]−

+NV[⊥,x](f) .

Combining Proposition 4 with Lemma 16, we get the following:

Proposition 17. Let P be poset with least element ⊥, and let f : P → Z be of bounded variation. Let

m = maxx∈P fP (x) and n = maxx∈P fN (x). Then there are m+n inreasing funtions g1, . . . , gm, h1, . . . , hn :

P → {0, 1} suh that g1 ≥ · · · ≥ gm, h1 ≥ · · · ≥ hn and f =
∑m
i=1 gi −

∑n
j=1 hj .

Proof. Here fP and fN are bounded funtions P → N, hene they reah a maximum, respetively m and

n, both in N. By Proposition 4, fP and fN are inreasing and f = fP − fN , f. (24). Taking gi = ξi(fP )

(i = 1, . . . ,m) and hj = ξj(fN ) (j = 1, . . . , n), the result follows by Lemma 16.

Let us now onsider binary funtions. For a funtion f : P → {0, 1}, we have f(⊥) ≥ 0, so
[

f(⊥)
]+

= f(⊥)

and

[

f(⊥)
]−

= 0. Thus (23) beomes here:

and
fP = f(⊥) + pv[f ]

fN = nv[f ] .
(35)

De�ne

fT = fP + fN = f(⊥) + tv[f ] . (36)

For f : P → {0, 1}, de�ne the funtion I(f) : P → {0, 1} by

∀ x ∈ P, I(f)(x) = max{f(y) | y ∈ P, y ≤ x} .

Then I(f) is the least inreasing funtion g : P → {0, 1} suh that g ≥ f . Note that sine I(f) ≥ f , and both

f and I(f) are P → {0, 1}, I(f)− f will be a funtion P → {0, 1}.

In Theorem 8 of [18℄ we obtained the following important result:

Theorem 18. Let P be poset with least element ⊥, and let f : P → {0, 1} be of bounded variation, with

maxx∈P fT (x) = v > 0. Then there are v inreasing funtions f1, . . . , fv : P(E) → {0, 1} suh that f1 > f2 >

· · · > fv > 0,

f = f1 − f2 + · · ·+ (−1)v−1fv , (37)

and for eah s = 1, . . . , v,

fs = ξs(fT ) =







ξ s+1

2

(fP ) if s is odd ,

ξ s
2
(fN ) if s is even ;

(38)

moreover,

fs = I
(

(−1)s−1f +

s−1
∑

i=1

(−1)s−1−ifi

)

. (39)

Furthermore, given another deomposition f = g1 − g2 + · · · + (−1)w−1gw, with g1, . . . , gw : P(E) → {0, 1}

inreasing and g1 ≥ g2 ≥ . . . ≥ gw, then w ≥ v and gs ≥ fs for s = 1, . . . , v. Conversely, any funtion

f : P → {0, 1} having a deomposition of the form (37) for inreasing f1, . . . , fv : P(E) → {0, 1} is of bounded

variation.
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The �rst elements of the sequene (38) are:

f1 = ξ1(fT ) = ξ1(fP ) ,

f2 = ξ2(fT ) = ξ1(fN ) ,

f3 = ξ3(fT ) = ξ2(fP ) ,

f4 = ξ4(fT ) = ξ2(fN ) .

Then the �rst elements of the sequene (39) are:

f1 = I(f) ,

f2 = I(f1 − f) ,

f3 = I(f2 − f1 + f) ,

f4 = I(f3 − f2 + f1 − f) .

Intuitively, we take f1 = I(f) = ξ1(fT ), then f1 − f has a smaller variation than f , and we get by reurrene

the deomposition f1 − f = f2 − f3 + · · ·+ (−1)v−2fv , with eah fi as in (39).

Let us omplement the last sentene of the above theorem (this result is new):

Proposition 19. Let P be poset with least element ⊥, and let the funtion f : P → Z have a deomposition

of the form (37), that is,

∑u
i=1(−1)i−1fi for v inreasing funtions f1, . . . , fv : P(E) → {0, 1} suh that

f1 > f2 > · · · > fv > 0. Then f is P → {0, 1}, of bounded variation, and f ≤ f1.

Proof. Let us show by indution on v that f is P → {0, 1} and f ≤ f1. For v = 1, f = f1 and the result holds.

Suppose now that v > 1 and that the result holds for v− 1. Let g =
∑v
i=2(−1)ifi; by indution hypothesis, g

is P → {0, 1} and g ≤ f2; sine f2 < f1, we have g ≤ f1. Thus, for all x ∈ P , we have 0 ≤ g(x) ≤ f1(x) ≤ 1,

from whih we dedue that 0 ≤ f1(x) − g(x) ≤ f1(x) ≤ 1. As f = f1 − g, we get thus 0 ≤ f(x) ≤ f1(x) ≤ 1,

and the result follows for v. Now, f is BV by the last sentene of Theorem 18.

5 Generalised �at morphologial operators

The three preeding setions provide a mathematial framework for our generalised theory of �at morphologial

operators. Our new de�nition of the �at extension of an operator on binary images deals orretly with the

ase where the operator is not inreasing. Quite generally, we will onsider not only operators P(E) → P(E)

(transforming binary images), but also operators P(E) → KE
for a �nite interval K ⊆ Z; this ours for

instane when one makes measurements on binary images, see for example the morphologial Laplaian (12).

In the ase where image intensities are in a losed interval in R
m

or Z
m
, for any inreasing operator

P(E) → P(E), the new de�nition of its �at extension will oinide with the lassial one [15, 16℄. For

operators that are not inreasing, the properties of the �at extension given in [15, 16℄ for the inreasing ase

will not always be satis�ed.

5.1 Basi de�nitions and examples

We speify our framework for images. Let E be the spae of points. Image values will be reals or integers

(for grey-level images), or vetors with real or integer oordinates (for multivalued images). Formally, let

m ≥ 1, and for i = 1, . . . , m, let either Ci = R or Ci = uiZ for some real ui > 0 (usually ui = 1); now let

U = C1 × · · · × Cm, with omponentwise or marginal ordering (1). Note that there are other possible orders

on U , inluding total orders (suh as the lexiographi order), but the omponentwise order is mathematially

easier to deal with, it allowed us to obtain a omponentwise deomposition of the summation, see Theorem 10,

whih will be applied to �at operators, see Proposition 30. Then all images, those given as input to �at

operators, as well as those obtained as the output of operators, will have their values in U . The set U has two

important properties:
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� It is a onditionally omplete lattie for the omponentwise order: every subset of U having an upper

bound (resp., a lower bound) will have a supremum (resp., in�mum). In partiular, every losed interval

[a, b] ⊂ U will be a omplete lattie where the supremum and in�mum operations are the omponentwise

numerial sup and inf operations.

� It is a module: it has the operations of addition and subtration, with neutral 0 = (0, . . . , 0), and of salar

multipliation with salars in Z. Then for any bounded, non-negative and dereasing funtion f : U → Z

and any stritly inreasing sequene (s0, . . . , sn) in U , the summation S(s0,...,sn)(f) will belong to U .

This implies that for any interval [a, b] ⊂ U (a ≤ b) and for any bounded, non-negative and dereasing funtion

f : [a, b] → Z, the summation S[a,b](f) will be a supremum of elements of U , bounded by (b − a)f(a), hene

it will belong to U .

In order to exlude in�nite values in our summations, all input images will have bounded values, so we

hoose two bounds ⊥,⊤ ∈ U , with ⊥ < ⊤, and onsider the interval [⊥,⊤] = {v ∈ U | ⊥ ≤ v ≤ ⊤}. Now

⊥ = (⊥1, . . . ,⊥n) and ⊤ = (⊤1, . . . ,⊤n), so

[⊥,⊤] = [⊥1,⊤1]× · · · × [⊥m,⊤m] ,

where [⊥i,⊤i] = {v ∈ Ci | ⊥i ≤ v ≤ ⊤i} (i = 1, 1, . . . ,m). Note that we do not neessarily hoose ⊥ = 0 =

(0, . . . , 0); indeed, some modalities use a range of intensities that an inlude negative values, for instane,

CT images have values in Houns�eld units, whih orrespond to the radiodensity of the objets. Sine eah

[⊥i,⊤i] is a omplete hain, [⊥,⊤] is a ompletely distributive omplete lattie [16℄.

We will apply �at operators to images E → V , where V is a subset of the interval [⊥,⊤] having ⊥ and ⊤

as least and greatest elements: {⊥,⊤} ⊆ V ⊆ [⊥,⊤]. Then the output of �at operators will be images E → U

(not neessarily E → V ). We have some �exibility in the hoie of the set V of image values. We make the

following two requirements:

A. The summation S must be additive on V (we saw in Example 12 that this does not hold for some bounded

posets in Z
m
). This is neessary in order to de�ne the summation of any BV funtion, see Theorem 8.

It also implies that given a deomposition of an operator on binary images as a linear ombination of

operators on binary images, we obtain the same deomposition with the �at extensions, see (10,11).

B. The set V must be losed under non-empty omponentwise numerial supremum. By Proposition 20

below, this will guarantee that for inreasing operators on binary images, the new de�nition of the �at

extension to images E → V will oinide with the lassial one in [16℄.

We give here two ases where both requirements are satis�ed:

1. The standard ase, where V = [⊥,⊤]. Here V = V1 × · · · × Vn for Vi = [⊥i,⊤i] (i = 1, . . . , n). Hene V is

a produt of hains, so the summation will be additive on [⊥,⊤] by Corollary 11.

2. The sub-standard ase, where V is a omplete sublattie of [⊥,⊤], in other words it is losed under the

omponentwise numerial supremum and in�mum operations. Then V is a losure range on [⊥,⊤], and the

summation is additive on [⊥,⊤] (whih is the standard ase, item 1), so by Proposition 13, the summation

will be additive on V .

We reall from Setions 2 and 3 the onvention that for a funtion f de�ned on V , when we onsider the

variation and the summation of f over the whole of V , we an omit the subsript [⊥,⊤] in the formulas,

in other words: PV[⊥,⊤](f), NV[⊥,⊤](f), TV[⊥,⊤](f) and S[⊥,⊤](f) an be abbreviated into PV (f), NV (f),

TV (f) and S(f).

We introdue here a new onvention. Throughout Setions 2 and 3, there was no ambiguity in the notation

TV[a,b](f) and S[a,b](f) about the variable over whih we measure the variation or make the summation, sine

we assumed that f is a funtion of a single variable. Similarly, for a real funtion of one variable, we an write

∫ b

a
f for

∫ b

a
f(x) dx. Now we will enounter funtions of several variables, and we will have to speify over

whih variable we onsider the variation or summation of the funtion. Similarly, for a real funtion of three

variables,

∫ b

a
f(x, y, z) dy indiates that the integration is made on the seond variable y. Given an expression

W in several variables, a variable x appearing in W and a poset P , we will write �W | x ∈ P � to speify that

the variation or summation of W is over the variable x ranging over P ; in other words TV[a,b](W | x ∈ P )

and S[a,b](W | x ∈ P ) designate the total variation TV[a,b](f) and summation S[a,b](f) for the funtion

f : P ∩ [a, b] → R : x 7→W .



Christian RONSE, General theory of non-inreasing �at morphologial operators 23

Reall from the Introdution the harateristi funtion χX of a set X ∈ P(E), f. (6); then for an

operator ψ : P(E) → P(E), we have the operator χψ : P(E) → {0, 1}E : X 7→ χψ(X). Given a funtion

F : E → V , for eah v ∈ V we have the threshold set Xv(F ), f. (2); this set dereases when v inreases.

Now with our new onvention, the three formulas (7,8,9) for the �at extension by threshold summation

will unify into

ψT (F )(p) = ⊥+ S
(

χψ(Xt(F ))(p)
∣

∣ t ∈ T
)

.

Here we summed over the variable t an expression depending also on the funtion F and the point p ∈ E.

More generally, we an express the �at extension ψV of an inreasing binary image transformation ψ :

P(E) → P(E), see (3,4), in terms of a summation. The following result generalises the threshold deomposition

method (9) introdued in [5, 24℄:

Proposition 20. Let V ⊆ [⊥,⊤]. Given an inreasing operator ψ : P(E) → P(E), an image F : E → V and

a point p ∈ E,

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

,

where we set sup ∅ = ⊥ on the right side of the equation. If V is losed under omponentwise numerial

supremum (it is then a omplete lattie), we get

ψV (F )(p) = ⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

,

where ψV is the �at extension of ψ to V E.

Proof. The set Xv(F ) dereases when v inreases, and the operator ψ is inreasing; hene the set ψ(Xv(F ))

also dereases when v inreases, so for any p ∈ E, the funtion V → {0, 1} : v 7→ χψ(Xv(F ))(p) is dereasing.

We apply Proposition 14, so (33) gives:

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

v ∈ V
∣

∣ χψ(Xv(F ))(p) = 1
}

= sup
{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

.

If V is losed under omponentwise numerial supremum, then the latter oinides with the lattie-theoretial

supremum operation in V , so

⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

=
∨

{

v ∈ V
∣

∣ p ∈ ψ(Xv(F ))
}

,

whih gives ψV (F )(p) by (4).

This result an be taken as the basis for the de�nition of the �at extension of any operator on P(E). But

our theory requires �rst to distinguish two types of operators in image proessing. On the one hand there

are operators suh as the opening, losing, median �ltering and Gaussian smoothing, whih map an image in

V E to another image in V E that is supposed to show the same objets; we all suh an operator V E → V E

an image transformation. On the other hand, there are operators like the gradient or the Laplaian, whih

are not intended to produe viewable images, and indeed do not neessarily preserve the interval V of values,

for instane, they an generate negative values from positive grey-levels; we all suh an operator an image

measurement.

Let us formalise this distintion in the ase of binary images. A binary image transformation is a map

P(E) → P(E); for instane, the dilation, erosion, opening and losing by a struturing element. A binary image

measurement is a map P(E) → KE
for a �nite interval K ⊂ Z; for instane, the morphologial Laplaian

(12). Obviously, every binary image transformation ψ orresponds to the binary image measurement χψ, with

K = {0, 1}.

Given a binary image measurement µ : P(E) → KE
, we de�ne the no-shift �at extension µ−V of µ by

setting for any image F : E → V and point p ∈ E:

µ−V (F )(p) = S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

, (40)
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provided that the summation is well-de�ned, that is, the summed funtion v 7→ µ(Xv(F ))(p) is of bounded

variation: TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

< ∞. This question will be analysed in the next subsetion. Note that

if V has �nite height, in partiular if V is �nite, then this funtion will indeed be of bounded variation, see

Proposition 23 below. On the other hand, when V is an interval in R
m
, this will not neessarily be the ase,

see Example 25 below.

Sine the summation on V is additive (requirement A), the no-shift �at extension will be linear on the

operator µ (see Theorem 8): for two salars λ1, λ2 and two binary image measurements µ1, µ2,

(

λ1µ1 + λ2µ2
)−V

= λ1µ
−V
1 + λ2µ

−V
2 .

Moreover, for F : E → V , µ−V (F ) will have bounded values (in U). As minK ≤ µ(Xv(F ))(p) ≤ maxK for

all v ∈ V , S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

will be bounded below by S
(

minK
∣

∣ v ∈ V
)

= (⊤−⊥)minK and above

by S
(

maxK
∣

∣ v ∈ V
)

= (⊤−⊥)maxK, that is,

(⊤−⊥)minK ≤ µ−V (F )(p) ≤ (⊤ −⊥)maxK . (41)

Given a binary image transformation ψ : P(E) → P(E), we de�ne the shifted �at extension ψ+V
of ψ by

setting for any image F : E → V and point p ∈ E:

ψ+V (F )(p) = ⊥+ (χψ)−V (F )(p) = ⊥+ S
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

, (42)

again provided that the summation is well-de�ned. Assuming V to be losed under omponentwise numerial

supremum (requirement B), for any inreasing operator ψ, this de�nition (42) will by Proposition 20 be

equivalent to the usual de�nition (3,4). Without requirement B, this is not true:

Example 21. Let U = Z
2
and V =

{

(0, 0), (1, 0), (0, 1), (2, 2)
}

; here ⊥ = (0, 0) and ⊤ = (2, 2), and V is

a omplete lattie with supremum

∨
{

(1, 0), (0, 1)
}

= (1, 0) ∨ (0, 1) = (2, 2), distint from the omponentwise

numerial supremum sup
{

(1, 0), (0, 1)
}

= (1, 1). Let ∅ ⊂ A ⊂ E, and let F : E → V with F (p) = (1, 0)

for p ∈ A and F (p) = (0, 1) for p ∈ E \ A. We have X(0,0)(F ) = E, X(1,0)(F ) = A, X(0,1)(F ) = E \ A,

and X(2,2)(F ) = ∅. Take an extensive dilation δ on P(E), so δ(E) = E (we have δ(∅) = ∅ anyway). Then

δ(X(0,0)(F )) = E, δ(X(1,0)(F )) = δ(A), δ(X(0,1)(F )) = δ(E \ A), and δ(X(2,2)(F )) = ∅. Now, for p ∈

δ(A) ∩ δ(E \A), (4) gives δV (F )(p) =
∨
{

(1, 0), (0, 1)
}

= (2, 2), while

S
(

χδ(Xv(F ))(p)
∣

∣ v ∈ V
)

= sup
{

1 · [(1, 0)− (0, 0)] + 0 · [(2, 2)− (1, 0)],

1 · [(0, 1)− (0, 0)] + 0 · [(2, 2)− (0, 1)]
}

= sup
{

(1, 0), (0, 1)
}

= (1, 1) ;

hene (42) will give δ+V (F )(p) = (1, 1) 6= δV (F )(p).

Sine the measurement χψ has K = {0, 1}, here (41) beomes

0 ≤ (χψ)−V (F )(p) ≤ ⊤ −⊥ ,

hene (42) gives

⊥ ≤ ψ+V (F )(p) ≤ ⊤ . (43)

Thus ψ+V
is an operator V E → [⊥,⊤]E . In the standard ase V = [⊥,⊤], we get ψ+V (F ) ∈ V E . This holds

also when ψ inreasing, sine ψ+V (F ) = ψV (F ), where ψV (F ) ∈ V E by [16℄. On the other hand, this is not

neessarily true for a non-inreasing operator in the non-standard ase:

Example 22. Let U = Z
2
and V = {(0, 0), (2, 1), (2, 3), (4, 4)

}

; here ⊥ = (0, 0) and ⊤ = (4, 4). As V is a

hain, it is losed under omponentwise numerial supremum, and S is additive on V . Let ∅ ⊂ A ⊂ E, and let

F : E → V with F (p) = (2, 3) for p ∈ A and F (p) = (2, 1) for p ∈ E \A. We have X(0,0)(F ) = X(2,1)(F ) = E,

X(2,3)(F ) = A, and X(4,4)(F ) = ∅. Take an extensive dilation δ and an anti-extensive erosion ε on P(E), so

δ(E) = E and ε(∅) = ∅ (we have δ(∅) = ∅ and ε(E) = E anyway). Consider the non-inreasing operator on

P(E) given by their di�erene, δ\ε : X 7→ δ(X)\ε(X). Then (δ\ε)(X(0,0)(F )) = (δ\ε)(X(2,1)(F )) = E\E = ∅,
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(δ \ ε)(X(2,3)(F )) = δ(A) \ ε(A) and (δ \ ε)(X(4,4)(F )) = ∅ \ ∅ = ∅. Thus for p ∈ δ(A) \ ε(A) we have

χ(δ \ ε)(Xv(F ))(p) = 1 for v = (2, 3) and 0 for v 6= (2, 3), so

S
(

χ(δ \ ε)(Xv(F ))(p)
∣

∣ v ∈ V
)

= 0 · [(2, 1)− (0, 0)] +

1 · [(2, 3)− (2, 1)] + 0 · [(4, 4)− (2, 3)] = (2, 3)− (2, 1) = (0, 2) ;

hene (42) will give (δ \ ε)+V (F )(p) = (0, 2) /∈ V .

We end this subsetion by desribing some well-known examples of non-inreasing �at operators given in the

literature. For the sake of simpliity, we an assume that E is the digital spae Z
n
and that V is an interval

[⊥,⊤] in R
m

or Z
m

(m ≥ 1), thus we are in the standard ase. Then V will be a ompletely distributive

omplete lattie, whih is a neessary requirement for obtaining the usual properties of inreasing �at operators

[16℄. Moreover, for any inreasing operator ψ, Proposition 20 gives ψ+V = ψV : the shifted �at extension of ψ

oinides with the standard �at extension aording to [16℄. ForX ∈ P(E), write Xc = E\X (the omplement

of X) and X̌ = {−x | x ∈ X} (the symmetrial of X). Reall from (5) the dilation δB and erosion εB by a

struturing element B ∈ P(E); we assume that B 6= ∅. Write id for the identity operator on P(E).

When B is the digital neighbourhood of the origin (origin inluded), δB(X) \X is the outer border of X

(set of all points of Xc
neighbouring at least one point of X), while X \ εB(X) is the inner border of X (set

of all points of X neighbouring at least one point of Xc
); their disjoint union δB(X) \ εB(X) is the border of

X . We an generalise this to any symmetrial struturing element B ontaining the origin, and we get thus

the three image transformations δB \ id, id \ εB and δB \ εB . Sine B ontains the origin, δB is extensive and

εB is anti-extensive, that is, εB(X) ⊆ X ⊆ δB(X) for all X ∈ P(E), so we get:

χ(δB \ id) = χδB − χid , χ(id \ εB) = χid− χεB ,

χ(δB \ εB) = χδB − χεB = χ(δB \ id) + χ(id \ εB) .

From (40,42) and the linearity of summation, we derive:

[

χ(δB \ id)
]−V

= δ+VB − id
+V , (δB \ id)+V = ⊥ + δ+VB − id

+V ,
[

χ(id \ εB)
]−V

= id
+V − ε+VB , (id \ εB)

+V = ⊥+ id
+V − ε+VB ,

[

χ(δB \ εB)
]−V

= δ+VB − ε+VB , (δB \ εB)
+V = ⊥+ δ+VB − ε+VB .

Here id
+V

will be the identity operator on V E , while δ+VB and ε+VB will be the standard �at dilation and

erosion δVB and εVB based on omputing a loal supremum and in�mim respetively, see [16℄. The three

operators δ+VB − id
+V

, id
+V − ε+VB and δ+VB − ε+VB are alled the external gradient, internal gradient

and Beuher gradient (or morphologial gradient) respetively [22℄; they are morphologial variants of the

traditional Roberts, Prewitt or Sobel gradients based on linear onvolution.

The Laplaian on binary images (12) is the image measurement P(E) → {−1, 0,+1}E de�ned by

χ(δB \ id)− χ(id \ εB) = χδB + χεB − 2χid .

Its no-shift �at extension is then the morphologial Laplaian:

[

χ(δB \ id)
]−V

−
[

χ(id \ εB)
]−V

= δ+VB + ε+VB − 2id+V .

Take now any non-empty struturing element B, and onsider the opening and losing by B,

γB : P(E) → P(E) : X 7→ (X ⊖B)⊕ B = δB(εB(X)) ,

ϕB : P(E) → P(E) : X 7→ (X ⊕B)⊖B = εB(δB(X)) .

Then ϕB is extensive and γB is anti-extensive, we have γB(X) ⊆ X ⊆ ϕB(X) for all X ∈ P(E). The set

ϕB(X) \X shows all portions of Xc
that are too narrow to ontain a translate of B̌, while X \ γB(X) shows

all portions of X that are too narrow to ontain a translate of B ; their disjoint union ϕB(X) \ γB(X) will

show both. As with the gradient, we get:

χ(id \ γB) = χid− χγB , χ(ϕB \ id) = χϕB − χid ,

χ(ϕB \ γB) = χϕB − χγB = χ(ϕB \ id) + χ(id \ γB) .
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Then we obtain their no-shift �at extensions:

[

χ(id \ γB)
]−V

= id
+V − γ+VB , (id \ γB)

+V = ⊥ + id
+V − γ+VB ,

[

χ(ϕB \ id)
]−V

= ϕ+V
B − id

+V , (ϕB \ id)+V = ⊥+ ϕ+V
B − id

+V ,
[

χ(ϕB \ γB)
]−V

= ϕ+V
B − γ+VB , (ϕB \ γB)+V = ⊥+ ϕ+V

B − γ+VB .

Here γ+VB = δ+VB ε+VB = δVBε
V
B and ϕ+V

B = ε+VB δ+VB = εVBδ
V
B , the �at opening and losing, are obtained

by omposing the �at erosion and dilation, see [16℄. The three operators id
+V − γ+VB , ϕ+V

B − id
+V

and

ϕ+V
B − γ+VB are alled the white top-hat, blak top-hat and self-omplementary top-hat respetively [22℄; the

same names an also be used for their binary ounterparts id \ γB , ϕB \ id and ϕB \ γB . In the ase of

grey-level or olour images, the white top-hat shows narrow bright zones, the blak top-hat shows narrow

dark zones, and the self-omplementary top-hat shows both.

The hit-or-miss transform uses a pair (A,B) of struturing elements, and looks for all positions where

A an be �tted within a �gure X , and B within the bakground Xc
[20℄, in other words it is the operator

HMT(A,B) : P(E) → P(E) de�ned by

HMT(A,B)(X) = {p ∈ E | Ap ⊆ X and Bp ⊆ Xc}

= εA(X) ∩ εB(X
c) = εA(X) \ δB̌(X) .

One assumes that A ∩B = ∅, otherwise we have always HMT(A,B)(X) = ∅. We an write HMT(A,B)(X) =

εA(X) \
(

δB̌(X) ∩ εA(X)
)

, where we always have δB̌(X) ∩ εA(X) ⊆ εA(X). Thus

χHMT(A,B) = χεA − χ(δB̌ ∩ εA) = χεA − (χδB̌ ∧ χεA) ,

where ∧ is the meet (binary in�mum) operation. Now (δB̌ ∩ εA)
+V = δ+V

B̌
∧ ε+VA [16℄, hene we obtain:

[

χHMT(A,B)

]−V
= ε+VA − (δB̌ ∩ εA)

+V = ε+VA − (δ+V
B̌

∧ ε+VA ) ,

HMT+V
(A,B)

= ⊥+ ε+VA − (δB̌ ∩ εA)
+V = ⊥+ ε+VA − (δ+V

B̌
∧ ε+VA ) .

Thus for any F : E → V and p ∈ E we have:

[

χHMT(A,B)

]−V
(F )(p) = ε+VA (F )(p)−min

[

δ+V
B̌

(F )(p), ε+VA (F )(p)
]

= max
[

ε+VA (F )(p)− δ+V
B̌

(F )(p), 0
]

.

In the ase of images with disrete grey-levels (V = T = {t0, . . . , t1} ⊂ Z), Soille's unonstrained hit-or-miss

transform [22℄ was de�ned, for an input grey-level image F , by omputing at every point p ∈ E the length of

the interval

{t ∈ T | p ∈ HMT(A,B)(Xt(F ))} = {t ∈ T | p ∈ εA(Xt(F )), p /∈ δB̌(Xt(F ))} ,

that is, the summation S
(

χHMT(A,B)(Xt(F ))(p)
∣

∣ t ∈ T
)

. Thus the no-shift �at extension

[

χHMT(A,B)

]−V

is exatly Soille's unonstrained hit-or-miss transform. This operator was further analysed in [12℄, where it

was extended to ontinuous grey-levels (T ⊂ R) and to grey-level struturing funtions instead of struturing

elements. This paper gave a general survey of the various types of hit-or-miss transforms for grey-level images.

These examples of non-inreasing �at grey-level operators, namely the external, internal and Beuher

gradient, the morphologial Laplaian, the white, blak, and self-omplementary top-hat, and Soille's unon-

strained hit-or-miss transform, have previously been de�ned in an intuitive way as a grey-level extension of

the orresponding set operators. No formal theory for their onstrution was given, exept in [12℄ for the

spei� ase of the hit-or-miss transform.

Note that their form given in the literature always oinides with the no-shift �at extension (χψ)−V of

the orresponding binary image transformation ψ, rather than the shifted one ψ+V = ⊥ + (χψ)−V . Indeed,

most authors impliitly assume image intensities to be between 0 and 255, in other words, ⊥ = 0, so the

intensity shift by ⊥ does not matter.
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5.2 Bounded variation of image measurements

We have now to analyse onditions for the summation S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

of (40) to be well-de�ned, in

other words for the summed funtion to have bounded variation: TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

< ∞. Then the

no-shift �at extension (40), and the shifted one (42) for µ = χψ, will be well-de�ned.

Reall from Subsetion 1.3 h(V ), the height of V , that is, the supremum of the lengths of all hains in P ;

for a �nite interval K ⊂ Z we have similarly its height h(K) = maxK −minK.

Now the total variation of µ(Xv(F ))(p) on v ∈ V an be bounded either by h(K)h(V ), or by the total

variation of µ(Z)(p) on Z ∈ P(E):

Proposition 23. Let µ : P(E) → KE
be a binary image measurement, for a �nite interval K ⊂ Z. Then for

any F ∈ V E and p ∈ E, TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ min
(

h(K)h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

)

.

Proof. Let F ∈ V E and onsider a stritly inreasing sequene (s0, . . . , sn) in V . Then for i = 1, . . . , n,
∣

∣µ(Xsi(F ))(p)− µ(Xsi−1 (F ))(p)
∣

∣ ≤ h(K), while obviously n ≤ h(V ). Hene

TV(s0,...,sn)
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

n
∑

i=1

∣

∣µ(Xsi(F ))(p)− µ(Xsi−1 (F ))(p)
∣

∣ ≤

n
∑

i=1

h(K) ≤ h(K)h(V ) .

Sine TV(s0,...,sn)(µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)h(V ) for every stritly inreasing sequene (s0, . . . , sn) in V ,

by taking the supremum on suh sequenes, we dedue that TV (µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)h(V ).

Now Xsi(F ) dereases when i inreases from 1 to n. We eliminate in the sequene s0, . . . , sn all si with

Xsi(F ) = Xsi−1(F ), we obtain thus a subsequene (t0, . . . , tm), where m ≤ n, suh that Xt0(F ) ⊃ · · · ⊃

Xtm(F ). For j = 0, . . . ,m, let Zj = Xtm−j (F ), so Z0 ⊂ · · · ⊂ Zm. Then (with the hange of variable

k = m− j + 1 at the end of the seond line),

TV(s0,...,sn)
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

n
∑

i=1

∣

∣µ(Xsi(F ))(p)− µ(Xsi−1(F ))(p)
∣

∣

=

m
∑

j=1

∣

∣µ(Xtj (F ))(p)− µ(Xtj−1
(F ))(p)

∣

∣ =

m
∑

j=1

∣

∣µ(Zm−j)(p)− µ(Zm−j+1)(p)
∣

∣ =

1
∑

k=m

∣

∣µ(Zk−1)(p)− µ(Zk)(p)
∣

∣

=

m
∑

k=1

∣

∣µ(Zk)(p)− µ(Zk−1)(p)
∣

∣ = TV(Z0,...,Zm)

(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

By taking the supremum on all stritly inreasing sequenes (s0, . . . , sn), we obtain TV
(

µ(Xv(F ))(p)
∣

∣ v ∈

V
)

≤ TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Remark 24. When h(K) = 1, that is, K = {k, k + 1} for some k ∈ Z (for instane, if µ = χψ for a binary

image transformation ψ : P(E) → P(E)), then the bound given in Proposition 23 is the best possible: for any

natural u ≤ min
(

h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

, there exists F ∈ V E suh that TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

=

u, so we get supF∈V E TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= min
(

h(V ), TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Indeed, there is a stritly inreasing sequene Y0 ⊂ · · · ⊂ Yn in P(E) suh that TV(Y0,...,Yn)

(

µ(Z)(p)
∣

∣

Z ∈ {Y0, . . . , Yn}
)

= u. By eliminating all terms Yi suh that µ(Yi)(p) = µ(Yi−1)(p), we obtain a subsequene

(X0, . . . , Xm) suh that for i = 1, . . . ,m we have µ(Xi)(p) 6= µ(Xi−1)(p); as h(K) = 1, the sequene of

µ(Xi)(p), i = 1, . . . ,m, alternates between the two elements of K, so |µ(Xi)(p) − µ(Xi−1)(p)| = 1; as the

sequene has total variation u, we have m = u. We an assume that Xu = E, otherwise: if µ(Xu)(p) =

µ(E)(p), then we replae Xu by E in the sequene, while if µ(Xu)(p) 6= µ(E)(p), then we replae the sequene

(X0, . . . , Xu) by (X1, . . . , Xu, E), and rename it (X0, . . . , Xu). There is also a stritly inreasing hain t0 <

· · · < tu in V , and we an assume that t0 = ⊥ and tu = ⊤. De�ne F : E → V by F (p) = tu if p ∈ X0,

and F (p) = tu−i if p ∈ Xi \Xi−1 (i = 1, . . . , u). We see (by indution on i) that p ∈ Xi i� F (p) ≥ tu−i, so

Xtu−i(F ) = Xi (i = 0 . . . , u). Then, as total variation is self-dual for the order on V ,

u = TV(X0,...,Xu)

(

µ(Z)(p)
∣

∣ Z ∈ {X0, . . . , Xu}
)
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= TV(tu,...,t0)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

= TV(t0,...,tu)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

.

For any v ∈ V , let ϕ(v) be the least ti (i = 0 . . . , u) suh that ti ≥ v (sine tu = ⊤, suh a ti always exists);

then Xv(F ) = Xϕ(v)(F ). As ϕ is a losure operator on V , Proposition 13 gives

TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= TV(t0,...,tu)
(

µ(Xv(F ))(p)
∣

∣ v ∈ {t0, . . . , tu}
)

.

From Proposition 23 we see that when V has �nite height, for instane if V is �nite, then TV
(

µ(Xv(F ))(p)
∣

∣

v ∈ V
)

≤ h(K)h(V ) < ∞, so the funtion µ(Xv(F ))(p)
∣

∣ v ∈ V is summable and the �at extension µ−V is

well-de�ned. However, when V has in�nite height, there are funtions F : E → V suh that TV
(

µ(Xv(F ))(p)
∣

∣

v ∈ V
)

= ∞, so the funtion is not summable:

Example 25. Let E = V = [0, 1] ⊂ R and let F : E → V : x 7→ 1 − x; then for v ∈ V , Xv(F ) = [0, 1 − v].

Partition [0, 1] into two dense sets A and B. For every X ∈ P(E), supX ∈ E (where we set sup ∅ = 0).

De�ne ψ : P(E) → P(E) by ψ(X) = E if 1− supX ∈ A and ψ(X) = ∅ if 1− supX ∈ B. Then for any p ∈ E,

χψ(Xv(F ))(p) = 1 if v ∈ A, and = 0 if v ∈ B. As A and B are dense in V , for any n > 0 there is a stritly

inreasing sequene (v1, . . . , v2n) ∈ V suh that vi ∈ A for i odd and vi ∈ B for i even, in other words the

sequene alternates between A and B. Then χψ(Xv(F ))(p) alternates between 1 and 0 on this sequene, that

is, TV(v1,...,v2n)
(

χψ(Xv(F ))(p)
∣

∣ v ∈ {v1, . . . , v2n}
)

= 2n. It follows that TV
(

χψ(Xv(F ))(p)
∣

∣ v ∈ V
)

= ∞.

We onsider now a ondition that puts a limit on the variation of the funtion P(E) → K : Z 7→ µ(Z)(p).

Let us say that µ is loal if for any p ∈ E there exists a �nite W (p) ∈ P(E) suh that for any Z ∈ P(E),

µ(Z)(p) = µ
(

Z ∩W (p)
)

(p). For instane, the dilation, erosion, opening and losing by a �nite struturing

element, and the hit-or-miss transform by two �nite struturing elements, are loal.

Proposition 26. Let µ : P(E) → KE
be a binary image measurement, for a �nite interval K ⊂ Z. If µ is

loal, then for any p ∈ E,

TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

= TV
(

µ(X)(p)
∣

∣ X ∈ P(W (p))
)

≤ h(K)|W (p)| .

Proof. Let (Z0, . . . , Zn) be a stritly inreasing sequene in P(E). If we remove from that sequene all Zi

suh that Zi ∩W (p) = Zi−1 ∩W (p), we obtain a subsequene (Y0, . . . , Ym) suh that the sequene

(

Y0 ∩

W (p), . . . , Ym ∩W (p)
)

is stritly inreasing. Sine µ is loal,

TV(Z0,...,Zn)

(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

=

n
∑

i=1

∣

∣µ(Zi)(p)− µ(Zi−1)(p)
∣

∣ =

n
∑

i=1

∣

∣µ
(

Zi ∩W (p)
)

(p)− µ
(

Zi−1 ∩W (p)
)

(p)
∣

∣ =

m
∑

j=1

∣

∣µ
(

Yj ∩W (p)
)

(p)− µ
(

Yj−1 ∩W (p)
)

(p)
∣

∣ .

Now P(W (p)), ordered by inlusion, has height |W (p)|, so the stritly inreasing sequene Yj ∩W (p) (j =

0, . . . ,m) has length at most |W (p)|, thus m ≤ |W (p)|. Hene

m
∑

j=1

∣

∣µ
(

Yj ∩W (p)
)

(p)− µ
(

Yj−1 ∩W (p)
)

(p)
∣

∣ ≤ h(K)m ≤ h(K)|W (p)| .

The result follows.

Therefore, when a binary image measurement µ is loal, for any F ∈ V E and p ∈ E, Proposition 23 gives

TV
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

≤ h(K)|W (p)|, so the �at extension µ−V will be well-de�ned.

Let us say that the binary image measurement µ is of uniform bounded variation if supp∈E TV
(

µ(Z)(p)
∣

∣

Z ∈ P(E)
)

< ∞. This property is stronger than the having TV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

�nite for all p ∈ E

(whih is the su�ient ondition we gave for the �at extension µ−V to be well-de�ned), as shown by the

following example:
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Example 27. Let E = N, and de�ne the binary image transformation ψ : P(E) → P(E) as follows: ∀Z ∈

P(E),

ψ(Z) =















N if X is in�nite,

{0, . . . , |X|} ∪ (2N+ 1) if X is �nite and |X| is odd,

{0, . . . , |X|} ∪ 2N if X is �nite and |X| is even.

Here 2N and 2N+1 are the sets respetively of even and of odd naturals. Then for a growing sequene of sets

(Xn)n∈N, where |Xn| = n, for every m ∈ E we have m ∈ ψ(Xn) if n has the same parity as m or if n ≥ m.

Thus χψ(Xn)(m) alternates for n ≤ m, hene we get TV
(

χψ(Z)(m)
∣

∣ Z ∈ P(E)
)

= m. Therefore χψ has

bounded variation at every point, but is not of uniform bounded variation.

By Proposition 26, a loal binary image measurement will be of uniform bounded variation if supp∈E |W (p)| <

∞; this is for instane the ase when E = R
n
or Z

n
and the loal operator µ is translation-invariant, beause

here W (p) = Bp, the translate by p of a �xed �nite struturing element B.

Now uniform bounded variation is preisely the neessary and su�ient ondition for a binary image

measurement µ to take the form of a sum and di�erene of harateristi funtions of inreasing binary image

transformations:

µ =

m
∑

i=1

χηi −

n
∑

j=1

χθj , for η1, . . . , ηm, θ1, . . . , θn : P(E) → P(E), whih are all inreasing . (44)

Proposition 28. A binary image measurement µ : P(E) → KE
(for a �nite interval K ⊂ Z) has a deom-

position of the form (44) if and only if it is of uniform bounded variation. More preisely:

1. Given a deomposition of the form (44), we have supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ m and

supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ n.

2. For µ of uniform bounded variation, there is a deomposition of the form (44) with m ≤ [maxK]+ +

supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

and n ≤ [minK]− + supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Proof. Let p ∈ E. In a deomposition of the form (44), eah map P(E) → {0, 1} : Z 7→ χηi(Z)(p) (i =

1, . . . ,m) and Z 7→ χθj(Z)(p) (j = 1, . . . , n), when applied to an inreasing sequene of sets, has a unique

variation from 0 to 1. Thus PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ m and NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

≤ n. Hene item 1

holds.

Let now µ be of uniform bounded variation. For eah p ∈ E, we apply Proposition 17 to fp : P(E) →

K : Z 7→ µ(Z)(p). We have the positive and negative inrements f
p
P and f

p
N , see (23), given by setting for

X ∈ P(E):

fpP (X) = [µ(∅)(p)]+ + PV[∅,X](µ(Z)(p)
∣

∣ Z ∈ P(E)
)

,

fpN (X) = [µ(∅)(p)]− +NV[∅,X](µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

Let m = sup{fpP (X) | X ∈ P(E), p ∈ E} and n = sup{fpN (X) | X ∈ P(E), p ∈ E}. We have then

m ≤ [maxK]+ + supp∈E PV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

,

n ≤ [minK]− + supp∈E NV
(

µ(Z)(p)
∣

∣ Z ∈ P(E)
)

.

We take the inreasing funtions g1, . . . , gm, h1, . . . , hn : P → {0, 1} as in Proposition 17, and we have

fp =
∑m
i=1 gi−

∑n
j=1 hj . We de�ne then for any Z ∈ P(E): χηi(Z)(p) = gi(Z) (i = 1, . . . ,m) and χθj(Z)(p) =

hj(Z) (j = 1, . . . , n). This de�nition, made for eah p ∈ E, gives thus the binary image transformations ηi

and θj . Sine for eah p ∈ E, χηi(Z)(p) and χθj(Z)(p) are inreasing in Z, and µ(Z)(p) =
∑m
i=1 χηi(Z)(p)−

∑n
j=1 χθj(Z)(p), the maps ηi and θj are inreasing and (44) holds.

Proposition 29. A binary image measurement µ : P(E) → KE
(for a �nite interval K ⊂ Z) has a deom-

position of the form

µ =

n
∑

i=1

(−1)i−1χψi ,
ψ1, . . . , ψn : P(E) → P(E)

all inreasing, with ψ1 > · · · > ψn ,
(45)
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if and only if µ is of uniform bounded variation and there is a binary image transformation ψ : P(E) → P(E)

suh that µ = χψ.

Proof. If µ is of uniform bounded variation and µ = χψ for ψ : P(E) → P(E), we apply the same argument

as in Proposition 28, but using Theorem 18 instead of Proposition 17, whih gives thus (45) in plae of (44).

Conversely, if (45) holds, we use Proposition 19 in the argument.

5.3 General properties

We will give some mathematial properties of �at extension, following Setion 3 of [16℄. We onsider �rst

the standard ase, see Subsetion 5.1: V = [⊥,⊤], a losed interval in the module U = C1 × · · · × Cm; thus

V = V1 × · · · × Vn for Vi = [⊥i,⊤i] (i = 1, . . . , n). For instane, in multivalued images, V = Tn (n > 1), for

a losed interval T .

Reall from (30) the i-th projetion πi : V → Vi : (v1, . . . , vn) 7→ vi for i = 1, . . . , n; it an naturally

be extended to a projetion Πi : V
E → V Ei : F 7→ Πi(F ) from images having values in V to images with

values in Vi, by applying it pointwise: Πi(F )(p) = πi
(

F (p)
)

. For instane, if V onsists of RGB olours and

π1 projets a olour on its red omponent, then Π1 will assoiate to a oulour image its red layer. We obtain

the same result as Proposition 12 of [16℄: a �at operator is obtained by applying that �at operator on eah

projetion. For instane, a RGB olour Laplaian is obtained by applying the intensity Laplaian to eah R,

G and B layer.

Proposition 30. Assume the standard ase. Let F : E → V . For every binary image measurement µ we

have Πi
(

µ−V (F )
)

= µ−Vi
(

Πi(F )
)

for all i = 1, . . . , n. For every binary image transformation ψ we have

Πi
(

ψ+V (F )
)

= ψ+Vi
(

Πi(F )
)

for all i = 1, . . . , n.

Proof. Let p ∈ E. By (40), µ−V (F )(p) = S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

. We apply the de�nition of projetion,

then by Theorem 10 we get:

Πi
(

µ−V (F )
)

(p) = πi
(

µ−V (F )(p)
)

= πi

(

S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

)

= S[⊥i,⊤i]

(

µ(Xη⊥
i
(t)(F ))(p)

∣

∣ t ∈ Vi
)

,

where by (31) we have η⊥i (t) = (⊥1, . . . ,⊥i−1, t,⊥i+1, . . . ,⊥n). Now for any q ∈ E, we have q ∈ Xη⊥
i
(t)(F )

i� F (q) ≥ η⊥i (t), i�

(

π1(F (q)), . . . , πn(F (q))
)

≥ (⊥1, . . . ,⊥i−1, t,⊥i+1, . . . ,⊥n) ,

that is, i� Πi(F )(q) = πi(F (q)) ≥ t, in other words q ∈ Xt(Πi(F )). Hene Xη⊥
i
(t)(F ) = Xt(Πi(F )), and the

above with (40) again gives:

Πi
(

µ−V (F )
)

(p) = S[⊥i,⊤i]

(

µ(Xη⊥
i
(t)(F ))(p)

∣

∣ t ∈ Vi
)

=

S[⊥i,⊤i]

(

µ
(

Xt(Πi(F ))
)

(p)
∣

∣ t ∈ Vi
)

= µ−Vi
(

Πi(F )
)

(p) .

As the equality holds for any p ∈ E, we dedue the identity Πi
(

µ−V (F )
)

= µ−Vi
(

Πi(F )
)

. Now for a binary

image transformation ψ, we apply (42), so

Πi
(

ψ+V (F )
)

= Πi
(

⊥+ [χψ]−V (F )
)

=

⊥i +Πi
(

[χψ]−V (F )
)

= ⊥i + [χψ]−Vi (F ) = ψ+Vi
(

Πi(F )
)

.

In Subsetion 5.1 we onsidered also the sub-standard ase, where V is a omplete sublattie of [⊥,⊤]. The

following result shows that for �at operators, the sub-standard ase redues to the standard ase.
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Proposition 31. Let W be a omplete sublattie of V and let F : E → W . For every binary image mea-

surement µ we have µ−W (F ) = µ−V (F ), and for every binary image transformation ψ we have ψ+W (F ) =

ψ+V (F ).

Proof. We refer to Lemma 3 of [16℄: for any v ∈ V , let s(v, F ) = inf{F (p) | p ∈ Xv(F )}; then s(v, F ) ≥ v

and Xs(v,F )(F ) = Xv(F ). Sine all F (p) ∈ W , we dedue that s(v, F ) ∈ W . Let ϕ be the losure operator

orresponding to the losure range W , in other words, for any v ∈ V , ϕ(v) is the least w ∈ W suh that

w ≥ v. Then v ≤ ϕ(v) ≤ s(v, F ), hene Xv(F ) ⊇ Xϕ(v)(F ) ⊇ Xs(v,F )(F ) = Xv(F ), thus Xϕ(v)(F ) = Xv(F ).

Let p ∈ E. We apply Proposition 13 with P = V , M = W and f : W → Z : w 7→ µ(Xw(F ))(p). Then

fϕ is the map V → Z : v 7→ µ(Xϕ(v)(F ))(p). As Xϕ(v)(F ) = Xv(F ), we have fϕ : v 7→ µ(Xv(F ))(p). As the

summation S is additive on V , it will be additive on W , f has the same bounded variation as fϕ, and we

get S(fϕ) = S(f), that is, S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

= S
(

µ(Xw(F ))(p)
∣

∣ w ∈ W
)

. By (41), this means that

µ−W (F )(p) = µ−V (F )(p).

Finally, (42) gives ψ+W (F )(p) = ⊥+ (χψ)−W (F )(p) = ⊥+ (χψ)−V (F )(p) = ψ+V (F )(p).

A partiular ase is W = {⊥,⊤}. Images E → {⊥,⊤} are binary, they orrespond to subsets of E. For any

A ∈ P(E), de�ne B⊤
⊥ [A] : E → W by B⊤

⊥ [A] = ⊥+ (⊤−⊥)χA, in other words:

∀ p ∈ E, B⊤
⊥ [A](p) =

{

⊤ if p ∈ A ,

⊥ if p /∈ A .
(46)

Then for every F : E → {⊥,⊤}, we have F = B⊤
⊥ [A] for A = F−1(⊤) = X⊤(F ). Now a �at operator will

behave on B⊤
⊥ [A] as the orresponding set operator on A. The following result generalises Proposition 15 of

[16℄:

Corollary 32. Let A ∈ P(E). For any binary image measurement µ we have µ−V (B⊤
⊥ [A]) = (⊤− ⊥)µ(A).

For any binary image transformation ψ we have ψ+V (B⊤
⊥ [A]) = B⊤

⊥ [ψ(A)].

Proof. The summation S{⊥,⊤}(f) of a funtion f : {⊥,⊤} → R redues to (⊤ −⊥)f(⊤). Thus, by (40) and

Proposition 31, we get:

µ−V (B⊤
⊥ [A]) = µ−{⊥,⊤}(B⊤

⊥ [A]) = S{⊥,⊤}

(

µ(Xv(B
⊤
⊥ [A]))(p)

∣

∣ v ∈ {⊥,⊤}
)

=

(⊤−⊥)µ(X⊤(B⊤
⊥ [A])) = (⊤−⊥)µ(A) .

By (42), we derive with µ = χψ:

ψ+V (B⊤
⊥ [A])(p) = ⊥+ (χψ)−V (B⊤

⊥ [A])(p) = ⊥+ (⊤−⊥)χψ(A) = B⊤
⊥ [ψ(A)] .

A speial ase is given by ⊥ = 0 and ⊤ = 1. Here B1
0 [A] = χA, see (6), and we get µ−{0,1}(χA) = µ(A) and

ψ+{0,1}(χA) = χψ(A). The following generalises Corollary 29 of [16℄:

Corollary 33. For any two binary image measurements µ1, µ2 we have µ1 ≤ µ2 ⇔ µ−V1 ≤ µ−V2 . For any

two binary image transformation ψ1, ψ2 we have ψ1 ≤ ψ2 ⇔ ψ+V
1 ≤ ψ+V

2 . In partiular, the two maps

µ 7→ µ−V and ψ 7→ ψ+V
are injetive.

Proof. Sine summation is inreasing on BV funtions, we have µ1 ≤ µ2 ⇒ µ−V1 ≤ µ−V2 and ψ1 ≤ ψ2 ⇒

ψ+V
1 ≤ ψ+V

2 . Conversely, if µ−V1 ≤ µ−V2 , then by Corollary 32 we get for any A ∈ P(E): (⊤ − ⊥)µ1(A) =

µ−V1 (B⊤
⊥ [A]) ≤ µ−V2 (B⊤

⊥ [A]) = (⊤−⊥)µ2(A), that is, µ1(A) ≤ µ2(A); hene µ1 ≤ µ2. Similarly ψ+V
1 ≤ ψ+V

2

gives B⊤
⊥ [ψ1(A)] = ψ+V

1 (B⊤
⊥ [A]) ≤ ψ+V

2 (B⊤
⊥ [A]) = B⊤

⊥ [ψ2(A)], so by (46) we get ψ1(A) ⊆ ψ2(A); hene

ψ1 ≤ ψ2. Now

µ−V1 = µ−V2 ⇐⇒
(

µ−V1 ≤ µ−V2 and µ−V2 ≤ µ−V1

)
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⇐⇒
(

µ1 ≤ µ2 and µ2 ≤ µ1
)

⇐⇒ µ1 = µ2 .

We show similarly that ψ+V
1 = ψ+V

2 ⇔ ψ1 = ψ2. Thus the two maps µ 7→ µ−V and ψ 7→ ψ+V
are

injetive.

It is known that for images with values in a �nite hain, usual �at operators (median �lter, dilation, erosion,

opening or losing by a non-empty struturing element) do not reate new values in an image. This is not

true for images with values in an in�nite hain or a produt of hains. The topi of image values generated by

inreasing �at operators was analysed preisely in [16℄, see its Proposition 13 and Theorem 19, then its Sub-

setion 3.3 for more details. We summarise these results. Let ψ be an inreasing binary image transformation;

then for any F : E → V and p ∈ E:

1. ψV (F )(p) is a supremum of in�ma of F (q) (q ∈ E).

2. If p ∈ ψ(∅), then in item 1 the empty in�mum appears as an argument to the supremum, and ψV (F )(p) =

⊤.

3. If p ∈ E \ ψ(E), then in item 1 the supremum is empty, and ψV (F )(p) = ⊥.

4. If p ∈ ψ(E) \ ψ(∅), then in item 1 the supremum and all in�ma are non-empty, and F (p) lies between
∧

{F (q) | q ∈ E} and

∨

{F (q) | q ∈ E}.

Thus, from item 1, ψV (F )(p) belongs to the omplete sublattie of V generated by {F (q) | q ∈ E}. More

spei�ally, following item 4, when p ∈ ψ(E) \ ψ(∅), ψV (F )(p) belongs to the least subset of V ontaining

{F (q) | q ∈ E} and losed under non-empty supremum and in�mum; this set is a omplete lattie, however

its least and greatest elements an di�er from ⊥ and ⊤.

For operators that are not inreasing, the �at extension will involve not only lattie-theoretial operations,

but also arithmetial ones, see for instane Example 22. We obtain the following result for binary image

measurements:

Proposition 34. Let W be a non-empty subset of V , losed under non-empty (numerial) supremum and

in�mum, with least element ⊥0 = infW and greatest element ⊤0 = supW . Then S is additive on W , and for

any F : E → W and for any binary image measurement µ, we have

µ−V (F ) = (⊥0 −⊥)µ(E) + µ−W (F ) + (⊤− ⊤0)µ(∅) . (47)

Proof. SineW is a omplete sublattie of [⊥0,⊤0], S is additive onW by Proposition 13. LetX = W∪{⊥,⊤}.

Then X is the omplete sublattie of V generated by W , and by Proposition 31, µ−X = µ−V . Clearly ⊥0
is

omparable to every other element of X : ⊥ ≤ ⊥0 ≤ ⊤ and ⊥0 ≤ x for any x ∈W ; similarly ⊤0 is omparable

to every other element of X . Let f : X → R; if ⊥ < ⊥0
, Lemma 15 gives S[⊥,⊤](f) = S[⊥,⊥0](f) +

S[⊥0,⊤](f), while this equality obviously holds if ⊥ = ⊥0
; similarly, S[⊥0,⊤](f) = S[⊥0,⊤0](f) + S[⊤0,⊤](f);

thus S[⊥,⊤](f) = S[⊥,⊥0](f) + S[⊥0,⊤0](f) + S[⊤0,⊤](f). Applying this to the map v 7→ µ(Xv(F ))(p), with

(40) we get

µ−X (F )(p) = S[⊥,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊥,⊥0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

+S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

+ S[⊤0,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

.

Sine F has values in the interval [⊥0,⊤0], we get Xv(F ) = E for v ∈ [⊥,⊥0] and Xv(F ) = ∅ for v > ⊤0.

Thus

S[⊥,⊥0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊥,⊥0]

(

µ(E)(p)
∣

∣ v ∈ X
)

= (⊥0 −⊥)µ(E)(p)

and

S[⊤0,⊤]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

= S[⊤0,⊤]

(

µ(∅)(p)
∣

∣ v ∈ X
)

= (⊤ −⊤0)µ(∅)(p) .

On the other hand, (40) gives

S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈ X
)

=

S[⊥0,⊤0]

(

µ(Xv(F ))(p)
∣

∣ v ∈W
)

= µ−W (F )(p) .
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Combining together the above equalities, we get

µ−X (F )(p) = (⊥0 −⊥)µ(E)(p) + µ−W (F )(p) + (⊤− ⊤0)µ(∅)(p) ,

and this for any p ∈ E. Sine µ−X = µ−V , (47) holds.

As we notied in [16℄, when E = R
n
or Z

n
and the inreasing binary image transformation ψ is translation-

invariant, ψ(E) and ψ(∅)must be equal to E or ∅; thus either (a) ψ(E) = E and ψ(∅) = ∅, (b) ψ is the onstant

E map, or () ψ is the onstant ∅ map. Hene the two joint onditions ψ(E) = E and ψ(∅) = ∅ appear as a

standard requirement for inreasing binary image transformations. Indeed, from item 4 above, they guarantee

that eah ψV (F )(p) will be a non-empty supremum of non-empty in�ma of values F (q) (q ∈ E). In partiular

ψV will preserve onstant funtions, and for a funtion F with values in an interval [a, b], ψV (F ) will have

values in that interval.

Let us now onsider the orresponding requirements for a binary image measurement µ, whih is not

neessarily inreasing. We remark that when E = R
n
or Z

n
and µ is translation-invariant, µ(E) and µ(∅) will

be onstant, but there is a priori no ordering between them. In view of (47), we will require µ(∅) = ∅, so that

values above ⊤0 will not in�uene the result. If we restrit ourselves to the no-shift �at extension, then we

will require µ(E) = ∅, so that µ−V oinides with µ−W .

On the other hand, for a binary image transformation ψ, if we onsider the shifted �at extension ψ+V

rather than the no-shift �at extension (χψ)−V , preserving an interval of image values requires both ψ(E) = E

and ψ(∅) = ∅:

Proposition 35. For any binary image transformation ψ, the following three onditions are equivalent:

1. ψ(E) = E and ψ(∅) = ∅.

2. Given a, b ∈ V with a ≤ b, for any F : E → V suh that a ≤ F (p) ≤ b for all p ∈ E, we get

a ≤ ψ+V (F )(p) ≤ b for all p ∈ E

3. ψ+V
preserves all onstant funtions: for any a ∈ V , let Ca : E → V : p 7→ a; then ψ+V (Ca) = Ca.

Proof. 1 implies 2: Suppose that ψ(E) = E and ψ(∅) = ∅. We apply Proposition 34 with W = [a, b].

Here (47) gives (χψ)−V (F ) = (a − ⊥)χE + (χψ)−W (F ) + (⊤ − b)χ∅, where χE is onstant 1 and χ∅ is

onstant 0, in other words for any p ∈ E we have (χψ)−V (F )(p) = (a − ⊥) + (χψ)−W (F )(p), so (42) gives

ψ+V (F )(p) = ⊥ + (χψ)−V (F )(p) = a + (χψ)−W (F )(p). Now (41) gives 0 ≤ (χψ)−W (F )(p) ≤ b − a, so

a ≤ ψ+V (F )(p) ≤ b.

2 implies 3 by taking b = a.

3 implies 1: Take any a ∈ V , and let W = {a}; then χψ−W (Ca) is onstant 0, sine we make a summation

over the interval [a, a]. Then (47) with F = Ca gives (χψ)−V (Ca) = (a−⊥)χψ(E)+ 0+ (⊤− a)χψ(∅), so for

any p ∈ E, (42) and the requirement that ψ+V (Ca) = Ca give

a = Ca(p) = ψ+V (Ca)(p) = ⊥+ (χψ)−V (Ca)(p) =

⊥+ (a− ⊥)χψ(E)(p) + (⊤− a)χψ(∅)(p) .

Applying this equality to a = ⊥ gives ⊥ = ⊥ + (⊤ − ⊥)χψ(∅)(p), so χψ(∅)(p) = 0 for all p ∈ E, that is,

ψ(∅) = ∅. Applying it to a = ⊤ gives ⊤ = ⊥ + (⊤ − ⊥)χψ(E)(p), so χψ(E)(p) = 1 for all p ∈ E, that is,

ψ(E) = E.

Let E = R
n
or Z

n
, and onsider a translation-invariant binary image transformation ψ of bounded variation;

then it will be of uniform bounded variation. Thus, Proposition 29 will give by (45) a deomposition χψ =
∑n
i=1(−1)i−1χψi, where ψ1, . . . , ψn are inreasing a binary image transformations and ψ1 > · · · > ψn. Now

ψ1, . . . , ψn will also be translation-invariant, so we have ψi(E) = E unless ψi is onstant ∅, and ψi(∅) = ∅

unless ψi is onstantE. Sine the onstant ∅map is redundant in suh a deomposition, we will have ψi(E) = E

for i = 1, . . . , n. Hene ψ(E) = E if n is odd, and ψ(E) = ∅ if n is even. If ψi(∅) = ∅ for all i, then ψ(∅) = ∅. If

ψi(∅) = E for some i, then ψi is the onstant E map, and as it is the greatest possible map, we neessarily have

i = 1, and ψi(∅) = ∅ for i ≥ 2, so ψ(∅) = E. Then ψ involves a omplementation, we have ψ(X) = θ(X)c for
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all X ∈ P(E), where θ is the translation-invariant binary image transformation given by χθ =
∑n
i=2(−1)iχψi,

with θ(∅) = ∅.

Extrapolating this disussion to the ase where we do not have translation-invariane, for a binary image

transformation ψ of uniform bounded variation, we will suppose that both ψ(E) and ψ(∅) are equal to either

E or ∅. In the ase where ψ(∅) = E, we have then ψ(X) = θ(X)c for all X ∈ P(E), with θ(∅) = ∅ (and again

θ(E) will be either E or ∅); we get then (χψ)−V = (⊤−⊥)− (χθ)−V .

5.4 Flat zones and onneted operators

In an image F : E → V , a �at zone is a onneted subet of E on whih F is onstant, and whih is maximal

for the inlusion; in other words, it is a onneted omponent of F−1(v) for some v ∈ V . An operator Ψ

transforming images is said to be onneted if for every image F , eah �at zone of F is inluded in a �at zone

of Ψ(F ); equivalently, given any onneted subset C of E, if F is onstant on C, then Ψ(F ) will be onstant

on C. This de�nition depends on the de�nition of onnetivity hosen for subsets of E: we all �onneted

set� one belonging to a given onnetion [17, 21℄.

In Proposition 27 of [16℄, we showed that for an inreasing binary image transformationψ, if ψ is onneted,

then its �at extension ψV is onneted. We will generalise this result to non-inreasing operators, but we will

also analyse deeper the notion of �at zones and its relation to onnetions.

Reall [21℄ that a onnetion on P(E) is a a family C ⊆ P(E) that omprises the empty set and all

singletons (∅ ∈ C and for all p ∈ E, {p} ∈ C), suh that for any B ⊆ C suh that

⋂

B 6= ∅, we have
⋃

B ∈ C.

Elements of C are said to be onneted. For any X ∈ P(E), a onneted omponent of X aording to C is

any non-empty onneted subset of X , whih is maximal for inlusion: C ∈ C, ∅ 6= C ⊆ X , and ∀C′ ∈ C,

C ⊆ C′ ⊆ X ⇒ C′ = C. Then the onneted omponents of X form a partition of X [17℄. When it is

neessary to speify whih onnetion is used (for instane, if we ompare several onnetions), we will say a

C-onneted set and a C-onneted omponent.

One an derive a onnetion from another. A well-known example is the onnetion by dilation [21℄. Let

C be a onnetion on P(E), and let δ be an extensive dilation on P(E) suh that the dilation of a singleton is

onneted: ∀ p ∈ E, p ∈ δ({p}) ∈ C. For instane, when E = R
n
or E = Z

n
, δ is the dilation by a onneted

struturing element ontaining the origin: δ = δB , where o ∈ B ∈ C. Let Cδ = {X ∈ P(E) | δ(X) ∈ C}.

Then Cδ is a onnetion and C ⊆ Cδ. In pratie, the elements of Cδ are either C-onneted sets, or lusters

of C-onneted sets, see Figure 8. For any X ∈ P(E), eah Cδ-onneted omponent A of X orresponds

bijetively to a C-onneted omponent B of δ(X) by the two reiproal relations B = δ(A) and A = B ∩X .

Given a funtion F : E → A and a set X ⊆ E, we say that F is �at on X , and write fl(F,X), if there

is some a ∈ A suh that for all x ∈ X we have F (x) = a. We extend this notion from funtions E → A to

subsets of E, thanks to the harateristi funtion: given F ∈ P(E), F is �at on X i� χF is �at on X , where

χF is E → {0, 1}E ; in other words, either X ⊆ F , or X ⊆ E \ F .

Given two sets of image values A and B (not neessarily distint), and a map Ψ : AE → BE (transforming

F : E → A into Ψ(F ) : E → B), the �atness preservation set of Ψ is the set FP (Ψ) of all X ⊆ E suh that

for any F : E → A, if F is �at on X , then Ψ(F ) is �at on X :

FP (Ψ) =
{

X ∈ P(E) | ∀F ∈ AE , fl(F,X) ⇒ fl(Ψ(F ),X)
}

. (48)

By the above identi�ation of a set with its harateristi funtion, for a binary image measurement µ : P(E) →

KE
, FP (µ) = FP (µχ−1), where χ−1 : {0, 1}E → P(E) is the inverse of the harateristi funtion, mapping

a binary funtion onto its support, so µχ−1
is {0, 1}E → KE

. Similarly, for a binary image transformation

ψ : P(E) → P(E), FP (ψ) = FP (χψχ−1), where χψχ−1
is {0, 1}E → {0, 1}E.

Now the usual notion that an operator Ψ is onneted with respet to a given onnetion C on P(E),

simply means that C ⊆ FP (Ψ). That suh a notion has been put forward in relation to onnetions is justi�ed

by the following result:

Proposition 36. For Ψ : AE → BE, FP (Ψ) is a onnetion.
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Proof. Let the set X be empty or a singleton. For any funtion G de�ned on E, trivially fl(G,X); thus for any

F ∈ AE , fl(F,X) and fl(Ψ(F ),X) both hold true; hene X ∈ FP (Ψ). Thus the empty set and all singletons

belong to FP (Ψ).

Let B ⊆ FP (Ψ) suh that

⋂

B 6= ∅; if B is empty, then

⋃

B = ∅ ∈ FP (Ψ). We assume thus that B is

non-empty; set C =
⋃

B and hoose p ∈
⋂

B. Suppose that for some F : E → A we have fl(F, C); then for

any B ∈ B, we have B ⊆ C, so fl(F,B); as B ∈ FP (Ψ), we dedue that fl(Ψ(F ), B). Now for any x ∈ C,

there is some B ∈ B suh that x ∈ B, and as p ∈ B and fl(Ψ(F ), B), we get Ψ(F )(x) = Ψ(F )(p); thus Ψ(F )

is �at on C. We have thus shown that fl(F, C) ⇒ fl(Ψ(F ), C); therefore
⋃

B = C ∈ FP (Ψ).

This result also indiates that we are not bound to a partiular hoie of onnetion on sets: when one says

that an operator Ψ is onneted with respet to a given onnetion C, this simply means that C ⊆ FP (Ψ);

however, the onnetion FP (ψ) an be greater than C, whih means then that ψ an be onneted with respet

to a wider onnetivity. We illustrate this with the onnetion by dilation:

B

14.5

7

(a)

(b) (c) (d)
10

Fig. 8: (a) The onneted struturing element B entered about the origin (shown as a blak dot); we take δ = δB . (b)

The set X, shown in blak. () The dilation δ(X), shown in grey and surrounding X in blak, has 3 C-onneted ompo-

nents; thus, in (b) we delineate with dashed lines the 3 orresponding Cδ
-onneted omponents of C; they are lusters

of C-onneted omponents. Next to eah C-onneted omponent of δ(X), we give the ration of its area to that of B.

(d) We apply to δ(X) the area opening with threshold equal to 9 times the area of B, whih eliminates one C-onneted

omponent of δ(X); the trae on X gives ψ(X), where one Cδ
-onneted omponent has been eliminated.

Example 37. Take a onnetion C on P(E) and a dilation δ on P(E) suh that ∀ p ∈ E, p ∈ δ({p}) ⊆ C.

Let γn be the area opening (w.r.t. C) with area threshold n: for any X ∈ P(E), γn(X) is the union of all

C-onneted omponents of X whose measure (area or volume) is at least n. Given A ∈ Cδ, let us say that

A is large if δ(A) has measure at least n, and small otherwise. Consider the operator ψ on P(E) given by

ψ(X) = X ∩ γn(δ(X)). The behaviour of ψ is illustrated in Figure 8: it will remove all small Cδ-onneted

omponents of a set. Then ψ is a onneted operator for the onnetion Cδ, but FP (ψ) is a larger onnetion.

Let D be the set of all A ∈ P(E) suh that either A ∈ Cδ, or all Cδ-onneted omponents of A are large.

Then D is a onnetion, and we have Cδ ⊂ D ⊆ FP (ψ). We onjeture that for E = Z
n
, C the graph

onnetivity given by one of the usual translation-invariant adjaenies, and δ = δB for o ∈ B ∈ C, we must

have FP (ψ) = D.

The following generalises Proposition 27 of [16℄, and its proof is similar:

Proposition 38. For any binary image measurement µ : P(E) → KE
, we have FP (µ) ⊆ FP (µ−V ). For

any binary image transformation ψ : P(E) → P(E), we have FP (ψ) ⊆ FP (ψ+V ).

Proof. Let C ∈ FP (µ); take any F : E → V suh that fl(F, C); thus there is some a ∈ V suh that

F (x) = a for all x ∈ C. For any v ∈ V , from (2) we have either a ≥ v and C ⊆ Xv(F ), or a 6≥ v and

C ⊆ E \ Xv(F ); in other words Xv(F ) is �at on C; as C ∈ FP (µ), fl(Xv(F ), C) implies fl(µ(Xv(F )), C),
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so the value of µ(Xv(F ))(p) is the same for all p ∈ C. Thus the summation S
(

µ(Xv(F ))(p)
∣

∣ v ∈ V
)

has

the same value for all p ∈ C, and by (40), this means that µ−V (F ) is �at on C. We have thus shown that

fl(F, C) ⇒ fl(µ−V (F ), C), so C ∈ FP (µ−V ). Therefore FP (µ) ⊆ FP (µ−V ).

Let C ∈ FP (ψ) = FP (χψ); then the above with µ = χψ gives C ∈ FP ((χψ)−V ). Thus, for any

F : E → V suh that F is �at on C, (χψ)−V (F ) will be �at on C. Now adding the onstant ⊥ does not

hange the �atness, so by (42), ψ+V (F ) = ⊥+(χψ)−V (F ) will be �at on C. So fl(F, C) ⇒ fl(ψ+V (F ), C),

and C ∈ FP (ψ+V ). Therefore FP (ψ) ⊆ FP (ψ+V ).

An example of non-inreasing onneted �at operator is the white top-hat by reonstrution. Given a on-

neted struturing element B, the opening γrB by B by reonstrution assoiates to a set X the geodesial

reonstrution from the marker γB(X) in the mask X , in other words it will keep all onneted omponents

of X whih ontain a translate of B. The set di�erene id\ γrB will selet in X all onneted omponents that

are too narrow to ontain a translate of B. Its �at extension
[

χ(id \ γrB)
]−V

= id
+V − (γrB)

+V
extrats from

a grey-level image its bright regions that are narrow relatively to B.

Anti-extensive onneted operators have been analysed in the ontext of the max-tree [19℄. We onsider

images with grey-level values in an integer interval: V = {hmin, . . . , hmax} ⊂ Z. We assume that E ∈ C.

Given an image F : E → V , we onstrut a direted tree whose nodes are all onneted omponents of the

thresholdings Xh(F ) for all h ∈ V ; the root is E = Xhmin
(F ); given a onneted omponent A of Xh(F ) (we

say that A is at level h), the hildren nodes of A will be all onneted omponents of Xh+1(F ) (nodes at level

h + 1) inluded in A. We assoiate to node A at level h the set of points of A having value h, those with

higher values will be assoiated to its desendant nodes. If all points in A have value > h, then A is in fat a

onneted omponent of Xh+1(F ), it oinides with its hild node at level h+ 1, so we remove the node A at

level h, its parent node beomes thus the parent of A at level h+ 1.

An anti-extensive onneted operator on sets removes some onneted omponents of a set. Applied to a

thresholding Xh(F ), it will remove some of its onneted omponents, in other words some nodes of the max-

tree. There are then several methods to reonstrut the �ltered image from the pruned tree. The diret method

ats by threshold superposition; for an inreasing operator on sets, it gives thus the usual �at extension. When

the operator is not inreasing, there are two variants trying to give it a behaviour similar to the inreasing

ase: the min method will further remove all desendant nodes of a removed node, while the max method will

ounterat the removal of a node if one of its desendants is not removed.

In [23℄, a fourth method was introdued, the substrative one. It gives to a node the grey-level orrespond-

ing to the subtration of its level and that of its parent, then sums all these grey-levels. This orresponds to

our de�nition of the �at extension by threshold summation, and indeed equation (8) of [23℄ gives exatly the

�at operator ψ+
in the ase where ψ is an attribute thinning, that is, an idempotent anti-extensive onneted

operator that ats independently on eah onneted omponent of a set and removes those that do not satisfy

some riterion.

In [25℄, onneted operators have been extended from the spatial domain to the domain of the max-tree.

6 Conlusion and perspetives

The lassial theory of �at morphology [16℄ extends any inreasing operator on sets (or binary images) to an

inreasing �at operator on grey-level or multi-valued images (more preisely, funtions de�ned on sets and

with values in a omplete lattie). It relies on three steps: from a funtion F , build the stak of thresholdings,

Xv(F )(v∈V ), then apply the inreasing set operator ψ to all thresholdings Xv(F ), and �nally superpose the

resulting stak ψ(Xv(F ))(v∈V ) by using a lattie-theoretial supremum.

We have presented an alternative approah to �at morphology, whih an be applied to a wider family

of operators on sets, in partiular to non-inreasing ones, suh as the hit-or-miss transform, the top-hat and

the Beuher gradient. Here the last step of superposition is replaed by a summation, an idea �rst proposed

in [5, 24℄ in the ase of bounded integer grey-levels. We have thus elaborated an extensive theory of funtion

summation in a poset [18℄, whih requires the funtions to be of bounded variation. It an be applied to
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funtions with values in a losed interval in R
m

or Z
m
, in other words to grey-level or multivalued images,

with either disrete or analog values. In the ase of inreasing set operators, the new de�nition of �at extension

gives the same result as the traditional one.

While lassial �at morphology gives a �at extension of inreasing operators P(E) → P(E) (or {0, 1}E →

{0, 1}E), our theory gives the �at extension of funtions P(E) → KE
(or {0, 1}E → KE

) for any �nite interval

K inluded in Z, so it an be applied to funtions with non-binary values, suh as the morphologial Laplaian.

Now, sine the summation is a linear operation, given a funtion P(E) → KE
whih is a linear ombination

of inreasing funtions P(E) → {0, 1}E, its �at extension will be the same linear ombination of the �at

extensions of the latter funtions. For instane, the �at extension of the set di�erene between an extensive

dilation and an anti-extensive erosion on sets will be the arithmetial subtration of the orresponding �at

dilation and erosion on funtions.

There should be no ompliation in relaxing the ondition K ⊂ Z to K ⊂ ( 1d )Z for some d > 1. We

an thus apply our theory to linear ombinations with rational oe�ients of morphologial operators on

binary images. There have been several works on image �lters built by ombining linear and morphologial

operations, see for instane [2, 3, 11℄, and they ould thus be integrated into our framework.

For instane, in the disrete spae Z
n
, the onvolution by a �nite mask M is a linear ombination of

translations: F ∗M = supp∈supp(M)M(p) · Tp(F ), where supp(M) is the support of the mask M , and for

p ∈ supp(M),M(p) is the mask value at p and Tp is the translation by p. Sine the translation is an inreasing

operator on sets, so a �at operator on funtions, onvolution by the �nite mask M is a linear ombination of

�at morphologial operators, and it enters into our framework; in fat, the onvolution byM for grey-level or

multivalued funtions is the �at extension of that same onvolution for binary images.

We have analysed some general properties of �at operators, suh as ompatibility with projetion on one

value in the ase of multivalued images, and preservation of intervals of values. We have also been able to

show that the �at extension of a onneted operator on sets is a onneted operator on funtions.

There are other properties that were established in [16℄ for the �at extension of inreasing set operators, in

partiular its relation with ombinations of operators (omposition, union and intersetion). These properties

do not extend fully to the general ase, but we an obtain weaker properties. Also the notion of duality

beomes rather omplex in the ase of non-inreasing operators. These problems an be analysed and solved

through the use of ompliated mathematial tehniques, and they will be dealt with in our seond paper,

where we will also analyse linear operators and �hybrid �lters� ombining linear and morphologial operators.
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