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ABSTRACT
The congestion control mechanism has been responsible for maintaining stability as the Internet
scaled up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity
over the last three decades. In this book, we develop a coherent theory of congestion control
from the ground up to help understand and design these algorithms. We model network traf-
fic as fluids that flow from sources to destinations and model congestion control algorithms as
feedback dynamical systems. We show that the model is well defined. We characterize its equi-
librium points and prove their stability. We will use several real protocols for illustration but the
emphasis will be on various mathematical techniques for algorithm analysis.

Specifically we are interested in four questions:
1. How are congestion control algorithms modelled?
2. Are the models well defined?
3. How are the equilibrium points of a congestion control model characterized?
4. How are the stability of these equilibrium points analyzed?

For each topic, we first present analytical tools, from convex optimization, to control and dy-
namical systems, Lyapunov and Nyquist stability theorems, and to projection and contraction
theorems. We then apply these basic tools to congestion control algorithms and rigorously prove
their equilibrium and stability properties. A notable feature of this book is the careful treatment
of projected dynamics that introduces discontinuity in our differential equations.

Even though our development is carried out in the context of congestion control, the set
of system theoretic tools employed and the process of understanding a physical system, building
mathematical models, and analyzing these models for insights have a much wider applicability
than to congestion control.

KEYWORDS
communication networks, congestion control, projected dynamics, convex opti-
mization, network utility maximization, Lyapunov stability, passivity theorems,
gradient projection algorithm, contraction mapping, Nyquist stability
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Preface
The congestion control mechanism has been responsible for maintaining stability as the Internet
scales up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity
over the last three decades. Our primary goal is to develop a coherent theory of Internet con-
gestion control from the ground up to help understand and design the equilibrium and stability
properties of large-scale networks under end-to-end control.

In addition, we have two broader purposes in mind. First we wish to introduce a set of
system theoretic tools and illustrate their application to concrete problems. Second we wish to
demonstrate in depth the entire process of understanding a physical system, building mathe-
matical models of the system, analyzing the models, exploring the practical implications of the
analysis, and using the insights to improve a design. Even though our development is carried
out in the context of congestion control, these basic analytical tools and the research process are
much more broadly applicable.

The Internet, called ARPANet at the time, was born in 1969 with four nodes. The Trans-
mission Control Protocol (TCP) was published by Vinton Cert and Robert Kahn in 1974 [14],
split into TCP/IP (Transmission Control Protocol/Internet Protocol) in 1978, and deployed as
a standard on the ARPANet by 1983. An Internet congestion collapse was detected in Octo-
ber 1986 on a 32-kilobits-per-second (kbps) link between the University of California Berkeley
campus and the Lawrence Berkeley National Laboratory that is 400 yards away, during which
the throughput dropped by a factor of almost 1,000 to 40 bits-per-second (bps). Two years later
Van Jacobson implemented and published the congestion control algorithm in the Tahoe ver-
sion of TCP [26] based on an idea of Raj Jain, K.K. Ramakrishnan, and Dah-Ming Chiu [27].
Before Tahoe, there were mechanisms in TCP to prevent senders from overwhelming receivers,
but no effective mechanism existed to prevent the senders from overwhelming the network.
This was not an issue because there were few hosts, until the mid-1980s. By November 1986
the number of hosts was estimated to have grown to 5,089 [1], but most of the backbone links
have remained 50–56 bps since the beginning of the ARPANet. Jacobson’s scheme adapts send-
ing rates to the congestion level in the network, thus preventing the senders from overwhelming
the network.

Jacobson anticipated even in his original paper [26] the network environments in which
his algorithm will perform poorly: “... TCP spans a range from 800 Mbps [megabits per second]
Cray channels to 1200 bps packet radio links.” The algorithm worked very well over a network
with relatively low transmission capacity, small delay, and few random packet losses. This was
mostly the case in the 1990s, but as the network speed underwent rapid upgrades (see Figure
1), as Internet exploded onto the global scene beyond research and education, and as wireless
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Figure 1: Highest link speed of U.S. Department of Energy’s Energy Sciences Network (ESnet)
from 1987 (56 kbps) to 2012 (100 Gbps) [2].

infrastructure was integrated with and mobile services proliferated on the Internet, the strain on
the original design started to show. This motivated a flurry of research activities on TCP conges-
tion control in the 1990s. A mathematical understanding of Internet congestion control started
in the late 1990s with Frank Kelly’s work on network utility maximization [28]. An intensive
effort ensued and lasted for a decade to develop a theory to reverse engineer existing algorithms
and understand structural properties of large-scale networks under end-to-end congestion con-
trol, systematically design new algorithms based on analytical insights, and deploy some of these
innovations in the field.

This book is a personal account of that effort, focusing on the theory development.
We start in Chapter 1 with a summary of classical Internet congestion control protocols.

We explain how to model them as dynamical systems using ordinary differential equations:

Px D f .x.t/; q.t//; q.t/ D RTp.t/

Pp D g.y.t/; p.t//; y.t/ D Rx.t/

and its variants, where x.t/; q.t/ 2 RN , p.t/; y.t/ 2 RL, and R 2 f0; 1gL�N for a network with
N nodes andL links. The graph structure is described by the routing matrixR. The decentralized
nature of the system manifests itself in the structure of f and g:

Pxi D fi .xi .t/; qi .t//; qi .t/ D
X
l

Rlipl.t/

Ppl D gl.yl.t/; pl.t//; yl.t/ D
X
i

Rlixi .t/
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i.e., each node i (link l) updates its state xi .t/ (pl.t/) based only on local variables .xi .t/; qi .t//
.yl.t/; pl.t//. We prove the existence and uniqueness of solution trajectories to these equations.
This ensures that the models are well defined. This class of network models is more general than
congestion control and therefore the techniques developed here may be of wider applicability.

We prove in Chapter 2 that the equilibrium point of an arbitrary network under con-
gestion control is the unique optimal solution of a simple convex optimization problem, called
network utility maximization. Hence we can interpret congestion control as a distributed algo-
rithm carried out by traffic sources and network resources to maximize utility over the Internet
in real time. We explain several implications of this insight.

We present in Chapters 3–5 three different methods to study the global asymptotic sta-
bility of the equilibrium point, assuming there is no feedback delay. These methods are based
on Lyapunov stability theorems, passivity theorems, gradient descent and contraction mapping
theorems. The Lyapunov method is the basic tool for proving stability of general nonlinear sys-
tems. The passivity method allows one to analyze the stability of an interconnection of multiple
dynamical systems in terms of the passivity of the component systems in open loop. The last
method treats congestion control as a gradient algorithm for solving the dual of the network
utility maximization.

Finally we describe in Chapter 6 the Nyquist stability method for analyzing local stability
around the equilibrium point in the presence of feedback delay.

There is a large amount of literature on congestion control and we have not attempted to
provide a survey. Pointers are provided at the end of each chapter only to some papers that are
directly related to or extend materials covered in that chapter. We present proofs for some, but
not all, of the classical results to illustrate techniques or concepts that we find particularly useful.

Many applications, including congestion control, can be modeled by a system of nonlinear
differential equations of the form:

Px D .f .x.t//Cx.t/

where the projection operation .�/C
.�/

on the right-hand side ensures that the state variable x.t/
remains nonnegative. For example, x.t/may represent the sending rates of traffic sources or the
prices of an economy. The projection introduces discontinuity to the vector field, even when f
itself is continuous, and complicates analysis. Analytical models often ignore projection even
though nonnegative dynamics is prevalent in reality. A notable feature of this book is the care-
ful treatment of the projected dynamics. In particular we include detailed proofs that extend
standard results on the existence, uniqueness, equilibrium, and stability properties of smooth
unprojected systems to discontinuous projected systems. Some of the stability proofs for con-
gestion control algorithms modeled by projected dynamics in Chapters 3 and 4 are new. As we
will see, projection mostly preserves these properties.

Steven H. Low
Pasadena, CA, June 2017
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Notations
We collect some of the notational conventions in this book.

Let Rn, n � 1, be the set of n-dimensional real vectors, RnC the set of n-dimensional
nonnegative real vectors, and Rn�m the set of n �m real matrices. If x is a vector or matrix then
xT denotes its transpose. By default a vector x is taken to be a column vector and can be specified
as either

x D

264x1:::
xn

375 or x D .x1; : : : ; xn/ or x D .xi ; i D 1; : : : ; n/:

Inequalities are taken componentwise, i.e., x � 0 (x > 0) means xi � 0 (xi > 0) for i D 1; : : : ; n.
If xi 2 Rni , i D 1; : : : ; k, are defined then, unless otherwise specified, x denotes the vector
x WD .xi ; i D 1; : : : ; k/ with dimension n WD

P
i ni . Conversely if a vector x is defined then

xi denotes its i th component in Rni . Similarly for functions fi W Rki ! Rmi , i D 1; : : : ; n, and
f WD .fi ; i D 1; : : : ; n/ W RK ! RM where K WD

P
i ki andM WD

P
i mi .

For a scalar function f W Rn ! R, @f
@x

is the row vector and rf .x/ is the column vector,
both with components @f

@xi
. For a vector function f W Rn ! Rn, @f

@x
is the n � n Jacobian matrix

defined by �
@f

@x

�
ij

WD
@fi

@xj
:

Given a set of utility functions Ui .xi / W R ! R, i D 1; : : : ; N , U 0
i .xi / denote their derivatives.

We sometimes use U W RN ! R to denote the sum U.x/ WD
P
i Ui .xi /. Since U is separable in

xi we use U 0.x/ to denote the vector U 0.x/ WD .U 0
i .xi /; i D 1; : : : ; N /.

For a scalar a 2 R, .a/C WD maxfa; 0g; for a vector a, .a/C is defined componentwise, i.e.,

.a/C WD
�
Œai �

C; 8i
�
:

For scalars a; b 2 R

.a/C
b

WD

�
a if a > 0 or b > 0
0 otherwise:

If a; b 2 Rn are vectors of the same dimension then .a/C
b

is defined componentwise, i.e.,�
.a/C

b

�
i

WD .ai /
C

bi
8i:



xx NOTATIONS

We use k � k to denote an arbitrary norm and kxk2 WD

qP
i x

2
i the Euclidean norm.

Bı.x
�/ WD fxjkx � x�k � ıg is a closed ball around x� in Rn unless otherwise specified. A � B

means A is a subset of B and A � B means A is a strict subset of B . Given ai ; i D 1; : : : ; n,
diag.ai ; i D 1; : : : ; n/ denotes the diagonal matrix with ai as its i th diagonal entry.
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