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Abstract

A Generative Adversarial Network (GAN) was used to investigate the statistics and properties of voids in a ΛCDM
universe. The total number of voids and the distribution of void sizes is similar in both sets of images and, within
the formal error bars, the mean void properties are consistent with each other. However, the generated images yield
somewhat fewer small voids than do the simulated images. In addition, the generated images yield far fewer voids with
central density contrast ∼ −1. Because the generated images yield fewer of the emptiest voids, the distribution of the
mean interior density contrast is systematically higher for the generated voids than it is for the simulated voids. The
mean radial underdensity profiles of the largest voids are similar in both sets of images, but systematic differences are
apparent. On small scales (r < 0.5rv), the underdensity profiles of the voids in the generated images exceed those of
the voids in the simulated images. On large scales (r > 0.5rv), the underdensity profiles of the voids in the simulated
images exceed those of the voids in the generated images. The discrepancies between the void properties in the two
sets of images are attributable to the GAN struggling to capture absolute patterns in the data. In particular, the GAN
produces too few pixels with density contrasts ∼ −1 and too many pixels with density contrasts in the range ∼ −0.88
to ∼ −0.63.
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1. Introduction

Galaxies are distributed within an interconnected, large-
scale network of walls and filaments that stretch for hun-
dreds of megaparsecs. Between these structures lie vast,
underdense regions of space known as voids. Voids can
reach up to 100h−1Mpc in diameter (see, e.g., Giovanelli
and Haynes 1991 and references therein), and they have
the potential to serve as excellent laboratories for testing
the popular Λ Cold Dark Matter (ΛCDM) model of struc-
ture formation. Due to their underdense nature, voids are
dominated by dark energy and they are only weakly influ-
enced by the non-linear effects of gravity (see, e.g., Gold-
berg and Vogeley 2004). Because of this, the shapes and
distributions of voids provide tests of modified theories of
gravity, as well as constraints on the dark energy equa-
tion of state, inflationary models, the sum of the neutrino
masses, and the expansion rate and geometry of the uni-
verse (see, e.g., Li et al. 2012, Sutter et al. 2012, Clampitt
et al. 2013, Cai et al. 2015, Mao et al. 2017, Falck et al.
2018, Sahlén 2019). Furthermore, the physical properties
of void galaxies provide critical insight into the history of
galaxy formation and evolution (see, e.g., Hoyle et al. 2005,
Kreckel et al. 2012, Douglass and Vogeley 2017, Tavasoli
2021) .
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The total number of voids in existing void catalogs
ranges from ∼ 102 (e.g., Hoyle and Vogeley 2004, Sánchez
et al. 2017) to ∼ 103 to ∼ 6 × 103 (e.g., Mao et al. 2017,
Aubert et al. 2020, Hamaus et al. 2017) Near-future sur-
veys, such as those that will be carried out by the Vera
C. Rubin Observatory (The LSST Dark Energy Science
Collaboration et al. 2018), the Nancy Grace Roman tele-
scope (Spergel et al. 2015), the Euclid satellite (Laureijs
et al. 2011), the SPHEREx mission (Doré et al. 2018),
the DESI experiment (DESI Collaboration et al. 2016),
and the Prime Focus Spectrograph (Tamura et al. 2016)
on the Subaru telescope, are expected to each yield void
catalogs containing at least ∼ 105 voids. This dramatic
increase in data should lead to significant improvements
in our understanding of the properties of voids and void
galaxies in the observed universe.

From the standpoint of large-scale structure theory,
gigaparsec-scale simulations are required in order to de-
termine whether ΛCDM is able to successfully reproduce
the largest structures in the universe. While Gpc-scale N-
body mock catalogs do exist (e.g., Kim et al. 2011, Falck
et al. 2021), the largest voids are so rare that only a few
dozen of these objects are found within a single Gpc-scale
simulation. N-body simulations of this size are compu-
tationally expensive to run, making it challenging to use
these types of mock catalogs to fully investigate the statis-
tics of the largest voids in ΛCDM universes. In order to
make progress on the theoretical properties of the largest
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voids, it would be helpful to be able to use a modeling tech-
nique that is capable of quickly producing independent,
novel catalogs of large-scale structure. One technique that
may prove advantageous for such applications is the use of
Generative Adversarial Networks (GANs).

GANs have already begun to demonstrate their useful-
ness for astrophysical applications. For example, Rodŕıguez
et al. (2018), Curtis and Brainerd (2020), Feder et al.
(2020), and Kodi Ramanah et al. (2020) used GANs to
produce novel images of the large-scale structure of the
universe. In addition, Mustafa et al. (2019) used GANs to
generate novel weak lensing convergence maps. Further,
Schawinski et al. 2017, Zingales and Waldmann (2018),
and Gan et al. 2021 trained GANs to map observational
data to either super-resolved data or denoised data, al-
lowing computationally expensive Bayesian analyses to be
bypassed in some cases.

In order for GANs to develop into computationally
inexpensive alternatives to enormous, Gpc-scale N-body
simulations, their efficacy in reproducing large-scale struc-
ture statistics must first be tested on smaller, more typi-
cal N-body simulations. Generally, the first assessment of
GAN performance is a visual examination of the model’s
outputs (i.e., ‘by-eye’ inspection of the outputs). This is
then followed by comparisons of lower-order and higher-
order statistics for a generated sample and the training
set. In the context of studies that use GANs to reproduce
large-scale structure, lower-order statistics would include
matter power spectra and/or mass density histograms (see,
e.g., Rodŕıguez et al. 2018, Feder et al. 2020). Higher-
order statistics would include Minkowski functionals such
as those used by Mustafa et al. (2019) to assess their weak
lensing convergence maps.

In this paper we explore the use of void statistics as a
method of assessing the ability of a GAN to produce large-
scale structure density maps. We examine the statistics
and properties of voids in a ΛCDM universe, and we com-
pare results obtained from N-body simulations to results
obtained from a suitably trained GAN. Throughout, we
search for voids in 2D slices of the large-scale structure to
be consistent with modern observational void surveys (see,
e.g., Sánchez et al. 2017, Mao et al. 2017). The paper is
organized as follows. In §2, we discuss our computational
methods. These include the N-body simulations that were
used to train the GAN and the details of the particular
GAN that we adopted. We also discuss the network ar-
chitecture and optimization of the network weights. In
§3 we discuss the underdensity probability function, the
specific algorithm we used to identify voids, and various
void properties. A discussion of our results is presented
in §4. Throughout, we adopt the following cosmological
parameters: h = 0.7, ΩΛ = 0.7, Ωm0 = 0.3, and σ8 = 0.9.

2. Methods

2.1. N-body Simulations

Before a GAN can be used to generate density maps
of ΛCDM universes, it first must be taught the properties
that are expected for the large-scale structure. Teaching
the GAN these expected properties is a process known as
training. Training the GAN requires a set of independent
N-body simulations, the results of which allow the GAN
to learn the expected properties of the large-scale struc-
ture and then to extrapolate from its training in order to
produce new images. Here, the training set consisted of
ten ΛCDM simulations. Each simulation adopted a cubi-
cal box with periodic boundary conditions, a box length
of L = 512h−1Mpc, and a total of 5123 dark matter par-
ticles of mass mp = 8.3 × 1010h−1M�. A unique set of
initial conditions for each simulation was generated us-
ing N-GenIC1 (Springel et al., 2005) and the well-tested
Gadget-22 code (Springel, 2005) was used to evolve the
simulations from redshift z = 50 to the present epoch. All
simulations were run on the Shared Computing Cluster
at the Massachusetts Green High-Performance Comput-
ing Center.

To create a training set for the GAN, 15,000 2D im-
ages were extracted from the N-body simulations using
the method adopted by Rodŕıguez et al. (2018). First,
each simulation was divided each into 1,000 slices along
each of the three primary axes. Each slice was then pixel-
lated using a nearest neighbor mass assignment scheme
and 500 non-consecutive slices along each axis were se-
lected. Lastly, each image was smoothed with a Gaussian
filter with a width of 1 pixel.

Note: while slices that are nearby to one another in a
given simulation may be spatially correlated (i.e., sequen-
tial slices are separated by distances of ∼ 0.5h−1Mpc), this
is not expected to influence the training of the GAN in any
significant way. During each training epoch, the order of
the 15,000 slices is randomized and batches of 16 sequen-
tial images from the randomized slices are then fed to the
network prior to back propagation (see Table 1). Because
of this, it is unlikely that any of the 16 images in a given
batch will have any remaining spatial correlation.

Before being passed to the GAN for training, the den-
sity maps from the N-body simulations must be normal-
ized. This is necessary because normalizing reduces the
cost of transforming the latent space distribution into the
space expected of the true data distribution. Following
Rodŕıguez et al. (2018), the density maps from the N-body
simulations were normalized using

s(x) =
2x

x+ a
. (1)

Here, a is an integer that controls the median pixel value
of the normalized map, and the properties of s(x) resemble
those of a logarithmic function.

1https://www.h-its.org/2014/11/05/ngenic-code/
2https://wwwmpa.mpa-garching.mpg.de/gadget/
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Feder et al. (2020) investigated the effect of changing
the value of the scaling parameter in Equation 1 (a in our
notation, κ in Feder et al. 2020). From this, Feder et al.
(2020) found that larger values of the scaling parameter
better preserved the high-density features in their gener-
ated density maps. On the small scales associated with
galaxies, this gave rise to an improved agreement between
the matter power spectra obtained from the generated im-
ages and the matter power spectra obtained from the N-
body images. However, on the large scales that are rele-
vant to cosmic voids, Feder et al. (2020) found that changes
in the scale parameter had little affect on power spectrum
from the generated images. Therefore, for consistency with
Rodŕıguez et al. (2018) we adopt a = 4 throughout this
paper. Examples of normalized 2D mass density maps,
obtained from the N-body simulations, are shown in the
top panels of Figure 1.

2.2. Generative Adversarial Networks

A GAN is a game between two deep convolutional neu-
ral networks: a discriminator network (D) and a generator
network (G). The discriminator, D : ( #»x , θD) → [0; 1], at-
tempts to label a sample, #»x , as being either ‘real’ or ‘fake.’
Here, ‘real’ means #»x is drawn from the true data distri-
bution (pdata) and ‘fake’ means #»x is a generated image
drawn from the set of generated data (pgen). The vari-
able θD represents the hyper-parameters that characterize
D. The generator network, G : ( #»z , θG)→ #»x , attempts to
map a random variable, #»z , to a sample #»x that appears to
be drawn from pdata. The random variable is drawn from
a latent prior space, pprior(

#»z ), which is generally taken to
be Gaussian-distributed.

The discriminator network is trained to maximize the
probability of correctly labelling samples that are drawn
from the training set and samples that are drawn from the
generator network. Meanwhile, the generator network is
trained to minimize log10(1−D(G( #»z ))); i.e., the probabil-
ity of the generator network producing a sample that the
discriminator network mislabels as ‘real’. Formally, D and
G play what is known as the two-player minimax game:

min max
G D [L(GθG , DθD )] (2)

with loss function

L(GθG , DθD ) := E #»x∼pdata( #»x )[logeDθD ( #»x)]+

E #»z∼pprior( #»z )[loge(1−DθD (GθG( #»z )))] , (3)

where E is the expectation function. (Note: Equation 3
reduces to the Jensen-Shannon divergence between pdata
and pgen; see Goodfellow et al. 2020.)

2.2.1. Wasserstein GANs

For our work, we adopted a particular type of GAN
known as a Wasserstein GAN. The motivation for this
choice stems from the phenomenon of mode collapse. Mode

collapse is said to have occurred in a generative network
when the generator produces only one particular output,
regardless of its input. For example, suppose a GAN is
being trained to generate pictures of rooms that would
typically be found in a house (see, e.g., Gulrajani et al.
2017). Mode collapse occurs when the GAN only gener-
ates one image of a kitchen as its sole output.

Wasserstein GANs mitigate the problem of mode col-
lapse by adopting what is known as an ‘Earth mover’s dis-
tance’ loss function (see, e.g., Arjovsky et al. 2017). When
applied to GANs, the Earth mover’s distance allows the
generator to find a more stable way of transforming pgen
into pdata. In return, the discriminator network now scores
the ‘realness’ and ‘fakeness’ of an image (i.e., it scores how
well pgen resembles pdata). For this reason, Arjovsky et al.
(2017) refer to the discriminator network as a ‘critic net-
work’, a terminology that we also adopt. WGANs address
the problem of mode collapse by not rewarding the gen-
erator network for its ability to generate a single result
that consistently deceives the discriminator network, but
by instead scoring the ‘realness’ and ‘fakeness’ of an image.

Additional discussion of Wasserstein GANs and the
Earth Mover’s distance is given in Appendix A and refer-
ences therein.

2.2.2. Adam Optimizer

In order to carry out back propagation, we use a stan-
dard Adaptive Moment Optimizer known as Adam (see
Kingma and Ba 2015). Adam is a stochastic gradient de-
scent algorithm that updates the network weights using
running averages of the first and second moments of the
gradients of the loss function. The Adam optimizer is a
popular choice for performing stochastic gradient descent
because it is computationally efficient and has low memory
requirements.

For given a set of parameters, w(t), and a loss function,
L(t), at training iteration, t, the weights at the t+1 training
iteration are found by first calculating the biased first and
second moments using Equations 4 and 5, respectively:

mt+1
w ← β1m

t
w + (1− β1)∇wLt (4)

vt+1
w ← β2v

t
w + (1− β2)(∇wLt)2. (5)

Here, β1, β2 ∈ [0,1) are the exponential decay rates for

the moment estimates, m
(t)
w are the biased first moment

estimates of the weights at step t, v
(t)
w are the biased second

moment estimates, and ∇w is the gradient operator with
respect to the network parameters.

Typical values for β1 and β2 are 0.9 and 0.999, so if m0
w

and v0
w are initialized to zero, a significant bias towards

small values in future updates will occur. This bias can be
eliminated (making the moments less sensitive to β1 and
β2 at early timesteps) by normalizing the β’s such that∑t
i=0 β

i = 1−βt

1−β . This normalization can then be removed

by dividing the first and second moments by 1 − βt+1 in
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Figure 1: Examples of normalized matter density maps (i.e., ‘images’) at redshift z = 0. Each image has a sidelength of 512h−1 Mpc and
a thickness of 0.512h−1Mpc. Top: Images obtained from N-body simulations. Bottom: Images obtained from a trained Wasserstein GAN
(WGAN). Here the local matter density has been normalized using Equation 1 (see text).
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Equations 6 and 7 below:

m̂w =
mt+1
w

1− βt+1
1

(6)

v̂w =
vt+1
w

1− βt+1
2

. (7)

Finally, the weights at step t + 1 are calculated from the
unbiased moments using

wt+1 ← wt − α m̂w√
v̂w + ε

, (8)

where α is the algorithm’s learning rate and ε is a small
number that is used to prevent division by zero. Table 1
lists the values of the hyperparameters that we adopted
for our work.

2.2.3. Network Architecture

Throughout, we use a standard WGAN architecture
with deep convolutional layers. Details of the architecture
are summarized in Table 2. The critic takes an image of
size 256 × 256 pixels as its input. Four 2D convolutional
layers then down-sample the image. The output of the
critic is a score in the range (−1, 1), which describes how
‘real’ (−1) or ‘fake’ (+1) the critic thinks the image is. For
the convolutional layers, a 4× 4 pixel kernel with a stride
of size (2, 2) is used. In addition, the inputs of the net-
work are batch normalized before each mini-batch update.
The first four convolutional layers have a Leaky Rectified
Linear Unit (Leaky-ReLU) activation function, and the
last layer has a linear activation function. The first hid-
den layer down-samples the image into a tensor of shape
128× 128× 64, where the last dimension is the number of
channels. Each consecutive hidden layer then doubles the
number of channels to 128, 256, and 512 respectively.

The generator takes a random 1D Gaussian vector of
length 200 as its input. The first hidden layer is a linear
layer that reshapes the latent space vector into a tensor of
shape 16× 16× 512 (i.e., 512 low resolution images of size
16 × 16 pixels). Four 2D convolutional transpose layers
up-scale the image while reducing the number of channels.
The first four layers use a ReLU activation function and
have their inputs batch normalized before each mini-batch
update. The output of the generator is an image of size
256 × 256 pixels where each pixel is cast into the range
(−1, 1) using a hyperbolic tangent function. To initialize
the weights of the critic and generator, a Glorot weight
initialization was used. This initializes each weight as a
random number, pulled from a normal distribution that is
centered on 0 and bounded by the inverse square root of
the number of inputs to that node (see, e.g., Glorot and
Bengio 2010).

The networks were implemented using Python’s Ten-
sorFlow3 package (e.g., Oliphant 2007; Abadi et al. 2016)

3https://www.tensorflow.org/

and were trained on two NVIDIA Tesla P100 graphics
processing units with compute capability 6.0. The critic
and generator networks had 2.89 million and 16.00 million
trainable parameters, respectively. Training was carried
out with Python version 3.7.7, TensorFlow version 1.15.0,
CUDA version 10.0, and NVIDIA cuDNN version 7.6, and
took approximately four hours for 20 training epochs. The
implementation of the WGAN described in this paper is
available on the first author’s GitHub page.4

3. Results

The WGAN was trained for 20 epochs and the network
parameters were saved after each training epoch. After 20
epochs, the outputs of each saved network were analyzed
to determine which training epoch produced matter power
spectra that were most similar to the training set. In the
case of our WGAN, we found this to occur after four train-
ing epochs. This network was then used to generate a set
of 15,000 density maps (i.e., ‘images’) which were used for
the analyses we present below. Two of these generated
images are shown in the bottom panels of Figure 1.

By eye, the images in Figure 1 that were obtained us-
ing the WGAN clearly resemble those that were obtained
using N-body simulations. To assess differences in the two
sets of images that may be present at a level that is too
low to be detected by eye, we compute two statistics: [1]
the distribution of the normalized matter density contrast
in the individual image pixels and [2] the matter power
spectrum.

The top panel of Figure 2 shows the normalized prob-
ability distribution for the matter density contrast in the
individual pixels. All generated and simulated images were
used to construct the probability distribution. The bottom
panel of Figure 2 shows the ratio of the probabilities in the
top panel. Error bars were computed using using 10,000
bootstrap resamplings of the data and are omitted when
they are comparable to or smaller than the data points.

From Figure 2, we can see that, compared to the N-
body results, the WGAN significantly under produces pix-
els that have the highest density contrast. These pixels
are, however, relatively rare occurrences in the images (i.e.,
they have low probability) and they do not occur within
voids. Potentially more problematical for void statistics
are discrepancies between the frequencies at which pixels
with the lowest density contrasts (i.e., the most under-
dense pixels) occur. These underdense pixels are the most
common occurrences in the images (i.e., they have high
probability), and differences in the distribution of density
contrasts within these pixels should lead to slightly dif-
ferent statistics for both the central density contrast and
the mean interior density contrast when we compare voids
in the N-body images to voids in the GAN-generated im-
ages. Compared to the N-body results, the WGAN under

4https://github.com/o-curtis/
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Table 1: Hyperparmeters used in the Adam optimizer, as well as other important network parameters (see Table 2)

Hyperparameter Value Description
Batch Size 16 Number of training samples fed into the network before back propagation
z dimension 200 Dimension of the random Gaussian vector
αD 1e-6 Learning rate for the discriminator’s (D) Adam optimizer
β1,D 0.5 First exponential decay rate for D’s Adam optimizer
β2,D 0.999 Second exponential decay rate for D’s Adam optimizer
αG 5e-5 Learning rate for the generator’s (G) Adam optimizer
β1,G 0.5 First exponential decay rate for G’s Adam optimizer
β2,G 0.999 Second exponential decay rate for G’s Adam optimizer
α 0.8 Momentum used in batch normalization
ndisc 5 Number of times D is updated for every G update
c 0.01 Weight clipping parameter used to uphold Lipschitz continuity in WGAN architectures
αLeakyReLU 0.2 Negative slope coefficient for LeakyReLU activation functions

Table 2: WGAN network architecture used in this paper

Layer Operation Output Dimension
Critic
X 256 x 256 x 1
D0 Conv2D LeakyReLU-BatchNorm 128 x 128 x 64
D1 Conv2D LeakyReLU-BatchNorm 64 x 64 x 128
D2 Conv2D LeakyReLU-BatchNorm 32 x 32 x 256
D3 Conv2D LeakyReLU-BatchNorm 16 x 16 x 512
D4 Linear Linear 1
Generator
Z 200 x 1
G0 Linear ReLU-BatchNorm 16 x 16 x 512
G1 Conv2D Transpose ReLU-BatchNorm 32 x 32 x 256
G2 Conv2D Transpose ReLU-BatchNorm 64 x 64 x 128
G3 Conv2D Transpose ReLU-BatchNorm 128 x 128 x 64
G4 Conv2D Transpose Tanh 256 x 256 x 1

6



produces pixels with the lowest density contrast (i.e., the
likely void centers) and over produces pixels with density
contrasts in the range ∼ −0.88 to ∼ 0.63. This will lead
to systematic differences in the distributions of the mean
central densities and mean interior densities of the voids
in the simulated and generated images.

Figure 3 shows the results for the matter power spec-
tra of our simulated and generated datasets. The power
spectra were calculated via

〈δ̂( #»

k )δ̂(
#»

k ′)〉 = (2π)3δD(
#»

k − #»

k ′)P (
#»

k ) (9)

(see, e.g., Davis et al. 1985) and they encompass distance
scales that are typical of void sizes (i.e., 10−100h−1Mpc).

Here, δD(
#»

k ) is the Dirac delta function, P (
#»

k ) is the 1D

matter power spectrum, and δ̂(
#»

k ) is the discrete Fourier
transform of our density contrast field, defined as

δ =
n

n
− 1 . (10)

Here n is the number of particles in a cell and n is the
mean number of particles in a field. The discrete Fourier
transform was computed with Python’s NumPy5 package
(Walt et al., 2011). Points in the top panel of Figure 3 show
the mean power spectra, computed using all simulated and
generated images. Error bars were obtained from 10,000
bootstrap resamplings of the data. Points in the bottom
panel of Figure 3 show the ratio of the mean power spec-
tra from the simulated images to the mean power spectra
from the generated images. From Figure 3, P (k) from the
generated images agrees with P (k) from the simulated im-
ages on scales < 20h−1Mpc. On larger scales, however,
the generated images yield systematically lower values of
P (k) than do the simulated images.

3.1. Underdensity Probability Function

In the observed universe, the Void Probability Func-
tion (VPF) is commonly used to determine whether a ran-
domly selected region in an image is devoid of galaxies
(e.g., White 1979; Lachieze-Rey et al. 1992; Vogeley et al.
1994). The VPF depends on the galaxy N -point correla-
tion function via

P0(N,A) =

exp

[ ∞∑
N=1

(−n)N

N !

∫
A

wN ( #»x1, ...,
#»xN )d2x1...d

2xN

]
(11)

(e.g., White 1979), where n is the average number density
of galaxies in the field, wN are the N -point correlation
functions, and #»x i are the i-th galaxy positions in the area
A.

Since our GAN outputs consist of images of a smoothed
mass density distribution (i.e., not the locations of individ-
ual galaxies or individual particles) we do not compute the

5https://numpy.org/
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from 15,000 simulated images (circles) and 15,000 images
generated with a WGAN (diamonds). Error bars were com-
puted using 10,000 bootstrap resamplings of the data. Bot-
tom: Ratio of the mean matter power spectra shown in the
top panel.

VPF. Instead, we compute a similar statistic known as the
Underdensity Probability Function (UPF; see, e.g., Voge-
ley et al. 1994 and Tinker et al. 2006). The UPF measures
the probability that, within an area of radius r, a randomly
selected region of space is less dense than some particular
threshold density. An advantage to using the UPF over
the VPF is that the VPF is sensitive to shot noise because
it requires counting individual particles or galaxies within
a given aperture.

To identify underdense regions in the density maps, we
define a normalized density contrast ∆ ≡ δρ

ρ and we adopt
a threshold for the mass density contrast of ∆ < −0.6.
Here ρ is the local matter density and δρ is the differ-
ence between the local matter density and mean matter
density of the image. That is, the UPF is defined as
U(r) = P (∆ < ∆crit; r) where ∆crit = −0.6. The value
of ∆crit = −0.6 was chosen to match the mean void un-
derdensities reported in Hamaus et al. (2014) and Sánchez
et al. (2017).

The UPF for the simulated and generated images was
determined by computing the mean mass density contrast
within randomly-placed circles of radius r. If the aver-
age density contrast within a circle of radius r is less than
∆crit, then that particular region qualifies as being suffi-
ciently underdense to be included in the calculation of the
UPF. A total of Ntest = 104 random circles of radius r
were placed within each image and the total number of
underdense regions, N0, was then computed. The UPF
was then defined as U(r) = N(0; ∆<∆crit)/Ntest.

Figure 4 shows the mean UPF obtained from 15,000
simulated images and 15,000 generated images. The UPFs
were calculated following the steps described above and er-
ror bars were calculated by bootstrap resampling of both
sets of distributions. Note that, since smaller circles in an
image are encompassed by larger circles in the same im-
age, the data points in Figure 4 are not independent of
one another. Hence, the point-to-point scatter is consid-
erably smaller than the formal, bootstrapped error bars.
Similar to the power spectra, there is good agreement be-
tween between the simulated and WGAN images on small
scales. On larger scales, there is a lower chance of find-
ing underdense regions in the generated data than in the
simulated data, with the difference increasing for regions
≥ 60h−1 Mpc.

3.2. Void Identification

To identify voids, we adopted a voidfinder algorithm
that is similar to the algorithm used by El-Ad and Piran
(1997) and Hoyle and Vogeley (2004) to identify voids in
catalogs of galaxies. When applied to an observational
dataset, the voidfinder algorithm identifies voids using the
observed locations of galaxies. In our case there are no
galaxies in the images. Instead, the images consist of pixels
with known values of the mass density. Our version of the
voidfinder algorithm, therefore, scans images of the large-
scale structure as defined by the pixellated mass density.
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The algorithm yields a set of individual void centers and a
list of which pixels in a given image belong to which voids.

Our voidfinder algorithm can be summarized in four
steps: [1] each pixel is classified as being either a ‘wall
pixel’ or a ‘void pixel’, [2] the distance between every void
pixel and the nearest wall pixel is calculated, [3] void cen-
ters are defined to be the locations of the most isolated
void pixels (i.e., the void pixels that are farthest from a
wall pixel), and [4] as part of the process of identifying un-
derdense regions that are interconnected, the areas of the
larger voids are ‘enhanced’ to include overlapping regions
of low mass density. The first step is performed by scan-
ning over every pixel in the image using a circular aperture
of radius d = 3 pixels that takes the periodic boundary into
account. A value of d = 3 pixels (or 6h−1 Mpc) was chosen
as a sensible size scale with which to judge a pixel’s local
environment.

If the pixel that the circular aperture is centered on
contains at least N = 9 pixels with a normalized density
contrast > −0.6, the pixel is classified as a ‘wall pixel’.
That is, if ∼ d2 of the pixels in the neighborhood around
the central pixel are sufficiently dense compared to the
mean, the central pixel is classified as a wall pixel. Any
pixel that is not classified as a wall pixel is classified as a
‘void pixel.’ The second step is to iterate over each void
pixel and determine its distance to the nearest wall pixel.
This is done by finding the circle of maximum radius that
can be centered around each void pixel such that the circle
contains no wall pixels. Following the terminology of Hoyle
and Vogeley (2004), we refer to these maximal circles as
‘holes’.

Once all of the pixels have been classified as being ei-
ther a void pixel or a wall pixel, the void centers are then
identified. To do this, we begin by sorting all holes in a

given image from largest to smallest in terms of their radii.
We then define the center of the largest hole in the image
to be the center of the first void. Having found this first
void center, we then iterate over all holes. If the next hole
in the sorted list overlaps with any previously-identified
void by more than 10% of its own area, that hole is not
considered to be an individual void and, at this point, is
temporarily ignored. A value of 10% was chosen to insure
only the largest hole in a local area is classified as a void,
while still accounting for smaller voids that interconnect
the larger voids. If the next hole in the sorted list does
not overlap with any previously-identified void (or if the
overlap is ≤ 10% of its own area), the hole is classified as
a distinct void, with the center of the hole being the void
center. This process continues until all holes with radius
> 3 pixels have been considered.

In order to account for the fact that underdense regions
of space are interconnected, the final step in the process
of identifying the voids is to consider the degree of overlap
between holes and voids. The process is intended to exam-
ine the underdense regions near the edges of the holes and
either assign those underdense regions to appropriate voids
or reject them as being part of a void. If a hole overlaps
a single void by > 50% of its own area (i.e., if the center
of the hole is within the void’s maximal hole), then we
consider the hole to be part of the void. If a hole overlaps
multiple voids by > 50% of its own area, we consider it to
be part of the largest overlapping void. If a hole overlaps
a void by ≤ 10% of its own area, then the hole is identified
as a distinct void, but the area of overlap is assigned to
the larger void. If the overlap between a hole and a void
is > 10% of the hole’s area but < 50%, the pixels in the
hole are not assigned to any void. By this process, the
total areas of the larger voids are enhanced relative to the
areas of the maximal circles that are centered on the void
centers.

Figure 5 shows the results of the voidfinder algorithm
as applied to a single image. The different panels of Figure
5 show: a) the normalized density contrast, b) the loca-
tions of wall pixels (white) and void pixels (black), c) the
distance to the nearest wall pixel at each location (i.e.,
the maximal radius for each pixel), d) the largest holes
(i.e., the circles that define the void centers) overlaid on
the density contrast, e) the largest holes overlaid on the
wall/void pixel image, f) the locations of the largest holes
overlaid on the distance to the nearest wall pixel, g) the
final void areas overlaid on the wall/void pixel image, and
h) same as g), but with the largest holes indicated. The
15,000 images from the N-body simulations yielded a to-
tal of 2.5 million voids and the 15,000 generated images
yielded a total of 2.8 million voids. The mean number of
voids contained within a single image from the N-body
simulations (169 ± 10) is, however, consistent with the
mean number of voids contained within a single generated
image (184± 11).
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3.3. Void Properties

Below we adopt the following terminology when dis-
cussing the void properties. The ‘radius’ of a void is sim-
ply the radius of the void’s maximal circle (i.e., the largest
circle, centered on the void center, with radius equal to the
distance to the nearest wall pixel). The ‘effective radius’
of a void corresponds to the radius of a circle that, after
the area of the void has been adjusted for any overlaps, is
equal to the final area assigned to the void. Since some
of the smaller voids lose area to neighboring large voids,
their effective radii will be less than the radii of their max-
imal circles. Conversely, the larger voids with areas that
have been enhanced by the addition of pixels from neigh-
boring small voids (or significantly overlapping holes) will
have effective radii that are larger than the radius of their
maximal circle.

The top panels of Figure 6 show normalized probability
distributions for a) the void radii and b) the effective void
radii. Overall there is good agreement between the results
for the simulated and generated images. Compared to the
simulated images, however, the generated images produce
fewer of the smallest voids. The median void radius in the
generated images is identical to that of the simulated im-
ages (10.0h−1 Mpc), but the median effective void radius
in the generated images (10.0h−1 Mpc) is somewhat larger
than it is in the simulated images (9.6h−1 Mpc). Figure
6c) shows the normalized probability distributions for the
density contrast at the centers of the voids. Here, again,
the distributions are similar and the median value of the
central density contrast is nearly identical for the simu-
lated and generated images (−0.83 in the simulated images
vs. −0.81 in the generated images). However, compared
to the simulated images, the generated images produce far
fewer voids in which the central density contrast is ∼ −1
(i.e., the most underdense void centers). Conversely, the
generated images produce somewhat more voids with cen-
tral density contrasts between ∼ −0.9 and ∼ −0.5 than
do the simulated images. Figure 6d) shows the normal-
ized probability distributions for the mean density con-
trast within the voids. While the median values of the
distributions in Figure 6d) are similar (−0.79 for the sim-
ulated images vs. −0.76 for the generated images), there is
a clear offset between the two distributions such that the
mean density contrast of the generated voids is systemat-
ically higher than that of the simulated voids.

The results in Figure 6c) and 6d) are tied directly to
the results in Figure 2. That is, compared to the simu-
lated images, the generated images contain systematically
fewer of the least dense pixels. Since voids are centered
on the least dense pixels, this results in fewer voids in the
generated images with central density contrasts ∼ −1. It
also results in fewer voids in the generated images having
mean interior densities . −0.8. The combination of the
generated images having both fewer of the least dense pix-
els and more of the pixels with density contrasts in the
range ∼ −0.88 to ∼ −0.63 gives rise to more voids with

mean interior density contrasts & −0.7 in the generated
images

When averaged over all voids, the mean properties of
the voids in the simulated and generated images are con-
sistent within the formal error bars. In the simulated im-
ages, the mean radius and the mean effective radius are
9.9± 0.2h−1 Mpc and 10.3± 0.2h−1 Mpc, respectively. In
the generated images, the mean radius and mean effec-
tive radius are 10.1± 0.2h−1 Mpc and 10.5± 0.2h−1 Mpc,
respectively. In the simulated images, the mean central
density contrast and the mean interior density contrast
are −0.81 ± 0.01 and −0.79 ± 0.01, respectively. In the
generated images, the mean central density contrast and
the mean interior density contrast are −0.78 ± 0.02 and
−0.76±0.02, respectively. We note that, while the disper-
sions in the mean radius and the mean effective radius are
identical for the voids in the simulated and generated im-
ages, the dispersions in the mean central density contrast
and the mean interior density contrast are twice as large
for the voids in the generated images as they are for the
voids in the simulated images.

3.4. Properties of the Largest Voids

For the remainder of our analyses we will focus on
a comparison of the best-resolved voids. These are the
largest voids in the images, and here we restrict the analy-
ses to only those voids with radii ≥ 10 pixels (correspond-
ing to a radius ≥ 20h−1 Mpc). Because large voids are
rare, these represent only a small fraction of the total num-
ber of voids in the samples (15,063 in the simulated sample
and 16,165 in the generated sample). However, unlike the
smallest voids (which are poorly resolved), these largest
voids are sufficiently well resolved to allow a computation
of their radial density profiles.

For comparison with our complete samples of voids
shown in Figure 6, Figure 7 shows the same normalized
probability distributions, but using only the largest voids.
Compared to the results in Figure 6, there is a much
greater difference between the distributions of void radii
and void effective radii in Figure 7. This is due to a com-
bination of two effects that go into assigning each void its
final area (from which the effective radius is determined).
First, the larger holes have a larger number of underdense
pixels just outside their circumferences than do the smaller
holes. Therefore, a large hole that has been identified as
being a void has a higher probability of having its final
area enhanced relative to the area of the hole (i.e., by the
addition of pixels from smaller holes that overlap the large
hole by a significant amount). This necessarily increases
the effective radius of a void with an enhanced area.

In addition, because of their relatively large size, the
probability of the largest voids in a given image overlap-
ping one another by a small amount is higher than the
probability of the smallest voids in a given image over-
lapping by a similar amount. In the case of these small
overlaps (≤ 10% of the area of the smallest of the two as-
sociated holes), the overlap area is assigned to the larger

10



a) b) c)

d) e) f)

g) h)

0.75
0.50
0.25
0.00
0.25
0.50
0.75

no
rm

al
ise

d 
de

ns
ity

 c
on

tra
st

a),d)

2

4

6

8

10

12
m

ax
im

al
 ra

di
us

 [p
ix

el
s]

c),f)

<-
- s

m
al

l v
oi

ds
 | 

la
rg

e 
vo

id
s -

->

g),h)

Figure 5: Illustration of the voidfinder algorithm: a) normalized mass density, b) locations of wall pixels (white) and void pixels (black), c)
maximal radius for each void pixel, d) – f) largest hole contained within each void, overlaid on the panels directly above (red circles), g) final
void areas overlaid on the wall/void pixel distribution, h) same as (g), but with the largest hole contained within each void superposed on
the image.
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Figure 6: Normalized probability distributions for various void prop-
erties: a) void radii, b) void effective radii, c) value of the density
contrast at the centers of the voids, d) mean interior density contrast,
computed using the final areas of the voids. Diamonds: results from
images obtained with the WGAN. Circles: results from images ob-
tained from N-body simulations. Error bars are omitted when they
are comparable to or smaller than the sizes of the data points.

void, resulting in the smaller of the two voids having a
final area that is reduced compared to the size of its hole
(and hence, having an effective radius smaller than the ra-
dius of its associated hole). From Figure 7a), the median
values of the void radii (20.0h−1 Mpc) are identical in the
simulated and generated images. Similarly, the void effec-
tive radii (21.4h−1 Mpc) are identical in the simulated and
generated images (see Figure 7b).

Figure 7c) shows trends that are similar to those in Fig-
ure 6c). While the median central densities of the largest
voids are similar in both the simulated and the generated
images (−0.82 for the simulated images vs. −0.81 for the
generated images), the generated images produce far fewer
of the largest voids with central densities ∼ −1. Like the
complete void sample, the generated images also produce
somewhat more large voids with central densities greater
than ∼ −1, but the range over which this occurs (∼ −0.9
to ∼ −0.75) is smaller than in the full sample. Figure 7d)
also shows trends that are similar to those in Figure 6d).
The median values of the distributions in Figure 7d) are
similar (−0.80 for the simulated images vs. −0.76 for the
generated images), and there is a clear offset between the
two distributions such that the mean density contrast of
the largest generated voids is systematically higher than
that of the largest simulated voids.

Lastly, Figure 8 shows the mean radial underdensity
profiles for the largest voids, plotted in terms of dimen-
sionless distance relative to the void radius, (r/rv). As
expected, the central regions of the voids are extremely
underdense and the density contrast increases with radius
from the void centers. While the radial underdensity pro-
files are similar in both the simulated and generated im-
ages, there are clear differences. For distances r . 0.6rv,
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Figure 7: Same as Figure 6, but here only voids with radius ≥ 20h−1

Mpc are used.

the underdensities of the generated voids are somewhat
higher than the underdensities of the simulated voids. For
distances r & 0.6rv, the sense of the disagreement reverses,
with the underdensities of the generated voids being some-
what lower than the underdensities of the simulated voids.

4. Discussion

We used a standard deep convolutional Wasserstein
GAN (WGAN) to generate novel 2D images of the smoothed
mass density field of a ΛCDM universe, and we explored
the use of void statistics as a possible method for assess-
ing and fine-tuning GAN performance. The WGAN was
trained using 15,000 2D images of the large-scale struc-
ture that were obtained from N-body simulations. The
trained WGAN was used to generate 15,000 2D images
and a voidfinder algorithm, modified to identify regions
of low mass density (as opposed to regions of low galaxy
density), was then used to create void catalogs from the
simulated and generated images. The simulated and gen-
erated images yield a similar number of voids (2.5 million
voids and 2.8 million voids, respectively).

Within the formal error bars, the mean void proper-
ties (i.e., mean radius, mean effective radius, mean central
density contrast, and mean interior density contrast) in the
simulated and generated images are consistent with each
other. Systematic differences between the distributions of
the void properties are, however, apparent. Compared to
the simulated images, the generated images yield some-
what fewer of the smallest voids and significantly fewer
voids with central density contrast ∼ −1. Overall, the
generated images yield fewer of the emptiest voids and,
as a result, the distribution of mean interior density con-
trast for the generated voids is offset systematically from
the distribution of mean interior density contrast for the
simulated voids.
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(r/rv). Error bars are omitted because they are comparable to or
smaller than the data points.

Neural networks function by learning the average trends
in the target distribution but they struggle to capture ab-
solute patterns in the data (see, e.g., Li et al. 2018 for
a detailed discussion). That is, our deep convolutional
WGAN is clearly able to detect trends in the pixel-to-
pixel variations of the smoothed density contrast, but it is
not reliably capturing the absolute highs and lows. The
effect of this on void properties manifests in Figures 6c)
and 7c), where the images yield significantly fewer voids
with central density constrast ∼ −1 than do the simulated
images. The inability of the WGAN to reliably capture the
absolute highs and lows of the smoothed density contrast
also explains the systematic offsets between the distribu-
tion of mean interior density contrast for the generated
and simulated images in Figures 6d) and 7d).

GANs present an opportunity to investigate the distri-
bution of the largest structures in Gpc-scale simulations
without the need for as many computationally expensive
Gpc-scale N-body simulations as would otherwise be nec-
essary. In order for GANs to become a truly viable alterna-
tive to simulations, however, they need to be able to fully
reproduce the structure that is seen in typical N-body sim-
ulations, including the frequency and properties of voids.
Because of this, void statistics are a natural higher-order
test of the validity of GAN-generated maps of large-scale.

While our WGAN produced voids with properties that
were in broad general agreement with the properties of
voids in N-body simulations, the systematic differences
between the populations are an indication that improve-
ments in the WGAN approach are still necessary. For
future work, the network architecture will need to be op-
timized in such a way that it allows the trained WGAN to
better capture absolute trends in the target images. Such
optimization may be dependent on the size of the con-
volutional kernels and/or the values of the hyperparame-

ters used in the generator and critic networks. The use
of inception blocks (see Szegedy et al. 2015), for example,
would help the network to pick up features of varying sizes
by scanning the input layer with kernels of varying sizes.
This alone might resolve the issue of the centers of the
generated voids being insuffciently underdense. Finally, it
will be interesting to see whether more sophisticated net-
work architectures, such as the one used by Kodi Ramanah
et al. (2020) to generate large-scale structure maps, yield
improved results for the statistics of generated voids.
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Koppenhöfer, J., Mansutti, O., Melchior, M., Mignoli, M., Mohr,
J., Neissner, C., Noddle, K., Poncet, M., Scodeggio, M., Serrano,
S., Shane, N., Starck, J.L., Surace, C., Taylor, A., Verdoes-Kleijn,
G., Vuerli, C., Williams, O.R., Zacchei, A., Altieri, B., Escud-
ero Sanz, I., Kohley, R., Oosterbroek, T., Astier, P., Bacon, D.,
Bardelli, S., Baugh, C., Bellagamba, F., Benoist, C., Bianchi, D.,
Biviano, A., Branchini, E., Carbone, C., Cardone, V., Clements,
D., Colombi, S., Conselice, C., Cresci, G., Deacon, N., Dunlop,
J., Fedeli, C., Fontanot, F., Franzetti, P., Giocoli, C., Garcia-
Bellido, J., Gow, J., Heavens, A., Hewett, P., Heymans, C., Hol-
land, A., Huang, Z., Ilbert, O., Joachimi, B., Jennins, E., Kerins,
E., Kiessling, A., Kirk, D., Kotak, R., Krause, O., Lahav, O.,
van Leeuwen, F., Lesgourgues, J., Lombardi, M., Magliocchetti,
M., Maguire, K., Majerotto, E., Maoli, R., Marulli, F., Mauro-
gordato, S., McCracken, H., McLure, R., Melchiorri, A., Merson,
A., Moresco, M., Nonino, M., Norberg, P., Peacock, J., Pello, R.,
Penny, M., Pettorino, V., Di Porto, C., Pozzetti, L., Quercellini,
C., Radovich, M., Rassat, A., Roche, N., Ronayette, S., Rossetti,
E., Sartoris, B., Schneider, P., Semboloni, E., Serjeant, S., Simp-
son, F., Skordis, C., Smadja, G., Smartt, S., Spano, P., Spiro,
S., Sullivan, M., Tilquin, A., Trotta, R., Verde, L., Wang, Y.,
Williger, G., Zhao, G., Zoubian, J., Zucca, E., 2011. Euclid Defi-
nition Study Report. arXiv e-prints , arXiv:1110.31931110.3193.

Li, B., Zhao, G.B., Koyama, K., 2012. Haloes and voids in f(R)
gravity. MNRAS 421, 3481–3487. 1111.2602.

Li, Y., Yu, R., Shahabi, C., Liu, Y., 2018. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting, in: Ben-
gio, Y., LeCun, Y. (Eds.), Proc. of the 6th International Confer-
ence on Learning Representations, International Conference on
Learning Representations, San Diego, California, USA.

Mao, Q., Berlind, A.A., Scherrer, R.J., Neyrinck, M.C., Scocci-
marro, R., Tinker, J.L., McBride, C.K., Schneider, D.P., Pan,
K., Bizyaev, D., Malanushenko, E., Malanushenko, V., 2017. A
Cosmic Void Catalog of SDSS DR12 BOSS Galaxies. ApJ 835,
161. 1602.02771.

Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R., Kra-
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Rodŕıguez, A.C., Kacprzak, T., Lucchi, A., Amara, A., Sgier, R.,
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Appendix A. Wasserstein GAN

Arjovsky et al. (2017) suggest switching the standard
GAN loss function to the Wasserstein metric (a.k.a. the
Kantorovich–Rubinstein metric or Earth mover’s distance).
An intuitive explanation of the Earth mover’s distance is
found in its name. Imagine trying to relocate a pile of dirt
from one location to another. The Earth mover’s distance
is then the metric that provides the most cost effective
way to transport the dirt. For WGANs, the loss function
becomes:

W (Pdata,Pgen) := inf
γ(x,y)∈Π(Pdata,Pgen)

E(x,y)∼γ [||x− y||] .

(A.1)
Here, Π(Pdata,Pgen) is the set of all couplings of Pdata and
Pgen. If each distribution is thought to be a unit amount
of soil piled over a metric space, then γ(x, y) represents
how much soil must be moved from x to y such that Pdata
becomes Pgen. In other words, Equation A.1 reveals the
cost of the optimal way to transfer soil.

In practice, solving Equation A.1 is intractable. How-
ever, Arjovsky et al. (2017) have shown that the Wasser-
stein metric reduces to

W (Pdata,Pgen) := −E #»z∼pprior( #»z )[f(GθG( #»z ))] , (A.2)

provided that f exists and is K-Lipschitz. In the WGAN
algorithm, f is analogous to the set of weights, w, that
parameterize the critic network. In other words, given
weights, w, lying in a compact space, W , one back prop-
agates through E #»z∼pprior( #»z )[fw(GθG( #»z ))] to update the
generator’s weights, just as one would do in the standard
GAN architecture. However, to ensure the weights lie in
W , the weights are clipped to a box W = [−c, c], where c
is a clipping parameter.

The training algorithm for a WGAN is similar to that
of the standard GAN algorithm. Aside from the differ-
ent loss functions and weight clipping, the only change in
the WGAN algorithm is that the critic network has its
weights updated an integer times more than the does the
generator network (i.e., in the standard GAN architecture,
both G and D are updated evenly). This change is pos-
sible because, unlike the Jensen-Shannon Divergence, the
Earth mover’s distance is continuous and differentiable ev-
erywhere.

Allowing the critic to train in a more stable manner
makes mode collapse improbable in the WGAN architec-
ture. This is due to the fact that the critic is no longer
trained on how well it can discriminate between real and
fake images. Rather, the critic is trained on how it scores
the realness or fakeness of an image. Training the critic in
this way improves network stability by giving the genera-
tor better feedback on how to update its weights.
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