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Students’ proficiency scores within multitrait item response theory
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In this paper we present a series of item response models of data collected using the Force Concept
Inventory. The Force Concept Inventory (FCI) was designed to poll the Newtonian conception of force
viewed as a multidimensional concept, that is, as a complex of distinguishable conceptual dimensions.
Several previous studies have developed single-trait item response models of FCI data; however, we feel
that multidimensional models are also appropriate given the explicitly multidimensional design of the
inventory. The models employed in the research reported here vary in both the number of fitting parameters
and the number of underlying latent traits assumed. We calculate several model information statistics to
ensure adequate model fit and to determine which of the models provides the optimal balance of
information and parsimony. Our analysis indicates that all item response models tested, from the single-trait
Rasch model through to a model with ten latent traits, satisfy the standard requirements of fit. However,
analysis of model information criteria indicates that the five-trait model is optimal. We note that an earlier
factor analysis of the same FCI data also led to a five-factor model. Furthermore the factors in our previous
study and the traits identified in the current work match each other well. The optimal five-trait model
assigns proficiency scores to all respondents for each of the five traits. We construct a correlation matrix
between the proficiencies in each of these traits. This correlation matrix shows strong correlations between
some proficiencies, and strong anticorrelations between others. We present an interpretation of this

correlation matrix.
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I. INTRODUCTION

Assessing knowledge acquisition by students is an
unavoidable and necessary part of modern education
systems. Multichoice tests are often used for this purpose,
especially in large classes. While the primary purpose of
these tests is generally to assign a grade, other useful
information may be obtained from response data. The value
of the information gained by further analyses of test data
is of course completely dependent on the quality and
purpose of the test. The Force Concept Inventory (FCI)
is a preeminent example of such a test and has now been in
use in universities and schools for over 20 years [1-3].

A large body of research has been devoted to the analysis
of FCI data [4-6], or to the determination of the effective-
ness of teaching methods [7-13]. Here we briefly summa-
rize some previous analyses without attempting to be
exhaustive.

Wallace and Bailey [12] have shown that IRT models
are effective in identifying problematic items in a
concept inventory (though not the FCI), such as possible
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mismatches between item difficulties and student profi-
ciencies, or hidden difficulties with individual items.
Planinic ef al. have also highlighted the importance of
examining misfitting items in the Force Concept Inventory
[5,14]. Wang and Bao have investigated the applicability
and usefulness of a unidimensional, three-parameter item
response model for FCI and summarized their findings
using a measurement metric. The majority of these findings
are confirmed by our single-trait model as well, e.g., we
confirm their determinations of the easiest and most
difficult items, despite the slight difference between the
models analyzed. More importantly Wang and Bao have
found that the raw FCI score and the proficiency score are
correlated with R? = 0.994. Finally we mention Han et al.’s
recent, novel application of IRT analysis [15], whereby the
FCI test has been divided into two equal-length tests,
covering the same concepts. It has also been suggested that
these shorter tests have similar assessment characteristics
and produce equivalent test scores to the full FCI test with
an overall uncertainty less than 3%. The advantage of
splitting the FCI in this way is twofold: first, the test is
quicker to administer and second, the split tests may be
used in a direct pre- and post-test design without actually
reusing the same questions.

This short, and unavoidably very selective, summary
demonstrates that educators clearly benefit from investigat-
ing new ways to analyze FCI data or from further devel-
oping analysis techniques which are already in use.
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Our current paper may be considered a companion paper
to our earlier analysis of the factor structure of FCI data
[13] and here we confirm the results of that paper using
alternative techniques. The models we evaluate in this
paper are instances of what is often called Item Response
Theory (IRT) or Item Response Analysis.

Item Response Theory is a latent variable approach to
data analysis and posits that test results are manifestations
of underlying “hidden” or “latent” traits possessed by the
test respondents. IRT provides techniques for uncovering
the properties of these latent variables from test data.
Respondents are considered to possess one or more latent
traits to a greater or lesser degree and the degree to which
they possess these traits determines their response to a
particular question. The theory allows for the estimation of
characteristic parameters of both respondents and test
questions (in standard terminology the latter are called
items). The characteristic parameter assigned to students is
often called ability or proficiency as this parameter encodes
the degree to which each student possesses the relevant
latent trait, whatever that trait is.

The number of characteristic parameters relating to the
test items depends on the item response model used. In the
past, item response models have been restricted to a single
latent trait; however, techniques have recently begun to
appear which allow for models with multiple underlying
traits.

The main purpose of this paper is to complete our
analysis of the complex underlying structure which is
displayed by FCI response data. As part of this inves-
tigation we also present a thorough evaluation of a number
of single-trait and multitrait IRT models. We conclude the
paper with an analysis of the proficiency scores assigned to
students in a multitrait IRT model and we find that this
analysis may lead to new insights into the teaching of
Newtonian mechanics.

II. DESCRIPTION OF THE DATA

The data used in this study were collected from a physics
service course over a two-year period. This is a traditional
(i.e., passive student), algebra-based course designed to
provide students entering a variety of health science
programs (e.g., medicine, dentistry, pharmacy) with the
necessary physics for their professional programs. The
course consists of six sections: mechanics, bulk materials
(i.e., solid and fluid mechanics), thermodynamics, electro-
statics, optics, and radiation physics, in this order [16]. In
each year more than a thousand students attended this
course and sat the test. The students in the course
represented a wide spectrum of abilities in physics. The
FCI was presented to students via an online course
management system at the end of the mechanics section
of the course. The students were not required to complete
the survey but were unable to finish their internal assess-
ment for the mechanics component of the course until they

had at least viewed the FCI. Collecting data for analysis this
way does present some issues as there is no control over the
time the students take to complete the survey. Moreover,
students did not appear to have strong motivation to answer
the questions to the best of their ability, since they were not
penalized for poor scores in the test. Thus it appeared that
there was some risk that the data would be skewed by
frivolous attempts. However, such frivolous attempts are
easy to filter out. Generally such students merely enter the
same response multiple times and then quit the test. Thus
we remove from the data set any entry that has the same
letter response repeated more than ten times consecutively.
The total number of such responses over the two-year
period was 20 responses out of a total data set of 2400
students (spoilage <1%). We note that finding all doubtful
records would be extremely difficult and we do not claim
that we have done so. We have, however, removed the most
obviously frivolous attempts at the survey.

III. ITEM RESPONSE MODELS

In this section we describe the main concepts and
assumptions of standard item response models, focusing
on those statistical methods used in this study. We limit
ourselves to a very brief outline of the theory and refer the
reader to Refs. [17-21] for more detailed discussions.
The section is divided into three parts; the first introduces
the concepts and generic assumptions of the item-response
approach, the second focuses on the unidimensional
formulation, and the third part explains the generalized,
multitrait form of IRT.

A. General concepts

Item Response Analysis supposes that a student’s
response to a particular item in a test depends on an
interaction between characteristics of the student and
characteristics of the item. Capturing this interaction in
mathematical form is the central task of statistical modeling
in Item Response Theory. Most models share some proper-
ties, e.g., the relevant characteristic of the student is the
degree to which that student holds one or more specific
underlying properties or traits. In the following discussion
we initially consider the simplest case in which there is a
single, continuous underlying trait, . The degree to which
a student possesses this trait quantifies the student’s ability
to answer a test item correctly. This parameter may take
positive or negative values and the calibration of its scale
(zero point and interval) is flexible. Often the zero point is
chosen to be the sample mean and the scale is fixed by
associating 6 = 1 with the sample standard deviation.

In these statistical models one would normally assume
that the greater the value of @ the higher the probability of a
correct response to a question. In a single-trait model we
would interpret this trait as being something like “FCI
ability.” It is better to be noncommittal in the interpretation
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of the trait (at least initially), since a label such as
“Newtonian-ness” inevitably makes claims about the abil-
ity of the FCI to measure the underlying force concept held
by students. These presumptions may be reasonable in the
sense that a high FCl-ability score may indeed strongly
indicate that the student holds a secure Newtonian con-
ception of force. However, it is also quite possible that
students with a low FClI-ability score nonetheless have a
Newtonian conception of force which is not indicated by
their FCI score for extraneous reasons.

B. Unidimensional formulation

The item response theory determines the probability,
P(6), that student i (i = 1,2,...,1) with a proficiency ;
chooses the correct answer to the item j (j = 1,2, ..., J).
A commonly employed expression for this probability is

P(xij = 1‘91'7 {aj’dﬁgj}) =

This formula includes characteristics of the student, the
proficiency 6; and characteristics of the test item: g;, a;, and
d;. The task of item response analysis is to optimally fit
these parameters to the observed data. The graph of P(9)
and the geometric meaning of the parameters are shown
in Fig. 1.

As 6; is a property of the individual student we expect
that its value does not change from item to item. In general,
we would want students with higher values of € to possess
more developed skills, so that we would expect that they
would answer an item correctly with higher probability.
This assumption requires that the generic curve is mono-
tonically increasing.

The item characteristic curve shown above is specified
by three parameters. These determine the slope of the curve
at its midpoint, the position of the midpoint on the abscissa

—_

Probability of answering
the item correctly

S
la—»

—d' /a Trait, 6

FIG. 1. The standard item response curve of a three-parameter
model depicted together with the graphical interpretation of each
corresponding parameter, a, d, and g.

(trait level), and the intercept of the curve with the ordinate
(probability) at & — —o0, i.e., when the examinee has no
measurable skill for the given trait. In terms of the
characteristics of a particular question these parameters
may be interpreted as follows. The midpoint of the curve is
the point at which the curve reaches half its maximum
value. The trait level corresponding to this midpoint is the
proficiency at which there is a 50% chance that a correct
response will be given to this question. Thus we would
expect that 50% of students who have an ability at this trait
level would answer this question correctly. This point on
the abscissa occurs when P(6) = 1 and will depend on all
three item fit parameters. However, if g = O then this point
will be given by the value of —d/a and thus this expression
is often called the difficulty parameter.

The slope of the curve at its midpoint measures the
degree to which the question discriminates between stu-
dents with similar proficiency. If the slope is very large,
then two students with similar abilities may have very
different probabilities of responding correctly to the ques-
tion. If the slope is very small then the probability of a
correct response does not change greatly between the two
students. Thus a large value of the slope parameter indicates
a question which discriminates between students who are
closely grouped by their proficiency scores. For this reason
we call this parameter the discriminating power of the item.

Finally, the intercept of the curve with the ordinate gives
the probability that a student with very low proficiency
nonetheless responds correctly to the question. In other
words, this parameter gives the probability that a weak
student will guess the correct response to the question, thus
g is called guessing parameter. While it would be reason-
able to expect that g should be as close a possible to the
probability of randomly choosing the correct answer (and
would thus be determined by the number of options in a
multichoice question), it is possible to reduce the guess-
ability of a question with well-chosen distractor options,
and it is always possible to increase the guessability with
poorly chosen or framed options.

The full three-parameter model is not always necessary
and it is often reduced to a one- or two-parameter model
by fixing values of some parameter. The one- and two-
parameter models are subclasses of the three-parameter
model and their functional forms are

PU(x;; = 116;.{d;}) = P(x;; = 1|6;.{ao.d;.0}).
PO (x;; = 110,.{a;.d;}) = P(x;; = 1|6;,{a;. d;,0}),

with the caveat that numerically the parameters of different
models are different, since we obtain them by fitting these
probability distributions onto the data. Moreover, the
value of a, is either fixed before the fitting procedure
(usually to unity) or treated as another single fitting
parameter valid for all items uniformly. The one-parameter
model is often called the Rasch model [22], while the
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two- and three-parameter models are often called the
Birnbaum 2PL and 3PL models [23] in the literature.

The straightforward nature of single-trait item response
analysis provides useful estimates of student proficiency
which may be used in the more detailed analysis of the
latent structures underlying performance in the FCI. Wang
and Bao’s earlier single-trait analysis [6] of an FCI data set
did reveal important information about each item in the test,
e.g., relative difficulties. The assumption that there is a
single underlying trait is not unassailable and has to be
justified by statistical tests in each application of item
response analysis. Unidimensional models thus provide an
attractively transparent approach for both numerical cal-
culation and the interpretation of an analysis. However,
many psychometric tests and several standardized educa-
tional tests are multidimensional in that they are con-
structed from subcomponents that are expected to poll
different underlying traits. The FCI was also constructed in
this way and is intended to poll six subcomponents of the
Newtonian conception of force. These subcomponents are
as follows [1]: kinematics, Newton’s first, second, and third
laws, the superposition principle as applied to forces, and
the classification of forces.

In our previous paper [13] we demonstrated that a five-
factor model describes our data adequately. It seems,
therefore, that a single-trait analysis may leave important
structures hidden in the FCI data; thus, we examine models
allowing for multiple latent traits.

C. Multitrait formulation

Recently statistical packages for multitrait Item
Response Analysis have become available. These models
allow for the possibility of multiple underlying traits
(k=1,2, ..., K) which influence student response to ques-
tions. These underlying traits effectively have the same role
as the factors in factor analysis. Multitrait item response
theory allows the researcher to perform an exploratory or
confirmatory factor analysis, it provides factor weightings
as in standard factor analysis, but now the item parameters
and student trait levels are also calculated. The functional
form of the probability for the multitrait item response
model is

9+ 1 +exp(—a0] —d;)

P(xij =1/9;, {a'»dj}) =

J

The vector 6; = (0;1,0;,...,0;x) represents the trait
levels (or proficiency levels) of student i, while a; =
(ajl,ajz, ....ajg) contains the discriminating parameters
for the entire collection of underlying traits for item j. Thus
for the kth trait there is both a trait level, 9;;, and a trait
discrimination, a ;. Note that there is still a single difficulty
parameter, d;, and guessability parameter, g;, for each
item. In the multitrait model the interpretation of these
parameters becomes more complex.

The probability of correctly answering a question now
depends on the proficiency of a student in several different
traits; these abilities are represented by the trait levels, ;,
in these traits. In the multitrait item response model, the
difficulty parameter, d., still encodes the difficulty of the
question. Now, however, this difficulty parameter does not
simply give the trait level at which a student has a 50%
chance of correctly answering a question. Whether or not a
student has a 50% chance of answering a question correctly
now depends on the sum of the student’s trait level in a
number of latent traits and thus the 50% point becomes a
hypersurface in the multidimensional graph of trait level
against probability. A similar interpretation must also be
adopted for the guessability parameter, g;.

The statistical modelling process amounts to fitting such
curves to the data and is essentially an optimization
procedure. The fitting function is generally a maximum
likelihood function, although other methods are also
employed [24-26]. A discussion of the various numerical
methods used to obtain estimates of the model parameters
is beyond the scope of this paper but there are a number
of exhaustive texts in the literature which may be consulted
for more thorough discussions of technical details [27].
Nevertheless, we note here that the fitting method does
require the items to be independent in the sense that the
correct solution of one question does not directly depend on
the correct solution of any of the other items. The FCI is
expected to satisfy this requirement.

Multitrait item response analysis can be cast as a non-
linear extension of classical linear factor analysis method-
ology, and as such can be employed in an exploratory or
confirmatory mode. For exploratory models, the trait axes
are constrained to be orthogonal and can be rotated
following convergence. If, however, one wishes to check
an already existing model no rotational degree of freedom
is present, and the IRT analysis becomes similar to
confirmatory Factor Analysis. Unidimensional models
naturally fall into the confirmatory category as no rotation
is possible. In our current study, we did not set the factor
structure, therefore, our analysis is entirely exploratory,
except in the unidimensional case. In this respect, the
current paper is a companion paper to our earlier paper [13]
which investigates the factor structure of FCI response data.
In our earlier paper we pointed out that there are a number
of different techniques, within the Factor Analysis frame-
work, which may be used to identify factors in data. These
different mechanisms are often called “rotations.” Different
rotations may (and very commonly do) assign questions to
different factors. Even when questions are assigned to the
same factors, different rotations will generally change the
factor loadings. This means that the interpretation of these
factors must be treated with caution. In our previous
paper our interpretation of the factor structure presented
was primarily intended to suggest possible avenues for
further, more direct, investigation. Multitrait item response

020134-4



STUDENTS’ PROFICIENCY SCORES WITHIN ...

PHYS. REV. ST PHYS. EDUC. RES 11, 020134 (2015)

analyses are similar in that they also require an initial stage
of Factor Analysis and this analysis is subject to exactly the
same constraints. Thus the results of the analysis presented
here should again be taken as preliminary, with the primary
goal of suggesting fruitful avenues for future research. In
particular, the analysis of proficiency scores presented at
the end of the paper are intended to suggest the impact of
such investigation on the teaching methods employed in
this area.

In multitrait Item Response Analysis the factor structure
of the data is augmented by a suite of additional parameters.
Each question in the survey is assigned a factor loading as
is the case in standard Factor Analysis, but now each
question is also assigned a difficulty and guessability as
well as a discrimination parameter for each underlying
factor. Furthermore each student is now assigned a profi-
ciency corresponding to each of the underlying factors.
Thus we are now able to analyze the relationship between
student understanding of each of the concepts which
underlie a full understanding of the Newtonian conception
of force. This analysis will be presented at the end of this
paper as an example of the power and usefulness of
multitrait item response analysis.

A number of commercial and open source packages are
available for item response analysis. The analysis presented
in this paper was performed using the open source
statistical programming language R [28], and the MIRT
package [29].

IV. MODEL SELECTION

In this section we discuss the different models used to
analyze the data. The most important issue in model
selection is the requirement that the model must fit the
data. Second, we require some quantitative procedure for
comparing different models that all satisfy some minimum
fitting criteria. Note that, as with the numerical methods
used to implement IRT, model fit and selection is a very
large and complex field. We do little more here than
indicate which methods were used to identify suitable
models; further explanation of the numerical techniques is
available in the technical literature; see, e.g., [27].

A. Model fit analysis

Item Response Analysis is performed by fitting a
particular model to the data, i.e., finding the values of
model parameters which are, in some respect, optimal. It is
standard practice to define some “goodness-of-fit” param-
eter which quantifies the discrepancy between the model
and the data, thus a smaller goodness-of-fit value indicates
a better fitting model to the observed data.

In this paper we use the root mean square error of
approximation (RMSEA) as an industry standard measure
of the goodness of fit. The value of RMSEA < 0.05 is
employed as an indicator of an acceptable fit and we quote

these values for the models discussed in the following. It
should be noted that rigorously analyzing the model fit is
still a difficult and largely unsolved problem in statistics.
Analyzing the behavior of RMSEA statistics in the context
of IRT modeling has recently been undertaken by Maydeu-
Olivares and a family of generalized statistics has been
proposed and examined [30-33]. Although a generic cutoff
value for any statistic can be problematic, Maydeu-Olivares
and Joe [33] agreed that for RMSEA the 0.05 value can, in
most cases, be an acceptable standard.

B. Model comparison

Once it has been established that a group of statistical
models all fit the data adequately, it is necessary to choose
the most appropriate model for the analysis. This choice
may be based on the purpose of the analysis, for example, a
single-parameter, single-trait model may be appropriate if
all that we are interested in is the relative difficulty of the
survey questions. In this paper we will present such a model
for exactly this purpose. On the other hand, it may be
desired to retrieve as much information as possible from the
data and in this case it would appear that the appropriate
model would be the one with the most latent traits and
fitting parameters. However, as is well known from curve
fitting in experimental physics, increasing the number
of fitting parameters eventually becomes pathological in
that we end up fitting the model to noise rather than
capturing the relevant effect. In order to avoid overfitting, a
number of statistics has been developed—usually based on
some entropic argument—which compares the information
content of competing statistical models [34]. These sta-
tistics commonly use the likelihood function, L, to compute
the information content of the model.

Below we rely on two widely accepted and used
measures [35-37]: Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC). These are
defined as

AIC = —2In(L) + 2k,
BIC = -21In(L) + kIn(n),

where k is the number of fit parameters in the model and
n is the number of data points with which the model is
fit. With these definitions the smaller the AIC or BIC, the
better the model. Both AIC and BIC are proportional to
the logarithm of the likelihood function, but AIC only
penalizes the number of parameters used, while BIC
takes into account the size of the data set as well. It is
apparent that for larger data sets BIC is the stricter
criterion [38]. The best model is then the model which
encodes the most information using the least number of
fit parameters. In the following section we use the AIC,
BIC, and modified versions of both to select the optimal
model for our data.
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V. RESULTS

In this study we have evaluated a number of statistical
models of the data increasing in complexity from a single-
trait Rasch model to a ten-trait model. We show that all of
these models satisfy a reasonable absolute fit criterion and
that the preferred model, from an information theoretical
point of view, is the one with five latent traits.

In Table I we list models with increasing number of
traits and parameters. All the data are obtained by fixing
the relative tolerance of convergence to 1073, ie., the
optimization procedure is stopped when two consecutive
fits resulted in a change in AIC less than this fixed value.

It is clear from Table I that each of the models compared
has an adequate absolute fit to the data, in that even the
largest value of the RMSEA is less than 0.05. In Fig. 2 we
plot several information criteria against the number of traits
used in the model. It is clear that the minimum for all of
these criteria apart from the AIC occurs with a five-trait
model. The AIC has a global minimum at the seven-trait
model, but this minimum is extremely flat so that the AIC is
not a useful criterion for model selection.

In the rest of this section we will discuss the significance
and interpretation of two item response models with a
single or with five latent traits.

A. Single-trait model

First we consider a single-trait model. Our treatment will
be brief as such models have been discussed by others
[5,6,39,40]. This model does, however, provide a bench-
mark for more sophisticated models. After the concise
review of this unidimensional model, we advance to the
five-trait model.

TABLE 1. Statistical measures of IRT models with varying
number of traits are tabulated as calculated by MIRT. The root
mean square error of approximation (RMSEA) is provided here
to show that all models fit the data acceptably well. The two
dominant information criteria, AIC and BIC, are given with the
minima underlined. Although the strict minimum AIC value
corresponds to n = 7, this minimum is quite shallow and may
only be the artefact of the optimization procedure. Contrary to
AIC, the Bayesian Information Criterion has a well-defined
minimum at n = 5.

Traits In(L) RMSEA AIC BIC

1 —34995 0.0496 70110 70449
2 —34739 0.0421 69655 70158
3 —34556 0.0388 69346 70007
4 —34415 0.0340 69118 69932
5 —34260 0.0262 68860 69821
6 —34230 0.0209 68850 69952
7 —34204 0.0226 68845 70083
8 —-34199 0.0200 68882 70250
9 —34206 0.0231 68939 70432
10 —34164 0.0259 68898 70509
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FIG. 2 (color online). Different information criteria are plotted

for item response models with varying number of traits. Although

Akaike’s Information Criterion and its corrected version (AICc)

show a broad minimum plateau for 5 < n <7 the other two

information criteria have a definite minimum at n = 5.

Wang and Bao [6] have fitted a three-parameter model to
FCI data collected at the end of a calculus-based intro-
ductory mechanics course and have published their esti-
mated item parameters (discrimination, difficulty, and
guessing). They found, for example, that the range of
difficulty parameters is typically within a range of (-3, 3),
and a narrower region of (—2,2) is covered well by the
items. The hardest two items in their model are questions
15 and 26. It is worth mentioning here that differences
between the two teaching approaches, their calculus-based
course vs our algebra-based course, does not appear to
greatly change the structure of the fitted item parameters.
Later, Morris et al. [40] offered a simplified IRT model
called an item response curve method. In this abridged
version of IRT the total score of a respondent is used as a
proxy for their proficiency level, which tacitly implies that
all items are equally weighed. They argued that even their
item response curve method is capable of characterizing
item difficulty very similarly to that of Wang and Bao’s
difficulty parameter, b.

Table I indicates that the five-trait model is the preferred
model on the basis of a comparison of various information
criteria and RMSEA statistics. However, there are often
good reasons to accept a simpler model, for example, it may
be that all that is required is a quick estimate of student
proficiency or an estimate of item difficulty. As shown a
single-trait model has an adequate absolute fit to the data
since this model has RMSEA < 0.05.

In Fig. 3 we have also depicted the test information
curve, 1(60), defined as 1(0) = >, 1;(0), i.e., as the sum of
all item information curves [19,23]

B | AP (6)\?
O =5 o —Pk«m( 4 )
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FIG. 3 (color online). The item characteristic curves shown for
a single-trait two-parameter model for all 30 items. It is apparent
that the —3 < @ < 3 is well covered by items, and also there are at
least two items (question 15 and 26) which poll the students with
higher skills. These two items correspond to the two rightmost
curves in this graph. The overall test information curve has also
been depicted with a heavier line and with its scale denoted on the
right vertical axis.

where the possible parameters of P, have been dropped
from the notation for the sake of transparency. The
information function is a measure of the accuracy of the
test as a function of trait level. The test information curve is
very nearly symmetrical with respect to & = 0 and its full
width at half maximum covers the —2 < @ < 2 interval, i.e.,
the FCI seems to poll students equally well with skill below
and above average; as can be seen in Fig. 3, there are two
item curves (items 15 and 26) falling in the high trait level
region and two curves (items 1 and 29) rises in the low trait
level region. The test information curve for the FCI is
provided here for the first time to the best of our knowl-
edge. Clearly, the FCI is most accurate at moderate trait
levels but is less able to accurately assign proficiency scores
to very strong or very weak students. This is to be expected
and is a result of the relatively tight grouping of item
difficulties.

Item Response Theory is a powerful statistical tool in
that not only the difficulty of each item, but also the
proficiency of the examinees are estimated. The optimiza-
tion procedure associates as many skill scores as there are
latent traits in the model. In the case of a single-factor
model, the optimization assigns proficiency score, 8, to the
kth examinee. Since student proficiency and item difficulty
are measured on the same scale, it is instructive to compare
the distribution of the proficiency scores with the item
difficulties themselves.

In Fig. 4 the histogram for the estimated trait scores is
plotted on the right-hand side. The solid curve is the same
test information curve which is shown in Fig. 3. Here we
have rescaled the information curve so it can be compared

15

26 -

30,21 3

25,4,5, 3,
20,17, 23,22,2,11
19, H

9,28, 27 .

0 50 100 150 200
Number of examinees

FIG. 4 (color online). The histogram of the students’ profi-
ciency scores (right) with the individual item difficulties (left) for
the single-trait model. On the right-hand side the smoothed
distribution of the skill (bold dashed line) and the test information
curve (solid line) have also been depicted.

with the histogram. It is immediately apparent that the test
information curve not only covers the skill range of the
entire cohort of examinees’ but also the test information
curve is more or less flat over the bulk of the histogram.
This feature is reassuring as it demonstrates that the FCI
test accurately determines student proficiency for the bulk
of the examinees’.

The item difficulties are shown on the left-hand side of
this graph. The same axis is used to indicate the difficulties
of the individual items, —d; /a ; (see Table II). On the left-
hand side the item labels have been clustered into sets for
the sake of clarity, and within each group the leftmost item
has the lowest, while the rightmost item has the highest
difficulty.

TABLE II.  Fitting parameters for the single-trait model for all
30 items in the FCI test.

J a; i j  q i J g d;

1 1.078 2228 11 1.789 —-0.689 21 0.818 —-0.793
2 0.613 —-0.208 12 1405 1.461 22 1.241 -0.404
3 0.624 —0.358 13 2.147 —1.453 23 1.290 -0.374
4 0.910 —0.448 14 1.096 —0.148 24 1.848 1.479
5 1.344 —-0.677 15 0.344 —1.368 25 1.161 —-0.522
6 2.029 2334 16 1.565 1.724 26 0.542 —1.085
7 2.063 2650 17 1.147 -0.324 27 0919 0.072
8 1.142 0963 18 1.339 —0.802 28 1.272 0.210
9 1.084 0.185 19 1.188 —0.065 29 0.813 1.563
10 1.750 0966 20 1.345 —0.365 30 1.440 —1.279
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B. Five-trait model

The analysis of information criteria, such as the AIC and
BIC, suggests that the five-trait model is optimal in that the
complexity of the data is captured with the minimum
number of fitting parameters. In this section we examine the
five-trait model in more detail both in what the model says
about the test items and in what it reveals about the
respondents. We also compare the structure of these five
latent traits to the five factors examined in our previous
study [13].

C. Item characteristics

As a first step in analyzing the five-trait model we focus
on the item characteristics, i.e., on the a j and d ; parameters.
In Table III we give the parameters for a five-trait model.
In this model the test items poll student proficiencies in
five latent traits. As discussed in Sec. III, each question is

TABLE III. The fitting parameters, the five discriminating
parameters d;i, ..., d;s, and the difficulty parameter ; of item
Jj, for all 30 items in the FCI test with the five-trait model. As a
reminder, we note here that the individual a;,...,a;s values
cannot directly be compared to the a; values in Table II (see
Sec. III for a detailed explanation).

j ajl Clj2 (lj3 aj4 aj5 dj
1 —-0.842 0.620 0.011 -0.131 -0.241 2.268
2 —-0453 0.402 —-0.290 0.061 -0.022 -0.187
3 -0.572 0.297 0.063 -0.278 0.017 -0.348
4 -1.070 0.758 —-1.847 -0.027 -0.195 -0.525
5 —-1.699 0.169 0.074 0.736 -0.114 —-0.760
6 —1.215 1.606 0.495 0.145 -0.752 2.537
7 —1.109 1.842 0.585 0.320 -0.761 2.987
8 —0.723 0.931 0.403 0.281 —0.644 1.046
9 —-0.850 0.671 0.335 0.035 -0.187 0.194
10 -1.267 1.167 0.066 0.305 —0.844 1.045
11 —1.685 0.732 0.143 0.497 -0.156 —0.701
12 -0.934 0.916 0.196 0.224 -0.186 1.470
13 -2.780 0.340 0.029 -0.070 0.094 —1.641
14 —-0.828 0.743 0.014 -0.187 0.086 —0.123
15 -0.678 -0.201 -1.907 -0.381 0.165 —1.960
16 -0.814 1.606 —0.028 0.633 0.155 1.945
17 —-1.103 1.579 0.087 1.174 1.686 —0.484
18 -2.137 -0.12 0.268 0.639 0.044 -0.997
19 -0.908 0.944 0.065 —-0.560 0.015 -0.036
20 -1.012 1.002 0.024 -0.347 0.086 —0.344
21 —-0.890 0.558 0.181 —1.086 0.625 —-0.947
22 —1.200 0.612 0.110 -0.395 0.329 -0.385
23 —1.064 0.915 0.280 —-0.500 -0.158 —0.378
24 —1.268 1.205 -0.012 0.054 -0.614 1.538
25 —1.283 0.959 -0.199 0.504 1.520 -0.651
26 —0.422 0.361 0.042 0.026 0.448 —1.113
27 —-0.801 0.629 0.254 -0.550 0.000 0.099
28 —1.323 1.455 -1.903 0.000 0.000 0.448
29 —-0.350 0.817 0.000 0.000 0.000 1.608
30 —-1.937 0.000 0.000 0.000 0.000 -1.414

assigned a single difficulty parameter, a guessing parameter
and five discrimination parameters. An item which does not
depend on a particular trait will not load strongly onto that
factor and the discrimination parameter associated with that
question and trait will be small. As an example let us
consider item 2. None of the components of its discrimi-
nating parameter, a, = (—0.453,0.402,-0.290,0.061,
—0.022), are particularly large, and, at the same time,
none of the factor loadings of this item are bigger than 0.3,
the value chosen to be the cutoff value for appearing in
Table IV.

As was noted earlier, the MIRT package performs an
exploratory factor analysis to identify the latent traits for
the item response analysis.

TABLE IV. The members of all five factors as obtained [13]
from factor analysis (top row) and as given independently from
item response theory (bottom row). The symbols show which
item belongs to which factor with loading larger than 0.3 in
magnitude. If no symbol can be found in a row then that item
either has not been assigned to a factor or its loading is smaller
then 0.3 in absolute value. The black portion within each circular
shape is proportional to the loading.
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In Table IV we compare the factors obtained for a five-
factor item response model with that found in our previous
exploratory factor analysis paper (see Table III in
Ref. [13]). Each row in the table corresponds to an item
in the FCI questionnaire. The circular symbol in a row
indicates that the item is part of that factor with loading
higher than 0.3 in absolute value. The black shaded area is
proportional to the magnitude of loading on that factor, i.e.,
a full black circle would mean that the item loads entirely
on a given factor. Loadings smaller than 0.3 in magnitude
are taken to represent weak association and therefore we
omit listing such items for that factor.

In order to highlight the structural similarity between the
two analyses, the factors from our earlier factor analysis and
the current Item Response Theory have been interleaved.
The top row in Table IV contains the factor assignment from
our previous paper [13] while the last row shows the factor
numbering from Item Response Theory. Some resemblance
between the results is expected; however, such a striking
similarity is surprising. There are some minor differences,
e.g., factor analysis would assign item 15 to a single factor
(with loading 0.703), item response analysis assigns similar
loading to the essentially same factor (loading 0.760),
meanwhile it also loads item 15 with a negative loading
on to factor 1 (loading —0.310). Such negative loadings
suggest that possessing high skills in certain factors may
reduce the proficiency on another factor.

Despite such minor differences between the factor
assignments, the two statistical approaches result in very
similar factors. While this is not necessarily particularly
surprising, it is useful in that it allows us to employ the
interpretation of these factors which was presented in the
previous paper [13] and we will employ the same nomen-
clature in the present work. For transparency in Table V
we list how the factors from the two approaches (factor
analysis and item response theory) correspond to each other
and how one may describe each factor.

As a final remark we note that items 2, 3, and 14 have
not been clearly assigned to any factor in either of the
statistical approaches. Items 2 and 14 can be characterized
as kinematics questions while 3 is expected to test the
understanding of Newton’s second law. The fact that these
items are left unassigned can be interpreted as these items
are superfluous and do not poll the students’ skill con-
vincingly. These items could therefore be dropped from the
test, we believe, and replaced by three other items.

D. Student characteristics

One of the attractive features of IRT models is that they
are capable of estimating fitting parameters characterizing
respondents as well as fitting parameters for test items.
Moreover, the item difficulty and the respondents’ profi-
ciency scores are measured on the same scale, and are thus
directly comparable. In the previous section we analyzed

TABLE V. The factor structure of the FCI data as predicted by
two independent statistical models: exploratory factor analysis
[13] and item response theory (present work). A description of
each factor is also given.

Factor Item Response

Analysis ~ Theory Description

1 3 Identification of forces

2 1 Newton’s first law with zero force

3 5 Newton’s second law and kinematics

4 4 Newton’s first law with canceling forces
5 2 Newton’s third law

the item characteristics. In this section we will focus on the
parameters describing an individual respondent.

The analysis of these proficiency scores is dependent on
the particular factor structure employed in the multitrait
item response analysis. If a different rotation is employed,
the factor structure may well change significantly and thus
so will the proficiency scores and the correlations between
them. The factor structure we have investigated here is
chosen due to the clear interpretation of the meaning of the
factors. This clarity leads to an equally clear interpretation
of the correlations between the proficiency scores.

Although we have briefly touched upon the students’
proficiency scores in an earlier section and compared these
scores to the item difficulties, here we would like to examine
the students’ scores from another direction. As soon as one
extends the single-trait model to a multitrait Item Response
Theory model, it is inevitable that all examinees are assigned
many proficiency scores. Therefore one might also ask
whether these proficiency scores show some structure. In
other words: Is there any relationship between the trait
proficiencies that an examinee exhibits?

Let us hypothesise the following scenario: a cohort is
polled on Aristotelian and Newtonian mechanics, and each
examinee is assigned two proficiency scores corresponding
to these two ideas, 64 and 6y, respectively. It is quite
plausible that students who have a good understanding of
the Aristotelian description of natural motion would strug-
gle with describing the same motion within the Newtonian
world view, and vice versa. Therefore one might expect that
these two proficiency scores would be anticorrelated with
each other.

If there is evidence of correlation structure in the
proficiency scores of students taking the FCI, this would
indicate relationships between the learning of these con-
cepts. For example, a positive correlation between two
trait proficiencies could indicate that an emphasis on one of
the concepts in a teaching procedure could also increase
understanding of the other concept. Conversely, an anti-
correlation could indicate that learning one concept could
actively decrease or destabilize the understanding of the
other concept. A note of caution is necessary here. As is
repeated, correlation is not causation and all we can assert is
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TABLE VL. The correlation of students’ skill values, r(6;,6;),
between the five traits they possess. The traits are identified by
indices i and j which take values i, j = 1,2, 3,4, 5. As the table is
symmetric with respect to its main diagonal, only the lower half is

provided.

Traits from Item Response Theory

1 2 3 4 5
1 1.000
2 0.519 1.000
3 0.769 0.643 1.000
4 —0.738 —-0.602 —-0.756 1.000
5 -0.719 —-0.624 -0.770 0.704 1.000

that a correlation of this sort indicates a possible causal link
that warrants further investigation.

Based on the five-factor model each student has five skill
scores, 6;,...,0s. We calculated the standard Pearson
correlation r(6;,6;) for each pair (i,j =1, 2, 3, 4, 5).
The tabulated result can be found in Table VL

Table VI shows that there are two groups of trait
proficiencies, traits 1, 2, and 3 and traits 4 and 5, with
strong positive correlations within groups, i.e., between
group members and strong negative correlations between
groups, i.e., between members of different groups.

One group contains the proficiencies in factor 1
(Newton’s first law with zero force), factor 2 (Newton’s
third law), and factor 3 (identification of forces). The
second group contains proficiencies in factor 4 (Newton’s
first law with cancelling forces) and factor 5 (Newton’s
second law and kinematics). We will present an interpre-
tation of this pattern of correlations but we first would like
to strongly emphasize that our interpretations of these
correlations should be taken as suggestions for further,
more direct investigation. We do not claim that our
interpretations are directly proven by these correlations.

First we consider the strong positive within group
correlations. In the first group, it is not surprising that
factors 2 and 3 are combined together since Newton’s third
law is primarily concerned with the identification of forces,
namely action-reaction pairs of forces.

However, it is slightly surprising that factor 1 is also in this
proficiency grouping. It would appear that the skill required
to answer questions concerning “Newton’s first law with
zero force” bear some commonality with the skills required
to successfully answer questions about Newton’s third law
and the identification of forces. Furthermore, proficiency in
factor 1 is quite strongly anticorrelated with proficiency in
factor 4, “Newton’s first law with cancelling forces.”

Some insight into this issue may be obtained by con-
sidering the text of the questions in factor 1. Factor 1
contains 11 questions, one shared with factor 4 (question
16) and another (question 23) shared with factor 5.

Question 16 will not enter into our analysis as it is
misplaced in these factors, i.e., it is clearly a question about

Newton’s third law. It was found to be misplaced in our
earlier exploratory factor analysis as well, and in this earlier
analysis we propose an explanation. Briefly, we propose
in that paper that students analyze this question using a
fallacious first law argument which fortuitously provides
the correct answer. We will not revisit this discussion here,
except to note that the current analysis appears to confirm
our earlier factor analysis [13].

Factor 1 contains questions which appear to favor visual
problem solving modalities. In factor 1, questions 6, 7, 8,
12, and 23 are “visual choice” questions in that they all
require the student to choose the correct diagram from a
set. There are only two other questions of this type in the
FCI, questions 14 and 21. It is striking that nearly half the
questions in factor 1 are of this type, and this type of
question appears almost exclusively in factor 1. We would
therefore suggest that there is a strong visual element in this
factor in that these questions could be correctly answered
by a student with a strong visual memory and some
experience in situations similar to those depicted in these
questions. The fact that proficiency in this factor is strongly
correlated with proficiency in factors 2 and 3 suggests that
research into the use of visual thinking and problem solving
in the identification of forces and the understanding of
Newton’s third law would perhaps be fruitful.

We note that the other questions in factor 1 tend to be
“follow up” questions to these visual choice questions. For
example, questions 9, 10, and 11 ask further questions about
the diagrams presented in question 8. These questions do
appear to be independent in the sense required for item
response analysis; the answer to question 8 is not required to
answer questions 9, 10, and 11. However the diagrams in
question 8 do provide a significant “visual aid” to a student
attempting questions 9, 10, and 11. A student with a strong
visual memory who correctly chooses option B as the
answer to question 8 is then able to use that diagram to
assist them in answering the later questions. Further under-
standing of Newton’s first law is required, but option B does
supply further cognitive input in the reasoning process.

Now we consider the strong positive correlation between
proficiencies in factors 4 and 5. It is not surprising that the
proficiency in these two factors is strongly correlated since
Newton’s first law is a special case of Newton’s second law.
The surprise is not that proficiencies in factors 4 and 5 are
in this group; the surprise is that proficiency in factor 1 is
not also in this group. As discussed above, it appears that
there may be a strong visual element in proficiency in factor
1 questions. The grouping of this proficiency with factors 2
and 3 rather than with factors 4 and 5 suggests that the
visual character of this proficiency is more closely corre-
lated with the skills required to solve factor 2 and 3
problems than with the clear similarity between the physics
of factor 1 and the physics of factor 4. The correlation
would appear to be due to similarity in thought process
rather than the similarity in content.
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Finally we will discuss the strong anticorrelation
between the two groups of factor proficiencies, that is,
between the group containing factors 1, 2, and 3 and the
group containing factors 4 and 5.

To begin with we should point out that the main result is
that there is an anticorrelation between these two groups.
Further research is required to determine the cause of
this anticorrelation. We suggest possible reasons for this
anticorrelation with this caveat in mind. We suggest two
possible sources of the observed anticorrelation; these two
suggestions are not mutually exclusive.

As we have already discussed, one possibility is that
the factors are successfully solved by different styles of
thinking. Proficiency in factor 1 seems to involve visual
problem solving, whereas factors 4 and 5 do not so clearly
depend on this diagrammatic mode of thought. If this
interpretation is correct, then the separation between the
two groupings may be due to differences between the
required problem solving modes and conflicts between
the operation of these two modes. This interpretation would
also highlight the importance of developing a skill for
switching between multiple representations of a physics
problem [41]. Our hypothesis regarding the visual differ-
ence between the latent FCI factors is partially supported
by a previous study [42], which found positive correlation
between students’ preinstruction level of representational
consistency and their learning of forces.

A second possibility is that the physics involved in the
two groups conflicts. This would mean that understanding
Newton’s third law destabilizes understanding of Newton’s
second law. Learning new concepts challenges old knowl-
edge. This is an unavoidable character of learning. Thus it
would not be surprising if learning Newton’s third law
decreased a student’s understanding of Newton’s second
law, at least, temporarily.

VI. CONCLUSION

Concept inventories are frequently used to assess stu-
dents’ proficiencies in a particular subject and to provide
feedback about teaching practices. The analysis presented
in this paper highlights the value of item response models in
physics education research. The development of multitrait

item response models in particular allows for the extension
of factor analysis techniques to include the assignment of
proficiency scores to respondents. This in turn allows for
the investigation of the multiple skills students employ to
complete surveys like the FCI.

In this paper we have presented a detailed analysis of
several single and multitrait item response models of FCI
data. It has been shown that a simple single-trait, single-
parameter model may be applied to the data with adequate
fit. It has further been shown, via the use of several standard
information criteria, that the optimal item response model
of the data has five underlying traits and seven item
parameters. These five traits have been shown to corre-
spond closely to the factors found in an exploratory factor
analysis presented in our previous paper [13].

Finally, we have analyzed the proficiency scores
assigned to respondents for each trait in the five-trait
model. We then constructed a correlation matrix between
the trait proficiencies in these five traits. This matrix
showed that there are two groups of trait proficiencies.
Within each group the trait proficiencies are quite strongly
and positively correlated with each other. Between groups
the trait proficiencies are quite strong and negatively
correlated with each other. We have suggested that the
strong correlation within one group suggests a significant
visual component to these trait proficiencies, and since one
of the trait proficiencies in this group is Newton’s third law
trait proficiency, we suggest that a strong proficiency in this
concept relies on good visual problem solving. The strong
and negative correlation between the two groups is inter-
preted as being attributable to differences in problem
solving modalities, and also the possibility that an under-
standing of Newton’s third law challenges a preexisting
understanding of Newton’s second law. We point out that
these interpretations should be taken primarily as sugges-
tions for future research.
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