
 
 

University of Birmingham

The dynamic geometry of interaction machine
Muroya, Koko; Ghica, Dan R.

DOI:
10.23638/LMCS-15(4:7)2019

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Muroya, K & Ghica, DR 2019, 'The dynamic geometry of interaction machine: a token-guided graph rewriter',
Logical Methods in Computer Science, vol. 15, no. 4, 4340. https://doi.org/10.23638/LMCS-15(4:7)2019

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published in Logical Methods in Computer Science. DOI:10.23638/LMCS-15(4:7)2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. Nov. 2021

https://doi.org/10.23638/LMCS-15(4:7)2019
https://research.birmingham.ac.uk/portal/en/persons/koko-muroya(3961f662-dad1-4d65-962e-6770df8f3d07).html
https://research.birmingham.ac.uk/portal/en/persons/dan-ghica(5ce145d2-0e50-4290-a666-1fa70f8cca43).html
https://research.birmingham.ac.uk/portal/en/publications/the-dynamic-geometry-of-interaction-machine(6cbf1c6e-d19d-42d6-b5f1-d16d8f543487).html
https://research.birmingham.ac.uk/portal/en/journals/logical-methods-in-computer-science(4177de23-1718-41ca-8421-42487ad1be38)/publications.html
https://doi.org/10.23638/LMCS-15(4:7)2019
https://research.birmingham.ac.uk/portal/en/publications/the-dynamic-geometry-of-interaction-machine(6cbf1c6e-d19d-42d6-b5f1-d16d8f543487).html


Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 7:1–7:32
https://lmcs.episciences.org/

Submitted Mar. 02, 2018
Published Oct. 30, 2019

THE DYNAMIC GEOMETRY OF INTERACTION MACHINE:

A TOKEN-GUIDED GRAPH REWRITER ∗

KOKO MUROYA AND DAN R. GHICA

School of Computer Science, University of Birmingham, UK
e-mail address: {k.muroya,d.r.ghica}@cs.bham.ac.uk

Abstract. In implementing evaluation strategies of the lambda-calculus, both correctness
and efficiency of implementation are valid concerns. While the notion of correctness is
determined by the evaluation strategy, regarding efficiency there is a larger design space that
can be explored, in particular the trade-off between space versus time efficiency. Aiming
at a unified framework that would enable the study of this trade-off, we introduce an
abstract machine, inspired by Girard’s Geometry of Interaction (GoI), a machine combining
token passing and graph rewriting. We show soundness and completeness of our abstract
machine, called the Dynamic GoI Machine (DGoIM), with respect to three evaluations:
call-by-need, left-to-right call-by-value, and right-to-left call-by-value. Analysing time cost
of its execution classifies the machine as “efficient” in Accattoli’s taxonomy of abstract
machines.

1. Introduction

The lambda-calculus is a simple yet rich model of computation, relying on a single mechanism
to activate a function in computation, beta-reduction, that replaces function parameters
with actual input. While in the lambda-calculus itself beta-reduction can be applied in
an unrestricted way, it is evaluation strategies that determine the way beta-reduction is
applied when the lambda-calculus is used as a programming language. Evaluation strategies
often imply how intermediate results are copied, discarded, cached or reused. For example,
everything is repeatedly evaluated as many times as requested in the call-by-name strategy.
In the call-by-need strategy, once a function requests its input, the input is evaluated and
the result is cached for later use. The call-by-value strategy evaluates function input and
caches the result even if the function does not require the input.

The implementation of any evaluation strategy must be correct, first of all, i.e. it has
to produce results as stipulated by the strategy. Once correctness is assured, the next
concern is efficiency. One may prefer better space efficiency, or better time efficiency, and
it is well known that one can be traded off for the other. For example, time efficiency can
be improved by caching more intermediate results, which increases space cost. Conversely,
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bounding space requires repeating computations, which adds to the time cost. Whereas
correctness is well defined for any evaluation strategy, there is a certain freedom in managing
efficiency. The challenge here is how to produce a unified framework which is flexible enough
to analyse and guide the choices required by this trade-off. Recent studies by Accattoli
et al. [AD16, ABM14, Acc17] clearly establish classes of efficiency for abstract machines
that implement a given evaluation strategy. They characterise efficiency by means of the
number of beta-reduction applications required by the strategy, and introduce two efficiency
classes, namely “efficient” and “reasonable”. This classification of abstract machines gives
us a starting point to quantitatively analyse the trade-offs required in an implementation.

1.1. Token-Passing GoI. We employ Girard’s Geometry of Interaction (GoI) [Gir89], a
semantics of linear logic proofs, as a framework for studying the trade-off between time
and space efficiency. In particular we focus on the token-passing style of GoI, which gives
abstract machines for the lambda-calculus, pioneered by Danos and Regnier [DR96] and
Mackie [Mac95]. These machines evaluate a term of the lambda-calculus by translating the
term to a graph, a network of simple transducers, which executes by passing a data-carrying
token around.

Token-passing GoI decomposes higher-order computation into local token actions, or
low-level interactions of simple components. It can give strikingly innovative implemen-
tation techniques for functional programs, such as Mackie’s Geometry of Implementation
compiler [Mac95], Ghica’s Geometry of Synthesis (GoS) high-level synthesis tool [Ghi07],
and Schöpp’s resource-aware program transformation to a low-level language [Sch14b]. The
interaction-based approach is also convenient for the complexity analysis of programs, e.g.
Dal Lago and Schöpp’s IntML type system of logarithmic-space evaluation [DS16], and Dal
Lago et al.’s linear dependent type system of polynomial-time evaluation [DG11, DP12].

Fixed-space execution is essential for GoS, since in the case of digital circuits the memory
footprint of the program must be known at compile-time, and fixed. Using a restricted
version of the call-by-name language Idealised Algol [GS11] not only the graph, but also the
token itself can be given a fixed size. Surprisingly, this technique also allows the compilation
of recursive programs [GSS11]. The GoS compiler shows both the usefulness of the GoI as a
guideline for unconventional compilation and the natural affinity between its space-efficient
abstract machine and call-by-name evaluation. The practical considerations match the prior
theoretical understanding of this connection [DR96].

The token passed around a graph simulates graph rewriting without actually rewriting,
which is in fact an extremal instance of the trade-off we mentioned above. Token-passing
GoI keeps the underlying graph fixed and uses the data stored in the token to route it. It
therefore favours space efficiency at the cost of time efficiency. The same computation is
repeated when, instead, intermediate results could have been cached by saving copies of
certain sub-graphs representing values.

1.2. Interleaving Token Passing with Graph Rewriting. Our intention is to lift the
token-passing GoI to a framework to analyse the trade-off of efficiency, by strategically
interleaving it with graph rewriting. We present the framework as an abstract machine
that interleaves token passing with graph rewriting. The machine, called the Dynamic GoI
Machine (DGoIM), is defined as a state transition system with transitions for token passing
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as well as transitions for graph rewriting. The key idea is that the token holds control over
graph rewriting, by visiting redexes and triggering the rewrite transitions.

Graph rewriting offers fine control over caching and sharing intermediate results.
Through graph rewriting, the DGoIM can reduce sub-graphs visited by the token, avoiding
repeated token actions and improving time efficiency. However, fetching cached results can
increase the size of the graph. In short, introduction of graph rewriting sacrifices space
while favouring time efficiency. We expect the flexibility given by a fine-grained control over
interleaving will enable a careful balance between space and time efficiency.

As a first step in our exploration of the flexibility of this machine, we consider the two
extremal cases of interleaving. The first extremal case is “passes-only”, in which the DGoIM
never triggers graph rewriting, yielding an ordinary token-passing abstract machine. As a
typical example, the λ-term (λx.t)u is evaluated like this:

λx.t u

(1) A token enters the graph on the left at the bottom open edge.
(2) A token visits and goes through the left sub-graph λx.t.
(3) Whenever a token detects an occurrence of the variable x in t, it

traverses the right sub-graph u, then returns carrying information
about the resulting value of u.

(4) A token finally exits the graph at the bottom open edge.

Step 3 is repeated whenever the argument u needs to be re-evaluated. This passes-only
strategy of interleaving corresponds to call-by-name evaluation.

The other extreme is “rewrites-first”, in which the DGoIM interleaves token passing with
as much, and as early, graph rewriting as possible, guided by the token. This corresponds to
both call-by-value and call-by-need evaluations, with different trajectories of the token. In
the case of left-to-right call-by-value, the token enters the graph from the bottom, traverses
the left-hand-side sub-graph, which happens to be already a value, then visits the sub-graph
u even before the bound variable x is used in a call. The token causes rewrites while
traversing the sub-graph u, and when it exits, it leaves behind a graph corresponding to a
value v such that u reduces to v. For right-to-left call-by-value, the token visits the sub-graph
u straightaway after entering the whole graph, reduces the sub-graph u, to the graph of the
value v, and visits the left-hand-side sub-graph. The difference with call-by-need is that the
token visits and reduces the sub-graph u only when the variable x is encountered in λx.t.

In our framework, all these three evaluations involve similar tactics for caching interme-
diate results. Different trajectories of the token realise their only difference, which is the
timing of cache creation. Cached values are fetched in the same way: namely, if repeated
evaluation is required, then the sub-graph corresponding now to the value v is copied. One
copy can be further rewritten, if needed, while the original is kept for later reference.

1.3. Contributions. This work presents a token-guided graph-rewriting abstract machine
for call-by-need, left-to-right call-by-value, and right-to-left call-by-value evaluations. The
abstract machine is given by the rewrites-first strategy of the DGoIM, which turns out to be
as natural as the passes-only strategy for call-by-name evaluation. It switches the evaluations,
by simply having different nodes that correspond to the three different evaluations, rather
than modifying the behaviour of a single node to suite different evaluation demands. This
can be seen as a case study illustrating the flexibility of the DGoIM, which is achieved
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through controlled interleaving of rewriting and token-passing, and through changing graph
representations of terms.

We prove the soundness and completeness of the extended machine with respect to
the three evaluations separately, using a “sub-machine” semantics, where the word “sub”
indicates both a focus on substitution and its status as an intermediate representation. The
sub-machine semantics is based on Sinot’s “token-passing” semantics [Sin05, Sin06] that
makes explicit the two main tasks of abstract machines: searching redexes and substituting
variables.

The time-cost analysis classifies the machine as “efficient” in Accattoli’s taxonomy of
abstract machines [Acc17]. We follow Accattoli et al.’s general methodology for quantitative
analysis of abstract machines [ABM14, Acc17], however the method cannot be used “off the
shelf”. Our machine is a more refined transition system with more transition steps, and
therefore does not satisfy one of their assumptions [Acc17, Sec. 3], which requires one-to-one
correspondence of transition steps. We overcome this technical difficulty by building a weak
simulation of the sub-machine semantics, which is also used in the proof of soundness and
completeness. The sub-machine semantics resembles Danvy and Zerny’s storeless abstract
machine [DZ13], to which the general recipe of cost analysis does apply.

Finally, an on-line visualiser1 is implemented, in which our machine can be executed on
arbitrary closed (untyped) lambda-terms. The visualiser also supports an existing abstract
machine based on the token-passing GoI, which will be discussed later, to illustrate various
resource usage of abstract machines.

The rest of the paper is organised as follows. We present the sub-machine semantics in
Sec. 2, and introduce the DGoIM with the rewrites-first strategy in Sec. 3. In Sec. 4, we
show how the DGoIM implements the three evaluation strategies via translation of terms
into graphs, and establish a weak simulation of the sub-machine semantics by the DGoIM.
The simulation result is used to prove soundness and completeness of the DGoIM, and to
analyse its time cost, in Sec. 5. We compare our graph-rewriting approach to improve time
efficiency of token-passing GoI, with another approach from the literature, namely “jumping”
approach, in Sec. 6. We discuss related conventional abstract machines in Sec. 7.

2. A Term Calculus with Sub-Machine Semantics

We use an untyped term calculus that accommodates three evaluation strategies of the
lambda-calculus, by dedicated constructors for function application: namely, @ (call-by-need),
−→
@ (left-to-right call-by-value) and

←−
@ (right-to-left call-by-value). The term calculus uses

all strategies so that we do not have to present three almost identical calculi. Nevertheless,
we are not interested in their interaction but in each strategy separately. In the rest of the
paper, we therefore assume that each term contains function applications of a single strategy.
As shown in the top of Fig. 1, the calculus accommodates explicit substitutions [x← u]. A
term with no explicit substitutions is said to be “pure”.

The sub-machine semantics is used to establish the soundness of the graph-rewriting
abstract machine. It imitates an abstract machine, by having the following two features.
Firstly, it extends conventional reduction semantics with reduction steps that explicitly
search for a redex, following the style of Sinot’s “token-passing semantics” [Sin05, Sin06].
Secondly, it decomposes the meta-level substitution into on-demand linear substitution, using

1 Link to the on-line visualiser: https://koko-m.github.io/GoI-Visualiser/

https://koko-m.github.io/GoI-Visualiser/
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Terms t ::= x | λx.t | t@ t | t
−→
@ t | t

←−
@ t | t[x← t]

Values v ::= λx.t

Answer contexts A ::= 〈·〉 | A[x← t]

Evaluation contexts E ::= 〈·〉 | E[x← t] | E〈x〉[x← E]

| E @ t | E
−→
@ t | A〈v〉

−→
@ E | t

←−
@ E | E

←−
@ A〈v〉

Basic rules 7→β, 7→σ, 7→ε: Lt@ uM 7→ε LtM @ u (2.1)

A〈Lλx.tM〉@ u 7→β A〈LtM[x← u]〉 (2.2)

Lt
−→
@ uM 7→ε LtM

−→
@ u (2.3)

A〈Lλx.tM〉
−→
@ u 7→ε A〈λx.t〉

−→
@ LuM (2.4)

A〈λx.t〉
−→
@ A′〈LvM〉 7→β A〈LtM[x← A′〈v〉]〉 (2.5)

Lt
←−
@ uM 7→ε t

←−
@ LuM (2.6)

t
←−
@ A〈LvM〉 7→ε LtM

←−
@ A〈v〉 (2.7)

A〈Lλx.tM〉
←−
@ A′〈v〉 7→β A〈LtM[x← A′〈v〉]〉 (2.8)

E〈LxM〉[x← A〈u〉] 7→ε E〈x〉[x← A〈LuM〉]
(u is not in the form of A′〈t′〉) (2.9)

E〈x〉[x← A〈LvM〉] 7→σ A〈E〈LvM〉[x← v]〉 (2.10)

Reductions (β,(σ,(ε:
t̃ 7→χ ũ

E〈t̃〉(χ E〈ũ〉
(χ ∈ {β, σ, ε})

Figure 1: ”Sub-Machine” Operational Semantics

explicit substitutions, as the linear substitution calculus does [AK10]. The sub-machine
semantics also resembles a storeless abstract machine (e.g. [DMMZ12, Fig. 8]). However the
semantics is still too “abstract” to be considered an abstract machine, in the sense that it
works modulo alpha-equivalence to avoid variable captures.

Fig. 1 defines the sub-machine semantics of our calculus. It is given by labelled
relations between enriched terms E〈LtM〉. In an enriched term E〈LtM〉, a sub-term t is
not plugged directly into the evaluation context, but into a “window” L·M which makes it
syntactically obvious where the reduction context is situated. Forgetting the window turns
an enriched term into an ordinary term. Basic rules 7→ are labelled with β, σ or ε. The basic
rules (2.2), (2.5) and (2.8), labelled with β, apply beta-reduction and delay substitution of a
bound variable. Substitution is done one by one, and on demand, by the basic rule (2.10)
with label σ. Each application of the basic rule (2.10) replaces exactly one bound variable
with a value, and keeps a copy of the value for later use. All other basic rules, with label ε,
search for a redex by moving the window without changing the underlying term. Finally,
reduction is defined by congruence of basic rules with respect to evaluation contexts, and
labelled accordingly. Any basic rules and reductions are indeed between enriched terms,
because the window L·M is never duplicated or discarded. They are also deterministic.
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Call-by-need evaluation:

L(λx.x) @ ((λy.y) @ (λz.z))M(ε Lλx.xM @ ((λy.y) @ (λz.z))

(β LxM[x← (λy.y) @ (λz.z)]

(ε x[x← L(λy.y) @ (λz.z)M]
(ε x[x← Lλy.yM @ (λz.z)]

(β x[x← LyM[y ← λz.z]]

(ε x[x← y[y ← Lλz.zM]]
(σ x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

Call-by-value evaluations:

L(λx.x)
−→
@ ((λy.y)

−→
@ (λz.z))M

(ε Lλx.xM
−→
@ ((λy.y)

−→
@ (λz.z))

(ε λx.x
−→
@ L(λy.y)

−→
@ (λz.z)M

(ε λx.x
−→
@ (Lλy.yM

−→
@ (λz.z))

(ε λx.x
−→
@ ((λy.y)

−→
@ Lλz.zM)

(β λx.x
−→
@ (LyM[y ← λz.z])

(ε λx.x
−→
@ (y[y ← Lλz.zM])

(σ λx.x
−→
@ (Lλz.zM[y ← λz.z])

(β LxM[x← (λz.z)[y ← λz.z]]

(ε x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

L(λx.x)
←−
@ ((λy.y)

←−
@ (λz.z))M

(ε λx.x
←−
@ L(λy.y)

←−
@ (λz.z)M

(ε λx.x
←−
@ ((λy.y)

←−
@ Lλz.zM)

(ε λx.x
←−
@ (Lλy.yM

←−
@ (λz.z))

(β λx.x
←−
@ (LyM[y ← λz.z])

(ε λx.x
←−
@ (y[y ← Lλz.zM])

(σ λx.x
←−
@ (Lλz.zM[y ← λz.z])

(ε Lλx.xM
←−
@ ((λz.z)[y ← λz.z])

(β LxM[x← (λz.z)[y ← λz.z]]

(ε x[x← Lλz.zM[y ← λz.z]]

(σ Lλz.zM[x← λz.z][y ← λz.z]

Figure 2: Evaluations of (λx.x) ((λy.y) (λz.z))

An evaluation of a pure term t (i.e. a term with no explicit substitution) is a sequence
of reductions starting from 〈LtM〉, which is simply LtM. Fig. 2 shows evaluations of a pure
term (λx.x) ((λy.y) (λz.z)) in the three evaluation strategies. Reductions labelled with β
and σ, which change an underlying term, are highlighted in black. All three evaluations
involve two beta-reductions, which apply λx.x and λy.y to an argument. Application of λx.x
comes first in the call-by-need evaluation, and delayed application of λy.y happens inside an
explicit substitution. On the other hand, in two call-by-value evaluations, application of λy.y
comes first, and no reduction happens inside an explicit substitution. The two call-by-value
evaluations differ only in the way the window is moved around function application.

The following lemma enables us to follow the use of sub-terms of the initial term t
during the evaluation.

Lemma 2.1. For any evaluation LtM (∗ E′〈Lt′M〉 starting from a pure closed term t, the
term t′ is a sub-term of t. Moreover, the evaluation context E′ is given by the following
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Figure 3: Full (Left) and Simplified (Right) Representation of a Graph G(3, 1)

restricted grammar:

A ::= 〈·〉 | A[x← A〈u〉],
E ::= 〈·〉 | E[x← A〈u〉] | E〈x〉[x← E]

| E @ u | E
−→
@ u | A〈v〉

−→
@ E | u

←−
@ E | E

←−
@ A〈v〉

where u and v are sub-terms of t, and v is additionally a value.

Proof outline. The proof is by induction on the length k of the evaluation LtM(k E′〈Lt′M〉.
In the base case, where k = 0, we have E = 〈·〉 and t′ = t. The inductive case, where
k > 0, is proved by inspecting a basic rule used in the last reduction of the evaluation.
In the case of the basic rule (2.9), the last reduction is in the form of E0〈E〈LxM〉[x ←
A〈u〉]〉 (ε E0〈E〈x〉[x ← A〈LuM〉]〉 where u is not in the form of A′′〈t′′〉. By induction
hypothesis, E0〈E〈〉[x← A〈u〉]〉 follows the restricted grammar, and in particular, A〈u〉 can
be decomposed into a restricted answer context and a sub-term of t. Because a sub-term of
t is also pure, it follows that A itself is a restricted answer context and u is a sub-term of
t.

3. The Token-Guided Graph-Rewriting Machine

In the initial presentation of this work [MG17a], we used proof nets of the multiplicative and
exponential fragment of linear logic [Gir87] to implement the call-by-need evaluation strategy.
Aiming additionally at two call-by-value evaluation strategies, we here use graphs that are
closer to syntax trees but are still augmented with the !-box structure taken from proof
nets. Moving towards syntax trees allows us to accommodate two call-by-value evaluations
in a uniform way. The !-box structures specify duplicable sub-graphs, and help time-cost
analysis of implementations.

3.1. Graphs with Interface. We use directed graphs, whose nodes are classified into
proper nodes and link nodes. Link nodes are required to meet the following conditions.

• For each edge, at least one of its two endpoints is a link node.
• Each link node is a source of at most one edge, and a target of at most one edge.

In particular, a link node is called input if it is not a target of any edge, and output if it is
not a source of any edge. An interface of a graph is given by the set of all inputs and the
set of all outputs. When a graph G has n input link nodes and m output link nodes, we
sometimes write G(n,m) to emphasise its interface. If a graph has exactly one input, we
refer to the input link node as “root”.
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An example graph G(3, 1) is shown on the left in Fig. 3. It has four proper nodes
depicted by circles, and seven link nodes depicted by bullets. Its three inputs are placed
at the bottom and one output is at the top. Shown on the right in Fig. 3 is a simplified
version of the representation. We use the following simplification scheme: not drawing link
nodes explicitly (unless necessary), and using a bold-stroke arrow (resp. circle) to represent
a bunch of parallel edges (resp. proper nodes).

The idea of using link nodes, as distinguished from proper nodes, comes from a graphi-
cal formalisation of string diagrams [Kis12].2 String diagrams consist of “boxes” that are
connected to each other by “wires”, and may have dangling or looping wires. In the formali-
sation, boxes are modelled by “box-vertices” (corresponding to proper nodes in our case),
and wires are modelled by consecutive edges connected via “wire-vertices” (corresponding to
link nodes in our case). It is link nodes that allow dangling or looping wires to be properly
modelled. The segmentation of wires into edges can introduce an arbitrary number of
consecutive link nodes, however these consecutive link nodes are identified by the notion
of “wire homeomorphism”. We will later discuss these consecutive link nodes, from the
perspective of the graph-rewriting machine. From now on we simply call a proper node
“node”, and a link node “link”.

Finally, an operation ◦n,m on graphs, parametrised by natural numbers n and m, is
defined as follows:

G ◦n,m H := G(1 +m,n) H(n,m) .

In the sequel, we omit the parameters n,m and simply write ◦.

3.2. Node Labels and !-Boxes. We use the following set L to label nodes:

L = {λ,@,
−→
@ ,
←−
@ , !, ?,D} ∪ {Cn | n: a natural number}.

A node labelled with X ∈ L is called an “X-node”. The first four labels correspond to the
constructors of the calculus presented in Sec. 2, namely λ (abstraction), @ (call-by-need

application),
−→
@ (left-to-right call-by-value application) and

←−
@ (right-to-left call-by-value

application). These three application nodes are the novelty of this work. The token, travelling
in a graph, reacts to these nodes in different ways, and hence implements different evaluation
orders. We believe that this is a more extensible way to accommodate different evaluation
orders, than to let the token react to the same node in different ways depending on situation.

λ @ @⃖  @
→

D Cn G

!

?

Figure 4: Generators of Graphs

The other labels, namely !, ?, D and Cn

for any natural number n, are used in the
management of copying sub-graphs. These
are inspired by proof nets of the multi-
plicative and exponential fragment of linear
logic [Gir87], and Cn-nodes generalise the
standard binary contraction and subsume
weakening.

We use the generators in Fig. 4 to build labelled graphs. Most generators are given
by a graph that consists of one node and a fixed number of adjacent links. The number

2 Our link nodes should not be confused with the terminology “link”, which refers to a counterpart of our
proper nodes, of proof nets.
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of input/output and incoming/outgoing edges for the node is determined by the label, as
indicated in the figure; in particular, a label Cn indicates n inputs and n incoming edges. We

distinguish two outputs of an application node (@,
−→
@ or

←−
@), calling one “function output”

and the other “argument output” (cf. [AG09]). A bullet • in the figure specifies a function
output.

The last generator in Fig. 4 turns a graph G(1,m) into a sub-graph (“!-box”), by
connecting it to one !-node (“principal door”) and m ?-nodes (“auxiliary doors”). This !-box
structure is indicated by a dashed box in the figure. The !-box structure, taken from proof
nets, assists the management of duplication of sub-graphs by specifying those that can be
copied.3

3.3. Graph States and Transitions. We define a graph-rewriting abstract machine as a
labelled transition system between graph states.

Definition 3.1 (Graph states). A graph state ((G(1, 0), e), δ) is formed of a graph G(1, 0)
with its distinguished link e, and token data δ = (d, f, S,B) that consists of:

• a direction defined by d ::= ↑ | ↓,
• a rewrite flag defined by f ::= � | λ | !,
• a computation stack defined by S ::= � | ? : S | λ : S | @ : S, and
• a box stack defined by B ::= � | ? : B | ! : B | � : B | e′ : B, where e′ is any link of the

graph G.

The distinguished link e is called the “position” of the token. The token reacts to a node in
a graph using its data, which determines its path. Given a graph G with root e0, the initial
state Init(G) on it is given by ((G, e0), (↑,�,�, ? : �)), and the final state Final(G) on it is
given by ((G, e0), (↓,�,�, ! : �)). An execution on a graph G is a sequence of transitions
starting from the initial state Init(G).

Each transition ((G, e), δ) →χ ((G′, e′), δ′) between graph states is labelled by either
β, σ or ε. Transitions are deterministic, and classified into pass transitions that search for
redexes and trigger rewriting, and rewrite transitions that actually rewrite a graph as soon
as a redex is found.

A pass transition ((G◦H, e), (d,�, S,B))→ε ((G◦H, e′), (d′, f ′, S′, B′)), always labelled
with ε, applies to a state whose rewrite flag is �. The graph H contains only one node,
and the positions e and e′ are an input or an output of the node. The transition simply
moves the token over the node, and updates its data by modifying the top elements of
stacks, while keeping an underlying graph unchanged. When the token passes a λ-node or a
!-node, a rewrite flag is changed to λ or !, which triggers a rewrite transition. Fig. 5 defines
pass transitions, by showing the single-node graph H, token positions and data, omitting
the graph G. The position of the token is drawn as a black triangle, pointing towards the
direction of the token. The pass transition over a Cn-node, where n is positive, pushes the
old position e to a box stack. The link e is drawn as a bullet.

The way the token reacts to application nodes (@,
−→
@ and

←−
@) corresponds to the way

the window L·M moves in evaluating these function applications in the sub-machine semantics
(Fig. 1). When the token moves on to the composition output of an application node, the
top element of a computational stack is either @ or ?. The element ? makes the token return

3 Our formalisation of graphs is based on the view of proof nets as string diagrams, and hence of !-boxes
as functorial boxes [Mel06].
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◻, @ : S, B

λ D Dλ⟶ϵ

λ, S, B ◻, ⋆ : S, B

λ λ⟶ϵ

◻, λ : S, B ◻, S, B

@ @⟶ϵ

◻, @ : S, B

⟶ϵ

◻, S, B ◻, S, ⋄ : B

◻, S, B

@
→

! !@
→

⟶ϵ

◻, ⋆ : S, B ◻, λ : S, B

@
→

@
→

⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

@
→

@
→

⟶ϵ

◻, @ : S, B

⟶ϵ

◻, S, X : B !, S, X : B

◻, S, B

@⃖  ! !@⃖ ⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

@⃖  @⃖ ⟶ϵ

◻, @ : S, B ◻, S, B

Cn Cn⟶ϵ

◻, S, e : B

⟶ϵ

◻, S, ⋆ : B ◻, S, ! : B

e e

where X 6= ?.

Figure 5: Pass Transitions

from a λ-node, which corresponds to reducing the function part of application to a value (i.e.
abstraction). The element @ lets the token proceed at a λ-node, raises the rewrite flag λ,
and hence triggers a rewrite transition that corresponds to beta-reduction. The call-by-value

application nodes (
−→
@ and

←−
@) send the token to their argument output, pushing the element

? to a box stack. This makes the token bounce at a !-node and return to the application
node, which corresponds to evaluating the argument part of function application to a value.
Finally, pass transitions through D-nodes, Cn-nodes and !-nodes prepare copying of values,
and eventually raise the rewrite flag ! that triggers on-demand duplication.

A rewrite transition ((G ◦ H, e), (d, f, S,B)) →χ ((G ◦ H ′, e′), (d′, f ′, S,B′)), labelled
with χ ∈ {β, σ, ε}, applies to a state whose rewrite flag is either λ or !. It replaces the
sub-graph H (“redex”) with the graph H ′ of the same interface. The position e that belongs
to H is changed to the position e′ that belongs to H ′. The transition may pop an element
from a box stack. Fig. 6 defines rewrite transitions, by showing the sub-graphs H and H ′, as
well as token positions and data, omitting the graph G. Before we go through each rewrite
transition, we note that rewrite transitions are not exhaustive in general, as a graph may
not match a redex even though a rewrite flag is raised. However we will see that there is no
failure of transitions in implementing the term calculus.

The first rewrite transition in Fig. 6, with label β, occurs when a rewrite flag is λ.
It implements beta-reduction by eliminating a pair of an abstraction node (λ) and an

application node ($ ∈ {@,
−→
@ ,
←−
@} in the figure). Outputs of the λ-node are required to be

connected to arbitrary nodes (labelled with Y and Z in the figure), so that edges between
links are not introduced. The other rewrite transitions are for the rewrite flag !, and they
together realise the copying process of a sub-graph (namely a !-box). The second rewrite
transition in Fig. 6, labelled with ε, finishes off each copying process by eliminating all doors
of the !-box G. It replaces the interface of G with output links of the auxiliary doors and the
input link of the D-node, which is the new position of the token, and pops the top element
� of a box stack. Again, no edge between links are introduced.
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λ

$
D

G(1,n)

!

?

Y Z

⟶β

Y Z

⟶ϵ G(1,n)

Ck+1

G(1,n)

!

?

⟶σ

Ck

G(1,n)

!

?

G(1,n)

!

?

H(n +m, l) (2n +m, l)H
′

λ,S,B ◻,S,B !,S,⋄ : B ◻,S,B !,S, e : B ◻,S,B

e
e

where Y ∈ L, Z ∈ L, $ ∈ {@,
−→
@ ,
←−
@}, and G(1, n) is any graph.

Figure 6: Rewrite Transitions

Ck+1

G(1, 3)

!

?

⟶σ

Ck

! !

H(5, 2)

C3 C2

??

G(1, 3)

?

(8, 2)H
′

C5 C3

??

G(1, 3)

? ??

Figure 7: Example of Rewrite Transition →σ

The last rewrite transition in the figure, with label σ, actually copies a !-box. It requires
the top element e of the old box stack to be one of input links of the Ck+1-node (where k is
a natural number). The link e is popped from the box stack and becomes the new position
of the token, and the Ck+1-node becomes a Ck-node by keeping all the inputs except for
the link e. The sub-graph H(n+m, l) must consist of l parallel C -nodes that altogether
have n + m inputs. Among these inputs, n must be connected to auxiliary doors of the
!-box G(1, n), and m must be connected to nodes that are not in the redex. The sub-graph
H(n+m, l) is turned into H ′(2n+m, l) by introducing n inputs to these C -nodes as follows:
if an auxiliary door of the !-box G is connected to a C -node in H, two copies of the auxiliary
door are both connected to the corresponding C -node in H ′. Therefore the two sub-graphs
consist of the same number l of C -nodes, whose indegrees are possibly increased. The m
inputs, connected to nodes outside a redex, are kept unchanged. Fig. 7 shows an example
where copying of the graph G(1, 3) turns the graph H(5, 2) into H ′(8, 2).

All pass and rewrite transitions are well-defined, and indeed deterministic. Pass tran-
sitions are also reversible, in the sense that no two different pass transitions result in the
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same graph state. No transition is possible at a final state, and no pass transition results in
an initial state. An execution of pass transitions only has some continuity in the following
sense.

Lemma 3.2 (Pass continuity). For any execution Init(G)→∗ ((G, e), δ) of pass transitions
only, there exists a non-empty sequence e1, . . . , en of links of G that satisfies the following.

• e1 is the root of G, and en = e.
• For each i ∈ {1, . . . , n− 1}, there exists a node whose inputs include ei and whose outputs

include ei+1.
• Each link in the sequence appears as a token position in the execution Init(G) →∗

((G, e), δ).

Proof outline. The proof is by induction on the length k of the execution Init(G) →∗
((G, e), δ). In the base case, where k = 0, the link e is the root of G, and e itself as a
sequence satisfies the conditions. The inductive case, where k > 0, is proved by inspecting
all possibilities of the last pass transition in the sequence.

The following “sub-graph” property is essential in time-cost analysis, because it bounds
the size of duplicable sub-graphs (i.e. !-boxes) in an execution.

Lemma 3.3 (Sub-graph property). For any execution Init(G)→∗ ((H, e), δ), each !-box of
the graph H appears as a sub-graph of the initial graph G.

Proof. Rewrite transitions can only copy or discard a !-box, and cannot introduce, expand
or reduce a single !-box. Therefore, any !-box of H has to be already a !-box of the initial
graph G.

When a graph has an edge between links, the token is just passed along. With this
pass transition over a link at hand, the equivalence relation between graphs that identifies
consecutive links with a single link—so-called “wire homeomorphism” [Kis12]—lifts to a
weak bisimulation between graph states. Therefore, behaviourally, we can safely ignore
consecutive links. From the perspective of time-cost analysis, we benefit from the fact that
rewrite transitions are designed not to introduce any edge between links. This means, by
assuming that an execution starts with a graph with no consecutive links, we can analyse
time cost of the execution without caring the extra pass transition over a link.

4. Implementation of Evaluation Strategies

The implementation of the term calculus, by means of the dynamic GoI, starts with
translating (enriched) terms into graphs. The definition of the translation uses multisets of
variables, to track how many times each variable occurs in a term. We assume that terms
are alpha-converted in a form in which all binders introduce distinct variables.

Notation 4.1 (Multiset). We write x ∈k M if the multiplicity of x in a multiset M is k.
The empty multiset is denoted by ∅. The sum of two multisets M1 and M2, denoted by
M1 +M2, is defined as follows: x ∈k M1 +M2 if there exist k1 and k2 such that x ∈k1 M1,
x ∈k2 M2 and k = k1 + k2. Removing all x from a multiset M yields the multiset M\x, e.g.
[x, x, y]\x = [y]. We abuse the notation and refer to a multiset [x, . . . , x] of a finite number
of x’s, simply as x.
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Definition 4.2 (Free variables). The map FV of terms to multisets of variables is inductively

defined as below, where $ ∈ {@,
−→
@ ,
←−
@}:

FV (x) := [x], FV (λx.t) := FV (t)\x,
FV (t $ u) := FV (t) + FV (u), FV (t[x← u]) := (FV (t)\x) + FV (u).

For a multiset M of variables, the map FVM of evaluation contexts to multisets of variables
is defined by:

FVM (〈·〉) := M,

FVM (E @ t) := FVM (E) + FV (t),

FVM (E
−→
@ t) := FVM (E) + FV (t),

FVM (A〈v〉
−→
@ E) := FV (A〈v〉) + FVM (E),

FVM (t
←−
@ E) := FV (t) + FVM (E),

FVM (E
←−
@ A〈v〉) := FVM (E) + FV (A〈v〉),

FVM (E[x← t]) := (FVM (E)\x) + FV (t),

FVM (E′〈x〉[x← E]) := (FV (E′〈x〉)\x) + FVM (E).

A term t is said be closed if FV (t) = ∅. Consequences of the above definition are the
following equations.

FV (E〈t〉) = FV FV (t)(E),

FVM (E〈E′〉) = FV FVM (E′)(E),

FVM+M ′(E) = FVM (E) +M ′ (if M ′ is not captured in E),

FV x(E)\x = FV ∅(E)\x.
We give translations of terms, answer contexts, and evaluation contexts separately.

Fig. 10 and Fig. 11 define two mutually recursive translations (·)† and (·)‡, the first one
for terms and answer contexts, and the second one for evaluation contexts. In the figures,

$ ∈ {@,
−→
@ ,
←−
@}, and m is the multiplicity of x. Fig. 8 shows the general form of the

translations, and Fig. 9 shows translation of a term ((λf .λx.f @ (f @ x)) @ (λy.y)) @ (λz.z).
The DGoIM can evaluate a closed term t by starting an execution on the translation t†.

Executions on any translated closed pure terms can be seen in our on-line visualiser4. The
translations of answer contexts and evaluation contexts are to define a weak simulation of the
sub-machine semantics by the DGoIM, which is then used to prove soundness, completeness
and efficiency of the DGoIM.

The annotation of bold-stroke edges means each edge of a bunch is labelled with an
element of the annotating multiset, in a one-to-one manner. In particular if a bold-stroke
edge is annotated by a variable x, all edges in the bunch are annotated by the variable

x. Translation E‡M of an evaluation context has one input and one output that are not
annotated, which we refer to as the “main” input and the “main” output. These annotations
are only used to define the translations, and are subsequently ignored during execution.

The translations are based on the so-called “call-by-value” translation of linear logic to
intuitionistic logic (e.g. [MOTW99]). Only the translation of abstraction can be accompanied

4https://koko-m.github.io/GoI-Visualiser/

https://koko-m.github.io/GoI-Visualiser/
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Figure 8: General Form of Translations
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Figure 9: Translation of a Term
((λf .λx.f@(f@x))@(λy.y))@(λz.z)

by a !-box, which captures the fact that only values (i.e. abstractions) can be duplicated
(see the basic rule (2.10) in Fig. 1). Note that only one C -node is introduced for each bound
variable. This is vital to achieve constant cost in looking up a variable, namely in realising
the basic rule (2.9) in Fig. 1.

The two mutually recursive translations (·)† and (·)‡ are related by the decompositions in
Fig. 12, which can be checked by straightforward induction. In the third decomposition, M ′

is not captured in E. Note that, in general, the translation E〈t〉† of a term in an evaluation

context cannot be decomposed into translations E‡FV (t) and t†. This is because a translation

(A〈λx.t〉
−→
@ E)‡M lacks a !-box structure, compared to a translation (A〈λx.t〉

−→
@ u)†.

Translation of an evaluation context can be traversed by pass transitions without raising
the rewrite flag λ or !, as the following lemma states.

Lemma 4.3. Let E be an evaluation context and M be a multiset. For any graph G(1, 0)

that has E‡M as a sub-graph and has no edge between links, let ei and eo be the main input

and the main output of the sub-graph E‡M , respectively. For any pair (S,B) of a computation
stack and a box stack, there exists a pair (S′, B′) of a computation stack and a box stack,
such that ((G, ei), (↑,�, S,B))→∗ ((G, eo), (↑,�, S′, B′)) is a sequence of pass transitions.

Proof. By induction on E. We use
p→
∗

to denote a sequence of pass transitions in this proof.
In the base case, where E = 〈·〉, the main input ei and the main output eo coincides. An
empty sequence suffices.

The first class of inductive cases are when the top-level constructor of E is function
application, e.g. E ≡ E′ @ t. Let e′i and e′o be the main input and the main output of the
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Figure 10: Inductive Translation of Terms and Answer Contexts
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sub-graph (E′)‡M , respectively. In each of the cases, there exist stacks S′′ and B′′ such that

((G, ei), (↑,�, S,B))
p→
∗

((G, e′i), (↑,�, S′′, B′′)). By the induction hypothesis, there exist

stacks S′ and B′ such that ((G, e′i), (↑,�, S′′, B′′))
p→
∗

((G, e′o), (↑,�, S′, B′)). Combining
these two sequences yields a desired sequence, because e′o = eo.

The inductive case where E ≡ E′[x← t] simply boils down to the induction hypothesis.
The last inductive case is when E ≡ E1〈x〉[x← E2]. Let e′i and e′o be the main input and

the main output of the sub-graph (E1)‡∅, and e′′i and e′′o be the main input and the main output

of the sub-graph (E2)‡M , respectively. We have ei = e′i and eo = e′′o . The link e′o is an input of
a C -node and e′′i is the output of the C -node. By the induction hypothesis on E1, there exist

stacks S′′ and B′′ such that ((G, e′i), (↑,�, S,B))
p→
∗

((G, e′o), (↑,�, S′′, B′′)). This sequence
can be followed by a pass transition ((G, e′o), (↑,�, S′′, B′′))→ ((G, e′′i ), (↑,�, S′′, e′o : B′′)).
By the induction hypothesis on E2, there exist stacks S′ andB′ such that ((G, e′′i ), (↑,�, S′′, e′o :

B′′))
p→
∗

((G, e′′o), (↑,�, S′, B′)). Combining all these sequences yields a desired sequence,
because ei = e′i and eo = e′′o .

The inductive translations lift to a binary relation between closed enriched terms and
graph states.

Definition 4.4 (Binary relation �). The binary relation � is defined by E〈LtM〉 � ((E‡ ◦
t†, e), (↑,�, S,B)), where: (i) E〈LtM〉 is a closed enriched term, and (E‡ ◦ t†, e) is given by

E
‡
FV(t) t

†

FV(t)

with no edges between links, and (ii) there is an execution Init(E‡◦t†)→∗

((E‡ ◦ t†, e), (↑,�, S,B)) of pass transitions only, in which e appears as a token position only
in the last state.

A special case is LtM � Init(t†), which relates the starting points of an evaluation and
an execution. We require the graph E‡ ◦ t† to have no edges between links, which is based
on the discussion at the end of Sec. 3 and essential for time-cost analysis. Although the
definition of the translations uses edges between links (e.g. the translation x†), the graphs
E‡ and t† can be constructed without introducing any edge between links. For example, a
variable can be translated into a single link that is both an input and an output, and outputs
of the translation (t@u)† can be simply the union of outputs of t† and u†. The graph E‡ ◦ t†
can be constructed by identifying interfaces of E‡ and t†, instead of introducing edges.

The binary relation � gives a weak simulation of the sub-machine semantics by the
graph-rewriting machine. The weakness, i.e. the extra transitions compared with reductions,
comes from the locality of pass transitions and the bureaucracy of managing !-boxes.

Theorem 4.5 (Weak simulation with global bound).

(1) If E〈LtM〉(χ E
′〈Lt′M〉 and E〈LtM〉 � ((E‡ ◦t†, e), δ) hold, then there exists a number n ≤ 3

and a graph state (((E′)‡◦(t′)†, e′), δ′) such that ((E‡◦t†, e), δ)→n
ε→χ (((E′)‡◦(t′)†, e′), δ′)

and E′〈Lt′M〉 � (((E′)‡ ◦ (t′)†, e′), δ′).
(2) If A〈LvM〉 � ((A‡ ◦ v†, e), δ) holds, then the graph state ((A‡ ◦ v†, e), δ) is initial, from

which only the transition Init(A‡ ◦ v†)→ε Final(A‡ ◦ v†) is possible.

Proof. For the second half, e is the root of the graph A‡ ◦ v†, which means the state
((A‡ ◦ v†, e), δ) is not a result of any pass transition. Therefore, by the condition (ii) of the
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binary relation �, we have Init(A‡ ◦ v†) = ((A‡ ◦ v†, e), δ), and one pass transition from this
state yields a final state Final(A‡ ◦ v†).

For the first half, Fig. 13, Fig. 14 and Fig. 15 illustrate how the graph-rewriting machine
simulates each reduction ( of the sub-machine semantics. Each sequence of transitions →
simulates a single reduction (. Annotations of edges are omitted, and only the first and
the last states of each sequence are shown, except for the case of the basic rule (2.10).

Some sequences involve equations that apply the four decomposition properties of the
translations (·)† and (·)‡, which are given earlier in this section. These equations rely on
the fact that terms are alpha-converted in a form in which all binders introduce distinct
variables, and reductions with labels β and σ work modulo alpha-equivalence to avoid name
captures. This implies the following.

• Free variables of u are not captured by A in the case of the basic rule (2.2).
• Free variables of A′〈v〉 are not captured by A in the case of the basic rules (2.5) and (2.8).
• The variable x is not captured by E or E′ in the case of the basic rules (2.9) and (2.10).
• In the case of the basic rule (2.10), free variables of E′ are not captured by A, free variables

of v are not captured by E′, and x does not freely appear in v.

Simulation of the basic rule (2.10) involves duplicating the sub-graph v†, which is a !-box.
Because free variables of the value v are captured by either E or A, the multiset FV (v) can
be partitioned into two multisets as FV (v) = ME +MA, such that ME is the multiset of
those captured by E and MA is the multiset of those captured by A. No variable is contained
by both ME and MA. The translations E‡ and A† include C -nodes that correspond to ME

and MA, respectively. These C -nodes get extra inputs by the rewrite transition labelled
with σ, as represented by the middle state in the simulation sequence.

In each sequence, let Gs and Gt be the first and the last graph, respectively. By
the condition (ii) of the binary relation �, there exists an execution Exec : Init(Gs) →∗
((Gs, e1), (↑,�, S′, B′)) of only pass transitions, in which the link e1 (see the figures) appears
as a token position only once at the end.

(1) In simulation of the basic rules (2.1), (2.3) and (2.6), the figures use S and B instead of
S′ and B′. By Lem. 3.2, the result position e2 (see the figures) does not appear in the
execution Exec; if this is not the case, e1 would appear more than once in Exec, which
is a contradiction. Therefore, Exec followed by the pass transitions shown in the figures
gives a desired execution that meets the condition (ii) of the binary relation �.

(2) In simulation of the basic rule (2.9), the figure uses S and B instead of S′ and B′.
Because x is not captured by E′, the starting position e1 is in fact an input of the
Cm+1-node. Using Lem. 3.2 again in the same way, the result position e2 does not appear
in the execution Exec. Therefore, Exec followed by the pass transition shown in the
figures gives a desired execution that meets the condition (ii) of the binary relation �.

(3) In simulation of the basic rule (2.7), by the reversibility of pass transitions, there exist
stacks S and B such that: S′ = S, B′ = ? : B, and the execution Exec can be decomposed
into an execution Exec′ : Init(Gs) →∗ ((Gs, e0), (↑,�, S,B)) and one subsequent pass
transition (see the figure for e0). In the execution Exec′, the link e0 appears as a token
position only once at the end, which can be checked by contradiction as follows.
• If e0 appears more than once in Exec′ and its first appearance is with direction ↓,

it must be a result of a pass transition. However, no pass transition leads to this
situation, because e0 is an input of a function application node. This is a contradiction.
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• If e0 appears more than once in Exec′ and its first appearance is with direction ↑, it
must be with rewrite flag �, because Exec′ consists of pass transitions only. Regardless
of token data, the first appearance leads to an extra appearance of e1 in Exec′, which
is a contradiction.

Given this freshness of e0 in Exec′, by Lem. 3.2, the result position e2 does not appear
in the execution Exec′. Therefore, Exec followed by the pass transitions shown in the
figures gives a desired execution that meets the condition (ii) of the binary relation �.

(4) In simulation of the basic rules (2.2), (2.5) and (2.8), by the reversibility of pass
transitions, there exist stacks S and B such thatthe execution Exec can be decomposed
into an execution Exec′ : Init(Gs)→∗ ((Gs, e0), (↑,�, S,B)) and at least one subsequent
pass transition. In the execution Exec′, the link e0 appears as a token position only
once at the end, which can be checked in the same manner as the previous case (3).
Using this freshness of e0 in Exec′ and Lem. 3.2, we can conclude that any node that
interacts with a token in the execution Exec′ (i.e. that is relevant in a pass transition
in the execution Exec′) belongs to E‡. This means that any pass transition in Exec′,
on the starting graph Gs, can be imitated in the resulting graph Gt. Namely, the
link e0 corresponds to the result position e2, and Exec′ corresponds to an execution
Exec′′ : Init(Gt)→∗ ((Gt, e2), (↑,�, S,B)) of only pass transitions, in which e2 appears
only once at the end. This execution Exec′′ gives a desired execution that meets the
condition (ii) of the binary relation �.

(5) In simulation of the basic rule (2.4), the same reasoning as the previous case (4) gives an
execution Exec′′ : Init(Gt)→∗ ((Gt, e0), (↑,�, S,B)) of only pass transitions, in which
e0 appears only once at the end. By Lem. 3.2, the result position e2 does not appear
in the execution Exec′′. Therefore, Exec′′ followed by pass transitions gives a desired
execution that meets the condition (ii) of the binary relation �.

(6) In simulation of the basic rule (2.10), by the reversibility of pass transitions, there exist
an input e0 of the Cm+1-node and stacks S and B such that: S′ = S, B′ = e0 : B,
and the execution Exec can be decomposed into an execution Exec′ : Init(Gs) →∗
((Gs, e0), (↑,�, S,B)) and one subsequent pass transition that pushes e0 to the box stack.
By Lem. 3.2, the link e3 (see the figure) appears in the execution Exec′. Analysing this

appearance, we can conclude that the link e0 is in fact the main output of (E′)‡∅.

• If e3 appears with direction ↓ in Exec′, because e3 is an input of a function application
node or a C -node, this appearance cannot be a result of any pass transition. This is a
contradiction.
• If e3 appears with direction ↑, it must be with rewrite flag �, because Exec′ consists

of pass transitions only. Because e3 is the main input of (E′)‡∅, by Lem. 4.3, this

appearance leads to a state whose token position is the main output e′ of (E′)‡∅,
direction is ↑ and rewrite flag is �. One pass transition from the state leads to a
state whose token position is e1. This means there exists an execution Exec′′′ of pass
transitions only, via the token position e3 and the second last token position e′, to
the token position e1. Because pass transitions are deterministic, it is either: (1)
Exec is strictly a sub-sequence of Exec′′′, (2) Exec = Exec′′′, or (3) Exec′′′ is strictly
a sub-sequence of Exec. Because Exec is followed by a pass transition and a rewrite
transition as shown in the figure, the case (1) is impossible. Because e1 appears only
once at the end in the execution Exec, the case (3) leads to a contradiction. Therefore
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we can conclude that (2) is the case, i.e. Exec = Exec′′′. This means e′ = e0, i.e. e0 is

the main output of (E′)‡∅.
As a consequence, the link e2 is indeed the result position, corresponding to the link e0.

The rest of the reasoning is similar to the case 4. In the execution Exec to the
starting position e1, the token does not interact with nodes that belong to A† or
v†; otherwise, by Lem. 3.2, e1 would have an extra appearance in Exec, which is a
contradiction. For the same reason, the execution Exec′ to the link e0 does not involve
any interaction of the token with the Cm+1-node, and hence e0 appears only once at
the end in the execution Exec′. As a result, the execution Exec′ gives an execution
Exec′′ : Init(Gt)→∗ ((Gt, e2), (↑,�, S,B)) of only pass transitions on the resulting graph
Gt, in which e2 appears only once at the end. This execution Exec′′ gives a desired
execution that meets the condition (ii) of the binary relation �.

5. Time-Cost Analysis

We analyse how time-efficiently the token-guided graph-rewriting machine implements
evaluation strategies, following the methodology developed by Accattoli et al. [ABM14,
AS14, Acc17]. The time-cost analysis focuses on how efficiently an abstract machine
implements an evaluation strategy. In other words, we are not interested in minimising the
number of β-reduction steps simulated by an abstract machine. Our aim is to see if the
number of transitions of an abstract machine is “reasonable”, compared to the number of
necessary β-reduction steps determined by a given evaluation strategy.

Accattoli’s methodology assumes that an abstract machine has three groups of transitions:
1) “β-transitions” that correspond to β-reduction in which substitution is delayed, 2)
transitions that perform substitution, and 3) other “overhead” transitions. We incorporate
this classification using the labels β, σ and ε of transitions.

Another assumption of the methodology is that, each step of β-reduction is simulated
by a single transition of an abstract machine, and so is substitution of each occurrence of a
variable. This is satisfied by many known abstract machines, including Danvy and Zerny’s
storeless abstract machine [DZ13] that our sub-machine semantics resembles, however not
by the token-guided graph-rewriting abstract machine. The machine has “finer” transitions
and can take several transitions to simulate a single step of reduction, as we can observe in
Thm. 4.5. In spite of this mismatch we can still follow the methodology, thanks to the weak
simulation �. It discloses what transitions of the token-guided graph-rewriting machine
exactly correspond to β-reduction and substitution, and gives a concrete number of overhead
transitions that the machine needs to simulate β-reduction and substitution.

The methodology of time-cost analysis has four steps: (I) bound the number of transitions
required in implementing evaluation strategies, (II) estimate time cost of each transition, (III)
bound overall time cost of implementing evaluation strategies, by multiplying the number of
transitions with time cost for each transition, and finally (IV) classify the abstract machine
according to its execution time cost. Consider now the following taxonomy of abstract
machines introduced in [Acc17].

Definition 5.1 (classes of abstract machines [Acc17, Def. 7.1]).

(1) An abstract machine is efficient if its execution time cost is linear in both the input size
and the number of β-transitions.
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(2) An abstract machine is reasonable if its execution time cost is polynomial in the input
size and the number of β-transitions.

(3) An abstract machine is unreasonable if it is not reasonable.

In our case, the input size is given by the size |t| of the term t, inductively defined by:

|x| := 1, |λx.t| := |t|+ 1,

|t@ u| = |t
−→
@ u| = |t

←−
@ u| := |t|+ |u|+ 1, |t[x← u]| := |t|+ |u|+ 1.

The number of β-transitions is simply the number of transitions labelled with β, which in
fact corresponds to the number of reductions labelled with β, thanks to Thm. 4.5.
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Figure 13: Illustration of Simulation: Left-to-Right Call-by-Value Application
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Figure 15: Illustration of Simulation: Right-to-Left Call-by-Value Application

Given an evaluation Eval , the number of occurrences of a label χ is denoted by |Eval |χ.
The sub-machine semantics comes with the following quantitative bounds.

Proposition 5.2. For any pure closed term t and any evaluation Eval : LtM(∗ A〈LvM〉 that
terminates, the number of reductions is bounded by |Eval |σ = O(|Eval |β) and |Eval |ε =
O(|t| · |Eval |β).

Proof. A term uses a single evaluation strategy, either call-by-need, left-to-right call-by-value,
or right-to-left call-by-value. Forgetting the window of an enriched term E〈LtM〉 gives a term
E〈t〉, which can be seen as a term of the linear substitution calculus [AK10]. This gives
an one-to-one correspondence between an evaluation by the sub-machine semantics and
a “derivation” in the linear substitution calculus, via the concept of “distillery” [ABM14,
Sec. 4]. The correspondence is in such a way that it enables us to directly apply the bounds
about the linear substitution calculus [AS14, Cor. 1 & Thm. 2] and obtain the first equation.
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The second equation is proved by combining the first equation and an equation |Eval |ε =
O(|t| · (|Eval |β + |Eval |σ)). This auxiliary equation can be proved using ideas from Accattoli
et al.’s analysis of various abstract machines [ABM14, Thm. 11.3 & Thm. 11.5], as below.

For any enriched term E′〈Lt′M〉 that appears in the evaluation Eval : LtM(∗ A〈LvM〉, we
define two measures. The first measure #1(E

′〈Lt′M〉) is defined by: |t′|+ |u| if E′ is in the

form of E′′〈A′〈·〉@u〉, E′′〈A′〈·〉
−→
@ u〉, or E′′〈u

←−
@ A′〈·〉〉; and |t′| otherwise. By Lem. 2.1, both

t′ and u above are sub-terms of t, and we have #1(E
′〈Lt′M〉) ≤ 2 · |t|. The second measure

#2(E
′) is on E′ only, and defined inductively as below.

#2(〈·〉) := 0, #2(E
′′〈x〉[x← E′′′]) := #2(E

′′) + #2(E
′′′) + 1,

#2(E
′′ @ t) = #2(E

′′ −→@ t) = #2(A〈v〉
−→
@ E′′) := #2(E

′′),

#2(t
←−
@ E′′) = #2(E

′′←−@ A〈v〉) = #2(E
′′[x← t′′]) := #2(E

′′).

Because the basic rules (2.1), (2.3), (2.4), (2.6) and (2.7) strictly reduce the measure
#1, these rules can be consecutively applied at most 2 · |t| times. The evaluation Eval can
be seen as applications of these rules interleaved with other rules, so the total number of
applications of these five basic rules can be bounded by O(|t| · (|Eval |β + |Eval |σ + |Eval |9)),
where |Eval |9 denotes the total number of applications of the basic rule (2.9).

The measure #2 is increased only by the basic rule (2.9) and decreased only by the
basic rule (2.10). Both the increase and the decrease are of one. Because the measure
#2 gives zero for both LtM and A〈LvM〉, namely #2(〈·〉) = #2(A) = 0, the basic rule (2.9)
must be applied as many times as the basic rule (2.10) in the evaluation Eval . This means
|Eval |σ = |Eval |9.

Combining the bound O(|t| · (|Eval |β + |Eval |σ + |Eval |9)) with the equation |Eval |σ =
|Eval |9 gives the auxiliary equation on |Eval |ε.

We use the same notation |Exec|χ, as for an evaluation, to denote the number of
occurrences of each label χ in an execution Exec. Additionally the number of rewrite
transitions with the label ε, i.e. those that eliminates a !-box structure, is denoted by
|Exec|εR. Note that pass transitions are all labelled with ε, and hence |Exec|εR ≤ |Exec|ε.
The following proposition completes the first step of the cost analysis.

Proposition 5.3 (Soundness & completeness, with number bounds). For any pure closed
term t, an evaluation Eval : LtM(∗ A〈LvM〉 terminates with the enriched term A〈LvM〉 if and
only if an execution Exec : Init(t†) →∗ Final(A‡ ◦ v†) terminates with the graph A‡ ◦ v†.
Moreover the number of transitions is bounded by |Exec|β = |Eval |β, |Exec|σ = O(|Eval |β),
|Exec|ε = O(|t| · |Eval |β), |Exec|εR = O(|Eval |β).

Proof. Because the initial term t is closed, any enriched term E′〈Lt′M〉 that appears in the
evaluation Eval is also closed. This implies that a reduction is always possible at E′〈Lt′M〉
unless it is in the form of A′〈v′〉. In particular, if t′ is a variable, the variable is captured
by an explicit substitution in E′ and the basic rule (2.10) is possible. Consequently, if an
evaluation of the pure closed term t terminates, the last enriched term is in the form of
A′〈v′〉.

The forward direction of the equivalence, that is, the evaluation Eval implies the
execution Exec, follows from Thm. 4.5. The backward direction, that is, the execution Exec
implies the evaluation Eval , also follows from Thm. 4.5, because an evaluation of the pure
closed term t is in the form of LtM(∗ A〈LvM〉 or never terminates.
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Thm. 4.5 also gives equations |Exec|β = |Eval |β, |Exec|σ = |Eval |σ and |Exec|ε =
O(|Eval |β + |Eval |σ + |Eval |ε). Combining these with Prop. 5.2 yields the desired equations
except for the last one (i.e. |Exec|εR = O(|Eval |β)).

This last equation follows from an equation |Exec|εR = |Exec|β that can be proved as

follows. For any graph state ((G, e), δ) that appears in the execution Exec : Init(t†) →∗
Final(A‡ ◦ v†), we define a measure #(G) by the number of λ-nodes that are outside any
!-box in the graph G.

Firstly, at any point of the execution Exec, the token is inside a !-box if and only if
it has the rewrite flag ‘!’. This means, if a λ-node gets eliminated by a rewrite transition
labelled with β, the λ-node is outside a !-box. By Lem. 3.3, each !-box has exactly one
λ-node that directly belongs to it. It follows that each rewrite transition labelled with ε
brings exactly one λ-node outside a !-box.

As a result, each rewrite transition labelled with β decreases the measure # by one, and
each rewrite transition labelled with ε increases the measure # by one. No other transitions
change the measure #. Because the measure # gives zero for the initial and final graph states
Init(t†) and Final(A‡ ◦ v†), namely #(t†) = #(A‡ ◦ v†) = 0, we have |Exec|εR = |Exec|β .

The next step in the cost analysis is to estimate the time cost of each transition. We
assume that graphs are implemented in the following way. Each ?-node, and its input and
output, are identified and implemented as a single link. Each link is given by two pointers
to its child and its parent. If a node is not a ?-node, it is given by its label, pointers to
its inputs, and pointers to its outputs; the pointers to inputs are omitted for C -nodes.
Additionally, each link and node has a pointer to a !-node, or a null pointer, to indicate the
!-box structure it directly belongs in. Note that each link has at most three pointers, and
each node has at most two input (resp. output) pointers, which are distinguished. The size
of a graph can be estimated using the number of nodes that are not ?-nodes. Accordingly, a
position of the token is a pointer to a link, a direction and a rewrite flag are two symbols, a
computation stack is a stack of symbols, and finally a box stack is a stack of symbols and
pointers to links.

Using these assumptions of implementation, we estimate time cost of each transition.
All pass transitions have constant cost. Each pass transition looks up one node and its
outputs (that are either one or two) next to the current position, and involves a fixed number
of elements of the token data. Rewrite transitions with the label β have constant cost, as
they change a constant number of nodes and links, and only a rewrite flag of the token
data. Rewrite transitions with the label ε remove a !-box structure. This can be done by
traversing nodes from its principal door, and hence have cost bounded by the size of the
!-box. Finally, rewrite transitions with the label σ copy a !-box structure. Copying cost is
bounded by the size of the !-box. Updating cost of the sub-graph H ′ (see Fig. 6) is bounded
by the number of auxiliary doors, which is less than the size of the copied !-box. Updating
cost of the C -node is constant, because C -nodes do not have pointers to its inputs, by the
assumption about the implementation of graphs.

With the results of the previous two steps, we can now give the overall time cost of
executions and classify our abstract machine.

Theorem 5.4 (Soundness & completeness, with cost bounds). For any pure closed term t,
an evaluation Eval : LtM(∗ A〈LvM〉 terminates with the enriched term A〈LvM〉 if and only if
an execution Exec : Init(t†)→∗ Final(A‡ ◦ v†) terminates with the graph A‡ ◦ v†. The overall
time cost of the execution Exec is bounded by O(|t| · |Eval |β).
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Proof. Non-constant cost of rewrite transitions is the size of a !-box. By Lem. 3.3, this
size is less than the size of the initial graph t†, which can be bounded by the size |t| of the
initial term. Therefore any non-constant cost of each rewrite transition, in the execution
Exec, can be also bounded by |t|. By Prop. 5.3, the overall time cost of rewrite transitions
labelled with β is O(|Eval |β), and that of the other rewrite transitions and pass transitions
is O(|t| · |Eval |β).

Note that the time cost of constructing the initial graph t†, and attaching a token to it,
does not affect the bound O(|t| · |Eval |β), because it can be done in linear time with respect
to |t|. This is thanks to the assumption about implementation, namely that ?-nodes and
input pointers of C -nodes are omitted.

Corollary 5.5. The token-guided graph-rewriting machine is an efficient abstract machine
implementing call-by-need, left-to-right call-by-value and right-to-left call-by-value evaluation
strategies, in the sense of Def. 5.1.

Cor. 5.5 classifies the graph-rewriting machine as not just “reasonable”, but in fact
“efficient”. In terms of token passing, this efficiency benefits from the graphical representation
of environments (i.e. explicit substitutions in our setting). The graphical representation is
in such a way that each bound variable is associated with exactly one C -node, which is
ensured by the translations (·)† and (·)‡ and the rewrite transition →σ. Excluding any two
sequentially-connected C -nodes is essential to achieve the “efficient” classification, because
it yields the constant cost to look up a bound variable and its associated computation.

As for graph rewriting, the “efficient” classification shows that introduction of graph
rewriting to token passing does not bring in any inefficiencies. In our setting, graph
rewriting brings in two kinds of non-constant cost. One is duplication cost of a sub-graph,
which is indicated by a !-box, and the other is elimination cost of a !-box that delimits
abstraction. Unlike the duplication cost, the elimination cost leads to non-trivial cost
that abstract machines in the literature usually do not have. Namely, our graph-rewriting
machine simulates a β-reduction step, in which an abstraction constructor is eliminated and
substitution is delayed, at the non-constant cost depending on the size of the abstraction.
The time-cost analysis confirms that the duplication cost and the unusual elimination cost
have the same impact, on the overall time cost, as the cost of token passing. What is vital
here is the sub-graph property (Lem. 3.3), which ensures that the cost of each duplication
and elimination of a !-box is always linear in the input size.

6. Rewriting vs. Jumping

The starting point of our development is the GoI-style token-passing abstract machines
for call-by-name evaluation, given by Danos and Regnier [DR96], and by Mackie [Mac95].
Fig. 16 recalls these token-passing machines as a version of the DGoIM with the passes-only
interleaving strategy (i.e. the DGoIM with only pass transitions). It follows the convention
of Fig. 5, but a black triangle in the figure points along (resp. against) the direction of the
edge if the token direction is ↑ (resp. ↓). Note that this version uses different token data, to
which we will come back later.

Token-passing GoI keeps the underlying graph fixed, and re-evaluates a term by repeating
token moves. It therefore favours space efficiency at the cost of time efficiency. Repeating
token actions poses a challenge for evaluations in which duplicated computation must not lead
to repeated evaluation, especially call-by-value evaluation [FM02, Sch14a, HMH14, DFVY15].
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Token data (d, S,B,E) consists of:

• a direction defined by d ::= ↑ | ↓,
• a computation stack defined by S ::= � | A : S | @ : S, and
• a box stack B and an environment stack E, both defined by B,E ::= � | σ : B,

using exponential signatures σ ::= ? | e · σ | 〈σ, σ〉 where e is any link of the
underlying graph.

Pass transitions:

@ : S, B, E

λ

D D

λ⟶β

S, B, E S, B, E

λ λ⟶ϵ

@ : S, B, E

S, B, E

@ @⟶ϵ

@ : S, B, E

⟶ϵ

S, B, E S, ⋄ : B, E

! !⟶ϵ

S, σ : B, E

S, σ : B, E

Cn Cn⟶σ

S, (e ⋅ σ) : B, E

e e

𝖠 : S, B, E

λ λ⟶ϵ

S, B, E S, B, E

λ λ⟶ϵ

𝖠 : S, B, E

@ : S, B, E

@ @⟶ϵ

S, B, E 𝖠 : S, B, E

@ @⟶ϵ

S, B, E S, B, E

@ @⟶ϵ

𝖠 : S, B, E

D D⟶ϵ

S, ⋄ : B, E S, B, E

Cn

S, (e ⋅ σ) : B, E

e

⟶ϵ

S, σ : B, E

Cn

e

S, B, σ : E

!

S, B, σ : E

⟶ϵ !

S, σ : B, E

? ?⟶ϵ

S, σ : B, : Eσ ′ S, ⟨σ, ⟩ : B, Eσ ′

?

S, ⟨σ, ⟩ : B, Eσ ′

⟶ϵ ?

S, σ : B, : Eσ ′

Given a term t with the call-by-need function application (@) abused, a successful
execution ((t†, et), (↑,�,�,�,�)) →∗ ((t†, ev), (↑,�,�,�,�)) starts at the root
et of the translation t†, and ends at the root ev of the translation v†, for some
sub-value v of the term t. The value v indicates the evaluation result.

Figure 16: Passes-Only DGoIM for Call-by-Name [DR96, Mac95]

Moreover, in call-by-value repeating token actions raises the additional technical challenge
of avoiding repeating any associated computational effects [Sch11, MHH16, DFVY17]. A
partial solution to this conundrum is to focus on the soundness of the equational theory,
while deliberately ignoring the time costs [MHH16]. Introduction of graph reduction, the key
idea of the DGoIM, is one total solution in the sense that it avoids repeated token moves and
also improves time efficiency of token-passing GoI. Another such solution in the literature is
introduction of jumps. We discuss how these two solutions affect machine design and space
efficiency.

The most greedy way of introducing graph reduction, namely the rewrites-first inter-
leaving we studied in this work, simplifies machine design in terms of the variety of pass
transitions and token data. First, some token moves turn irrelevant to an execution. This
is why Fig. 5 for the rewrites-first interleaving has fewer pass transitions than Fig. 16 for
the passes-only interleaving. Certain nodes, like ‘?’, always get eliminated before visited
by the token, in the rewrites-first interleaving. Accordingly, token data can be simplified.
The box stack and the environment stack used in Fig. 16 are integrated to the single box
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stack used in Fig. 5. The integrated stack does not need to carry the exponential signatures.
They make sure that the token exits !-boxes appropriately in the token-passing GoI, by
maintaining binary tree structures, but the token never exits !-boxes with the rewrites-first
interleaving. Although the rewrites-first interleaving simplifies token data, rewriting itself,
especially duplication of sub-graphs, becomes the source of space-inefficiency.

A jumping mechanism can be added on top of the token-passing GoI, and enables the
token to jump along the path it would otherwise follow step-by-step. Although no quantitative
analysis is provided, it gives time-efficient implementations of evaluation strategies, namely
of call-by-name evaluation [DR96] and call-by-value evaluation [FM02]. Jumping can reduce
the variety of pass transitions, like rewriting, by letting some nodes always be jumped
over. Making a jump is just changing the token position, so jumping can be described as
a variation of pass transitions, unlike rewriting. However, introduction of jumping rather
complicates token data. Namely it requires partial duplications of token data, which not only
complicates machine design but also damages space efficiency. The duplications effectively
represent virtual copies of sub-graphs, and accumulate during an execution. Tracking virtual
copies is the trade-off of keeping the underlying graph fixed. Some jumps that do not involve
virtual copies can be described as a form of graph rewriting that eliminates nodes.

Finally, we give a quantitative comparison of space usage between rewriting and jumping.
As a case study, we focus on implementations of call-by-name/need evaluation, namely on
the passes-only DGoIM recalled in Fig. 16, our rewrites-first DGoIM, and the passes-only
DGoIM equipped with jumping that we will recall in Fig. 17. A similar comparison is
possible for left-to-right call-by-value evaluation, between our rewrites-first DGoIM and the
jumping machine given by Fernández and Mackie [FM02].

Fig. 17 recalls Danos and Regnier’s token-passing machine equipped with jumping [DR96],
which is proved to be isomorphic to Krivine’s abstract machine [Kri07] for call-by-name
evaluation. The machine has pass transitions as well as the jump transition that lets the token
jump to a remote position5. Compared with the token-passing GoI (Fig. 16), pass transitions
for nodes related to !-boxes are reduced and changed, so that the jumping mechanism
imitates rewrites involving !-boxes. The token remembers its old position, together with its
current environment stack, when passing a D-node upwards. The token uses this information
and make a jump back in the jump transition, in which the token exits a !-box at the
principal door (!-node) and changes its position to the remembered link e′.

The quantitative comparison, whose result is stated below, shows partial duplication of
token data impacts space usage much more than duplication of sub-graphs, and therefore
rewriting has asymptotically better space usage than jumping.

Proposition 6.1. After n transitions from an initial state of a graph of size |G0|, space
usage of three versions of the DGoIM is bounded as in the table below.

machines token-passing only rewriting added jumping added
(Fig. 16) (Fig. 5 & Fig. 6) (Fig. 17)

evaluations implemented call-by-name call-by-need call-by-name

size of graph |G0| O(n · |G0|) |G0|
size of token position log |G0| O(log (n · |G0|)) log |G0|

size of token data O(n · log |G0|) O(n · log (n · |G0|)) O(2n · log |G0|)

5Our on-line visualiser additionally supports this jumping machine.
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Token data (d, S,B,E) consists of:

• a direction defined by d ::= ↑ | ↓,
• a computation stack defined by S ::= � | A : S | @ : S, and
• a box stack B and an environment stack E, both defined by B,E ::= � | (e, E) :
B, where e is any link of the underlying graph.

Pass transitions:

@ : S, B, E

λ

D D

λ⟶β

S, B, E S, B, E

λ λ⟶ϵ

@ : S, B, E

S, B, E

@ @⟶ϵ

@ : S, B, E

⟶ϵ

S, B, E S, (e, E) : B, E

! !⟶ϵ

S, ( , ) : B, Ee
′
E
′

S, B, E

Cn Cn⟶σ

S, B, E

𝖠 : S, B, E

λ λ⟶ϵ

S, B, E S, B, E

λ λ⟶ϵ

𝖠 : S, B, E

@ : S, B, E

@ @⟶ϵ

S, B, E 𝖠 : S, B, E

@ @⟶ϵ

S, B, E S, B, E

@ @⟶ϵ

𝖠 : S, B, E

S, B, ( , ) : Ee
′
E
′

? ?⟶ϵ

S, B, ( , ) : Ee
′
E
′

S, B, E

e e

Jump transition: ((G, e), (↓, S,B, (e′, E′) : E))→ε ((G, e′), (↓, S,B,E′)), where the

old position e is the output of a !-node: !

e

.

Given a term t with the call-by-need function application (@) abused, a successful
execution ((t†, et), (↑,�,�,�,�)) →∗ ((t†, ev), (↑,�,�,�,�)) starts at the root
et of the translation t†, and ends at the root ev of the translation v†, for some
sub-value v of the term t. The value v indicates the evaluation result.

Figure 17: Passes-Only DGoIM plus Jumping for Call-by-Name [DR96]

Proof. The size |Gn| of the underlying graph after n transitions can be estimated using
the size |G0| of the initial graph. Our rewrites-first DGoIM is the only one that changes
the underlying graph during an execution. Thanks to the sub-graph property (Lem. 3.3),
the size |Gn| can be bounded as |Gn| = O(nσ · |G0|), where nσ is the number of σ-labelled
transitions in the n transitions. In the token-passing machines with and without jumping
(Fig. 16 and Fig. 17), clearly |Gn| = |G0|. In any of the three machines, the token position
can be represented in the size of log |Gn|.

Next estimation is of token data. Because stacks can have a link of the underlying
graph as an element, the size of token data after n transitions depends on log |Gn|. Both in
the token-passing machine (Fig. 16) and our rewrites-first DGoIM, at most one element is
pushed in each transition. Therefore the size of token data is bounded by n · O(log (|Gn|)).
On the other hand, in the jumping machine (Fig. 17), the size of token data, especially
the box stack and the environment stack, can grow exponentially because of the partial
duplication. Therefore token data has the size O(2n · log (|Gn|)). For example, a term with
many η-expansions, like (λf .(λx.(λy.(λz.f z) y)x)) (λw.w), causes exponential grow of the
box stack in the jumping machine.
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7. Related Work and Conclusion

In an abstract machine of any functional programming language, computations assigned
to variables have to be stored for later use. Potentially multiple, conflicting, computations
can be assigned to a single variable, primarily because of multiple uses of a function with
different arguments. Different solutions to this conflict lead to different representations of the
storage, some of which are examined by Accattoli and Barras [AB17] from the perspective
of time-cost analysis. We recall a few solutions below that seem relevant to our token-guided
graph-rewriting.

One solution is to allow at most one assignment to each variable. This is typically
achieved by renaming bound variables during execution, possibly symbolically. Examples
for call-by-need evaluation are Sestoft’s abstract machines [Ses97], and the storeless and
store-based abstract machines studied by Danvy and Zerny [DZ13]. Our graph-rewriting
abstract machine gives another example, as shown by the simulation of the sub-machine
semantics that resembles the storeless abstract machine mentioned above. Variable renaming
is trivial in our machine, thanks to the use of graphs in which variables are represented by
mere edges.

Another solution is to allow multiple assignments to a variable, with restricted visibility.
The common approach is to pair a sub-term with its own “environment” that maps its
free variables to their assigned computations, forming a so-called “closure”. Conflicting
assignments are distributed to distinct localised environments. Examples include Cregut’s
lazy variant [Cré07] of Krivine’s abstract machine for call-by-need evaluation, and Landin’s
SECD machine [Lan64] for call-by-value evaluation. Fernández and Siafakas [FS09] refine this
approach for call-by-name and call-by-value evaluations, based on closed reduction [FMS05],
which restricts beta-reduction to closed function arguments. This suggests that the approach
with localised environments can be modelled in our setting by implementing closed reduction.
The implementation would require an extension of rewrite transitions and a different strategy
to trigger them, namely to eliminate auxiliary doors of a !-box.

Finally, Fernández and Siafakas [FS09] propose another approach to multiple assignments,
in which multiple assignments are augmented with binary strings so that each occurrence of
a variable can only refer to one of them. This approach is inspired by the token-passing
GoI, namely a token-passing abstract machine for call-by-value evaluation, designed by
Fernández and Mackie [FM02]. The augmenting binary strings come from paths of trees
of binary contractions, which are used by the token-passing machine to represent shared
assignments. In our graph-rewriting machine, trees of binary contractions are replaced with
single generalised contraction nodes of arbitrary arity, to achieve time efficiency. Therefore,
the counterpart of the paths over binary contractions is simply connections over single
generalised contraction nodes.

To wrap up, we introduced the DGoIM, which can interleave token-passing GoI with
graph rewriting, using the token-passing as a guide. As a case study, we showed how the
DGoIM with the rewrites-first interleaving can time-efficiently implement three evaluations:
call-by-need, left-to-right call-by-value and right-to-left call-by-value. These evaluations
have different control over caching intermediate results. The difference boils down to
different routing of the token in the DGoIM, which is achieved by simply switching graph
representations (namely, nodes modelling function application) of terms.

The idea of using the token as a guide of graph rewriting was also proposed by
Sinot [Sin05, Sin06] for interaction nets. He shows how using a token can make the rewriting
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system implement the call-by-name, call-by-need and call-by-value evaluation strategies.
Our development in this work can be seen as a realisation of the rewriting system as an
abstract machine, in particular with explicit control over copying sub-graphs.

The token-guided graph rewriting is a flexible framework with which we can implement
various evaluation strategies of the lambda-calculus and analyse execution cost. Our focus
in this work was primarily on time efficiency. This is to complement existing work on
operational semantics given by token-passing GoI, which usually achieves space efficiency,
and also to confirm that introduction of graph rewriting to the semantics does not bring in
any hidden inefficiencies. We believe that further refinements, not only of the interleaving
strategies of token routing and graph reduction, but also of the graph representation, can
be formulated to serve particular objectives in the space-time execution efficiency trade-off,
such as full lazy evaluation, as hinted by Sinot [Sin05].

As a final remark, the flexibility of our framework also allows us to handle the operational
semantics of exotic language features, especially data-flow features. One such feature is
to turn a parametrised data-flow network into an ordinary function that takes parameters
as an argument and returns the network, which we model using the token-guided graph
rewriting [CDG+18]. This feature can assist a common programming idiom of machine
learning tasks, in which a data-flow network is constructed as a program, and then modified
at run-time by updating values of parameters embedded into the network.
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