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Abstract 

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of 

induction motors. The uncertainty including parametric variations, the external load disturbance and 

unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of 

this paper is presenting a stability analysis for neuro-fuzzy speed control of induction motors. The online 

training of the neuro-fuzzy systems is based on the Lyapunov stability analysis and the reconstruction errors 

of the neuro-fuzzy systems are compensated in order to guarantee the asymptotic convergence of the speed 

tracking error. Moreover, to improve the control system performance and reduce the chattering, a PI 

structure is used to produce the input of the neuro-fuzzy systems. Finally, simulation results verify high 

performance characteristics and robustness of the proposed control system against plant parameter variation, 

external load and input voltage disturbance. 

 

Keywords: Induction Motor; Indirect Adaptive Control; Neuro-fuzzy Approximators; Uncertainty 

Estimation; Stability Analysis; Reconstruction Error. 

1. Introduction 

In the last few decades, the speed control of 

induction motors (IMs) has been the focus of 

widespread researches [1-6]. However, the closed 

loop control system stability has not been 

guaranteed in most of these researches. Moreover, 

the asymptotic convergence of the speed tracking 

error is very important in most industrial 

applications and should be mathematically 

guaranteed. To solve this problem, many 

Lyapunov based control algorithms for IMs have 

been presented in the literature [7-9]. However, 

these researches have focused on the position 

control of induction servo motors and the 

boundedness of fluxes and currents has not been 

guaranteed. Recently, a speed control system with 

stability analysis has been presented based on the 

sliding mode control [10]. In that research, 

boundedness of fluxes and currents is guaranteed 

using some limiters. However, the proposed 

control law contains the sign function which may 

cause the undesirable chattering phenomenon. 

Thus, presenting a continuous control law with 

stability analysis is required. Model based control 

approaches, such as feedback linearization, are 

very popular and attractive. However, they are not 

suitable for IMs due the variations of the external 

load disturbance. To enhance the performance of 

feedback linearization and overcome uncertainties 

including parametric uncertainty, un-modeled 

dynamics and external disturbances, considerable 

researches have been carried out in the field of 

adaptive and robust control [11-16]. Adaptive 

control can overcome parametric uncertainty [17], 

while robust control can compensate both 

parametric and nonparametric uncertainty. In 

order to design an adaptive control law, the 

structure of the system dynamics should be 

available. In other words, the regressor vector 

should be known. Thus, conventional adaptive 

control laws may not be successful for 

complicated systems with unknown dynamics. 

Although robust control can overcome 

nonparametric uncertainties, but the upper bound 

of uncertainties should be known [18]. 

Overestimation of this bound will increase the 

amplitude of the control signal and consequently 

may damage the system. On the other hand, 

underestimation of this bound will deteriorate the  
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system performance by increasing the tracking 

error [19,20]. Moreover, in some robust control 

approaches, such as sliding mode control, the 

control law is discontinuous which may result in 

the chattering phenomenon [21]. 

In order to improve the performance of adaptive 

or robust controllers, many researchers have 

applied artificial intelligence. Various neural 

networks and fuzzy systems are widely used in 

adaptive and robust control [22-26] due to their 

universal approximation property. These 

researches can be considered as different efforts 

made toward common objectives which are 

estimation and compensation of uncertainty. 

Generally, adaptive neuro-fuzzy approaches can 

be classified into two main groups: direct and 

indirect.  In direct approaches, an adaptive neuro-

fuzzy system is designed to approximate the ideal 

control law, while in indirect methods, first the 

unknown nonlinear dynamics of the systems are 

identified and then a control input is generated 

based on the universal approximation theorem 

[27]. According to this theorem, neuro fuzzy 

systems can approximate any nonlinear functions 

with arbitrary small approximation error.  An 

adaptive fuzzy speed control of IMs is presented 

in [22] in which the gains of the sliding mode 

controller are adjusted by a fuzzy system and the 

centers of fuzzy sets are updated by an adaptation 

law: the gain adjustment to compensate the 

uncertainty and the centers updating to reduce the 

control effort chattering. A multivariable adaptive 

fuzzy speed controller for IMs is proposed in [23] 

where the approximation of the nonlinear 

parameters in the feedback linearization control 

law is based on fuzzy logic. The advantage of this 

paper in comparison with previous related works 

is that it does not need any prior knowledge of 

plant dynamics. In [24], an adaptive speed control 

using a neural network representing the feedback 

linearization law has been presented. Also an error 

compensator is added in order to compensate the 

approximation error between the neural network 

and the feedback linearization law. In [25] 

adaptive neuro-fuzzy systems for speed control of 

IM have been represented. In the designed neuro-

fuzzy scheme, neural network techniques have 

been used to choose a proper rule base, which has 

been achieved by using the back propagation 

algorithm. This integrated approach improves the 

system performance, efficiency, reliability, cost 

effectiveness and dynamism of the designed 

controller.  Zerikat and Hekroun [26] have 

improved an adaptive speed control of a hybrid 

fuzzy neural network for a high performance IM 

drive to increase the performance and robustness 

of the IM drive under nonlinear loads and 

parameter variations. 

In this paper, a novel speed controller for IMs has 

been presented. The control law is proposed based 

on feedback linearization technique. Two neuro-

fuzzy systems have been designed to estimate the 

unknown nonlinear functions required in the 

control law. As mentioned before, many speed 

control approaches for induction motors have 

been presented in the literature without stability 

analysis.  The contribution of this paper is 

presenting a rigorous mathematical stability 

analysis for neuro-fuzzy speed control of 

induction motors. The adaptation laws for training 

the parameters of neuro-fuzzy estimators are 

derived from the stability analysis in which the 

boundedness of fluxes and currents has been 

guaranteed. In order to guarantee the asymptotic 

convergence of the speed tracking error and 

improve the control system performance, the 

reconstruction errors of neuro-fuzzy systems have 

been compensated using a robustifying term in the 

control law. Recently, some algorithms have been 

proposed in the literature for the compensation of 

the reconstruction error. These algorithms result 

in discontinuous control laws due to the existence 

of the sign function, which may increase the 

possibility of the chattering phenomenon [28-33]. 

As an advantage over these approaches, this paper 

presents a continuous robustifying term. 

Moreover, simulation results show that the 

proposed controller represents acceptable 

robustness against variations of the external load 

disturbance. In addition the controller is capable 

of fast disturbance rejection due to the undesirable 

effects from the input voltage. 

This paper is organized as follows; Section 2 

describes the IM model. Section 3 presents the 

proposed control law and stability analysis. 

Simulation results are given in section 4 and 

finally, section 5 concludes the paper.  

 

2. Induction motor model 

The fifth-order model of an IM under the 

assumptions of equal mutual inductances and 

linear magnetic circuit is given by: 

0 1 2 3

sa

sa ra rb sa

di
a i a a a u

dt
       

(1-a) 

0 1 2 3

sb

sb rb ra sb

di
a i a a a u

dt
       

(1-b) 

ra r r
ra p rb sa

r r

d R R
n Mi

dt L L


      

(1-c) 

rb r r
rb p ra sb

r r

d R R
n Mi

dt L L


      

(1-d) 
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( )
p L

ra sb rb sa

r

n M Td
i i

dt JL J


     

(1-e) 

 

where, su , i , LT , and  indicate stator voltage 

input to the machine, current, external load torque, 

and flux linkage respectively; the subscripts r  

and s  stand for rotor and stator; ( , )a b  denote the 

components of a vector with respect to a fixed 

stator reference frame and,  21 / s rM L L   ,

2 2 2

0 ( ) / ( )r r s s ra M R L R L L  , 
3 1/ ( )sa L

2

1 ( ) / ( )r s ra MR L L , 
2 ( ) / ( )p s ra n M L L  , [34-37]. 

 

3. The proposed control scheme  

Consider the following general form of nonlinear 

systems 

1( ) ( )nx f X g X u   (2) 

in which 1( )f X  and ( )g X  are unknown 

nonlinear functions and X  is the state variable 

vector defined as  1 2

T

nX x x x . 

According to (1), it is clear that 

 
T

sa sb ra rbX i i     is the state vector of 

this system. The time derivative of (1-e) is 

( , ) ( , )h X t g X t u    (3) 

in which u  is the input voltage amplitude of stator 

and ( , )h X t  and ( , )g X t  are 

0

2

1 2

( , ) ( )

( )

sa ra sb rb

sa rb sb ra r

h X t b i i

b i i b

 

  

 

  
 (4) 

 

0

1

3 2 2
(sin( t ) sin( t+ ))

3 3 3

2 2
(2sin t sin( t ) sin( t+ ))

3 3

rag c

c

 
  

 
  

  

   

 (5) 

in which 
2 2 2

r rb ra    , 2

0 ( ) / ( )p rb n M JL  , 

2
1 02

3

b
r p

r

R n M a
a

JL Ja
  , 2 2 2

2 / ( )p s rb n M JL L   , 

0

p

s r

n M
c

JL L
 and 

1
3

p rb

s r

n M
c

JL L




  . Based on feedback 

linearization, consider the following control law: 

( , )

( , )

d d pk e k e h X t
u

g X t

   
  (6) 

in which re     is the speed tracking error 

and pk , dk  are design parameters. So for 

implementation of the control law, the 

acceleration signal   is required and because this 

feedback is contaminated with noise, the 

performance of control system is deteriorated. In 

order to reduce the system order and remove the 

acceleration feedback we can rewrite the (3) as 

follows 

( , ) ( , )h X t g X t u       (7) 

which can be shown in form (2) as: 

( , ) ( , )f X t g X t u    (8) 

in which ( , ) ( , )f X t h X t      and ( , )g X t  are 

unknown nonlinear functions. Based on feedback 

linearization, consider the following proposed 

control law: 
ˆ ( , )

ˆ( , )

r p I rf X t k e k edt u
u

g X t

    


  
(9) 

in which r  is the derivative of reference speed r

, re     is the speed tracking error, 
pk , dk  are 

design parameters, ˆ( , )f X t  and ˆ( , )g X t  are the 

neuro-fuzzy estimations of ( , )f X t  and ( , )g X t , 

and ru  is the robustifying control term to 

compensate the reconstruction errors of the neuro-

fuzzy systems f̂  and ĝ . The structure of the 

speed control system is illustrated in figure 1 in 

which distV  is the undesirable disturbance of the 

input voltage. 

( )G s ( , )p iPI k k

1 2( , )PI k k

1

ĝ

Error

Compensator
d

dt



f̂







distVPark

Transform

Induction

Motor

c r e


sau

sbu

u

NF

Approximator

NF

Approximator

 
Figure 1. The structure of proposed control system. 

In figure 2 the signal propagation in each layer of 

neuro-fuzzy estimators is illustrated. In this figure 

 1 2

T

nS s s s  is the input variable vector 

and  2 2( ) exp[ ( ) / ( ) ]j j j

i i i i is s m     is the 

Gaussian membership function, in which j

im (

1,...i n  and 1,...,j N ) is the mean of the 

Gaussian function in the thj  term of the 
thi  input 

variable is , and j

i  is its corresponding standard 

deviation. In this paper each input variable has 

two linguistic fuzzy sets as negative and positive 

thus, N  is set to 2.   Also in the 
thk  node in the 

rule layer ( 1,...,k p ), the fuzzy AND operation 

determines the output by multiplying the input 

signals as 
1

( ) ( )
n

k j

k ji i i

i

S w s 


  where k

jiw  is 
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unity weights between the membership layer and 

the rule layer, and p  is the number of rules. 

1

( )
p

o ok k

k

y S 


  is one of the overall outputs that 

is the summation of its inputs by considering 

related weights ok way to comply with the journal 

paper formatting requirements is to use this 

document as a template and simply type your text 

into it. 
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1
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1y
qy

Rule
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Figure 2. The structure of the neuro-fuzzy approximators. 

In this paper,  ˆ( , )f X t  and ˆ( , )g X t  are estimated 

using two neuro-fuzzy systems.  The input of each 

system is given by the PI structure shown in 

figure 1. This filter is very common in the speed 

control of electrical motors and often improves 

the tracking performance of the controllers. The 

input-output relation of this filter is described by 

1 2
0

( ) ( ) ( )
t

s t k e t k e d     in which 1k  and 2k  are 

positive tuning parameters. In this paper, the input 

and output of neuro-fuzzy systems are scalars. 

Thus, we can write the output of neuro-fuzzy 

approximators as follows: 
Ty    (10) 

where, 
1 2[ , ]T    is the consequent adjustable 

parameter vector and  
1 2[ , ]T   . From (8), the 

closed loop equation is given by 

( , ) ( , )r r f X t g X t u       (11) 

Substituting u  from (9) into (11) yields 

ˆ ˆ( ) ( )p I re k e k e f f g g u u        (12) 

According to (10), it follows from (12) that 
ˆ( )

ˆ( )

T

p I f f

T

g g r

e k e k edt

u u

  

  

    

  


 

(13) 

By defining
T

E edt e 
  , we have: 

 ˆ ˆ( ) ( ) rE AE B f f g g u u       (14) 

in which 0 1

I p

A
k k

 
  

  

and 0

1
B

 
  
 

. Suppose that 

* * T

ff    and  * *T

gg    are the best 

approximations of f and g . Therefore, 

 * *ˆ ˆ( ) rE AE B f f g g u u        (15) 

where, * *f f g g u            is the 

reconstruction error (approximation error). 

According to the universal approximation 

theorem,   is bounded as     and it is 

assumed that    is a positive known constant. By 

defining *ˆ
f f f     and *ˆ

g g g     

 T T

f g I rE AE B u u          (16) 

Theorem 1. Considering the nonlinear system (8) 

and the control law (9), if the following conditions 

are met, the internal signals in the control system 

are bounded and the tracking error converges to 

zero asymptotically: 

1
ˆ T

f E PB     
(17) 

2
ˆ T

g E PB u     
(18) 

Proof. Consider the following positive definite 

function 

1 2

1 1 1

2 2 2

T T T

f f g gL E PE    
 

    (19) 

The time derivative of (19) is: 

  

   

1 2

1

2

1

2

ˆ ˆ

T T T T

f g r

T T T

f g r

T T

f f g g

L E A u u PE

E P AE b u u

    

    

   

 

    

    

 

 
(20) 

According to the Lyapanove equation
TA P PA Q    . Since the matrix A  is a Hurwitz 

matrix, we can use this equation and simplify (20) 

as  

 

1 2

ˆ ˆ 1

2

T T T

f g r

T T

f f g g T

L E PB u u

E QE

    

   

 

   

  

   (21) 

In other words 

1

2

ˆ1

2

ˆ

T

f fT T T

f

T

g gT T T

g

T

r

L E QE E PB

E PB u E PB

E PBu

 
 



 
  



 
    

 
 

 
   
 
 



 
(22) 
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Using (17) and (18), (22) can be simplified as  
1

2

T T T

rL E QE E PB E PBu


    (23) 

Since    it follows from (23) that 

1

2

T T T

rL E QE E PB E PBu


    (24) 

Define Tz E PB   thus 

1

2

T

rL E QE z zu


     (25) 

According to [18] we can propose the robustifying 

term as  

r t

z
u

z e 



 



 (26) 

in which  and   are constant positive scalars, so 
21

2

T

t

z
L E QE z

z e 




 


  


 (27) 

After some manipulations, we can write 

1

2

t

T

t

z e
L x Qx

z e















 


 (28) 

Since 0 :
ab

a b b a
a b

    


 we have

t

t

t

z e
e

z e




















, therefore 

1

2

T tL E QE e  
   (29) 

 

According to [18], (29) indicates that speed 

tracking error asymptotically converges to zero. 

To ensure the boundedness of internal dynamics 

of IM including rai , rbi , sa  and sb  , according to 

(1) we can write 

1 1 ( )X AX v t   (30) 

in which 

1 [ ]T

sa sb ra rbX i i    (31) 

1 1
( ) 0 0

T

sa sb

s s

v t u u
L L 

 
  
 

 (32) 

and A  is given in (33). Since the eigenvalues of 

A  are negative, the state vector 1X  in 
1 1X AX  

is exponentially stable. Moreover, the control law 

(9) is bounded. Thus, the vector ( )v t  is bounded. 

Consequently, the system (30) can be considered 

as a stable linear system with bounded inputs. 

 

0 2

0 2

0

0

0

0

pr

s rs r

p r

s r s r

r r

p

r r

r r

p

r r

n MMR
a

L LL L

n M MR
a

L L L L
A

R M R
n

L L

R M R
n

L L





 





 
 

 
 
  
 


 
  
 
 
 
  

 
(33) 

4. Simulation results  

To make the superiority of the proposed method 

more obvious, its performance is compared with 

the controller designed in [23]. In Simulation 1 

the proposed neuro-fuzzy control algorithm has 

been tested and Simulation 2 presents the 

performance of the adaptive fuzzy MIMO 

controller [23]. 

 

4.1. Simulation 1 

Consider a three-phase standard IM with 

parameters given in the table 1. 

  

Table 1.  Rated parameters of case study induction motor. 

 

P  Power 3 (KW) 

f  Frequency 60 (Hz) 

V  Rated voltage 380 (V) 

I  Rated current 6.9 (A) 

pn  Number of pole pairs 2 

sR  Stator resistance 1.115 (Ω) 

rR  Rotor resistance 1.083 (Ω) 

sL  Stator  inductance 0.005974 (H) 

rL  Rotor  inductance 0.005974 (H) 

M  Mutual inductance 0.2037 (H)  

J  Total inertia 0.02 (kgm2) 

   
 

To test the control system robustness against the 

thermal variation of motor parameters and 

external load disturbance, it is assumed that 

0

0

0

0

(1 0.2sin( ))

(1 0.2cos( ))

(1 0.1sin( ))

(1 0.1cos( ))

s s

r r

s s

r r

R R t

R R t

L L t H

L L t H

  

  

 

 

 (34) 

 

and 

2 . 12

8 . 12 17

3 . 17

L

N M t

T N M t

N M t




  
 

 (35) 

In this paper, in order to examine the speed 

regulation capability in response to sudden 

variations of the speed command, c  has been 

defined the summation of the constant value 155 

and a square wave (altitude = 10, frequency = 0.1 

Hz). Also by using a proper reference model the 

transient response of the speed control system has 

been regulated. Finally, in order to verify the 

ability of the proposed control law in rejecting 

input voltage disturbances, the following voltage 

disturbance has been inserted to u . 
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15 8 9

0
dist

V t
v

V otherwise

 
 


 (36) 

 

The initial values of 
f  and 

g  in neuro-fuzzy 

systems have been set to 1. Moreover, the learning 

rates of adaptation laws (13), (14), the 

proportional gain 
pK  and IK  in (5) have been 

selected as 
1 1000  , 2 0.1  , 20pK   and 

100IK  . Also   and    in (22) have been set to 

1 and 0.1 respectively.  The upper bound of the 

reconstruction error has been assumed as 1  . 

The tracking performance of the proposed control 

scheme and the speed tracking error are illustrated 

in figure 3, figure 4 and figure 5.  

  

Figure 3.The tracking performance of the proposed 

control scheme. 

 
Figure 4. Dashed circle of the Figure 3 is zoomed.  

 

As shown in these figures, the asymptotic 

convergence of the motor speed to the command 

signal is satisfying in terms of fast external load 

disturbance rejection and robustness against motor 

parameter variation and undesirable disturbances 

of the input voltage. Finally the control effort is 

presented in figure 6.  

 
Figure 5.asymptotic convergence of tracking error. 

 
Figure 6. The control effort. 

 
Figure 7. The value of modules for stator current and flux 

in the control system. 

Moreover, as illustrated in this figure, the motor 

voltage is under the maximum permitted voltage. 
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In addition, based on table 1 the amplitude of 

stator current 2 2

sa sbi i must be less than 6.9 A.  

Also the flux upper limit can be computed by 

multiplying flux density to pole cross section that 

achieved 0.48 so in this machine the 2 2

ra rb 

value must be less than or equal 0.48. In the 

meantime, figure 7 shows bounded closed-loop 

signals for the proposed control system. 

 

4.2. Simulation 2  
In this simulation, the adaptive fuzzy MIMO 

control presented in [23] is used for the speed 

control of the IM model described in Simulation 

1. The reference model, external load torque, and 

input voltage disturbances are the same as 

Simulation 1. The tracking performance of this 

control scheme is illustrated in figure 8 and figure 

9. As shown in figure 9, this control approach 

fails in rejecting the external load torque and input 

voltage disturbances. However, as shown in figure 

4, the proposed method completely eliminates the 

effect of these disturbances. It should be noted 

that the adaptive fuzzy MIMO method [23], 

requires feedbacks from all state variables and 

also the acceleration signal is used, while the 

proposed controller needs just the speed feedback. 

Moreover, there are six uncertain functions which 

should be estimated in the adaptive fuzzy MIMO 

method. In order to estimate each function, 243 

fuzzy rules are needed. However, the neuro-fuzzy 

approach presented in this paper is much simpler 

and less computational. In addition, the non-

singularity of the estimated input gain matrix in 

[23] is a critical condition which can be violated 

easily and make the control system unstable.  

Another superiority of the proposed controller is 

compensating the reconstruction error of the 

neuro-fuzzy estimator which has improved the 

performance of the controller. The cost function 
30

2

0
( )J e t dt   has been defined for quantitative 

comparisons. In the proposed method 3.137J   

while the method presented in [23] results in

6.457J  . 

 

5. Conclusion 

Speed control of induction motors is very 

important in many industrial applications such as 

pump actuators, milling machines and elevators. 

In this paper an indirect adaptive system for the 

speed control of IMs is presented in which the 

uncertainty including parametric variations, the 

external load disturbance and unmodeled 

dynamics is estimated and compensated by 

designing two neuro-fuzzy systems with online 

training approaches based on Lyapunov stability 

analysis. In order to guarantee the asymptotic 

convergence of the speed tracking error and 

improve the control system performance, the 

reconstruction errors of neuro-fuzzy systems is 

compensated using a robustifying term in the 

control law. Finally, high performance 

characteristics and robustness of the proposed 

control system against plant parameter variation, 

external load and input voltage disturbances are 

verified by the simulation results. 

 
Figure 8. The tracking performance of the adaptive fuzzy 

MIMO method [23]. 

 
Figure 9. Dashed circle of the Figure 8 is zoomed. 
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

  فازی تطبیقی غیر مستقیم-کنترل سرعت موتور القایی به روش عصبی

 

 علی اکبرزاده کلات و محمد حداد ظریف، *مجتبی واحدی

 .ایران، شاهرود، شاهرود صنعتی دانشگاه، دانشکده برق

 12/10/1182 ؛ پذیرش81/81/1182 ارسال

 چکیده:

دها.  عا.ق عطتیات فازی برای کنترل سرعت موتورهای القاایی اراهاه مای-گرهای عصبیاین مقاله، یک سیستم تطبیقی غیر مستقیم مبتنی بر تخمین

نوآوری ایان   شودمیفازی تخمین زده و جبران -های عصبیشامل تغییرات پارامتری، اغتشاش خارجی بار و دینامیک های م.ل نش.ه با طراحی سیستم

فازی مبتنی بار اثباات پایا.اری -های عصبیباش.  آموزش برخط سیستمفازی سرعت موتور القایی می-مقاله، اراهه یک اثبات پای.اری برای کنترل عصبی

  عاووه بار ایان، باه شودفازی جبران می-باش. و به منظور اثبات همگرایی مجانبی خطای ردگیری سرعت، خطای ساختاری سیستم عصبیلیاپانوف می

فاازی -انتگرالی برای تولیا. ورودی سیساتم عصابی-منظور بهبود عملکرد سیستم کنترل و کاهش پ.ی.ه لرزش سیگنال کنترل، از یک ساختار تناسبی

ور، باار خاارجی و تغییارات سازی بیانگر عملکرد مناسب سیستم کنترل و مقاوق بودن آن در برابر تغییرات پارامترهای موتاستفاده ش.ه است  نتایج شبیه

    باش.ولتاژ ورودی موتور می

فازی، تخمین ع.ق عطتیت، اثباات پایا.اری، خطاای سااختاری سیساتم -موتور القایی، کنترل تطبیقی غیر مستقیم، تخمینگر عصبی :کلمات کلیدی

  فازی-عصبی

 


