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Abstract 
This paper presents an approach to damage growth monitoring and early damage detection in 

the structure of PZL – 130 ORLIK TC II turbo-prop military trainer aft using the statistical models 
elaborated by the Polish Air Force Institute of Technology (AFIT) and the network of the sensors 
attached to the structure. Drawing on the previous experiences of the AFIT and AGH in  structural 
health monitoring, the present research will deploy an array of the PZT sensors in the structure of 
the PZL -130 Orlik TC II aircraft. The aircraft has just started Full Scale Fatigue Test (FSFT) that 
will continue up to 2013. The FSFT of the structure is necessary as a consequence of the structure 
modification and the change of the maintenance system - the transition to Condition Based 
Maintenance. In this paper, a novel approach to the monitoring of the aircraft hot-spots will be 
presented. Special attention will be paid to the preliminary results of the statistical models that 
provide an automated tool to infer about the presence of damage and its size. In particular, the 
effectiveness of the selected signal characteristics will be assessed using dimensional reduction 
methods (PCA) and the so-called averaged damage indices will be delivered. Moreover, the results 
of the signal classification based on the neural network will be presented alongside the numerical 
model of the wave propagation. The work contains selected information about the project scope 
and the results achieved at the preliminary stage of the project. 
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1. INTRODUCTION 
 

The problems associated with monitoring of health of aircraft structures throughout the 
operational phase (operation and maintenance) are very complex and complicated. The spectrum 
of variable loads that affect a structure depends first and foremost on the way the aircraft is 
operated. Hence, it is impossible to precisely design the aircraft life before it enters the operational 
use. This paper presents an approach to developing an integrated monitoring system validated for 
the operational phase. The aircraft used in the research is PZL ORLIK TC II, a turbo propeller 
training aircraft for the armed forces. The aircraft was designed in Poland in the PZL WSK 
Warszawa Okecie and at present is manufactured at the PZL EADS Okecie in Warsaw. The main 
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use of the aircraft is for training military pilots in the preliminary training phase. The aircraft has 
just started Full Scale Fatigue Test (FSFT) that will continue up to 2013. The FSFT of the 
structure is necessary as a conseqience of the structure modification and the change of the 
maintenance system (from the Safe – Life to CBM). The AFIT's contribution to the FSFT was the 
NDI programme including health monitoring techniques and the know-how. In particular, an 
alternative SHM system based on PZT sensors will be designed and verified during FSFT to 
support or possibly partially replace scheduled inspections in the future. 

This SHM system should follow the international standards for such systems known as the 
SHM paradigm [1], which means that the system is organized in the hierarchical structure: 

 damage identification and localization; 
 damage classification and size quantification; 
 residual life estimation. 
 

In the project, multiple tasks are oriented to achieve the highest possible technical readiness of 
the system (in the operational way of thinking). However, there are still a few challenges 
associated with the SHM system design such as [2]: 
• utilizing formal methods for designing sensing and data processing systems; 
• correlating damage indications with remaining structural capabilities; 
• minimizing false calls resulting from benign changes in operation and boundary conditions; 
• addressing durability of on-board hardware. 
 

This work focuses only on selected applications of such a system consistent with the SHM 
paradigm and associated with the quantification of the damage size. A statistical approach based 
on averaged damage indices and supervised learning (SL) techniques will be highlighted. The 
paper will present an approach to classification of the damage indices from time signals obtained 
from the PZT sensors of the guided waves propagation. That will include: damage indices 
selection, classification models, self diagnosis application and SL techniques. 
 
 
2. STRUCTURAL HEALTH MONITORING 
 

Depending on their source and the geometry of the structure under consideration, elastic waves 
can propagate a significant distance. They are also sensitive to local structure discontinuities and 
deformations providing a tool to detect local damage of large aerospace structures. One of the 
major obstacle in a direct application of this method is the complexity of signals excited in real 
structures. Reliable SHM systems should therefore provide a different type of damage assessment 
to allow for cross-validated evaluation of the structure: 

 qualitative data - damage presence in a given network cell, its type and the order of magnitude; 
 quantitative data - exact location and size of damage. 
 

Basic information concerning the health of a structure can be provided by the so-called damage 
indices (DI’s). Denoting as fgs the signal generated in the transducer g and received in the sensor s 
and denoting as fgs,b its baseline, certain basic DI’s can be defined using the following simple 
signal characteristics: 
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Similar DI’s can be obtained using the Fourier filtered signals, their envelopes or other signal 
transformations. These simple signal characteristics can be useful for qualitative assessment due to 
their small volatility. They have positive sign irrespectively of the amount of energy received by 
the given sensor, which is an important property when averaging. 

There exist remarkable examples of applications of analogous DI’s to determine localization of 
damage [8–10]. In these methods two stage algorithms are used. First, for each sensing path g→s, 
i.e. a signal received in the sensor s originated from the generator g, the structure is quantified into 
a damaged or undamaged state. This quantitative assessment can be performed using a certain 
threshold level of one or multiple DI’s. If the structure is considered as damaged, the probable 
density of the damage localization in a given network cell is calculated. This density depends on 
DI’s values and a properly defined distance of a given network point from the sensing path g→s. 
Finally, the joint probability for a damage localization is provided using probability maps obtained 
for all possible sensing paths in the network cell. 

There are several limitations of the described SHM method. In particular, in order to obtain an 
accurate damage location probability map it is necessary to consider sensing paths for many 
transducers, which affects  the computational and system implementation costs. Furthermore, 
improper functioning of a single sensor in the network decreases the number of reliable sensing 
paths, which can disturb this probability density. Another obstacle in this approach is the system 
sensitivity adjustment. In complex structures that contain many wave reflectors, e.g. edges, joints, 
welds, rivets, etc., a resulting map for sensitive algorithms can be noised[11], whereas weakening 
susceptibility of sensing paths causes risk of missing damage. However, the main disadvantage of 
that method is the difficulty in estimating the damage size. Since damage indices DIj (g,s) used for 
structure quantification in these algorithms depend strongly on damage localization with respect to 
a given sensing path g→s, it is difficult to use regression or classification models in estimating the 
damage size. 

 
2.1 Damage Growth Monitoring 
 

Reliable damage size assessment requires developing methods independent of or adjusted to the 
damage location. Therefore, for a given damage index DIj (g,s) the averaged damage index can be 
defined [12, 13] as: 

, :

1: ( , ),
( 1)j j

g s
g s

ADI DI g s
G S




   

where G = S is the number of transducers in the sensor network cell. Averaged damage indices 
(ADI’s) are less dependent on the damage localization, i.e. they are invariant with respect to 
sensors permutation, which makes them better suited for damage size estimation. These indices 
can be defined in the case of improper functioning of several transducers in the network. 
Moreover, they contain joint information from all sensors, which should improve possibility of 
small damage detection. It is therefore important to use constant sign DI’s in their definition to 
avoid cancellation of factors. 
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The efficiency of the proposed signal characteristics can be evaluated using ADI’s and 
Principal Component Analysis (PCA). PCA is an effective feature extraction algorithm and can be 
used in predictive models development. This method was frequently used for the SHM purposes 
[14–18]. Subsequent principal components λi are linear combinations of all ADI’s used: 

1
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where D is the number of indices considered. The coefficients 
j
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Typically, values of these coefficients corresponding to different characteristics significantly 
differ, which provides a measure of effectiveness of the characteristics used. Furthermore, 
denoting as a

id  dominating components of subsequent principal directions corresponding to 
averaged damage index ADIa , one can consider effective averaged damage indices (eADI’s) as: 

.a
i i a

a
eADI d ADI   

Since eADI’s correspond to single signal characteristic they are easier to interpret compared to 
principal components λi  while still preserving properties of data separation. 

Some of the proposed signal characteristics are defined by linear signal transformations so 
some of the effective averaged damage indices can be highly correlated. In this case they 
correspond to the same signal characteristic but with different weights a

id  assigned to signal 
transformation, e.g. Fourier filtering. Observations distorted by noise or originated from faulty 
generators resulting in particular in a different spectrum of the received signal are outlying from 
the correlation line and therefore can be dropped out providing a sensor network self diagnostic 
tool. 

The most effective uncorrelated eADI’s can be used to develop parametric (e.g. LDA, QDA, 
Bayesian) or nonparametric (k-nn, SVM) classification [19] as well as regression models for 
damage size estimation. 

 
2.2 SHM model verification 
 

The SHM system scheme presented in the previous section was verified on retrofitted aircraft 
structures [12], therefore certain restrictions on the sensor network configuration had to be taken 
into account. Two different types of specimens were prepared and fatigue tests were performed. 

In order to increase the size of the trial, the following partially averaged damage indices 
(pADI’s): 

:

1( ) ( , )
( 1)j j

s
s g

pADI g DI g s
S


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   

were used and their effective counterparts (epADI’s) were defined analogously as in the previous 
section. 
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Fig. 1. Effective partially averaged damage indices for both specimens. 

(a) correlated epADI’s (b) uncorrelated epADI’s 
 

The correlated effective pADI’s were used to provide a network self diagnostic tool. 
Observations originated from generator no. 7 for type I specimen as well as single excitations from 
generator no. 3 and 5 are outlying from the correlation line and therefore were dropped out (Fig. 
1(a)). Separation of the two most effective uncorrelated pADI’s is presented on the figure (Fig. 
1(b)). Since the interaction of elastic waves with a structure discontinuity is a local phenomenon, 
pADI’s values depend strongly on the localization of a generator, e.g. its distance from damage. 
This is clearly visible on theplot (Fig. 1(b)), however data are separated for individual generators 
for both types of specimens (figure not shown here). 

 

 
Fig. 2. Classification regions of nearest neighbor model.  

(a) direct 5-nn model, (b) 2-fold classification model 
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These pADI’s were used to provide two k nearest neighbors (k-nn) models for damage size 
estimation. Classification regions for nearest neighbor models are calculated determining the most 
frequent class of k samples from the training dataset that are the nearest to the given region point. 
Classification regions for the 5-nn model based on euclidean metric in the space spanned by two 
the most effective uncorrelated epADI’s are presented in the Figure 2. In order to estimate the 
sufficient size of the learning dataset and model effeciency, a 5-fold cross-validation method [19] 
was utilised (Tab. 1). Due to pADI’s dependence on the localization of the generator there occurs 
significant risk of type I misclassification. 
 
Table 1. Cross-validation results of direct 5-nn model. 

 
 

In order to avoid overlappping of classification regions for different generators and enhance 
system reliability a 2-fold classification model was developed. In this scheme the structural health 
assessment was performed based on a majority of indications from 3-nn models provided for each 
generator separately (Fig. 2(b)). This model was verified with use of leave-one-out crossvalidation 
[19] (Tab. 3). Since classification regions of undamaged (0−5 [mm]) and seriously damaged (20 − 
40 [mm]) specimens for this model are separated (Fig. 2(b)) there is virtually no risk of type I 
misclassification (Tab. 2) compared to direct the 5-nn model (Tab. 1). 
 
Table 2. Cross-validation results of the 2-fold classification model. 

 
 
 
3. CONCLUSIONS 
 

In this paper a SHM model meeting certain requirements of the SHM paradigm was presented 
and verified using real aircraft structures. The main challenge before implementing the system into 
operational phase is to assure its durability and reliability, e.g. the possibility of replacement of 
faulty PZT transducers in the sensor network. This will require developing the quasi baseline free 
methods of inference in order to eliminate the necessity of calibrating the functioning of a given 
network cell after the sensor replacement. However, training dataset will be needed in the system 
design phase. The proposed signal characteristics should be robust enough to provide such 
quantitative structural health assessment after signal denoising and other signal transformations. 
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