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Background: Doxorubicin (DOX) is a very effective anticancer medication that is commonly used to treat hematological
malignancies and solid tumors. Nevertheless, DOX is known to have cardiotoxic effects that may lead to cardiac
dysfunction and failure. In experimental studies, female animals have been shown to be protected against DOX-induced
cardiotoxicity; however, the evidence of this sexual dimorphism is inconclusive in clinical studies. Therefore, we sought
to investigate whether genetic background could influence the sexual dimorphism of DOX-induced cardiotoxicity.

Methods: Male and female Wistar Kyoto (WKY) and Spontaneous Hypertensive Heart Failure (SHHF) rats were used.
DOX was administered in eight doses of 2 mg/kg/week and the rats were followed for an additional 12 weeks.
Cardiac function was assessed by trans-thoracic echocardiography, systolic blood pressure was measured by the
tail cuff method, and heart and kidney tissues were collected for histopathology.

Results: Female sex protected against DOX-induced weight loss and increase in blood pressure in the WKY rats,
whereas it protected against DOX-induced cardiac dysfunction and the elevation of cardiac troponin in SHHF rats.
In both strains, female sex was protective against DOX-induced nephrotoxicity. There was a strong correlation between
DOX-induced renal pathology and DOX-induced cardiac dysfunction.

Conclusions: This study highlights the importance of studying the interaction between sex and genetic background
to determine the risk of DOX-induced cardiotoxicity. In addition, our findings suggest that DOX-induced nephrotoxicity
may play a role in DOX-induced cardiac dysfunction in rodent models.

Background

The survival rate of cancer patients has substantially in-
creased in the last decade due to advances in diagnosis
and therapy [1]. It is estimated that approximately 14.5
million Americans with a history of cancer were alive in
January 2014, and this number is expected to increase to
nearly 19 million in 2024 [1]. Although increased sur-
vivorship is promising, these survivors may suffer from
long term adverse effects of anticancer medications. Of
importance, several anticancer agents may cause acute
and/or delayed cardiotoxic side effects [2]. For instance,
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anthracyclines, such as doxorubicin (DOX), epirubicin,
and daunorubicin, are very effective anticancer agents
that are commonly used to treat both hematological ma-
lignancies and solid tumors [3]. Nevertheless, anthracy-
clines are known to have cardiotoxic effects that may
progress to cardiac dysfunction and eventually heart fail-
ure [4]. Although the mechanism of DOX-induced car-
diotoxicity is likely multi-factorial [5-10], the majority of
studies support oxidative stress, inflammation, and car-
diomyocyte apoptosis as being critical in the develop-
ment of DOX-induced cardiomyopathy [11-13].

Several factors can increase the risk of cardiotoxicity after
anthracycline treatment, including total cumulative dose,
co-administration of other cardiotoxic agents, age, sex, and
genetic predisposition to cardiovascular disease [14—17].

© 2016 Zordoky et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40959-016-0013-3&domain=pdf
mailto:zordo001@umn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zordoky et al. Cardio-Oncology (2016) 2:4

The effect of sex on DOX-induced cardiotoxicity in clin-
ical studies is controversial. In some studies, male patients
seem to be more susceptible to DOX-induced cardiotoxi-
city [18, 19]. On the contrary, other studies have shown
that female sex is a risk factor for more severe DOX-
induced cardiotoxicity [20]. In experimental studies, re-
cent reports have demonstrated the protective effect of
female sex against DOX-induced cardiotoxicity in Wistar
and Spontaneously Hypertensive Rats (SHR) [21-24].
Since pre-existing cardiovascular disease is considered
a significant risk factor for more severe DOX-induced
cardiotoxicity [16] and we have shown that the genetic
predisposition to cardiovascular diseases made male
Spontaneous Hypertensive Heart Failure (SHHF) rats
more susceptible to DOX-induced cardiac dysfunction
than Wistar Kyoto (WKY) rats [25], we sought to inves-
tigate the interplay between genetic predisposition to
cardiovascular diseases and sexual dimorphism in the
context of DOX-induced cardiotoxicity.

The SHHEF rat represents a genetic model of cardiomy-
opathy associated with hypertension, inflammation, and
activation of the renin angiotensin aldosterone system
which recapitulates the pathophysiology of heart failure
in people [26]. Of interest, we have shown that sexual
dimorphism occurs during the development of heart
failure in SHHF rats with delayed onset of decompen-
sated heart failure in female rats [27]. In the current
study, we demonstrate for the first time that female sex
is protective against DOX-induced cardiac dysfunction
in SHHEF rats. In addition, we show for the first time that
female sex is protective against DOX-induced increase in
systolic blood pressure in WKY rats. We also show that
there is a strong correlation between DOX-induced renal
injury and DOX-induced cardiac dysfunction, which high-
lights the importance of studying DOX-induced nephro-
toxicity simultaneously with the well-known cardiotoxicity
in rodent models.

Methods

Animals

All experimental procedures involving animals have been
approved by the University of Minnesota Institutional
Animal Care and Use Committee (IACUC). All animals
were housed in an AAALAC accredited facility according
to the NIH guidelines under controlled environmental
conditions. All animals had free access to food and water
during the study period. Thirteen male WKY rats (average
weight 175 g), thirteen female WKY rats (average weight
135 g), fourteen male SHHF rats (average weight 160 g),
and thirteen female SHHF rats (average weight 125 g)
were obtained from Charles River Laboratories. All ani-
mals were 8 to 10-weeks old, and the SHHF rats were
phenotypically lean. After a 1 week acclimation period,
DOX rats received 8 weekly doses of 2 mg/kg DOX by
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subcutaneous injection (n=7 for male WKY, female
WKY, male SHHF, and female SHHF groups). Control
rats received an equivalent volume of sterile saline solu-
tion (7 = 6 for male WKY, female WKY, female SHHF;
and n =7 for male SHHF groups). The injection sites
were periodically rotated to avoid repeated injections at
the same site. Pharmacological grade DOX was pur-
chased from Bedford Laboratories, Bedford, OH 44146.
This protocol was determined based on preliminary
studies to establish a model of delayed DOX-induced
cardiotoxicity [25]. During the 8 weeks of the DOX ad-
ministration phase and the 12 weeks following the last
DOX injection, the delayed toxicity phase (a total of
20 weeks), rats were closely monitored for general health
conditions as per the University of Minnesota IACUC
guidelines. Animals were weighed at the beginning of the
study (week 0), 4 weeks after the start of DOX (week 4),
8 weeks after the start of DOX (week 8), 6 weeks after the
last DOX injection (week 14), and 12 weeks after the last
DOX injection (week 20). Weight gain was calculated for
each rat by subtracting its initial body weight from its
weight at the following specified time points: 4, 8, 14, and
20 weeks after the first DOX injection. The animals were
euthanized 12 weeks after the last DOX injections (week
20 of the study); the hearts and kidneys were carefully col-
lected and weighed.

Systolic blood pressure (SBP) measurement

SBP was measured by the tail cuff pressure method at the
beginning of the study (week 0), 4 weeks after initiation of
DOX (week 4), 8 weeks after the start of DOX (week 8),
and 12 weeks after the last DOX injection (week 20).
Briefly, rats were gently restrained in a warmed environ-
ment, and acclimated to the tail cuff pressure method.
Thereafter, the SBP readings were taken using a BP-2000
Blood Pressure Analysis System™ for mice and rats (Visi-
tech Systems, Inc., Apex, NC). The average of three stable
SBP measurements was recorded. The change in SBP was
calculated for each animal by subtracting the initial SBP
from the SBP values at 4, 8, and 20 weeks after the first
DOX injection.

Echocardiography

The cardiac function was assessed by trans-thoracic
echocardiography at 1, 6, and 12 weeks after the last
DOX injection (weeks 9, 14 and 20 respectively). The
echocardiography was performed by a board certified
veterinary cardiologist (AT) who was blinded to strain,
sex, and treatment group using an ATL 5000CV ultra-
sound system (Philips Medical Systems, Maplewood, MN).
M-mode echocardiographic measurements included left
ventricular internal diameter in diastole (LVIDd) and left
ventricular internal diameter in systole (LVIDs). Fractional
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Fig. 1 Body weight gain in male WKY rats a, female WKY rats b, male SHHF rats ¢, and female SHHF rats d. Weight gain was calculated for each
rat by subtracting its initial body weight from its weight at the following specified time points: 4, 8, 14, and 20 weeks after the first DOX injection.
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Fig. 2 Change in Systolic Blood Pressure (SBP) in male WKY rats a, female WKY rats b, male SHHF rats ¢, and female SHHF rats d. SBP was measured
by the tail cuff pressure method. The change in SBP was calculated for each animal by subtracting the initial SBP from the SBP values at 4, 8, and
20 weeks after the first DOX injection. * p < 0.05 significantly different from Saline group of the same sex
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shortening (FS) was calculated as (LVIDd — LVIDs)/
LVIDd x 100, as previously described [25].

Serum cardiac troponin T measurement (cTnT)

Serum ¢TnT was measured 1 week after the last DOX in-
jection using a commercially available third generation
electrochemiluminescence immunoassay kit validated for
rats, as per the manufacturer’s instructions (Roche Diag-
nostics, Indianapolis, IN).

Histopathologic evaluation

Tissue sections were collected at the same level of the left
ventricular free wall and the left kidney, fixed in 10 % neu-
tral formalin, processed and embedded in paraffin using
standard methods. Thereafter, four-micron tissue sections
were cut and stained with hematoxylin and eosin (HE).
Histopathologic evaluation was performed by a board cer-
tified veterinary pathologist (IM) in a blinded fashion to
evaluate the following lesions in the heart: myocyte vacuo-
lization and loss of myofibrils (according to the previously
described scoring scheme [28]), myocyte necrosis charac-
terized by coagulation necrosis and coagulative myocyto-
lysis (Zenker’s necrosis), and interstitial proliferation and
inflammation as described previously [25]. Briefly, each
lesion was scored separately on 0—4 scale. Score 0 was
given if no lesion was detected; 1 if the lesion was min-
imal; 2 if the lesion was mild; 3 if the lesion was moderate;
4 if the lesion was severe. The total score of myocardial
damage was calculated as the sum of individual scores
(range of possible score of 0—12). Similarly, the following
lesions were assessed in each kidney: glomerular lesions,
tubular lesions, and interstitial fibrosis and inflammation.
Glomerular lesions as manifested by the presence of glom-
erulonephritis with increased mesangial matrix, mesangial
or epithelial cell vacuolization, distention of capillary loops
and adhesions between parietal and visceral podocytes;
tubular lesions which included dilatation, protein casts,
epithelial cell degeneration, atrophy and regeneration, and
basement membrane thickening; and interstitial fibrosis
and inflammation. Each lesion was scored separately on
0—4 scale and the total score of renal damage was calcu-
lated as the sum of individual scores (range of possible
score of 0—12). as described previously [25].

Statistical analysis

All statistical analyses were performed using the GraphPad
Prism software (version 6.07, June 12, 2015). Results are
presented as mean + SEM. Comparisons among different
sex and treatment groups was done by 2-way ANOVA,
and comparisons involving multiple time points are done
by 2-way ANOVA for repeated measures. Histopathologic
grading of lesions is presented as median with 95 % confi-
dence interval of the median. Statistical analysis for histo-
pathologic grading was performed using Kruskal-Wallis
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non-parametric test. P values of <0.05 were considered sta-
tistically significant. Spearman rank correlations (r;) were
used to examine associations between cumulative heart
and kidney pathology scores and fractional shortening.

Results

Weight gain

There was no significant morbidity or mortality in any of
the experimental groups and all rats appeared healthy at
the end of DOX administration and during the 12 weeks
delayed toxicity phase. For male WKY rats, the weight gain
was similar in control and DOX-treated animals at all time
points except that DOX-treated rats gained less weight than
the control at 20 weeks after the first DOX injection
(12 weeks post-treatment) (Fig. 1a). For female WKY rats,
DOX-treated animals gained the same weight during the
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Fig. 3 Serum cardiac troponin T (cTnT) in WKY rats (a) and SHHF
rats (b). Serum cTnT was measured after 1 week of the last DOX
injection. * p < 0.05 significantly different from Saline group of the
same sex. # p < 0.05 significantly different from males within the
same treatment group
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DOX administration phase and during the 12 weeks de-
layed toxicity phase (Fig. 1b). On the other hand, both male
and female DOX-treated SHHF rats gained less weight than
their respective controls during the DOX administration
and the delayed toxicity phases (Fig. 1c and d).

Systolic Blood Pressure (SBP)

In male WKY rats, DOX treatment caused a significant
increase in SBP during the DOX administration phase
(Fig. 2a). Whereas, there was no significant difference in
SBP between DOX-treated female WKY rats and their re-
spective control (Fig. 2b). On the other hand, DOX treat-
ment caused a significant increase in SBP in both male
and female SHHF rats as compared to their respective
control during both the DOX administration and the de-
layed toxicity phases (Fig. 2c and d).

Serum cTnT levels
There was no difference in the serum ¢TnT levels between
the control and DOX-treated animals in both male and
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female WKY rats (Fig. 3a). On the other hand, serum
cTnT level was about three-fold higher in DOX-treated
male SHHF rats than their respective control. Whereas,
there was no significant difference between DOX-treated
and saline-treated female SHHF rats (Fig. 3b).

Assessment of cardiac function

The cardiac function was assessed in all the experimental
groups by measuring the FS using trans-thoracic echocar-
diography 1,6, and12 weeks after the last DOX injection
(weeks 5, 14 and 20 of the study, respectively). There was
no significant difference in the FS between the control
and DOX-treated animals at all time points in both male
and female WKY rats (Fig. 4a, b, and c). Similarly, there
was no significant difference in the FS between control
and DOX-treated male and female SHHF rats 1 week after
the last DOX injection (Fig. 4d). However, the FS was
significantly lower in male DOX-treated SHHF rats
than their respective controls at both 6 and 12 weeks
after the last DOX injection. Interestingly, there was no
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Fig. 5 Total heart weight in WKY rats (a) and in SHHF rats (b), and total kidney weights in WKY rats (c) and in SHHF rats (d). The animals were
euthanized 12 weeks after the last DOX injections (week 20 of the study); the hearts and kidneys were carefully collected and weighed. * p < 0.05
significantly different from Saline group of the same sex. # p < 0.05 significantly different from males within the same treatment group

significant difference in the FS between female DOX-
treated SHHF and their respective controls at these
time points (Fig. 4e and f).

Heart weights and histopathology

There was no significant difference in the heart weight be-
tween DOX-treated animals and their respective controls
in all experimental groups (Fig. 5a and b). DOX-treated
male and female WKY rats had significantly higher myo-
cyte vacuolization and cumulative heart pathology score
than their respective controls. DOX-treated male WKY
rats had significantly more severe interstitial cell prolifera-
tion and inflammation than their respective controls
(Table 1). In SHHEF rats, there was no significant difference
in any cardiac lesion subtypes between DOX-treated male
and female rats and their respective controls. Of interest,
female rats had significantly lower interstitial cell prolifera-
tion and inflammation score than the male rats in the
same treatment group (Table 2).

Kidney weights and histopathology

The kidney weights were significantly higher in DOX-
treated animals than in their respective controls in male
WKY rats, male SHHF rats, and female SHHF rats. There
was no significant difference in the kidney weights be-
tween DOX-treated female WKY rats and their respective
controls (Fig. 5c and d). All kidney lesions subtypes were
significantly higher in male DOX-treated rats than in their
respective controls. Female DOX-treated WKY had signifi-
cantly lower interstitial inflammation and fibrosis than
male DOX-treated rats of the same strain (Tables 3 and 4).

Correlation between organ pathology and cardiac function

In order to assess the relationship between DOX-induced
organ damage and DOX-induced cardiac dysfunction, we
evaluated the correlation between both the heart and the
kidney pathology scores and the FS. There was a signifi-
cant inverse correlation between the cumulative heart
pathology score and the fractional shortening with an r of
only -0.4210 (p value of 0.0019) (Fig. 6a). Surprisingly, the

Table 1 Heart pathology scores in WKY rats based on evaluation of hematoxylin and eosin (HE) stained sections

Sex Treatment Myocyte vacuolization; loss of Coagulation necrosis; coagulative Interstitial cell proliferation; Cumulative
myofibrils score myocytolysis score inflammation score heart score
Male Saline 1(0-1) 0 (0-1) 0.5 (0-2) 2 (0-3)
DOX 2 (2-3)* 1(0-2)* 2 (1-3)* 5 @4-7)*
Female Saline 0 (0-1) 0 (0-1) 05 (0-1) 1(0-3)
DOX 2 (2-3)% 1(0-1) 2(1-2) 5 (4-5)*

Data are presented as the median and 95 % confidence interval of the median
*p < 0.05 significantly different from Saline group of the same sex
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Table 2 Heart pathology scores in SHHF rats based on evaluation of hematoxylin and eosin (HE) stained sections

Sex Treatment Myocyte vacuolization; Coagulation necrosis; Interstitial cell proliferation; Cumulative heart score
loss of myofibrils score coagulative myocytolysis score inflammation score
Male Saline 1(1-2) 1(0-1) 2(1-2) 4 (3-5)
DOX 2(1-2) 1(0-2) 3(1-3) 5(3-7)
Female Saline 1(0-2) 0 (0-1) 0 (0-1)* 2 (0-3)
DOX 1(1-2) 1(0-1) 1(1-2) 3 (2-5)

Data are presented as the median and 95 % confidence interval of the median
*p < 0.05 significantly different from males within the same treatment group

correlation between the cumulative kidney pathology
score and the fractional shortening was stronger with an r
of -0.5053 and a p value of 0.0001 (Fig. 6b).

Discussion
It has been widely accepted that the risk of cardiovascu-
lar diseases is lower in women than in men [29]. Never-
theless, women may suffer poorer outcome after the
occurrence of an adverse cardiovascular event [30]. Al-
though there is a plethora of studies that address the
issue of sexual dimorphism in several cardiovascular dis-
eases, there is inconclusive and scarce information about
sexual dimorphism in chemotherapy-induced cardiotoxi-
city [31]. For instance, female sex has been considered a
risk factor for delayed DOX-induced cardiotoxicity in
pediatric cancer patients [15]. Similarly, female breast
cancer patients are very susceptible to the cardiotoxic
adverse effects of DOX, especially when combined with
other cardiotoxic agents such as trastuzumab or radiation
[32, 33]. On the other hand, some studies in middle age
patients have demonstrated that male patients are more
susceptible to DOX-induced cardiotoxicity than female
patients [18, 19]. Indeed, the aforementioned findings sug-
gest that other factors such as age, menopausal state, and
genetic predisposition to cardiovascular diseases may
alter the protective effect of female sex against DOX-
induced cardiotoxicity. Therefore, the purpose of this
study is to examine the effect of genetic predisposition
to cardiovascular diseases on sexual dimorphism of
DOX-induced cardiotoxicity.

In the present study, we have adopted a clinically rele-
vant regimen of 8 weekly doses of 2 mg/kg DOX [25].
This dosage regimen has been thoroughly optimized to

allow a prolonged follow-up of the experimental animals
up to 12 weeks after the last DOX injection without any
mortality. This long follow-up period has allowed us to
document sex-related differences of early and delayed
DOX-induced toxicity in both the normotensive WKY
rats, and the hypertensive heart failure prone SHHF rats.
DOX administration began when the average age of the
rats was 10 weeks. At this age, there is no overt cardio-
myopathy in SHHF rats [27]. Therefore, the aim of this
study is to model cancer patients with no current car-
diovascular diseases, but with a genetic background that
may exacerbate a cardiovascular disease as part of a de-
layed response to DOX. Since weight loss is one of the
hallmarks of DOX-induced toxicity in experimental ani-
mals [10], we assessed the weight gain in all saline and
DOX-treated rats during both the DOX administration
phase and the follow-up phase. In the current study, fe-
male sex was protective against DOX-induced weight
loss in WKY rats. In another study, DOX treatment
caused a significant weight loss in both male and female
Wistar rats [22]. Indeed, the degree of DOX-induced tox-
icity was much higher in that study than in our current
study. For instance, there was a significant 50 % mortality
in male DOX-treated rats in that particular study [22],
whereas there was no mortality in ours. In SHHF rats,
both male and female DOX-treated rats gained less weight
compared to their respective controls. Similar to our find-
ings, there was a significant weight loss in both male and
female DOX-treated SHR rats as compared to their re-
spective controls [23]. These findings may indicate that
genetic predisposition to cardiovascular diseases in both
SHR and SHHEF has negated the protective effect of female
sex against DOX-induced weight loss.

Table 3 Kidney pathology scores in WKY rats based on evaluation of hematoxylin and eosin (HE) stained sections

Sex Treatment Glomerular lesions score Tubular lesions score Interstitial inflammation Cumulative kidney
and fibrosis score score
Male Saline 0(0-0) 0(0-0 0(0-0) 0 (0-0)
DOX 2 (1-2)* 2 (1-3)* 2 (1-2)* 6 (3-7)*
Female Saline 0 (0-0) 0 (0-0 0(0-0) 0(0-0)
DOX 1(0-1) 1(0-1 0 (0-0)# 2(0-2)

Data are presented as the median and 95 % confidence interval of the median
*p < 0.05 significantly different from Saline group of the same sex
#p < 0.05 significantly different from males within the same treatment group
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Table 4 Kidney pathology scores in SHHF rats based on evaluation of hematoxylin and eosin (HE) stained sections

Sex Treatment Glomerular lesions score Tubular lesions score Interstitial inflammation Cumulative kidney
and fibrosis score score
Male Saline 0 (0-0) 0(0-0) 0 (0-0) 0 (0-0)
DOX 4 (3-4)* 4 (3-4) 3 (3-4)* 11 (9-12)*
Female Saline 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0)
DOX 2 (1-3) 2 (2-3) 2 (2-3) 6 (5-9)

Data are presented as the median and 95 % confidence interval of the median
*p < 0.05 significantly different from Saline group of the same sex

Although hypertension is more prevalent among can-
cer survivors than the general population [34], the effect
of DOX-induced toxicity on blood pressure is inconclu-
sive. DOX-induced toxicity has been reported to lower
the blood pressures in some studies [35, 36], and to in-
crease the blood pressure in other studies [37, 38]. In
the current study, we demonstrate that DOX causes a
significant increase in SBP during the DOX administration
period in male WKY rats. However, there was no signifi-
cant difference in SBP between DOX-treated male WKY
rats and their respective control 12 weeks after the last
DOX injection. There was no difference in SBP between
DOX-treated female WKY rats and their respective con-
trols both during the DOX administration period and
during the delayed toxicity phase. DOX-induced increase
in blood pressure can be attributed to the known DOX-
induced nephrotoxicity and vascular toxicity; both are
known regulators of blood pressure [39, 40]. To the best
of our knowledge, this is the first report that female sex is
protective against DOX-induced increase in SBP in the
normotensive WKY rats. However, female sex has been
shown to protect against hypertension in other models.
For instance, it has been shown that female sex protects
against angiotensin II-induced elevation of blood pressure
in human subjects [41]. On the other hand, DOX-induced
toxicity caused a significant increase in SBP in both male
and female SHHF rats than their respective controls dur-
ing the DOX administration and the follow-up periods.
These findings demonstrate that the protective effect of
female sex against DOX-induced elevation of blood pres-
sure may be modulated by the genetic pre-disposition of
the treated subjects.

To investigate the effect of sex and strain differences on
DOX-induced cardiotoxicity, we measured serum cTnT
which has been widely used as a biomarker for DOX-
induced cardiotoxicity [25, 42]. The increase in ¢T'nT usu-
ally precedes the deterioration of ventricular function
[43]. In the current study, there was no significant change
of the serum cTnT level in both male and female WKY
rats when measured 1 week after the last DOX injection.
Similarly, DOX administration was not associated with a
significant decline in the cardiac function in either male
or female WKY rats. On the other hand, DOX administra-
tion caused a significant increase in the cTnT level in male

SHHF rats, whereas there was no difference in female
SHHEF rats. Similarly, there was a significant decline in the
cardiac function in male SHHF rats when measured during
the delayed toxicity phase, but not in female SHHF rats.
These findings demonstrate for the first time the protective
effect of female sex against DOX-induced cardiotoxicity in
SHHEF rats. In addition, these results confirm that the gen-
etic pre-disposition to cardiovascular disease in male
SHHEF rats can aggravate DOX-induced cardiotoxicity.

Several mechanisms have been proposed to explain
the protective effect of female sex against DOX-induced
cardiotoxicity. Mitochondrial dysfunction, energy metab-
olism, and cardiolipin remodeling have been proposed as
critical aspects of sex differences of DOX-induced cardi-
otoxicity in Wistar rats [22, 24]. In SHR, sex-specific dif-
ferences in mast cell activity and mitochondria-related
oxidative stress gene expression have been suggested as
potential mechanisms for sex differences in DOX-induced
cardiotoxicity [21, 23]. It has also been proposed that estro-
gen plays the main protective role against DOX-induced
cardiotoxicity in female animals, since ovariectomized fe-
male animals become as sensitive to DOX-induced cardio-
toxicity as male animals [21, 23]. Similarly, ovariectomy has
been shown to exacerbate DOX-induced cardiotoxicity in
female Wistar rats due to diminished antioxidant capacity
in the ovariectomized animals [44]. Other mechanisms of
the cardioprotective effects of estrogen include anti-
apoptotic [45], anti-fibrotic [46], and anti-hypertrophic
effects [47]. Of interest, we have demonstrated that sex-
ual dimorphism plays a role in the progression into de-
compensated heart failure in SHHF rats with male rats
developing earlier activation of the renin angiotensin
aldosterone system and earlier decline in their cardiac
function [27]. The exact mechanisms by which female
sex protects against DOX-induced cardiotoxicity in
SHHEF rats have yet to be fully explored.

In addition to the well-recognized DOX-induced car-
diotoxicity, DOX causes significant nephrotoxicity char-
acterized by chronic proteinuria, glomerular sclerosis,
and interstitial and tubular involvement primarily in rodent
models [48-50]. Similar to DOX-induced cardiotoxicity,
oxidative stress is thought to play the major role in mediat-
ing DOX-induced nephrotoxicity [51]. Interestingly, DOX-
induced nephrotoxicity has also been reported to be less
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severe in females than in males of SHR and Sprague—Daw-
A 60 ley rats [21, 52]. Male sex hormones have been shown to
. worsen DOX-induced nephrotoxicity, whereas female sex
~ hormones play a protective role [52]. Since there was a
% 40 . 3 S 8 : . strain difference in DOX-induced nephrotoxicity between
] ° male WKY and SHHF rats [25], we sought to investigate
E e °* 3 I | . . ) o
= $ 4 o ¢ the sexual dimorphism of DOX-induced nephrotoxicity in
@ 20 T . * ° both WKY and SHHF rats. In agreement with previous
s studies, DOX-induced kidney damage was less severe in fe-
. male WKY rats than in males of the same strain. Interest-
06 2 4 6 8 ingly, we demonstrate for the first time that DOX-induced
Cumulative Heart Pathology Score kidney damage was also less severe in female SHHF rats
than in males of the same strain. DOX-induced kidney
Spearman r damage was more severe in male and female SHHF rats
r -0.4210 than in WKY rats of the same sex. These findings demon-
95% confidence interval -0.6275 t0 -0.1593 strate that the extent of DOX-induced nephrotoxicity is de-
B vails terminec‘l by the‘ interplay between genetic background and
P (two-tailed) 0.0019 sexual dimorphism. , ,
P value summary = To our surprise, the extent of sexual dimorphism was
Exact or approximate P value? | Approximate more prominent in DOX-induced pathological lesions in
Significant? (alpha = 0.05) Yes the kidney than those in the heart. Indeed, DOX-induced
cardiotoxicity did not cause any significant increase in the
Number of XY Pairs 52 heart pathology scores in either male or female SHHE
despite the fact that DOX-induced cardiotoxicity caused a
B &0 significant decline in cardiac function in male SHHF. This
discrepancy between DOX-induced cardiac pathology
o and DOX-induced cardiac dysfunction suggests the
§ 408 o s possibility that other non-cardiac pathology may play a
2 . hd ’ ® . . part in mediating and/or worsening of DOX-induced
® ° oo R cardiac dysfunction primarily in rodent models. Since
& 20 o ° o the cardiovascular-renal axis is an important factor in
R o cardiovascular health and disease [53], we sought to in-
o ° vestigate the relationship between kidney pathology and
0+ T T 1 cardiac function in our study. We discovered that kidney
0 5 10 15 . .
Cumulative Kidney Pathology Score Pathology scores are strongly corr.elated with the dec‘ll‘ne
in cardiac function. Thus, DOX-induced nephrotoxicity
Spearman r may have exacerbated DOX-induced cardiac dysfunction
r -0.5053 in the current study. Indeed, DOX-induced nephrotoxicity
95% confidence interval -0.6883 to -0.2619 is a factor that may be overlooked in rodent studies of
DOX cardiotoxicity, so characterization of the renal
P value damage as a component of the effects of DOX is im-
P (two-tailed) 0.0001 portant physiologic context for interpretation of the
P value summary - _ heart data from these studies. In addition, these find-
Exact or approximate P value? | Approximate i have clinical implications in renally-impaired
Significant? (alpha = 0.05) Yes {ngs may 1 P y-imp
cancer patients who may become more susceptible to
Number of XY Pairs 52 the cardiotoxic effects of DOX. In support of this con-
cept, renal dysfunction has been shown to increase the
Fig.‘6 Correlation between cumulative hegrt patho\ogyAscore (a) risk of Chemotherapy-induced CardiotOXiCity in cancer
?L kidney pathology scores (b) and % fractional shortening (FS). patients [54, 55]. A limitation of this study is that DOX-
e total cumulative heart and kidney pathology scores based on
evaluation of hematoxylin and eosin (HE) stained sections were induced nephrotoxicity was assessed only by kidney histo-
correlated with the % FS measured by trans-thoracic echocardiography pathology. Other tests including creatinine clearance and
for each rat. Nonparametric Spearman correlation was used to assess proteinurea are required to better assess the renal func-
the degree and significance of the correlation tion. In addition, DOX-induced nephrotoxicity may have

contributed to the observed increase in ¢ITnT in DOX-
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treated male SHHF rats due to decreased clearance of
c¢TnT fragments [56]. Therefore, further research is re-
quired to identify the mechanisms by which nephro-
toxicity can alter the pathogenesis of DOX-induced
cardiotoxicity in rodent animal models.

Conclusions

In the current study, we demonstrated that genetic back-
ground influences the sexual dimorphism of DOX-induced
toxicity. Female sex is protective against DOX-induced
weight loss and DOX-induced increase in blood pressure in
the normotensive WKY rats, and it is protective against
DOX-induced cardiac dysfunction in the hypertensive heart
failure prone SHHF rats. In both strains, female sex was
protective against DOX-induced nephrotoxicity. Therefore,
this study highlights the importance of studying the inter-
action between sex and genetic background to determine
the risk of DOX-induced cardiotoxicity. In addition, our
findings suggest that DOX-induced nephrotoxicity may
play a role in worsening DOX-induced cardiac dysfunction
in rodent models.
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