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RNA processing is critical for eukaryotic mRNA maturation and function. It appears there is no exception for other types of
RNAs. Long noncoding RNAs (lncRNAs) represent a subclass of noncoding RNAs, have sizes of >200 nucleotides (nt), and
participate in various aspects of gene regulation. Although many lncRNAs are capped, polyadenylated, and spliced just like
mRNAs, others are derived from primary transcripts of RNA polymerase II and stabilized by forming circular structures or by
ending with small nucleolar RNA–protein complexes. Here we summarize the recent progress in linking the processing and
function of these unconventionally processed lncRNAs; we also discuss how directional RNAmovement is achieved using the
radial flux movement of nascent precursor ribosomal RNA (pre-rRNA) in the human nucleolus as an example.

Surprisingly, the human genome is pervasively
transcribed (>80%), and >98% of this transcriptional out-
put represents non-protein-coding RNAs (ncRNAs) (Der-
rien et al. 2012; Mudge et al. 2013). Long ncRNAs
(lncRNAs), which are longer than 200 nucleotides (nt)
and lack protein-coding potential, have emerged as a ma-
jor class of eukaryotic regulatory transcripts involved in
multiple layers of gene expression. Statistics from Human
GENCODE Release version 28 suggest that the human
genome contains more than 16,000 lncRNA genes, but
other estimates for the number of lncRNA genes exceed
100,000 in humans (Zhao et al. 2016).
Over the past decades, the study of lncRNA biogenesis

and regulation has greatly improved our understanding
of the overall regulatory RNA diversity and function,
ranging from the classical mRNA-like lncRNAs (e.g.,
Xist [Engreitz et al. 2013; Simon et al. 2013; Chu et al.
2015; McHugh et al. 2015; Minajigi et al. 2015; Chen
et al. 2016; Creamer and Lawrence 2017], CCAT1-L
[Xiang et al. 2014], NORAD [Lee et al. 2016; Tichon
et al. 2016, 2018; Munschauer et al. 2018]) to other types
of unconventionally formatted linear (e.g., NEAT1 [Clem-
son et al. 2009; Sunwoo et al. 2009; Souquere et al. 2010;
Adriaens et al. 2016; Wang et al. 2018],MALAT1 [Wilusz
et al. 2008; Tripathi et al. 2010; Nakagawa et al. 2012;
Zhang et al. 2012; Arun et al. 2016; Malakar et al. 2017],
sno-lncRNAs [Yin et al. 2012; Xing et al. 2017], SPAs [Wu
et al. 2016; Lykke-Andersen et al. 2018]) and circular
RNAs (Salzman et al. 2012; Hansen et al. 2013; Jeck
et al. 2013; Memczak et al. 2013; Zhang et al. 2013).
Compared to microRNAs, which are ∼22-nt RNAs that
mainly direct post-transcriptional repression of mRNA
targets in eukaryotes (Bartel 2018), lncRNAs exhibit a
surprisingly wide range of sizes, shapes, and functions
(Wu et al. 2017; Kopp and Mendell 2018; Uszczynska-

Ratajczak et al. 2018; Carlevaro-Fita and Johnson 2019;
Yao et al. 2019a). It is now well-known that lncRNAs
participate in the regulation of genetic flow of protein
expression from chromatin organization to transcription
regulation in the nucleus to modulation of mRNA stability,
translation, and post-translation in the cytoplasm. These
diverse functional potentials depend on the processing,
subcellular localization, and formation of structural mod-
ules of individual lncRNAs to partner with associated
proteins, which may undergo rapid changes depending
on local or cellular environments.
Most annotated lncRNAs transcribed from genomic

intergenic regions (lincRNAs) by RNA polymerase II
(Pol II) are capped, polyadenylated, and spliced just like
mRNAs (Cabili et al. 2011; Derrien et al. 2012; Djebali
et al. 2012; Quinn and Chang 2016). Although exhibiting
tissue- or cell type–specific expression (Cabili et al. 2011;
Goff and Rinn 2015; Ulitsky 2016), they differ from
mRNAs by being less evolutionarily conserved and less
abundant and containing fewer exons. lincRNAs are gen-
erally more nuclear localized than their mRNA counter-
parts (Derrien et al. 2012; Cabili et al. 2015), in part
because some lincRNAs are transcribed by deregulated
Pol II, weakly spliced (Mele et al. 2017), inefficiently
polyadenylated, and degraded by the nuclear exosome
on chromatin (Schlackow et al. 2017). Thus, in principle,
functional lincRNAs must escape this targeted nuclear
surveillance process to accumulate to high levels in spe-
cific cell types.
In addition to lincRNAs, recent studies have uncovered

other types of lncRNAs that are processed from primary
Pol II transcripts and are stabilized by distinct mecha-
nisms. In this review, we briefly summarize our current
understanding of the biogenesis of these unconventionally
processed lncRNAs and emphasize the importance of
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linking their processing to functions in innate immunity
and in the regulation of structure and function of human
nuclear subdomains. To be functional, these different types
of lncRNAs need to be translocated to different subcellu-
lar compartmentations. Although mechanisms of RNA
trafficking remain incompletely understood, we discuss
some insights into this question using the radial flux na-
ture of nascent precursor ribosomal RNA (pre-rRNA)
trafficking in the nucleolus as a model.

MALAT1, NEAT1, AND
NONPOLYADENYLATED TRANSCRIPTOMES

Earlier studies from the Spector laboratory reported al-
ternative 3′-end processing of MALAT1 (Wilusz et al.
2008) and NEAT1_long (the long isoform ofNEAT1 [Sun-
woo et al. 2009]), which are two abundant nuclear-en-
riched lncRNAs that are localized to nuclear speckles
and paraspeckles, respectively (Hutchinson et al. 2007;
Clemson et al. 2009; Sasaki et al. 2009; Sunwoo et al.
2009). These RNAs are processed at their 3′ ends by rec-
ognition and cleavage of tRNA-like structures by RNase
P (which is best known to process the 5′ ends of
tRNAs) (Wilusz et al. 2008; Sunwoo et al. 2009). RNase
P cleavage leads to the formation of mature 3′ ends,
which are subsequently protected by a conserved stable
U-A·U triple-helical RNA structure (· denotes the Hoog-
steen face and - denotes the Watson–Crick face) (Wilusz
et al. 2012; Brown et al. 2012). A similar triple-helical
structure, but not formed by RNase P processing and
called a nuclear retention element (NRE), has also been
found at the 3′ end of the PAN lncRNA, which is expressed
from Kaposi’s sarcoma–associated herpesvirus (KSHV),
and in RNAs from other viruses (Mitton-Fry et al. 2010;
Tycowski et al. 2012). In addition to RNase P–mediated
3′ processing of lncRNAs, a group of lncRNA transcripts
containing miRNAs (lnc-pri-miRNAs) use Microproces-
sor cleavage to terminate transcription, resulting in unsta-
ble lncRNAs without 3′-end poly(A) tails (Dhir et al.
2015).
Inspired by alternative 3′-end processing of MALAT1

and NEAT1, we began to explore the nonpolyadenylated
(poly(A)) transcriptomes in human cells (Yang et al.
2011). In this method, total RNAs collected from human
cells were incubated with oligo(dT) beads to select
poly(A) RNAs. The unbound, flow-through RNAs from
the oligo(dT) beads were collected and subjected to mul-
tiple rounds of rRNA depletion. Both poly(A) RNAs and
poly(A)-/ribo-RNAs were then subjected to RNA-seq li-
brary preparation and sequencing (Yang et al. 2011). In
addition to the replication-dependent histone mRNAs, this
non-poly(A) RNA-seq unexpectedly identified hundreds
of abundant RNA signals that did not align fully to anno-
tated genes but derived from either introns and exons,
which were termed as “excised introns” and “excised ex-
ons” (Yang et al. 2011). Later, these excised “exons” were
identified as circular RNAs produced from backsplicing
of exons of pre-mRNAs (Salzman et al. 2012; Zhang et al.
2014a); “excised introns” were characterized as circular

intronicRNAs (ciRNAs) (Zhang et al. 2013) and snoRNA-
ended lncRNAs (sno-lncRNAs) (Yin et al. 2012). Further,
SPA (5′ snoRNA capped and 3′ polyadenylated) lncRNAs
were uncovered using fibrillarin (a key protein component
of Box C/D snoRNP complex)—RNA immunoprecipita-
tion (RIP) and RNA-seq (Wu et al. 2016).

IDENTIFICATION OF DIFFERENT TYPES OF
CIRCULAR RNAs FROM NON-POLY(A)

TRANSCRIPTOMES

Covalently closed circular RNAs were first observed by
electron microscopy in plants and eukaryotic cells in the
1970s (Sanger et al. 1976; Hsu and Cocaprados 1979).
This was followed by observations of RNA circles with
scrambled exons, which were thought to be “by-products”
of aberrant splicing with little functional potential (Nigro
et al. 1991; Cocquerelle et al. 1992; Capel et al. 1993).
Genome-wide studies of rRNA-depleted and non-poly

(A) transcriptomes, as well as rRNA-depleted and RNase
R–enriched transcriptomes, together with specific bioin-
formatics algorithms for circular RNA detection (Kristen-
sen et al. 2019), have revealed widespread expression of
circular RNAs in metazoans (Yang et al. 2011; Gardner
et al. 2012; Salzman et al. 2012, 2013; Jeck et al. 2013;
Memczak et al. 2013; Zhang et al. 2013, 2014a; Guo et al.
2014; Westholm et al. 2014; Ivanov et al. 2015) and in
plants (Wang et al. 2014; Lu et al. 2015). These include
two types of circular RNAs derived from the primary Pol
II transcripts.
The first type of ciRNAs derive from lariat introns in

mammalian cells, and their formation depends on a con-
sensus sequence containing a 7-nt GU-rich motif near the
5′ splice site and an 11-nt C-rich motif at the branchpoint
site that inhibits debranching. The resulting RNA circles
are covalently ligated through a 2′, 5′-phosphodiester
bond at the joining site and lack the linear part stretching
from the 3′ end of the intron to the branchpoint (Fig. 1A).
Hundreds of ciRNAs were identified in human cells in-
cluding the human embryonic carcinoma cell line PA1 and
the human embryonic stem cell (hESC) H9 line. Some
abundantly expressed ciRNAs including ci-ankrd52 and
ci-sirt7 were found to primarily accumulate in the nucleus
and interact with the elongating Pol II complex. Depleting
these ciRNAs led to decreased transcription of the parental
ANKRD52 or SIRT7 genes. These results suggest a cis-
regulatory role of intronic noncoding sequences on their
parent coding genes (Fig. 1A; Zhang et al. 2013). Stable
intronic RNAs derived from lariats were also found in
oocytes of Xenopus tropicalis (Gardner et al. 2012; Tal-
houarne and Gall 2014) and Drosophila melanogaster
(Jia Ng et al. 2018).
Of note, different from higher eukaryotic cells, it has

recently seen that excised introns in yeast can be stabilized
as linear forms that can regulate cell growth (Morgan et al.
2019; Parenteau et al. 2019). Thirty-four excised linear
introns were found in Saccharomyces cerevisiae that re-
main associated with components of the spliceosome.
These differ from classical spliceosomal introns by con-
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Figure 1. Production, structure, and degradation of circular RNAs. (A) A model for circular intronic RNA (ciRNA) processing. ciRNAs
are derived from lariat introns and are covalently ligated via a 2′,5′-phosphodiester bond. Their formation depends on a consensus
sequence near the 5′ splice site and containing a 7-nt GU-rich motif near the 5′ splice site and an 11-nt C-rich motif at the branchpoint
site. (B) A model for circular RNA (circRNA) processing. circRNAs are produced by spliceosome-catalyzed backsplicing of exon(s).
Generally, flanking intronic complementary sequences (ICSs; most are Alu elements) promote exon circularization, whose efficiency
can be regulated by competition between ICSs across introns. (C ) Nascent circRNA production correlates with Pol II elongation rate. In
cells, the efficiency of backsplicing from pre-mRNA is relatively low, but because of the stability, circRNAs can accumulate to achieve
high abundance at the steady state levels. (D) A model of alternative circularization. Alternative formation of inverted repeated ICS pairs
and the competition between the pairs can lead to multiple circRNAs produced from a single gene locus. (The red dashed arrows indicate
potential competition between different ICS pairs.) (E) Linking circRNA processing and structure to innate immunity regulation. Under
normal conditions (left), NF90/NF110 promotes circRNA production by stabilizing ICSs flanking intronic RNA pairs to juxtapose the
circRNA-forming exon(s). Many examined circRNAs form intramolecular short imperfect double-stranded RNAs (dsRNAs) that act as
inhibitors of innate immune dsRNA receptor PKR and NF90/NF110. Upon viral infection (right), circRNAs are globally reduced at the
production level because of export of NF90/NF110, as well as at the steady state level because of the rapid turnover upon RNase L
activation. This global reduction of circRNAs may free PKR and NF90/NF110 to be engaged in antiviral immune responses. Mis-
regulation of this process is found in patients with autoimmune disease including systemic lupus erythematosus (SLE).



taining a short distance between their lariat branchpoint
and the 3′ splice site (Morgan et al. 2019). Such linear but
stable introns were shown to promote resistance to starva-
tion by enhancing the repression of ribosomal protein
genes that are downstream from the nutrient-sensing
TORC1 and protein kinase A (PKA) pathways (Morgan
et al. 2019).
A second type of circular RNAs (circRNAs) are pro-

duced from backsplicing of exons of pre-mRNAs in thou-
sands of gene loci in eukaryotes. For these, exons from
pre-mRNAs have their ends covalently joined via 3′,
5′-phosphodiester bonds. Although the expression level
of most circRNAs is low, some circRNAs have been re-
ported to accumulate to levels as high as or even higher
than that of their linear cognate mRNAs (Salzman et al.
2013; Rybak-Wolf et al. 2015; You et al. 2015; Zhang
et al. 2016b). Their biogenesis requires spliceosomal ma-
chinery and can be modulated by both cis- and trans-fac-
tors. At the molecular level, some abundant circRNAs
were shown to modulate gene expression by titrating
miRNAs (Hansen et al. 2013; Memczak et al. 2013;
Piwecka et al. 2017) or proteins (Chen et al. 2017; Li
et al. 2017; Xia et al. 2018; Liu et al. 2019), regulating
transcription (Li et al. 2015; Conn et al. 2017), interfering
with splicing (Ashwal-Fluss et al. 2014; Zhang et al.
2014a, 2016a), or even acting as templates for translation
(Legnini et al. 2017; Pamudurti et al. 2017; Yang et al.
2017). However, because of their circular conformation
and sequence overlap with linear mRNA counterparts,
challenges exist at multiple levels, from annotations to
functional studies, to understand the expression and func-
tions of circRNAs (Li et al. 2018). In the past several years,
we have focused on understanding the regulation of their
life cycles, which led us to uncover important functions in
innate immune responses (see below).

CHARACTERIZATION OF circRNA
BIOGENESIS

During exon backsplicing, a downstream splice-donor
site is covalently ligated to an upstream splice-acceptor
site (Salzman et al. 2012; Jeck et al. 2013; Memczak
et al. 2013; Salzman et al. 2013). How does the spliceo-
some overcome the sterically unfavorable reaction be-
tween backspliced exons? The detailed mechanism of
circRNA biogenesis had remained to be explored, despite
a noted association with Alu elements or other comple-
mentary sequences in flanking introns of circle-forming
exons (Capel et al. 1993; Jeck et al. 2013). By developing
a computational algorithm (CIRCexplorer) (Zhang et al.
2014a), we identified thousands of circRNAs in non-poly
(A) data sets derived fromH9 and HeLa cells [described as
“excised exons” (Yang et al. 2011)]. Using circular RNA
recapitulation assays that contain flanking intronic com-
plementary sequences in circle-forming vectors, we have
shown that exon circularization is in general promoted by
flanking intronic complementary sequences (ICSs), most
being Alu elements in human (Fig. 1B). The efficiency of
exon circularization is regulated by competition between

RNA pairing across flanking introns or within individual
introns (Zhang et al. 2014a). Given that the great majority
of circRNAs are derived from the middle exons of genes
(Zhang et al. 2014a) and that backsplicing requires the
canonical spliceosomal machinery (Ashwal-Fluss et al.
2014; Starke et al. 2015; Wang and Wang 2015; Liang
et al. 2017), it has been proposed that backsplicing events
compete with linear RNA splicing (Fig. 1B; Ashwal-Fluss
et al. 2014; Zhang et al. 2014a). It would therefore be
important to address the kinetics of backsplicing in cells.
To understand how circRNA biogenesis is linked to

transcription and canonical splicing, we studied circRNA
processing using metabolic tagging of nascent RNAs via
4-thiouridine (4sU), followed by purification of labeled
nascent RNAs and RNA-seq (4sUDRB-seq). We found
that backsplicing from pre-mRNA is inefficient in cells
(<1% of canonical splicing) and that many backsplicing
events occur post-transcriptionally (Fig. 1C). However,
circRNAs are stable and some can accumulate to high
steady state levels (Fig. 1C). For example, in neurons
that have slow division rates, we observed remarkably
increased number and abundance of circRNAs upon hu-
man embryonic stem (ES) cells differentiation to forebrain
neurons (Zhang et al. 2016b).
Despite slow processing of circRNAs in cells, the po-

tential alternative formation of inverted repeated ICS pairs
and the competition between these pairs lead to the pro-
duction of multiple circular RNAs from a single gene, a
phenomenon that we termed as “alternative circulariza-
tion” (Fig. 1D). Alternative circularization widely occurs;
for example, >50% of highly expressed circRNA (mapped
backsplice junction reads≥ 0.1 RPM [reads per million
mapped reads]) gene loci in multiple examined cell lines
can produce more than one circRNA (Zhang et al. 2014a;
Zhang et al. 2016a). We have annotated patterns of alter-
native circularization, including different types of alterna-
tive backsplicing and alternative splicing events, in
circRNAs from a range of commonly used human cell
lines (Zhang et al. 2016a). Compared to linear cognate
RNAs, circRNAs exhibit distinct patterns of alternative
backsplicing and alternative splicing. Quantification of
RNA pairing capacity of orientation-opposite ICSs across
circRNA-flanking introns using a complementary se-
quence index revealed that among all types of comple-
mentary sequences, short interspersed nuclear elements
(SINEs)—especially Alu elements in human—contribute
the most for circRNA formation, and that their diverse
distribution across species results in the increased com-
plexity of circRNA expression during species evolution
(Dong et al. 2017). These findings together reveal the
complexity of post-transcriptional regulation in mamma-
lian transcriptomes.

PRODUCTION, STRUCTURE, AND
DEGRADATION OF circRNAs REGULATE

INNATE IMMUNE RESPONSES

Because of overlapping sequences, it has been chal-
lenging to study individual circRNA function due to in-
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adequate methods in distinguishing exons in circRNAs
from those in linear cognate mRNAs (Li et al. 2018).
We speculated that understanding the life cycle difference
between circular and linear RNAs might provide some
insights into their functions.
Although having the same cis-elements, expression lev-

els of circRNAs from the same loci exhibit cell type– and
tissue-specific patterns, indicating the participation of pro-
tein factors in circRNA biogenesis. To identify such fac-
tors, we applied a genome-wide siRNA screening that
targets all human unique genes with an in-house-devel-
oped efficient dual-color circular/linear RNA expression
reporter. In this vector, backsplicing produces a translat-
able circular mCherry and canonical splicing produces a
translatable linear egfp. This screening identified 103 pro-
teins that have an impact on mCherry expression but not
EGFP (Li et al. 2017). In addition to protein candidates
that have known roles in splicing regulation, we identified
multiple factors related to host immune responses in-
volved in circRNA production (Li et al. 2017). One
such factor is the human interleukin enhancer binding
factor 3 (ILF3), whose gene produces multiple mRNA
isoforms by alternative splicing to express factors includ-
ing nuclear factor 90 (NF90) and nuclear factor 110
(NF110). iCLIP and mutagenesis experiments confirmed
that NF90/NF110 directly bind to inverted-repeated
Alu elements juxtaposing circRNA-forming exon(s) to
promote circRNA production by stabilizing intronic
RNA pairs in the nucleus (Fig. 1E). Interestingly, mature
circRNAs as a group were found to associate with NF90/
NF110 in the cytoplasm (Li et al. 2017). It is known that
upon viral infection, NF90/NF110 are rapidly exported to
the cytoplasm, where they participate in innate immunity
(Harashima et al. 2010). After infection, we observed a
global reduction of nascent circRNA production, which
was consistent with a deassociation of NF90/NF110 from
circRNA–protein complexes for antiviral activity. Consis-
tently, overexpression of endogenous circRNAs facilitated
viral infection of human cells (Li et al. 2017). These find-
ings indicated that circRNA biogenesis is unfavorable for
innate immune responses, thus linking endogenous
circRNA production to innate immunity regulation (Fig.
1E; Li et al. 2017).
Remarkably, not only is nascent circRNA production

limited globally, but the steady state level of circRNAs
is also globally and rapidly (with a turnover of ∼1 h)
reduced upon poly(I:C) treatment to mimic pathogenic
dsRNAs or the encephalomyocarditis virus (EMCV) in-
fection (Liu et al. 2019). This global reduction of steady
state circRNAs is catalyzed by RNase L, an endonuclease
that becomes activated upon the activation of innate im-
mune response to cleave viral and host mRNAs as oneway
to limit viral spread (Han et al. 2014; Huang et al. 2014).
Structural analysis by an optimized in cell SHAPE-MaP
assay (Smola et al. 2015) revealed that endogenous
circRNAs tend to form 16- to 26-bp imperfect RNA
duplexes and act as inhibitors of a group of nucleic
acids receptors with antiviral activities including the
IFN-inducible isoform of adenosine deaminase acting
on RNA 1 (ADAR1), ADAR1p150, NF90/NF110, and

double-stranded RNA (dsRNA)-activated protein kinase
(PKR) (Liu et al. 2019). Compared to other examined
proteins, circRNAs exhibit the highest binding preference
for PKR and regulate PKR activation. PKR undergoes
autophosphorylation and activation by long dsRNAs
(>33-bp), but this activation is blocked by short dsRNAs
(16- to 33-bp) (Zheng and Bevilacqua 2004). circRNAs,
but not their linear cognate mRNAs, are inhibitors of the
dsRNA-induced activation of PKR in a sequence-inde-
pendent, but dsRNA structure–dependent manner. Deplet-
ing RNase L in cells resulted in delayed PKR activation,
whereas introducing dsRNA-containing circRNAs into
cells rendered them susceptible to EMCV infection (Liu
et al. 2019). This regulation is physiologically important,
and misregulation has been observed to be related to the
autoimmune disease systemic lupus erythematosus (SLE).
For example, augmented PKR phosphorylation and
circRNA reduction were found in peripheral blood mono-
nuclear cells (PBMCs) derived from patients of SLE. Im-
portantly, introducing the dsRNA-containing circRNA,
but not their linear cognate mRNAs, into PBMCs or T
cells derived from SLE patients attenuated the aberrant
PKR activation cascade.
Collectively, by studying processing, structure and deg-

radation of circRNAs, we have discovered that endoge-
nous circRNAs as a group can dampen innate immune
responses (Fig. 1E; Li et al. 2017; Liu et al. 2019). These
findings are consistent with a recent report that patients
with a genetic defect leading to the accumulation of intron
lariat–derived RNA circles are more susceptible to viral
infections (Zhang et al. 2018). Different from endogenous
circRNAs, there are conflicting reports on whether exog-
enously produced circular RNAs themselves trigger im-
mune responses (Chen et al. 2017; Chen et al. 2019;
Wesselhoeft et al. 2019). Future studies are warranted to
clarify the modes of action of in vitro–synthesized versus
endogenous circular RNAs in the regulation and applica-
tion in the innate immunity.

IDENTIFICATION OF snoRNA-ENDED
LONG NONCODING RNAs

Although it is generally believed that most introns
or intron fragments are unstable (Rodriguez-Trelles et al.
2006), the RNA-seq identified a number of nonannotated
non-poly(A) RNA signals that mapped to intronic regions
in hES H9 and HeLa cells (Yang et al. 2011). Intriguingly,
careful analysis of these nonpolyadenylated reads revealed
that some excised introns are stabilized by small nucleolar
ribonucleoprotein complexes (snoRNPs) at each end,
which were named as sno-lncRNAs (snoRNA ended
long noncoding RNAs) (Fig. 2A). snoRNAs are a family
of conserved nuclear RNAs (70–200 nt) that function in
the modification of small nuclear RNAs (snRNAs) or
processing of ribosomal RNAs (Kiss 2001). Binding of
core proteins cotranscriptionally is essential to protect the
termini of mature snoRNAs from exonucleolytic degrada-
tion (Samarsky et al. 1998; Kufel et al. 2000). In many
higher eukaryotes, the great majority of snoRNAs are
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produced from introns, and usually one intron only con-
tains one snoRNA (Weinstein and Steitz 1999; Dieci et al.
2009). When one intron contains two snoRNA genes, the
sequences between the snoRNAs are not degraded after
splicing, leading to the accumulation of lncRNAs flanked
by snoRNA sequences but lacking 5′ caps and 3′ poly(A)
tails (Fig. 2A; Yin et al. 2012). Dozens of sno-lncRNAs

have been found in mammalian genomes, whose expres-
sion is species-specific, because of species-specific alter-
native splicing that results in single snoRNA or two
snoRNAs in one intron (Zhang et al. 2014b; Xing and
Chen 2018).
Further application of fibrillarin–RIP and RNA-seq

identified 5′-end snoRNP-capped, 3′ polyadenylated

A B

C D

Figure 2. The biogenesis and diversity of snoRNA-ended lncRNAs. (A) A model for snoRNA-ended long noncoding RNA (sno-
lncRNA) processing. Typically, when one intron contains two snoRNA genes, the cotranscriptional formation of snoRNPs at the ends
can protect the intronic sequences from exonuclease trimming after debranching during splicing, leading to the formation of sno-
lncRNAs. (B) A model for 5′-end snoRNP-capped, 3′-polyadenylated (SPA) lncRNA processing. Like that of sno-lncRNA, SPA
processing requires an intact snoRNA at the 5′ end. Aweak poly(A) signal located downstream from the coding region of mRNA is
also necessary for generating readthrough transcripts of pre-SPAs. (C ) snoRNA-ended lncRNAs are derived from the critical region
deleted in PWS patients. (Top) sno-lncRNAs and SPAs derived from the PWS deletion region (human 15q11-q13) interact with multiple
RBPs including TDP43, RBFOX2, and hnRNPM in the nucleus of human ES cells. (Bottom) Minimal chromosome deletions reported
in four PWS individuals (Cases 1–4) (Sahoo et al. 2008; de Smith et al. 2009; Duker et al. 2010; Bieth et al. 2015). (D) Subtypes of
snoRNA-ended lncRNAs. sno-lncRNAs, and SPAs can be ended with either box C/D or box H/ACA snoRNAs at their ends.
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(SPA) lncRNAs. SPA processing is associated with kinetic
competition of the 5′ to 3′ exonuclease XRN2 and Pol II
elongation speed downstream from polyadenylation sig-
nals in the nucleus. Following cleavage/polyadenylation
of an upstream gene, the downstream uncapped pre-SPA
RNA is trimmed by XRN2 until this exonuclease reaches
the cotranscriptionally assembled snoRNP complex (Fig.
2B). More recent study has revealed that the 5′ to 3′ exo-
nuclease activity of the cytoplasmic nonsense-mediated
decay pathway mediated by SMG6-mediated endonucleo-
lytic cleavage can also trigger the production of a box C/D
snoRD86-containing SPAs in the cytoplasm (c-SPAs)
(Lykke-Andersen et al. 2018).

INVOLVEMENT OF snoRNA-ENDED lncRNAs
IN PRADER–WILLI SYNDROME

Among the snoRNA-ended lncRNAs, we found that
five sno-lncRNAs (sizes are 1000—3000 nt, named sno-
lncRNA1 to sno-lncRNA5) and two SPAs (35,000 nt for
SPA1 and 16,000 nt for SPA2) are conspicuously missing
in Prader–Willi syndrome, a neurodevelopmental genetic
disorder with elusive molecular causes (Cassidy et al.
2012; Yin et al. 2012; Chamberlain 2013; Wu et al.
2016; Aman et al. 2018). In normal hESCs, these abun-
dant PWS region snoRNA-ended lncRNAs accumulate in
cis to form one 1- to ∼2-µm3 RNA–protein puncta per
nucleus. Importantly, these lncRNAs interact with dif-
ferent RNA binding proteins (RBPs) including TAR
DNA-binding protein 43 (TDP43), heterogeneous nuclear
ribonucleoprotein M (hnRNPM), and RBP fox-1 homo-
log 2 (RBFOX2) in normal hESCs and other examined
human cell lines. Super resolution microscopy and iCLIP
further showed strong preferences between different sno-
ended lncRNAs and their interacting RBPs: SPA1 pre-
ferred to interact with TDP43, sno-lncRNAs preferred to
bind RBFOX2, whereas SPA2 did not have a preference to
these examined RBPs. Generation of a PWS cellular mod-
el in hESCs by depleting these lncRNAs using CRISPR–
Cas9 revealed the mislocalization of their associated RBPs
and an altered pattern of alternative splicing of more than
300 mRNAs without affecting the expression level of in-
dividual corresponding mRNAs (Fig. 2C). Importantly,
some genes with altered splicing regulation are associated
with synaptosome and neurotrophin signaling pathways
(Yin et al. 2012; Wu et al. 2016). These studies together
indicate that missing of these snoRNA-related lncRNAs is
linked to PWS pathogenesis (Fig. 2C).
Interestingly, the lncRNAs 116HG from the Prader–

Willi locus in mouse also form similar cloud-like nuclear
accumulations (Powell et al. 2013; Coulson et al. 2018),
but currently existing PWS mouse models do not fully
recapitulate the PWS patient phenotypes (Ding et al.
2008), highlighting the importance of developing human
PWS cellular models in studying the pathogenesis of PWS
in the future.
Future work is warranted to examine whether hESCs

lacking all these lncRNAs would have any measurable
effect on neuronal functions, especially hypothalamic

neurons, including not only the morphological pheno-
types but also alterations in transcriptomes and alternative
splicing patterns. In addition, the contributions of sno-
lncRNAs and SPAs to the molecular and disease phenotype
at this locus should also be pursued by identifying addi-
tional proteins, DNAs and RNAs that are associated with
individual sno-lncRNAs and SPAs in hESCs and differen-
tiated neurons. Nevertheless, these findings expand the
diversity of lncRNAs and provide previously unappreci-
ated insights into PWS pathogenesis.

REGULATION OF RNA POLYMERASE I
TRANSCRIPTION BY SLERT IN THE

HUMAN NUCLEOLUS

There are two main classes of snoRNAs: box C/D
snoRNAs and box H/ACA snoRNAs in eukaryotes ac-
cording to their conserved sequence motifs (Reichow
et al. 2007). Thus, four different subtypes of sno-lncRNAs
that each contain the same or different box C/D or box H/
ACA snoRNPs at the ends might be expected to exist (Fig.
2D; Zhang et al. 2014b). In addition to the PWS region
sno-lncRNAs that are capped by a box C/D snoRNA at
each end (Yin et al. 2012), SLERT (snoRNA-ended
lncRNA enhances pre-ribosomal RNA transcription) is a
sno-lncRNA that contains box H/ACA snoRNAs at its
ends and is highly expressed in multiple human cell lines
(Fig. 3A; Xing et al. 2017). Of note, sno-lncRNAs con-
taining a box C/D or a box H/ACA snoRNP at each end
were also observed in human cells (Zhang et al. 2014b).
Similarly, in addition to the 5′ box C/D snoRNA-ended
PWS region SPAs and c-SPAs (Wu et al. 2016; Lykke-
Andersen et al. 2018), box H/ACA snoRNA-ended SPAs
were also detected in several human cell lines (Luo, We,
Chen, et al., unpubl. data) (Fig. 2D).
SLERT is generated from the intron of the transforming

growth factor beta regulator 4 (TBRG4) gene locus and
alters RNA polymerase I (Pol I) transcription of ribosomal
RNAs (rRNAs) (Xing et al. 2017). Alternative splicing
leading to skipping of exons 4 and 5 of the TBRG4 locus
results in two boxH/ACA snoRNAs embedded within one
intron, which subsequently forms SLERT (Fig. 3A). Un-
like PWS region sno-lncRNAs, SLERT does not localize to
its own transcription site but instead accumulates in the
nucleolus, which is the largest nuclear subdomain in
which rRNA biogenesis takes place. Translocation of
SLERT from its transcription site to the nucleolus depends
on its two box H/ACA snoRNAs (Fig. 3B).
Once localized in the nucleolus, SLERT directly inter-

acts with the DEAD-box family protein 21 (DDX21) via a
143-nt-long internal region within the two snoRNAs.
DDX21 is a DEAD-box RNA helicase that is involved
in multiple steps of ribosome biogenesis by contacting
both rRNA and snoRNAs and is thought to modulate
rRNA transcription, processing, and modification (Holm-
strom et al. 2008; Calo et al. 2015; Sloan et al. 2015).
Applying super-resolution structured illumination micros-
copy (SIM) to examine DDX21 localization in live and
fixed human cells in detail, we found that DDX21 is
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largely enriched in the nucleolus and form dozens of
ring-like structures encircling Pol I complexes (Fig. 3C).
Further biochemical analyses showed that DDX21 inter-
acts with subunits of Pol I complexes and prevents them
loading onto rDNAs in an RNA helicase activity–inde-
pendent manner and subsequently inhibits pre-rRNA
transcription.
Depleting one snoRNA of SLERT by CRSIPR–Cas9

abolished SLERT expression in examined human cells
and led to suppressed Pol I transcription. Under SIM ob-
servation, SLERT does not directly interact with Pol I, but
instead specifically localizes to individual DDX21 rings
(Fig. 3D). Mechanistically, SLERT binding to DDX21
alters the conformation of individual DDX21 molecules,
suppressing the interaction between DDX21 and Pol I,

therefore releasing Pol I to be engaged to rDNAs for active
pre-RNA transcription (Fig. 3E).

ULTRA-STRUCTURE ORGANIZATION OF
THE HUMAN NUCLEOLUS

The primary function of the nucleolus serves as the site
of rRNA biogenesis. It has been well-established that the
mammalian nucleolus is highly organized and is com-
prised of three morphologically distinct subregions and
named fibrillar centers (FCs), dense fibrillar components
(DFCs), and the granular component (GC), shown by the
electron density under electron microscopy (EM) (Fig.
4A; Koberna et al. 2002; Boisvert et al. 2007). Recent
single-molecule images have further revealed the tripartite

A B

C
E

D

Figure 3. The biogenesis and function of SLERT. (A) Alternative splicing of the TBRG4 locus. Alternative splicing of tbrg4 pre-mRNA
generates either two snoRNAs and the tbrg4 mRNA (top) or a snoRNA-ended lncRNA that enhances preribosomal RNA transcription
(SLERT) and a short isoform of tbrg4 (rapidly degraded) with skipped exons 4 and 5. (B) SLERT requires its box H/ACA snoRNA ends
to be translocated to the nucleolus. Each indicated SLERT or SLERT mutants were expressed in HeLa cells, followed by co-staining of
WT-SLERT, WT-SLERTMUT, or egfp-SLERT (green) and nucleolar marker nucleolin (red). (C) The Pol I complexes are located within
DDX21 rings, shown by SIM in PA1 cells. (D) SLERT interacts with DDX21 rings but not Pol I complexes. A representative image of
co-staining DDX21 (green), RPA194 (red), and SLERT (blue) by SIM and a plot profile of the image are shown. (E) SLERTmodulates
DDX21 in Pol I transcription regulation. In the nucleolus, DDX21 ring-shaped arrangement surrounds multiple Pol I complexes and
inhibits Pol I activity. Binding by SLERT allosterically alters individual DDX21 molecules, leading to the reduced interaction between
DDX21 and Pol I, which subsequently allows the Pol I complexes to occupy the actively transcribed rDNAs. (A–E, Adapted and
modified from Xing et al. 2017.)
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Figure 4. Ultra-structure organization of the human nucleolus and nascent pre-rRNA translocation is required for proper pre-rRNA
processing and function. (A) Electron microscopy shows the localization of nucleolus in thin-sectioned permeabilized HeLa cells.
(B) Representative SIM images of nucleoli and three nucleolar subregions in live HeLa cells. (C ) Cross-correlation of aligned and
averaged images shows that the max-cross sections of individual DFC regions contain six FBL clusters. The minimum distance between
two clusters is ∼180 nm; the diameter of FBL cluster is ∼133 nm; the distance between the center of individual clusters and the center of
DFC is ∼247.5 nm; the detached distance between two adjacent PF clusters is ∼180 nm. (D) A schematic of RNA smFISH probes to
detect transcribing pre-rRNA. The 5′ ETS-1 probe detects nt 1–414 of pre-rRNAs; the 5′ ETS-2 probe detects nt 498–977 of pre-rRNA.
(E) The 5′ ETS-1 probe-detects 47S pre-rRNAs that are largely distributed outside of the FC, whereas the 5′ ETS-2 probe detects pre-
rRNAs that are mainly located at the FC/DFC border, shown by SIM. (F) FBL knockdown (KD) results in impaired localization of
nascent pre-rRNAs shown by the highest colocalization signal between RPA194 and 5′ ETS-1. (G) FBL KD results in aberrant
accumulation of 47S and 34S pre-rRNAs, accompanied by reduced 28S and 18S rRNAs. (H ) Cy3-labeled 5′ ETS-1 (magenta) is
sorted to the mNeonGreen-FBL-FL droplets (green) in vitro. (I ) The IDR length in the GAR domain of FBL promotes FBL self-
association, which confers the capability of pre-rRNA sorting and processing in which FBL is involved. (Left) Increased GAR domain
length in FBL mutants leads to augmented FBL self-association shown by increased multimerization. (Middle) Increased IDR length in
the GAR domain of FBL mutants promotes translocation of pre-rRNAs into the DFC region. Twenty cells were analyzed under each
condition by boxplot. (Right) Increased IDR length in the GAR domain of FBL positively correlates with proper 47S pre-rRNA
processing, shown by northern blots. (A, Adapted from Koberna et al. 2002; B–I, adapted and modified from Yao et al. 2019b.)



nucleolar organization (Szczurek et al. 2016; Khan et al.
2018). Continuous Pol I transcription at the FC produces
nascent pre-rRNAs and causes the subsequent radial flux
of pre-rRNAs through the DFC for processing and mod-
ification to produce 28S and 18S rRNAs, and then into the
GC for ribosome assembly and finally into the nucleo-
plasm (Boisvert et al. 2007; McStay and Grummt 2008).
A human nucleolus is assembled around active nucleolar
organizer regions (NORs), which are composed of clus-
ters of tandem repeats of ribosomal DNA (rDNA), each
with a long intergenic spacer (IGS) of ∼30 kb and a pre-
ribosomal RNA (pre-rRNA) coding region of ∼14 kb
(McStay and Grummt 2008).
The SIM observation that DDX21 forms dozens of

ring-like structures surrounding Pol I complexes (Fig.
3C) raised an intriguing question—how are DDX21-rings
positioned in the tripartite organization of the mammalian
nucleolus? Other questions remaining to be addressed in-
clude where does Pol I transcription occur (Mais and
Scheer 2001; Cheutin et al. 2002; Huang 2002; Boisvert
et al. 2007) and how do nascent pre-rRNAs migrate in the
nucleolus? A time-dependent migration of Br-U-labeled
pre-rRNAs from FCs to DFCs was observed in HeLa cells
(Thiry et al. 2000), but the underlying mechanism of this
observation had remained unclear.
We applied CRISPR–Cas9-mediated knock-in of fluo-

rescently tagged proteins to visualize FC, DFC, and GC
subnucleolar organization under SIM that allowed us to
uncover previously uncharacterized nucleolar ultra-struc-
tures (Fig. 4B; Yao et al. 2019b). A human nucleolus
consists of dozens of FC/DFC units that are assembled
around two to three copies of active rDNAs at the border
of each FC/DFC, where Pol I complexes are located and
Pol I transcription occurs. Pre-rRNA processing factors,
such as fibrillarin (FBL) form 18 to 24 clusters that
are further assembled into a polyhedron-like shell of the
DFC surrounding FC. On average, each spherical PF clus-
ter is ∼133 nm in diameter and each DFC region contains
∼628 nm outer and ∼362 nm inner diameters (Fig. 4C).
Consistent with this model, Pol I complex subunits are
enriched at the FC border as clusters (Yao et al. 2019b),
which are in striking contrast to the previous models in
which Pol I complexes were thought to be distributed
throughout the entire FC region (Cheutin et al. 2002).
Further, an active NOR contains not only active rDNAs
but also transcriptionally inert rDNAs, consistent with the
earlier observation of discontinuous transcribed rDNA
clusters in rDNA spreads (McKnight and Miller 1976;
McStay and Grummt 2008). Collectively, these observa-
tions represent a substantial advance in our understanding
of nucleolar spatial organization.

NASCENT pre-rRNATRANSLOCATION IS
REQUIRED FOR PROPER pre-rRNA

PROCESSING AND FUNCTION

An increasing number of RNAs have emerged as im-
portant modulators of nuclear structure and function by
acting in cis or in trans (Bergmann and Spector 2014;

Chen 2016; Engreitz et al. 2016; Tomita et al. 2017; Yao
et al. 2019a). What mechanisms does the cell use to keep
nascent RNAs from sticking together while also promot-
ing directional sorting in trans? It has been a challenge to
address this question in single cells because of the low
abundance of most nascent RNAs that usually undergo
rapid processing. Remarkably, we observed that the 5′
termini of the nascent 47S pre-rRNAs are translocated to
the DFCs, whereas pre-rRNAs are still being transcribed at
the border of FC and DFC (Fig. 4D,E), indicating that the
relatively high abundance of nascent 47S pre-rRNA and
its radial flux mode of processing in FC/DFCs can be an
attractive model to study how nascent RNA directional
sorting is achieved.
Earlier studies in yeast revealed that the eukaryotic pre-

rRNA processing is complex. The early step was thought
to be involved in the assembly of small subunit (SSU)
processomes including UTPa, UTPb, and U3 snoRNP
(Barandun et al. 2018). UTPa complexes were reported
to bind first to nascent 35S pre-rRNA to chaperone pre-
rRNA and U3 snoRNA to initiate SSU assembly (Hun-
ziker et al. 2016). Such an initial binding between UTPa
and the 5′ ETS appeared to be required for the subsequent
recruitment of the UTPb complex and the U3 snoRNP
components (Henras et al. 2015; Sharma and Lafontaine
2015; Barandun et al. 2018). These studies in yeast might
not directly reflect processing of nascent pre-rRNA in the
human nucleolus since yeast cells have bipartite nucleoli
containing merged FC/DFCs and GC (Thiry and Lafon-
taine 2005), which is distinct from tripartite nucleoli in
human cells, where pre-rRNA processing takes place in
DFCs.
Use of shRNA-mediated knockdown of factors in

UTPa/b and snoRNP complexes combined with struc-
tured illumination microscopy (SIM)-based screening
have revealed that FBL plays a key role in promoting
the movement of the 5′ end of 47S pre-rRNA from its
transcription site to DFC. Depletion of FBL dramatically
blocks the translocation of 5′ ends of transcribing pre-
rRNAs and results in the accumulation of pre-rRNAs at
the transcription sites at the border of FC/DFCs (Fig. 4F),
together with aberrant pre-rRNA processing shown as 34S
pre-rRNA accumulation (Fig. 4G).
FBL is well-known as an rRNA 2′-O-methyltransferase

in the snoRNP particles that participate in pre-rRNA pro-
cessing (Tollervey et al. 1991; Tollervey et al. 1993; Taf-
foreau et al. 2013) and Pol I transcription (Tessarz et al.
2014; Loza-Muller et al. 2015). Its amino-terminus con-
tains a glycine- and arginine-rich (GAR) domain highly
enriched with intrinsically disordered regions (IDRs) that
are required for Xenopus laevis FBL phase separation
(Feric et al. 2016); its carboxyl terminus contains an
RNA binding domain (RBD) and the α domain for meth-
yltransferase activity (MD domain).
How does FBL control the movement of the 5′ end of

47S pre-rRNA to the DFC? First, distinct from other com-
ponents in snoRNP complexes, FBL specifically and
strongly interacts with the 5′ end of 47S pre-rRNA as
revealed by PAR-CLIP (Kishore et al. 2013) and by in
vitro binding and phase-separation assays (Yao et al.
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2019b). These observations indicate an additional func-
tion of FBL in nascent pre-rRNA sorting beyond its clas-
sical role in U3 snoRNP. Second, the GAR domain is
necessary and sufficient for human FBL self-aggregation
into droplets at physiological concentrations (Yao et al.
2019b). Importantly, both in vitro and in vivo lines of
evidence suggest a model whereby the binding and sorting
of nascent 47S pre-rRNA utilizes different FBL domains:
The MD domain binds to the 5′ end of 47S pre-rRNA, and
the RNA-interacting FBL then moves toward the DFC by
GAR domain self-association (Fig. 4H–I). Such pre-
rRNA sorting strongly correlates with FBL self-associa-
tion via the strength of IDRs in FBL and is required for
proper pre-rRNA processing in cells (Fig. 4I). For exam-
ple, rescue of FBL KD in cells with FBL mutants contain-
ing different length of GARs but with intact MD domain
shows the enhanced formation of FBL polymers, en-
hanced 5′-end pre-rRNA sorting to DFC, and increased
proper production of 47S pre-rRNA (Fig. 4I). Importantly,
this sorting and translocation process is required for proper
ribosome production, thus representing yet another exam-
ple illustrating the importance of linking RNA processing
to function.
More broadly, as many RBPs associated with nascent

pre-mRNA processing events are known to contain struc-
turally disordered regions (Banani et al. 2017; Gueroussov
et al. 2017; Shin and Brangwynne 2017; Ying et al. 2017),
a similar liquid–liquid phase-separation controlled na-
scent rRNA sorting mechanism is likely used by the cell
to keep other types of nascent RNAs from unnecessary or
unwanted self-aggregation.

CONCLUSION

It has been well-established that Pol II transcription,
nascent pre-mRNA splicing, capping, polyadenylation,
mRNA export, and surveillance are seamlessly integrated
(Moore and Proudfoot 2009). Studies of unconventionally
processed lncRNAs including circular RNAs (Fig. 1),
snoRNA-related RNAs (Figs. 2 and 3), and the “house-
keeping” pre-rRNAs (Fig. 4) have revealed no exception
for ncRNAs: Throughout the maturation process of each
district class of RNA, transcription and processing are
crucially important for subcellular localization and
function.
One may argue that all examples illustrated so far are

unconventionally processed ncRNAs. Indeed, despite
these examples, it has been well-studied that Pol II tran-
scription and the 3′-end alternative processing of the
NEAT1 lncRNA act together to modulate paraspeckle
morphology and function (Mao et al. 2011; Naganuma
et al. 2012; Hirose et al. 2014; Wang et al. 2018; Yamazaki
et al. 2018). Emerging studies have also revealed both
cis- and trans-factors are required for the subcellular
localization of Pol II–transcribed mRNA-like lincRNAs
and functions (Hacisuleyman et al. 2014; Zhang et al.
2014b; Lubelsky and Ulitsky 2018; Shukla et al. 2018).
Recent studies using the most robustly available meth-

ods have greatly advanced our understanding of cellular

functions of lncRNAs (Kopp andMendell 2018; Yao et al.
2019a). Beyond linking RNA processing and function,
how lncRNAs are structured and what structural confor-
mations lncRNAs adopt for their interacting partners have
remained mysteries. Their large sizes and flexible nature
have endowed them with previously underappreciated
functional potentials; however, this has also presented un-
expected experimental challenges to understanding their
regulation at multiple levels. Future studies aimed at un-
derstanding in greater detail the regulation of expression,
subcellular localization patterns, interaction partners, and
conformational information of lncRNAs, as well as under-
standing how the biogenesis and turnover of RNAs are
linked to their subcellular localization, will provide greater
insight into their cellular functions.
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