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Abstract: The calculation of autocorrelation functions rep-
resents a routinely used tool to characterise quantum
states of light. In this paper, we evaluate the g(2) function
for detected photons in the case ofmesoscopicmulti-mode
twin-beam states in order to fully investigate their statisti-
cal properties starting from measurable quantities. More-
over, we show that the second-order autocorrelation func-
tion is also useful to estimate the spurious e�ects a�ecting
the employed Silicon-photomultiplier detectors.
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1 Introduction
The autocorrelation functions, formally introduced by
Glauber in 1963 [1], represent one of the standard tools
used to characterise quantum states of light, such as to
discriminate between bunched and antibunched light [2].
Correlation functions are usually evaluated at the single-
photon level: The light state under examination is divided
at a balanced beam splitter and the two outputs are de-
tected by means of two avalanche diodes [3–5]. We have
recently demonstrated that the same scheme can also be
adopted to characterise mesoscopic optical states, namely
pulsed states containing sizeable numbers of photons
in each pulse [6, 7]. Instead of single-photon detectors,
photon-number-resolving (PNR) ones are needed in such
a case [8, 9]. For instance, in our previous work we have
employed hybrid photodetectors to prove a behaviour of
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sub-Poissonian states analogous to antibunching [6].
In Glauber’s original de�nition, the autocorrelation func-
tions are expressed in terms of normal ordered opera-
tors. Nevertheless, in practical situations, analogous de�-
nitions written in terms of measurable quantities could be
desirable [10]. Indeed, the link between the autocorrela-
tion functions for photons and those for detected photons
can be easily found, provided that themodel for the detec-
tion process is known [6, 10].
In this paper, we emphasize the versatility of the g(2) au-
tocorrelation functions for both the above-mentioned pur-
poses. On the one hand, we show that from the evaluation
of autocorrelationswe can extract some information about
the features of the employed detectors. On the other hand,
we prove that correlation functions represent a useful cri-
terion for the characterisation of quantum correlations as
well as of nonclassical states.

2 Characterisation of Silicon
photomultipliers

As already stated in the Introduction, our measurements
have been performed in the mesoscopic intensity regime.
In such a case, the g(2) function can be easily evaluated
by direct detection of the state under examination. For
detectors, we decided to employ a commercial class of
PNR detectors, namely Silicon photomultipliers (SiPMs).
These detectors consist of avalanche diodes, called cells,
arranged in amatrix of pixels connected to a common out-
put. Every diode is reverse-biased and operates in Geiger-
Müller regime [11–15]. During the last �fteen years, SiPMs
have been employed inmany scienti�c applications, rang-
ing from particle physics experiments to positron emis-
sion tomography and biomedical research [16]. Thanks to
their structure, SiPMs are endowed with a good photon-
number-resolving capability, which makes them appeal-
ing to detect mesoscopic quantum states of light in quan-
tum optics experiments [17], provided that no more than
one photon at a time impinges on a single cell. However,
the massive exploitation of SiPMs has so far been pre-
vented by the occurrence of stochastic spurious events,
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such as dark counts and optical cross-talk [18, 19], as well
as by a limited quantum e�ciency. In the following, we
consider the new generation of SiPMs produced by Hama-
matsu, in which the cross-talk probability has been low-
ered and the quantum e�ciency increased [20].
According to the model presented in Refs. [17, 21], the re-
sponse of a SiPM detector can be seen as the convolution
of di�erent terms, corresponding to the di�erent detector
features.
First of all, we assume that the detection process is de-
scribed by a Bernoullian distribution Bm,n(η). This means
that the distribution of detected photons, Pel(m), is linked
to that of photons, Pph(n), through

Pel(m) =
∞∑
n=m

Bm,n(η)Pph(n)

=
∞∑
n=m

(
n
m

)
ηm(1 − η)n−mPph(n), (1)

where η is the detection e�ciency, n is the number of inci-
dent photons, andm that of detectedphotons. Dark counts
are spurious avalanches triggered by thermally generated
charge carriers. Since they are independent and uncorre-
lated events, their statistics are Poissonian

Pdc(m) = (〈m〉dc)m
m! exp (−〈m〉dc), (2)

where 〈m〉dc is the mean value of dark counts.
Second, we consider optical cross-talk events [22] that
arise when the electrons accelerated during the avalanche
process produce brehmsstralung radiation that may trig-
ger avalanches in a neighbouring cell. Hereafter, we as-
sume the cross-talk probability distribution to be [17]

Ck,l(ϵ) =
(

l
k − l

)
ϵk−l(1 − ϵ)2l−k , (3)

where ϵ is the probability that the avalanche from a cell
triggers one neighbour cell, l is the number of photo-
triggered avalanches and of dark counts, and k is the re-
sulting number of avalanches including cross talk.
Finally, we assume that the ampli�cation (both internal
and external) of the detector is described by a multiplica-
tive factor, γ, so that the single-shot output of the detection
chain is xout = γk. The distribution of the detector output
is given by the convolution of all the previous terms:

P(xout) = γ

k∑
m=0

Ck,m(ϵ)
m∑
j=0

Pdc(j)Pel(m − j). (4)

By using the two moments of the distribution in Eq. (4), it
is possible to de�ne the g(2) function for the SiPM output

as

g(2)(xout) ≡
〈x2

out〉
〈xout〉2

= 〈(γk)2〉
〈γk〉2 ≡ g

(2)(k) = σ2(k)
〈k〉2 + 1, (5)

where

〈k〉 = (1 + ϵ)(〈m〉 + 〈m〉dc) (6)

σ2(k) = (1 + ϵ)2
(
σ2(m) + 〈m〉dc

)
+ ϵ(1 − ϵ)(〈m〉 + 〈m〉dc)

are themeanvalue and the variance of k, respectively.Note
that g(2)(k) can be also linked to the expression of the au-
tocorrelation function for photons,

g(2)(n) = 〈: n
2 :〉
〈n〉2 . (7)

In fact, it canbedemonstrated that Eq. (5) canbe re-written
as

g(2)(k) = 1 + (g(2)(n)−1)
(

1 − (1 + ϵ)〈m〉dc
〈k〉

)2
+ 1
〈k〉

1 + 3ϵ
1 + ϵ .

(8)
In the Introduction we claimed that the evaluation of the
autocorrelation function expressed in terms ofmeasurable
quantities can help in the determination of the detector
features, such as the mean value of dark counts, 〈m〉dc,
and the cross-talk probability, ϵ. Moreover, the expression
inEq. (8) also contains information about the light through
the term g(2)(n). For instance, in the case of multi-mode
thermal light with µ modes equally populated g(2)(n) =
1 + 1/µ.
To experimentally prove these statements, we generated a
multi-mode twin-beam (TWB) state by means of paramet-
ric downconversion (see Fig. 1). The pump �eld was ob-
tained by mixing the fundamental beam (at 1047 nm) of
a Nd:YLF laser regeneratively ampli�ed at 500 Hz with its
third harmonic (at 349 nm) in a β-barium-borate nonlin-
ear crystal (BBO1, cut angle = 37 deg, 8-mm long) in a non-
collinear interaction geometry. The generated �eld, which
is the fourth harmonic (at 262 nm, 3.5-ps pulse duration) of
the laser,was sent to a secondBBOcrystal (BBO2, cut angle
= 46.7 deg, 6-mm long) in order to produce the parametric
downconversion process in a slightly non-collinear geom-
etry. Two twin portions of TWB states were spatially and
spectrally �ltered by means of irises and interference �l-
ters centered at 523 nm, respectively. The two light compo-
nents were then delivered to two SiPMs through twomulti-
mode �bers (600-µm core diameter). We used two com-
mercial SiPMs (MPPC S13360-1350CS) produced by Hama-
matsu [23]. Such detectors are endowed with a moder-
ate rate of dark count at room temperature (∼ 140 kHz)
and a low cross-talk probability (∼ 2%). The two detec-
tor outputs were ampli�ed and integrated by means of
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Figure 1: Sketch of the experimental setup. The fourth harmonic
�eld (at 262 nm) of a mode-locked Nd:YLF laser ampli�ed at 500 Hz
was obtained by mixing in a BBO crystal (BBO1) the fundamental (at
1047 nm) and the third harmonic (at 349 nm) �elds. The generated
�eld was sent to a second BBO crystal (BBO2) in order to produce
mesoscopic TWB states in a slightly non-collinear interaction geom-
etry. Two twin portions around frequency degeneracy (at 523 nm)
were spatially and spectrally �ltered, and then delivered to a pair
of Silicon photomultipliers through two multi-mode 600-µm-core-
diameter �bers. Each detector output was ampli�ed, integrated by
means of a boxcar-gated integrator synchronised with the laser,
and acquired (ADC+PC). The variation of the mean value of the col-
lected light was obtained by changing the energy of the pump �eld
through a half-wave plate (HWP) followed by a polarising cube beam
splitter (PBS).

two synchronous boxcar-gated integrators (SR250, Stan-
ford Research Systems). In particular, we adopted a small
value of gate width (10 ns) in order to keep the e�ects of
dark count and delayed cross talk as small as possible. As
shown in Fig. 2, the chosen value corresponds to the width
of the signal peak. The experimental measurements were
performed at di�erent values of pump energy, which was
modi�ed through a half-wave plate (HWP) followed by a
polarising cube beam splitter (PBS). At each energy value,
105 single-shot acquisitions were performed.
As declared above, the generation of our TWB state is in-

Figure 2: Typical single-shot detector signal.
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Figure 3: Autocorrelation function at di�erent mean numbers of k
measured in each TWB arm. The two panels correspond to the two
arms. Black dots + error bars: experimenta data; magenta circles:
theoretical �tting curves according to Eq. (9); blue line: classical
boundary. The values of the mean error [26] with respect to red
circles are 0.003 in the upper panel and 0.002 in the lower panel.

trinsically multi-mode [10, 24]. This means that each arm
of TWB is described by amulti-mode thermal statistics. By
imposing this condition, Eq. (8) reads as

g(2)(k) = 1 + 1
µ

(
1 − (1 + ϵ)〈m〉dc

〈k〉

)2
+ 1
〈k〉

1 + 3ϵ
1 + ϵ . (9)

Note that, at variancewith the autocorrelation function for
photons, the maximum value of Eq. (9) can be larger than
2. In the two panels of Fig. 3, we plot g(2)(k) as a function
of the mean value of k for each TWB arm. The explored
dynamic range guarantees that the probability that more
than 1 photon impinges on a single cell of SiPMs is neg-
ligible. The experimental data are shown as black dots +
error bars, whereas the theoretical �tting curve (magenta
circles) was calculated according to Eq. (9), in which we
assumed µ = 1000 (reasonable value for a TWB in our ex-
perimental conditions [25]) and left ϵ and 〈m〉dc as free pa-
rameters. In particular, we found: ϵ = 0.008, and 〈m〉dc =
0.001 in the �rst arm (upper panel) and ϵ = 0.007, and
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〈m〉dc = 0.001 in the second arm (lower panel). The ab-
solute values of ϵ and 〈m〉dc obtained from the �t are quite
small. However, in order to quantify their relevance for the
calculation of the second-order autocorrelation function,
we evaluated the relative variation of g(2)(k) by expanding
the function up to the �rst order of α

∆g(2)(k)
g(2)(k)

= 1
g(2)(k)

∣∣∣∣
α=0

∂g(2)(k)
∂α

∣∣∣∣∣
α=0

∆α ≡ β∆α, (10)

where α is either ϵ or 〈m〉dc, both evaluated in 0. We note
that, for any choice of the parameters, β in Eq. (10) is al-
ways smaller than 1. Thus, since the quantities ∆α vary in
very narrow ranges, the variation of g(2)(k) is negligible.
For this reason, in the followingSectionwedonot consider
the contribution of cross talk and dark count in the calcu-
lation of the g(2) function connected to other variables.

3 Characterisation of nonclassical
states of light

The TWB states generated as described in Sect. 2 are op-
tical states endowed with nonclassical correlations. This
nature can be proved by means of suitable nonclassicality
criteria [27–30]. Among them, the most used is the noise
reduction factor,R, which is de�nedas the ratio of the vari-
ance of the photon-number di�erence between the twin
arms and the shot noise level, namely

R = σ2(m1 − m2)
〈m1 + m2〉

. (11)

Values of R lower than 1 signify nonclassicality [31]. To
further characterise the TWB states, we evaluated the au-
tocorrelation function for the photon-number di�erence,
that is g(2)

di� (m) = 〈(m1 − m2)2〉/〈m1 − m2〉2. We note that
this function can be expressed in terms of the noise reduc-
tion factor R as

g(2)
di� (m) = 1 + R 〈m1 + m2〉

〈m1 − m2〉2
. (12)

In Fig. 4 we plot the measured values of g(2)
di� (m) together

with the expectation in Eq. (12), in which we used the ex-
pression of R for multi-mode thermal TWB states, namely

R = 1 −
2√η1η2

√
〈m1〉〈m2〉

〈m1〉 + 〈m2〉
+ (〈m1〉 − 〈m2〉)2

µ(〈m1〉 + 〈m2〉)
, (13)

where η1 and η2 are the quantum e�ciencies in the two
arms, calculated in the experimental values of 〈mj〉, ηj and
µ, with j = 1, 2 [32]. The experimental data shown in the
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Figure 4:Measured g(2)
di� (m) as a function of 〈m〉 = (〈m1〉 + 〈m2〉)/2.

Black dots + error bars: experimental data; magenta circles: theo-
retical expectation according to Eq. (12).

�gure are well superimposed to theory. Note that, while
the values of R are within the range (0.87 - 0.9), the values
of g(2)

di� (m) are in general quite large, no matter the abso-
lute values of 〈m1〉 and 〈m2〉. This fact emphasizes that the
term 〈m1−m2〉2 is quite small, thus proving a good balanc-
ing between the light detected in the two arms.
While the evaluation of g(2)

di� (m) is useful to investigate the
balancing between the numbers of photons detected in
the two arms, the calculation of the analogous expression
for photons, i.e. g(2)

di� (n), can give information about the
quantum nature of photon-number correlations. By de�-
nition

g(2)
di� (n) = 〈: (n1 − n2)2 :〉

〈n1 − n2〉2
= 〈(n1 − n2)2〉
〈n1 − n2〉2

− 〈n1 + n2〉
〈n1 − n2〉2

.

(14)
Assuming that the detection e�ciency in the two arms of
TWB is the same, η1 = η2 = η, it is possible to demon-
strate that the relation between g(2)

di� (n) and g(2)
di� (m) reads

as follows:

g(2)
di� (n) = g(2)

di� (m) − 〈m1 + m2〉
〈m1 − m2〉2

. (15)

By using Eq. (12) in Eq. (15), the autocorrelation function
g(2)
di� (n) can be directly connected to the noise reduction

factor
g(2)
di� (n) − 1 = (R − 1) 〈m1 + m2〉

〈m1 − m2〉2
. (16)

According to Eq. (16), the negativity of the quantity
[g(2)
di� (n) − 1] can be used as nonclassicality criterion as

an alternative to R < 1. In Fig. 5 we show the values of
[g(2)
di� (n)−1] calculated from the experimental data as black

dots + error bars. In the same �gure we also plot the the-
oretical expectation according to Eq. (16), in which R was
evaluated according to Eq. (13). The negativity of the plot-
tedquantity proves thequantumnature of photon-number
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Figure 5:Measured [g(2)
di� (n) − 1] as a function of 〈m〉 = (〈m1〉 +

〈m2〉)/2. Black dots + error bars: experimental data; magenta cir-
cles: theoretical expectation according to Eq. (16).

correlations.
Since all the measured TWB states are nonclassically cor-
related, the employed SiPMs can be used to performmulti-
photon conditioning operations in order to produce sub-
Poissonian states of light [33–36]. Indeed, we have already
demonstrated that, when a certain number of photons are
selected in oneTWBarm, thedistribution of photons in the
other arm is narrower than a Poissonian distribution [32].
This fact can be quanti�ed either by calculating the Fano
factor, F(m) = σ2

m/〈m〉, of the obtained photon-number
statistics or evaluating the g(2) function for photons. In
fact, it is possible to demonstrate [6] that

g(2)(n) − 1 = F(m) − 1
〈m〉 . (17)

In the case of conditional states obtained by multi-mode
thermal TWB states, the expression of F(m) is not trivial,
but it is analytic

F(m) = (1 − η) + (1 − η) · (18)

· 〈m〉(mcond + µ)(〈m〉 + ηµ)
(〈m〉 + µ)[(mcond + µ)(〈m〉 + ηµ) − ηµ(〈m〉 + µ)] ,

where η is the overall detection e�ciency, 〈m〉 the mean
value of the unconditioned state, andmcond the condition-
ing value, that is the value of photons measured in one
arm according to which the values of the other arm are se-
lected.
In Fig. 6 we plot the experimental values of [g(2)(n) − 1]
(black dots + error bars) as a function of di�erent condi-
tioning values. Even if the negativity of the plotted quan-
tity is not so large, it is su�cient to prove that the produced
states are nonclassical. In the same �gure, we also show
the theoretical expectations (magenta circles) according to
Eq. (17), in which Eq. (18) was used. As in the case of the
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Figure 6:Measured values of [g(2)(n) − 1] as a function of the con-
ditioning value, mcond. Black dots + error bars: experimental data;
magenta circles: theoretical expectation according to Eq. (17).

g(2) function for thephoton-numberdi�erence, also for the
Fano factor we used the experimental values of η, µ and
〈m〉. In particular, for the data in the �gure 〈m〉 = 2.64. We
notice that the data are well superimposed to theory.

4 Conclusions
In conclusion, we have shown the twofold usefulness of
the g(2) autocorrelation function written in terms of mea-
surable quantities. On the one hand, we have proved that
its evaluation can be used to characterise the main fea-
tures of the employed detector. In particular, the spuri-
ous stochastic features that a�ect SiPMs can be easily de-
termined from the expression of the second-order auto-
correlation function. Moreover, for the speci�c choice of
operational detector parameters and of the integration
gate width used to acquire the detector output we have
proved that such e�ects are substantially negligible. On
the other hand, we have used the g(2) function to fully in-
vestigate the statistical properties and the correlated na-
ture of mesoscopic multi-mode thermal TWB states. In
more detail, we have evaluated the autocorrelation func-
tion of the photon-number di�erence and demonstrated
that it can be used as a nonclassicality criterion for corre-
lations. Furthermore, we have exploited the quantum na-
ture of such TWB states to produce sub-Poissonian condi-
tional states in post-selection, which exhibit the negativ-
ity of the quantity [g(2)(n) − 1] for di�erent conditioning
values. The good quality of the experimental results and
their good agreementwith the theoretical expectations en-
courage the further exploitation of SiPMs in the context of
QuantumOptics, especially to improve the investigation of
real mesoscopic states of light.
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