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Guest editorial

Cesarino Bertini∗, Piotr Faliszewski∗∗,
Andrzej Paliński∗ ∗ ∗, Izabella Stach∗ ∗ ∗

This special issue of Decision Making in Manufacturing and Services is devoted to
Game Theory and Applications and related topics. The origin of the issue is the 10th

Spain-Italy-Netherlands Meeting on Game Theory (SING10), which took place from
7–9 July, 2014. The conference was hosted by the Faculty of Management at AGH
University of Science and Technology in Kraków, Poland (the main organizer was
Izabella Stach).

The history of the SING meetings started at the beginning of the 1980s, with the
first meetings held in Italy. Then, meetings were subsequently added in Spain, the
Netherlands, and Poland. Nowadays, SING is one of the most important international
meetings on game theory organized each year in a European country.

The SING10 meeting in 2014 attracted more than 190 scientists from 5 continents.
More about the SING meetings and, in particular, about SING10 can be funded in
Gambarelli (2011) and Bertini et al. (2014).

The submitted papers (139 presentations, 135 in parallel sessions and 4 in plenary
sessions) covered a variety of topics on game theory and its applications. This special
issue collects some surveys on recent results in different fields, presented in the
conference.

THE STRUCTURE

The first issue, “On Public Values and Power Indices” by Cesarino Bertini and Izabella
Stach, analyzes some values and power indices well-defined in the social context,
where the goods are public, from different point of view. In particular, they consider
∗ University of Bergamo, Department of Management, Economics and Quantitative Methods, Italy
∗∗ AGH University of Science and Technology, Faculty of Computer Science, Electronics, and Telecom-

munication, Poland
∗ ∗ ∗ AGH University of Science and Technology, Faculty of Management, Poland,
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6 C. Bertini, P. Faliszewski, A. Paliński, I. Stach

the Public Good index, the Public Good value, the Public Help index, the König
and Bräuninger (or Zipke), and the Rae index. The authors propose an extension of
the Public Help index to cooperative games, introduce a new power index with its
extension to a game value, and provide some characterizations of the new index and
values.

The second one, “Balancing Bilinearly Interfering Elements” by David Carf? and
Gianfranco Gambarelli, starts from the consideration that many decisions in various
fields of application have to take into account the joined effects of two elements that
can interfere with each other. This happens, for example, in Medicine, Agriculture,
Public Economics, Industrial Economics, Zootechnics, and so on. When it is necessary
to decide about the dosage of such elements, there is sometimes a primary interest for
one effect rather than another; more precisely, it may be of interest that the effects
of an element are in a certain proportion with respect to the effects of the other. It
may be also necessary to take into account minimum quantities that must be assigned.
The authors present the solution in closed form for the case in which the function of
the effects is bilinear.

The third paper, “Allocating Pooled Inventory According to Contributions and
Entitlements” by Yigal Gerchak, considers inventory pooling. Inventory pooling is
known to be beneficial when demands are uncertain. But when the retailers are
independent, the question is how to divide the benefits of pooling. In particular,
the author considers a decentralized inventory-pooling scheme where the retailers’
entitlements to allocation depend on their contributions to the pool in case of shortage.
Then, the author derives the Nash equilibrium, and specializes it to symmetric cases.

The fourth contribution, “On the Non-Symmetric Nash and Kalai–Smorodinsky
Bargaining Solutions” again by Yigal Gerchak, refers that, in some negotiation ap-
plication areas, the usual assumption that the negotiators are symmetric has been
relaxed. In particular, weights have been introduced to the Nash Bargaining Solution
to reflect the different powers of the players. In particular, the author analyzes the
properties and optimization of the non-symmetric Nash Bargaining Solution and of
a non-symmetric Kalai–Smorodinsky Bargaining Solution. Then, the author provides
extensive comparative statics and comments on the implications of the concepts in
supply-chain coordination contexts.

The following issue, “Interval methods for computing strong Nash equilibria of
continuous games” by Bartłomiej Jacek Kubica and Adam Woźniak, considers the
problem of seeking strong Nash equilibria of a continuous game. For some games, these
points cannot be found analytically, but only numerically. Interval methods provide
us with an approach to rigorously verify the existence of equilibria in certain points.
A proper algorithm is presented. Parallelization of the algorithm is also considered,
and numerical results are presented. As a particular example, the authors consider
the game of “misanthropic individuals,” a game that might have several strong Nash
equilibria, depending on the number of players. Finally, an algorithm presented is able
to localize and verify these equilibria.

The sixth paper by Andrzej Paliński presents a model of bank loan repayment as
a signaling game with a set of discrete types of borrowers. The type of borrower is the
return on investment project. A possibility of renegotiation of the loan agreement leads
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to an equilibrium in which the borrower adjusts the repaid amount to the liquidation
value of its assets from the bank’s point of view. In the equilibrium there are numerous
pooling equilibrium points with values rising according to the expected liquidation
value of the loan. Furthermore, the author proposes a mechanism forcing the borrower
to pay all of his return instead of the common liquidation value of subset of types of
the borrower.

Last but not least is, the issue of Joanna Zwierzchowska, “Hyperbolicity of systems
describing value functions in differential games which model duopoly problems”. Based
on the Bressan and Shen approach, the author presents the extension of the class of
non-zero sum differential games for which value functions are described by a weakly
hyperbolic Hamilton-Jacobi system. The considered value functions are determined by
a Pareto optimality condition for instantaneous gain functions, for which we compare
two methods of the unique choice Pareto optimal strategies. Then, the procedure of
applying this approach for duopoly is presented.
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On Public Values and Power Indices

Cesarino Bertini∗, Izabella Stach∗∗

Abstract. In this paper, we analyze some values and power indices from a different point of
view that are well-defined in the social context where the goods are public. In particular, we
consider the Public Good index (Holler, 1982), the Public Good value (Holler and Li, 1995),
the Public Help index (Bertini et al., 2008), the König and Bräuninger index (1998) also
called the Zipke index (Nevison et al., 1978), and the Rae index (1969). The aims of this paper
are: to propose an extension of the Public Help index to cooperative games; to introduce a
new power index with its extension to a game value; and to provide some characterizations
of the new index and values.

Keywords: cooperative game theory, simple game, values, public values, power indices, public
power indices

Mathematics Subject Classification: 91A06, 91A12, 91B12

Revised: April 14, 2015

1. INTRODUCTION

A value for n-person cooperative games is a function able to represent a reasonable
expectation of the sharing of global winnings amongst the players. A power index is
a value for a particular class of games called simple games. The power indices approach
is widely used to measure a priori voting power of members of a committee. The
concept of value was introduced for the first time by Lloyd Stowell Shapley in (1953).
The following year, Shapley and Martin Shubik introduced the “Shapley and Shubik
power index” (Shapley and Shubik, 1954). Since 1954, numerous remarkable power
indices have been introduced in the literature for simple games. These power indices are
based on diverse bargaining models and/or axiomatic assumptions. Some indices have
been derived from existing values; i.e., the Shapley and Shubik (1954) as well as
the Banzhaf (1965) and the Coleman (1971). Other power indices were formulated
exclusively for simple games; i.e., the Public Good index (Holler, 1982), the Deegan
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10 C. Bertini, I. Stach

and Packel index (1978), and the Johnston index (1978). In this paper, we analyze
some values and power indices well-defined in the social context where the goods are
public; e.g., the Public Good index, the Public Good value, the Public Help index
(Bertini et al., 2008), the König and Bräuninger index (1998) also called the Zipke
index (Nevison et al., 1978), and the Rae index (1969). We also introduce an extension
of the Public Help index as a game value and a new power index with its extension as
a game value. Some properties of the new proposed index and values are given.

The paper is organized as follows. Section 2 presents notations and preliminary
definitions that refer to cooperative games, simple games, and several properties of
power indices. The power indices considered in this paper, as well as a new proposed
power index, are described in Section 3. Section 4 is devoted to comparing the
considered power indices from the point of view of some desirable properties. Section 5
presents the normalized and absolute Public good value and the propositions of the
extension of the Public Help index, as well as a new index to the game value. The
paper ends with Section 6 devoted to concluding remarks and further developments.
The appendix, at the end of the paper, contains proof of the identity that serves
to demonstrate that the new index proposed in this paper satisfies the dominance
property.

2. NOTATIONS AND PRELIMINARY DEFINITIONS

Let N = {1, 2,. . . , n} be a finite set of players. Any subset S ⊆ N is called a coalition,
N is called the grand coalition, and ∅ is called an empty coalition. By |S |, we denote
the number of members of S : therefore; e.g., |N |= n. A cooperative game is a pair
(N, v) where v : 2N › R, the characteristic function, is a real-valued function from the
set of all possible coalitions of players of N to the real number set such that v(∅) = 0.
For every coalition S, v(S ) is called the worth of S. A cooperative game v is monotonic
if v(S) ≤ v(T ) if S ⊂ T ⊆ N .

If v takes values only in the set {0, 1}, then it is called a simple monotonic game.
By SN , we denote the set of all simple monotonic games on N.

A player i ∈ S, in a simple game v, is crucial or pivotal, for the coalition S, if
v(S ) = 1 and v(S \{i}) = 0.

In a simple game, coalitions S with v(S) = 1 are called winning coalitions and
coalitions with v(S) = 0 losing coalitions. By W (or W (v)), we denote the set of all
winning coalitions, and by Wi, we denote the set of all winning coalitions to which
player i belongs.

If a player does not belong to any winning coalition, then he is called a zero player.
A null game is a simple game such that v(S) = 0 ∀S ⊆ N . Naturally, in any null game,
each player is a zero player.

In a minimal winning coalition, all players are crucial. By Wm or Wm(v), we
denote the set of all minimal winning coalitions in v, and by Wm

i , we denote the set
of all minimal winning coalitions to which player i belongs.

Either the family of winning coalitions W or the subfamily of minimal winning
coalitions Wm determines the game.
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If a player is not contained in any minimal winning coalition (i.e. i /∈ S ∀S ∈Wm),
then he is called a null player.

A weighted game (also called a weighted majority game), [q; w1, ... , wn] is a simple
game v ∈ SN with real weights wi ≥ 0 ∀i ∈ N and a non-negative quota q,

∑
i∈N wi

2 <
q ≤

∑
i∈N wi, such that v(S) = 1⇔ w(S) =

∑
i∈S wi ≥ q.

A value is a function f that assigns a payoff distribution f(v) ∈ Rn to every
cooperative game v. The real number fi(v) is the “value” of the player i ∈ N in the
game v according to f.

A power index is a function f : SN > Rn that assigns to any simple game v vector
f(v) = (f1(v), f2(v), . . . , fn(v)) (or equivalently f(W ) = (f1(W ), f2(W ), . . . , fn(W ))).
The non-negative real number fi(v) (or fi(W )) is interpreted as a “power” of the
corresponding player i ∈ N .

There are some properties that are desirable postulates of power indices. Below,
we quote only: efficiency, non-negativity, null player, symmetry, dominance, and bloc
properties.

If
∑
i/∈N fi(v) = 1 for all v ∈ SN , we said that power index f satisfies the efficiency

postulate. A power index f satisfies the non-negativity postulate (or positivity postulate)
if fi(v) ≥ 0 for each i ∈ N and any v ∈ SN . A power index f satisfies the null
player postulate if fi(v) = 0 for each null player i ∈ N and all v ∈ SN . If for all
v ∈ SN and for each i ∈ N and each permutation π : N → N fi(v) = fπ(i)(π(v))
where (π(v))(S) = v(π−1(S)), then we said that power index f satisfies the symmetry
postulate (also called anonymity postulate). Let v : [q; w1, ... , wn] be an arbitrary
weighted game. A power index f satisfies the dominance (or local monotonicity)
postulate if wi ≥ wj ⇒ fi(v) ≥ fj(v) for any distinct players i, j ∈ N . Note that, in
the literature for simple games, there is also a stronger version of dominance property
(called D-dominance or strong dominance) than is presented here; see, for example,
(Felsenthal and Machover, 1995; Bertini et al., 2013a).

Consider a weighted game W : [q; w1, ... , wn]. Let i and j be two distinct players
in W and j is not null. If players i and j form a bloc i&j (i.e., a new entity not
belonging to N ) and operate as a single player, then a new game arises which we denote
by W [i&j ]. The new game W [i&j ] is obtain from W by removing two players i and j
and introducing a new player representing the bloc i&j. The quota q stays as there
was in W. Any player k ∈ N\{i, j} is also a player in W [i&j ] with the same weight,
and the weight of the bloc is equal to the sum of the weights of players i and j ; i.e.,
wi&j = (wi+wj). A power index f satisfies the bloc property if fi&j(W [i&j]) ≥ fi(W ).

3. POWER INDICES

In this section, we recall the definitions of the Public Good index, the Public Help
index, the König and Bräuninger index, and the Rae index. In Section 3.5, we introduce
a new index. The indices considered here are based on winning or minimal winning
coalitions and were originally formulated only for simple games.

Henceforth, all the games considered are monotonic and not null.
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3.1. THE RAE INDEX

The Rae index, R, was introduced by Rae in (1969). The Rae index of a simple game
W for player i is defined as follows:

Ri(W ) =
|{S : i ∈ S ∈W}|

2n
+
|{S : i /∈ S /∈W}|

2n

We remark that this index is equivalent to the Brams and Lake index (1978); see
also (Nevison, 1979; Mercik, 1997). There is an affine relation between the absolute
Banzhaf and Rae indices; see Dubey and Shapley (1979). Thus, the Rae index can be
given by the following formula:

Ri(W ) =
1

2
+

2|Wi| − |W |
2n

3.2. THE KÖNIG AND BRÄUNINGER’S INDEX (OR ZIPKE INDEX)

Nevison, Zicht, Schoepke in (1978) introduced a power index under the name Zipke
index. Then, König and Bräuninger in (1998) reinvented it. In the literature, this index
is also called the inclusiveness index, and it can been seen as a measure of success
(see, for example, Laruelle, Valenciano, 2011). The König and Bräuninger index, KB,
of a simple game W for a player i is defined by:

KBi(W ) =
|Wi|
|W |

3.3. THE PUBLIC GOOD INDEX

The Public Good index (PGI) was defined by Holler in (1982). The PGI considers the
coalition value to be a public good. The (relative) PGI of a simple game W for player
i ∈ N is given by:

hi(W ) =
|Wm

i |∑
j∈N

∣∣Wm
j

∣∣
The PGI index is also called the Holler-Packel index due to the axiomatization of
Holler and Packel (1983). Napel in (1999), (2001) showed the independence and
non-redundancy of the Holler and Packel axioms.

The absolute Public Good index of simple game W for arbitrary player i is defined
as follows:

hi(W ) = |Wm
i |

For the extension of the PGI index to a game value, see Section 5.
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3.4. THE PUBLIC HELP INDEX θ

Bertini, Gambarelli and Stach in (2008) introduced the Public Help index (PHI) as
a modification of the Public Good index. This index considers that, in assigning
a power to a given player i, all of the winning coalitions containing player i (unlike
the PGI index, which only takes minimal winning coalitions into account). Indeed,
sometimes every winning coalition is relevant to the bargaining. The Public Help
index, θ of a non-null simple game W for a player i ∈ N is given by:

θi(W ) =
|Wi|∑

j∈N
|Wj |

In the case of a null game W, this index is θi(W ) = 0 for any player i. In (Bertini
et al., 2008) an axiomatic characterization of the PHI θ index was provided. For its
generalization to a game value, see Section 5.

The absolute PHI θ of a simple game W for a player i ∈ N is the same as the
absolute KB index, and is defined for a given simple game v and a player i ∈ N as
the number of all winning coalitions containing player i, as follows:

θi(W ) = KBi(W ) = |Wi|

Note that, after the adequate normalization of the KB index, we obtain the PHI
θ index:

KBi∑
j∈N

KBj
=

|Wi|∑
j∈N
|Wj |

= θi(W )

3.5. THE PUBLIC HELP INDEX ξ (PHI ξ)

In this section, we introduce a new power index PHI ξ . The PHI ξ index, like the KB
and PHI θ indices, takes into account all winning coalitions, but it assumes that the
probability of forming a winning coalition is inversely proportional to its cardinality
and that the players divide the spoils equally in a winning coalition. The Public Help
index ξ , for a non-null game W and i ∈ N , is defined as follows:

ξi(W ) =
∑
S∈Wi

1

|S|
∑
T∈W

1
|T |

1

|S|
=

1∑
T∈W

1
|T |

∑
S∈Wi

1

|S|2

In the case of a null game W, this index is ξi(W ) = 0 for any player i. Note that each
coalition S is formed with probability 1

|S|
∑

T∈W
1
|T |

, which is inversely proportional to
the cardinality of S. Therefore, the PHI ξ index can be seen as a hybrid between the
PHI index and the Deegan-Packel index.

Justification for introducing the Public Help index ξ is similar to the PHI θ. In
assigning the power to players, both indices consider all winning coalitions, not only the
minimal wining coalitions as in the PGI. For this reason, ξ and θ rather describe power
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relations in the consumption of public goods, whereas the PGI analyzes the production
of public goods. In production, one has to take care that free-riding is excluded; that is
why the PGI considers minimal winning coalitions and in consumption of public goods
you cannot avoid free-riding. That is why the Public Help indices give values even
to null players. Moreover, ξ (thanks to its formula) gives more power to the winning
coalitions with a lower number of members than θ . Thus, the players who contribute
to success of less-numerous coalitions obtain more power, and, as a, consequence, null
players obtain less power (see Example 4.2).

The absolute PHI ξ of a game W for player i ∈ N , is given by:

ξi(W ) =
∑
S∈Wi

1

|S|2

4. COMPARISON OF POWER INDICES

In this section, we compare the KB, PGI, PHI θ, PHI ξ, and Rae power indices, taking
into account:

– some desirable properties introduced in Section 2,

– the range of power indices, and

– two examples (4.1 and 4.2).

The König and Bräuninger, Rae, and PHI θ indices are more or less related to
the Banzhaf index. The Rae and KB indices satisfy the non-negativity, symmetry,
dominance, and bloc postulates but violate the efficiency and null player properties.
While the range of values of R and KB indices is the same, and is as follows: [0.5; 1].
The Public Good index fulfills the efficiency, non-negativity, symmetry, and null
postulates but does not satisfy the dominance and bloc properties. All of the above
facts written in this paragraph can be found, for example, in (Bertini et al., 2013a).

The index θ satisfies the efficiency, positivity, and symmetry properties but does
not satisfy the null player property. The efficiency and symmetry properties are among
the axiomatic characterization of the PHI θ; see (Bertini et al., 2008). Felsenthal and
Machover in (1995) demonstrated that, if an index satisfies transfer property, then it
also satisfies the dominance postulate. The PHI θ does not satisfy transfer property
(see Bertini et al., 2013a), but it satisfies the dominance property (see Theorem 4.1).

Theorem 4.1. PHI θ satisfies the dominance property for any weighted game v ∈ SN .

Proof. Consider an arbitrary weighted majority game v : [q; w1, ... , wn] and two distinct
players i, j ∈ N with weights wi, wj such that wi ≥ wj . Note that Wi (and also Wj)
includes a non-empty subset, Wi∪j , of all winning coalitions that contain players i
and j. Namely, Wi∪j = {S ∈ W : i ∈ S ∧ j ∈ S} and Wi∪j ⊂ Wi and Wi∪j ⊂ Wj .
If wi ≥ wj then for any non-empty coalition S ∈ Wj\Wi∪j (i.e., i /∈ S), we have
(S\{j}) ∪ {i} ∈Wi: thus, |Wi| ≥ |Wj |.
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From this, we immediately attain that PHI satisfies the dominance postulate:

θi(W ) =
|Wi|∑

k∈N
|Wk|

≥ |Wj |∑
k∈N
|Wk|

= θj(W )

Kurz in (2014) estimated that the individual power of a player i ∈ N calculated
by θ is in the following range: 1

2n ≤ θi(v) ≤ 2
n for any simple game v. In this paper,

we show that such an interval is narrower (see Theorem 4.2).

Theorem 4.2. For any simple game v ∈ SN , we have 1
2n−1 ≤ θi(v) ≤ 2

n+1 for any
i ∈ N .

Proof. Consider a simple game v with N and an arbitrary player i ∈ N . Let us split
the set of all winning coalitions into two distinct sets: W = Wi ∪ (W\Wi). Thus,
|W | = |Wi|+ |W\Wi|,

∑
j∈N |Wj | =

∑
S∈W |S| =

∑
S∈Wi

|S|+
∑
S∈(W\Wi)

|S|, and:

θi(W ) =
|Wi|∑

S∈Wi

|S|+
∑

S∈(W\Wi)

|S|
(1)

We remark that, for any simple game, if S ∈ (W\Wi) then S ∪{i} ∈Wi which implies
|Wi| ≥ |W\Wi| and, as a consequence, also

∑
S∈Wi

|S| ≥
∑
S∈(W\Wi)

|S|.

Firstly, we demonstrate that the minimal power that an arbitrary player i can
obtain in a simple game is equal to 1

2n−1 . The PHI index θ for player i has a minimal
value if the denominator of (1) attains a maximal value and the numerator of (1) attains
a minimal value. The maximal value of denominator (1) is attain for maximal values of
both summands

∑
S∈Wi

|S| and
∑
S∈(W\Wi)

|S|. The summand
∑
S∈(W\Wi)

|S| attains
a maximal value when for any S ∈Wi also S\{i} ∈ (W\Wi).

In this case, we have
∑
S∈(W\Wi)

|S| =
∑
S∈Wi

(|S| − 1) =
∑
S∈Wi

|S| − |Wi|, and
we can rewrite (1) as follows:

θi(W ) =
|Wi|

2
∑

S∈Wi

|S| − |Wi|
(2)

Since v(N) = 1 for any non-null game v ∈ SN , we see that the minimal value
of |Wi|is equal to 1 for any i ∈ N . Suppose that |Wi| = 1. Thus, we have that∑
S∈Wi

|S| = |N | = n. Now, in (2), substituting 1 for |Wi|and n for
∑
S∈Wi

|S|, we
conclude:

1

2n− 1
≤ θi(W ) for any i ∈ N

Now, let us demonstrate that the maximal power that θ can assign to a player i∈N
is equal to 2

n+1 . The PHI index θ for player i has a maximal value if the denominator
of (1) attains the minimal value and the numerator of (1) attains a maximal value.
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The denominator of (1) attains its minimum value if
∑
S∈(W\Wi)

|S| = 0. Whereas,
|Wi|(i.e., numerator of (1)) attains its maximum value when all coalitions with
player i are winning (it also means that player i is a dictator). Since there are
2n−1 coalitions that contain player i, we see that the maximum value of numerator (1)

is equal to |Wi| = 2n−1 and
∑
S∈Wi

|S| =
∑n
k=1 k

(
n− 1
k − 1

)
. Applying, for example,

the binomial identity (1 + x)n =
∑n
k=0

(
n
k

)
xk ∀x ∈ R, it could be proven that∑n

k=1 k

(
n− 1
k − 1

)
= (n + 1)2n−2 (for a full demonstration, see the Appendix). Now

replacing in (1) |Wi| with 2n−1,
∑
S∈Wi

|S| with (n+1)2n−2 and
∑
S∈W\Wi

|S| with 0,

we immediately attain θi(W ) ≤ |Wi|∑
S∈Wi

|S| = 2n−1

(n+1)2n−2 = 2
(n+1) .

Let us consider the new index ξ introduced in Section 3.5. We will prove
that the newly proposed index PHI ξ satisfies the following properties: efficiency,
non-negativity, symmetry, and dominance (see Theorems 4.3–4.6).

Theorem 4.3. PHI ξ satisfies the efficiency postulate:

∑
i∈N

ξi(W ) =

{
1 if W is not the null game

0 otherwise.

Proof. Let W be a game with a set of players N. If W is a null game, each player is
a zero player, so

∑
i∈N ξi(W ) = 0. While for a non-null game W, we attain:

∑
i∈N

ξi(W ) =
∑
i∈N

(
1∑

T∈W
1
|T |

∑
S∈Wi

1

|S|2

)
=

1∑
T∈W

1
|T |

∑
i∈N

( ∑
S∈Wi

1

|S|2

)

=
1∑

T∈W
1
|T |

( ∑
S∈W1

1

|S|2
+
∑
S∈W2

1

|S|2
+ ...+

∑
S∈Wn

1

|S|2

)

=
1∑

T∈W
1
|T |

∑
S∈W

|S| 1

|S|2
=

1∑
T∈W

1
|T |

∑
S∈W

1

|S|
= 1

F (x) =

√
x− 1

2

x4

Theorem 4.4. For any simple game W and for any i ∈ N , we have ξi(W ) ≥ 0.

Proof. The PHI ξ of a non-null simple gameW and a player i ∈ N is always greater than
zero. It is consequential that, in any non-null game, at least one winning coalition exists
(i.e., grand coalition N ). Thus, N ∈W 6= ∅ and N ∈Wi 6= ∅, and, as a consequence,
we have ξi(W ) = 1∑

T∈W
1
|T |

∑
S∈Wi

1
|S|2 > 0. In the case of a null game ξi(W ) = 0

∀i ∈ N since, in a null game, all players are zero players.
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Theorem 4.5. For any simple game W, PHI ξ satisfies the symmetry postulate.

Proof. Let us fix a simple game W. It is sufficient to prove that ξi(W ) = ξπ(i)(π(W ))
for each i ∈ N and all permutations π : N → N . In case of a null game, it is
straightforward to prove that symmetry holds since, in a null game, each player is zero
player. In the case of a non-null game W, we have:

ξi(W ) =
1∑

T∈W
1
|T |

∑
S∈Wi

1

|S|2
=

1∑
T∈W

1
|T |

∑
S∈Wπ(i)

1

|S|2
= ξπ(i)(W )

Theorem 4.6. For any simple game W, PHI ξ satisfies the dominance postulate.

Proof. Consider an arbitrary weighted majority game [q; w1, ... , wn] and two distinct
players i, j ∈ N with weights wi, wj respectively such that wi ≥ wj . As in the proof
of Theorem 4.1, we can show that, if wi ≥ wj , then |Wi| ≥ |Wj |, and if Wj\Wi 6= ∅,
then for any winning coalition S ∈ (Wj\Wi), the coalition (S\{j}) ∪ {i} ∈ (Wi\Wj),
and |S| = |(S\{j}) ∪ {i}|. Hence, we have not only that |Wi\Wj | ≥ |Wj\Wi|, but
also

∑
S∈Wi\Wj

1
|S|2 ≥

∑
S∈Wj\Wi

1
|S|2 ; as a consequence, we immediately attain that

ξ satisfies the dominance postulate:

ξi(W ) =

∑
S∈Wi

1
|S|2∑

T∈W
1
|T |

=

∑
S∈Wi\Wj

1
|S|2 +

∑
S∈Wi

⋂
Wj

1
|S|2∑

T∈W
1
|T |

≥
∑
S∈Wj\Wi

1
|S|2 +

∑
S∈Wi

⋂
Wj

1
|S|2∑

T∈W
1
|T |

=

∑
S∈Wj

1
|S|2∑

T∈W
1
|T |

= ξj(W )

Example 4.1. Let us consider a game given by the following characteristic function:
v({1}) = 0, v({2}) = 0, v({3}) = 0, v({2, 3}) = 0, v({1, 2}) = 1, v({1, 3}) = 1,
v({1, 2, 3}) = 1. In Table 1, we present the payoffs assigned by the Rae, König and
Bräuninger, PGI, PHI θ and ξ indices to players in the considered game.

Table 1. Distribution of power in Example 4.1

Power index Player 1 Player 2 Player 3

R 7/8 5/8 5/8

KB 1 2/3 2/3

h 1/2 1/4 1/4

θ 3/7 2/7 2/7

ξ 22/48 13/48 13/48

Example 4.2. Let us consider a game W = {{1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {1, 2, 3, 4}}. In this game, there are only two minimal winning coalitions:
{1, 2}, {1, 3}. In Table 2, we present the payments assigned by the considered five
power indices to the players.
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Table 2. Distribution of power in Example 4.2

Power index Player 1 Player 2 Player 3 Player 4

R 7/8 5/8 5/8 1/2

KB 1 2/3 2/3 1/2

h 1/2 1/4 1/4 0

θ 6/17 4/17 4/17 3/17

ξ 129/324 77/324 77/324 41/324

In Example 4.2 (Table 2), we can observe that PHI ξ violates the null property.
As we can observe in Examples 4.1 and 4.2, the power indices taken into account

in this paper split the total wins in different ways and assign different power to the
players, but give the same rankings to the players. An interesting fact is that some of
these power indices induce the same rankings of players, not only in the considered
examples, but also in any simple game. Namely, the König and Bräuninger, PHI θ,
and Rae indices rank players in the same way. Moreover, they give the same rankings
as the Banzhaf power index, since, for a given game W and a player i, all of these
indices (KB, θ, R, and Banzhaf indices) are positive affine transformations of |Wi|(see
Section 3 and (Bertini et al., 2013a)).

The bloc property is one of the most important properties necessary for power
indices to be useful for analysis of block-expansion mechanisms in the decision-making
bodies (see, for example, (Felsenthal and Machover, 1995; Jasiński, 2013)). The KB
and Rae indices satisfy bloc property, whereas the PGI index does not fulfill this
property (see (Bertini et al., 2013a)).

In Table 3, we summarize all results discussed in this section.

Table 3. Power indices R, KB, h, θ, ξ in comparison

Property Power index

R KB h θ ξ

Bloc yes yes no ? ?

Dominance yes yes no yes yes

Efficiency no no yes yes yes

Non-negativity yes yes yes yes yes

Null player no no yes no no

Symmetry yes yes yes yes yes

Range of power index in
a non-null game v, n ≥ 2

[0.5; 1] [0.5; 1] [0; 1]
[

1
2n−1

; 2
n+1

]
?

By “?”, we denote that it is still an open problem.
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5. EXTENSIONS OF THE PHI INDICES TO THE GAME VALUES

In this section, we propose the extensions of the PHI indices (θ and ξ) to general
cooperative games. But we start with introducing the Public Good value.

Holler and Li in (1995) extended the PGI index to the Public Good value
introducing the concept of a real gaining coalition (RGC).

Definition 5.1. For a cooperative game (N, v), a subset S ⊆ N is called a real gaining
coalition (RGC) if, for any T ⊂ S, we have v(S)− v(T ) > 0.
Let RGC (v) denote a set of all real gaining coalitions in the game v, and by RGCi(v)
(or RGCi), we denote a set of all real gaining coalitions containing player i. In
a cooperative game, the concept of the real gaining coalition corresponds with the
concept of the minimal winning coalition in a simple game. Moreover, for any simple
game v, we have Wm(v) = RGC(v).

Definition 5.2. A player i ∈ N is a dummy player if he does not belong to any
S ∈ RGC(v).

In a general cooperative game, the concept of a dummy player corresponds with the
concept of a null player in a simple game. Therefore, similarly like in a simple game, in
any minimal winning coalition, all players contribute to its win, in general cooperative
game we have that if and only if all players contribute to the worth of a coalition, the
coalition is a RGC.

Holler and Li (1995) defined the Public Good value and its normalized version,
only taking into account the payoffs from real gaining coalitions (see Definition 5.3
and 5.4).

Definition 5.3. The Public Good value (or the Holler value) of cooperative game v
for a player i ∈ N is given by: HV i(v) = hi(v) =

∑
S∈RGCi

v(S).

Normalizing the PGV value to the coalition payoff of the grand coalition N, we obtain
a normalized version of PGV.

Definition 5.4. The normalized Public Good value (or the normalized Holler value)
of cooperative game v for a player i ∈ N is given by: HVi(v) = hi(v) = hi(v)∑

j∈N hj(v)
v(N).

We remark that Holler and Li in (1995) axiomatized the Holler value with four
axioms: L1 axiom (efficiency), L2 axiom (mergeability), symmetry, and dummy player.

Following the idea of Holler and Li (1995), we propose the extensions of the PHI
indices θ and ξ from simple games to general ones in Sections 5.1 and 5.2. In order to
state the definitions of the announced values, we need to first introduce the concept of
a gaining coalition (GC).

Definition 5.5. For a cooperative game (N, v), a subset S ⊆ N is called a gaining
coalition (GC) if v(S) > 0.
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Let GC (v) denote a set of all gaining coalitions in the game v, and by GCi(v) (or
GCi), we denote a set of all gaining coalitions containing player i. We remark that
the concept of the gaining coalition in a general cooperative game is equivalent to
the concept of the winning coalition in a simple game. Furthermore, for any simple
game v, we have W (v) = GC(v).

5.1. PUBLIC HELP VALUE θ

Let us introduce an extension of the PHI θ into a general game, considering only the
payoffs from GCs.

Definition 5.6. The absolute Public Help value θ (or the KB value) of cooperative
game v for a player i ∈ N is given by θi(v) =

∑
S∈GCi

v(S) if a coalition S ⊆ N

exists such that v(S) > 0, otherwise θi(v) = 0.

We also propose the normalized (to the coalition payoff of grand coalition N ) version
of the PHV value.

Definition 5.7. The normalized Public Help value θ (or the KB value) of cooperative
game v for a player i ∈ N is given by θi(v) = θi(v)∑

j∈N θj(v)
v(N) if a coalition S ⊆ N

exists such thatv(S) > 0, otherwise θi(v) = 0.
Now, we prove that absolute and normalized Public Help values θ and θ satisfy

several properties. Namely, in Theorem 5.1, we prove that these values assign non-
negative payments to players. In Theorem 5.2, we show that the total gain v(N ) is
distributed by the normalized PHV θ. And finally, Theorem 5.3 states that θ and θ
are symmetric, which means that “symmetric” players received the same payment.

Theorem 5.1. For any cooperative game (v, N) and for any i ∈ N , we have θi(v) ≥ 0
and θi(v) ≥ 0.

Proof. Let (v, N ) be a cooperative game. If a coalition S ⊆ N : v(S) > 0 does not
exist, then directly from Definitions 5.6 and 5.7, we have θi(v) = θ(v) = 0. Otherwise,
if a coalition S ⊆ N exists such that v(S) > 0, then v(N) > 0, since v is a monotonic
game and either |GC| > 0 and |GCi| > 0 for any i ∈ N . Thus, for any i ∈ N , we
have θi(v) =

∑
S∈GCi

v(S) > 0 and θi(v) = θi(v)∑
j∈N θj(v)

v(N) > 0, which completes the

proof.

Theorem 5.2. For any cooperative game (v, N ), we have
∑
i∈N θi(v) = v(N).

Proof. Let (v, N ) be a cooperative game. If a coalition S ⊆ N exists such that v(S) > 0,
then v(N) > 0, since v is a monotonic game and either |GC| > 0 and |GCi| > 0 for any
i ∈ N . Thus, for any i ∈ N , we have

∑
i∈N θi(v) =

∑
i∈N

∑
S∈GCi

v(S)∑
j∈N

∑
S∈GCj

v(S)v(N) =

v(N)
∑

i∈N
∑

S∈GCi
v(S)∑

j∈N
∑

S∈GCj
v(S) = v(N). Otherwise, if a coalition S ⊆ N : v(S) > 0 does not

exist, then v(N) = 0, and from Definition 5.7, we see that θi(v) = 0 which completes
the proof.
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Theorem 5.3. For any cooperative game v, θi(v) = θπ(i)(π(v)) and θi(v) = θπ(i)(π(v))
for each i ∈ Nand all permutations π : N → N .

Proof. Let (v, N ) be a cooperative game, i be an arbitrary player, and π a permutation
on N. In case of a null game, we have that all players received zero (directly from
Definitions 5.6 and 5.7). Thus, the theorem holds. In case of a non-null game, we have:
θi(v) =

∑
S∈GCi

v(S) =
∑
S∈GCπ(i)

v(S) = θπ(i)(v) and θi(v) = θi(v)∑
j∈N θj(v)

v(N) =

θπ(i)(v)∑
π(j)∈N θπ(j)(v)

v(N) = θπ(i)(v).

5.2. PUBLIC HELP VALUE ξ

Let us introduce an extension of the PHI ξ into the general game. The Public Help
value ξ (PHV ξ ), like PHV θ , only regards payoffs from GCs.

Definition 5.8. The absolute Public Help value ξ of cooperative game v for a player
i ∈ N is given by ξi(v) =

∑
S∈GCi

v(S)
|S|2 if a coalition S ⊆ N exists such thatv(S) > 0,

otherwise ξi(v) = 0.

We also introduce the normalized (to the coalition payoff of grand coalition N ) version
of the PHV ξ value:

Definition 5.9. The normalized Public Help value ξ of cooperative game v for
a player i ∈ N is given by ξi(v) = v(N)∑

S∈GC
v(S)
|S|
ξi(v) if a coalition S ⊆ N exists such

that v(S) > 0, otherwise ξi(v) = 0.

We state and prove that the absolute and normalized PHVs ξ and ξ satisfy the
properties considered for θ and θ in Section 5.1. This means the extended values
ξ and ξ preserve not only non-negativity (Theorem 5.4), but also the symmetry
(Theorem 5.6).

Theorem 5.4. For any cooperative game v and for any i ∈ N , we have ξi(v) ≥ 0 and
ξi(v) ≥ 0.

Proof. Let (v, N ) be a cooperative game. If a coalition S ⊆ N : v(S) > 0 does not
exist, then we have ξi(v) = ξ(v) = 0 (directly from Definitions 5.8 and 5.9). Otherwise,
if a coalition S ⊆ N exists such that v(S) > 0, then v(N) > 0, since v is a monotonic
game and either |GC| > 0 and |GCi| > 0 for any i ∈ N . Thus, for any i ∈ N , we have
ξi(v) =

∑
S∈GCi

v(S)
|S|2 > 0 and ξi(v) = v(N)∑

S∈GC
v(S)
|S|

∑
S∈GC

v(S)
|S| > 0, which completes

the proof.

Theorem 5.5. For any cooperative game (v, N ), we have
∑
i∈N ξi(v) = v(N).
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Proof. Let (v, N ) be a cooperative game. If a coalition S ⊆ N exists such that v(S) > 0,
then v(N) > 0, since v is a monotonic game and either |GC| > 0 and |GCi| > 0 for
any i ∈ N .
Thus, for any i ∈ N , we have:

∑
i∈N

ξi(v) =
∑
i∈N

v(N)
∑
S∈GCi

v(S)
|S|2∑

S∈GC
v(S)
|S|

= v(N)

∑
i∈N

∑
S∈GCi

v(S)
|S|2∑

S∈GC
v(S)
|S|

= v(N)

∑
S∈GC |S|

v(S)
|S|2∑

S∈GC
v(S)
|S|

= v(N)

∑
S∈GC

v(S)
|S|∑

S∈GC
v(S)
|S|

= v(N)

Otherwise, if a coalition S ⊆ N : v(S) > 0 does not exist, then v(N) = 0; and from
Definition 5.9, we have that ξi(v) = 0, which completes the proof.

It is not difficult to prove that both values ξ and ξ allocate equal payments to
symmetric players (see Theorem 5.6).

Theorem 5.6. For any cooperative game v, ξi(v) = ξπ(i)(π(v)) and ξi(v) = ξπ(i)(π(v))
where (π(v))(S) = v(π−1(S)) for every i ∈ N and all permutations π : N → N .

Proof. Let (v, N ) be a cooperative game, i be an arbitrary player, and π a permutation
on N. In case of a null game, we see that all players received zero (directly from
definitions 5.8 and 5.9). Thus, the theorem holds. In case of a non-null game, we have:

ξi(v) =
∑

S∈GCi

v(S)

|S|2
=

∑
S∈GCπ(i)

v(S)

|S|2
= ξπ(i)(v)

and
ξi(W ) =

v(N)∑
S∈GC

1
|S|
ξi(v) =

v(N)∑
S∈GC

1
|S|
ξπ(i)(v) = ξπ(i)(v)

6. CONCLUSION AND FURTHER DEVELOPMENTS

In this paper, we analyzed from a different point of view some values and power indices
well-defined in the social context where the goods are public. We consider the Public
Good index (Holler, 1982), the Public Good value (Holler and Li, 1995), the Public Help
index (Bertini et al., 2008), the König and Bräuninger index (1998) (see also (Nevison
et al. 1978; Nevison, 1979)), and the Rae index (1969). The aims of this paper were as
follows: to propose an extension of the Public Help index to cooperative games; to
introduce a new power index with its extension to a game value; and to provide some
characterizations of the new index and values.

It is easy to see that the results shown in this paper are not exhaustive. As
developments can be many, we simply indicate that those may be of some interest (in
our humble opinion). Namely, the new index (PHI ξ) and two new values (PHV θ and
PHV ξ) introduced needed axiomatic derivations. Then, the algorithms for automatic
computation of new index and new values could be supplied. We suspect that Public
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Help indices θ and ξ satisfy the bloc property, but it is still an open problem. The
new power index could be compared to all of the other indices, taking into account
other properties; for example, those analyzed in (Felsenthal and Machover, 1998;
Bertini et al., 2013a, 2013b). Still, regarding ξ, it might be of some interest to analyze
its rankings and compare them with the rankings of other indices.

Last but not least, the new values and PHI indices could be extended to games
with a priori unions, with incompatibilities, with affinities, or with various probabilities
of coalition formation (see e.g., Fragnelli et al., 2009).
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APPENDIX

Here we present proof of the following identity:

n∑
k=1

k

(
n− 1
k − 1

)
= (n+ 1)2n−2 ∀n ≥ 2 (3)

The identity (3) can be proven starting with the binomial identity:

(1 + x)n =

n∑
k=0

(
n
k

)
xk for any real number x and n ≥ 1

.

Since
(
n
k

)
= n

k

(
n− 1
k − 1

)
for n ≥ k > 0, the above binomial identity can be rewrit-

ten as:

(1 + x)n = 1 + n

n∑
k=1

1

k

(
n− 1
k − 1

)
xk for any real number x (4)

Taking the derivative of the both parts of (4) with respect to x, we attain:

n(1 + x)n−1 = n

n∑
k=1

(
n− 1
k − 1

)
xk−1 (5)

Substituting 1 for x, we obtain the following identity:

n∑
k=1

(
n− 1
k − 1

)
= 2n−1 ∀n ≥ 2 (6)
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Now, taking the derivative of the both parts of (5) with respect to x, we attain

(n− 1)(1 + x)n−2 =
∑n
k=1(k − 1)

(
n− 1
k − 1

)
xk−2. Substituting 1 for x, we have:

(n− 1)2n−2 =

n∑
k=1

(k − 1)

(
n− 1
k − 1

)
(7)

From (7), we can calculate
∑n
k=1 k

(
n− 1
k − 1

)
; and using identity (6), we conclude:

n∑
k=1

k

(
n− 1
k − 1

)
= (n− 1)2n−2 +

n∑
k=1

(
n− 1
k − 1

)
= (n− 1)2n−2 + 2n−1 = (n+ 1)2n−2
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decide about the dosage of such elements, there is sometimes a primary interest for one effect
rather than another; more precisely, it may be of interest that the effects of an element are in
a certain proportion with respect to the effects of the other. It may also be necessary to take
into account minimum quantities that must be assigned.
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1. INTRODUCTION

Many decisions in various fields of application have to take into account the joint
effects of two elements that can interfere with each other. This happens, for example, in
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interest for one effect rather than another; more precisely, it may be of interest that the
effects of an element are in a certain proportion with respect to the effects of the other.
It may also be necessary to take into account the minimum quantities that should be
assigned.

In Carfì, Gambarelli and Uristani (2013), a mathematical model was proposed
to solve the above problem in its exact form. In this paper, we present a solution in
closed form for the case in which the function of the effects is bilinear.

In the next two sections, the problem will be defined in general terms. In Sections 4
and 5, the case of bilinear interference (free and truncated) will be dealt with. In the
following section, an algorithm will be presented for the direct calculation of solutions.
At the end, we shall provide some examples of application, and we shall indicate some
open problems.

1.1. LITERATURE REVIEW

D. Carfì (2010, 2012a) has introduced a new analytical methodology to examine
differentiable normal-form games. He and various collaborators have developed the
applicative aspects of the new methodology in several directions, such as Management,
Finance, Microeconomics, Macroeconomic, Green Economy, Financial Markets, In-
dustrial Organization, Project Financing and so on – see, for instance, Carfì and Fici
(2012), Carfì and Lanzafame (2013), Carfì, Magaudda and Schilirò (2010), Carfì and
Musolino (2015a, 2015b, 2014a, 2014b, 2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a,
2011b), Carfì, Patanè and Pellegrino (2011), Carfì and Perrone (2013, 2012a, 2012b,
2011a, 2011b, 2011c), Carfì and Pintaudi (2012), Carfì and Schilirò (2014a, 2014b,
2013, 2012a,2012b, 2012c, 2012d, 2011a, 2011b, 2011c), Carfì, Musolino, Ricciardello
and Schilirò (2012), Carfì, Musolino, Schilirò and Strati (2013), Carfì and Trunfio
(2011), Okura and Carfì (2014).

The methodology can suggest useful solutions to a specific Game Theory problem.
This analytical framework enables us to incorporate solutions designed “to share the
pie fairly”. The basic original definition we propose and apply for this methodology
is introduced also in Carfì and Schilirò (2014a, 2014b, 2013, 2012a, 2012b, 2012c,
2012d, 2011a, 2011b, 2011c) and Carfì (2012a, 2012b, 2010, 2009a, 2009b, 2009c,
2009d, 2009e, 2008). The method we use to study the payoff space of a normal-form
game is devisable in Carfì and Musolino (2015a, 2015b, 2014a, 2014b, 2013a, 2013b,
2013c, 2012a, 2012b, 2012c, 2011a, 2011b), and Carfì and Schilirò (2014a, 2014b, 2013,
2012a, 2012b, 2012c, 2012d, 2011a, 2011b, 2011c). Other important applications, of the
complete examination methodology, are introduced in Agreste, Carfì, and Ricciardello
(2012), Arthanari, Carfì and Musolino (2015), Baglieri, Carfì, and Dagnino (2012),
Carfì and Fici (2012), Carfì, Gambarelli and Uristani (2013), Carfì and Lanzafame
(2013), Carfì, Patanè, and Pellegrino (2011), Carfì and Romeo (2015). A complete
treatment of a normal-form game is presented and applied by Carfì (2012a, 2012b,
2010, 2009a, 2009b, 2009c, 2009e, 2008), Carfì and Musolino (2015a, 2015b, 2014a,
2014b, 2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a, 2011b), Carfì and Perrone
(2013, 2012a, 2012b, 2011a, 2011b, 2011c), Carfì and Ricciardello (2013a, 2013b, 2012a,
2012b, 2010, 2009) and Carfì and Schilirò (2014a, 2014b, 2013, 2012a,2012b, 2012c,
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2012d, 2011a, 2011b, 2011c). Carfì (2008) proposes a general definition and explains
the basic properties of Pareto boundary, which constitutes a fundamental element of
the complete analysis of a normal-form game.

2. DEFINITIONS

Let N = {1, 2} be a set of labels of the considered interfering elements (i.e., drugs,
commodities, and so on) and any related effects resulting from their use (e.g., curing
diseases, commodity demand, and so on). From here on, if not otherwise specified, the
use of the index “i ” will imply “for all i ∈ N ”, with an analogous use of the index “j”.

2.1. THE QUANTITIES

We denote the non-negative quantities of the i -th element as follows:

– Qi is the quantity effectively used;
– Qimax is the optimal quantity if the i -th element is used alone;
– Qimin is the minimum necessary quantity if the i -th element is used alone;
– qiand qimin are the corresponding ratios with respect to Qimax:

• qi = Qi/Qimax,
• qimin = Qimin/Qimax.

We call Q, Qmax, Qmin, q, and qmin the corresponding n-vectors.
It is assumed that Qimin < Qimax and Qimin ≤ Qi ≤ Qimax. Given such conditions,

qiandqimin belong to the interval [0,1].

2.2. THE EFFECTS

Let ei(q) be a non-negative function expressing the level of the i -th effect when percent
quantities q are used. The space of the effects is the set of points x = (x 1,..., xn) = e(q)
according to variations of q. This function should satisfy the conditions that follow.

If no elements are used, then all of the effects are null. If a single element is
employed in the optimal dose for use alone, then the level of the relative effect is 1,
while the level of the effect for the other is null. Finally, if both elements are employed
in the optimal doses for use alone, the resulting effects are given by vector δ = (δ1, δ2)
with real positive components. In formulae:

– if q1= q2= 0, then e1= e2= 0;
– if q1= 0 and q2= 1, then e1= 0 and e2= 1;
– if q1= 1 and q2= 0, then e1= 1 and e2= 0;
– if q1= q2= 1, then e1= δ1 and e2= δ2.

See Figure 1 as an example of an effect’s function.
Without loss of generality, we may place the elements in order so that:

δ1 ≤ δ2. (1)
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Fig. 1. Strategy space and payoff space of the game, for n = 2

The effectfunction can be defined directly, according to the faced problem, or can
be constructed on the basis of the study cases, using statistical methods and applying
suitable adjustments of scale, in order to respect all of the above conditions. In this
paper, we study the case in which this function is bilinear: free (Section 4) or truncated
(Section 5).

2.3. QUANTITIES AND MINIMUM EFFECTS

We use emin
i to indicate the minimum necessary level of the i -th effect. This level is

derived from the function ei(q) given qi = qmin
i and qj = 0 for the other component

j 6= i. We use emin to indicate the related 2-dimensional vector.
We assume the minimum necessary level of the i -th effect should not exceed 1 (if

δi ≤ 1) or δi(elsewhere). Thus:

emin
i ≤ max{1, δi} (2)

2.4. THE REQUIRED OPTIMAL RATIOS

We use r to indicate the required optimal ratio between the effects e1 and e2. We
call R the half-line centered on the origin, the inclination of which is r. For each point x
of the feasible set, we use E to indicate the half-line centered on the origin, passing
through x.

2.5. THE FEASIBLE PARETO OPTIMAL BOUNDARY

We shall call each point x of the codomain of e which is not jointly improvable a Pareto
optimal effect, in the sense that if we move from that point in this set to improve the
i-th effect, then the other effect necessarily decreases. It is easy to prove that, even
here, every Pareto optimal point is a boundary point of the set of effects; we shall,
therefore, call the set of Pareto optimal effects the Pareto optimal boundary.

The term feasible Pareto optimal boundary P is given to the set of the points of
the Pareto optimal boundary respecting the conditions xi≥ emin

i for all i∈N.
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3. THE OPTIMIZATION PROBLEM

3.1. THE DATA

The input data of the model is δ, emin , r and the option on the type of bilinear
function (free or truncated).

In some applications, we do not directly know the minimal effect eimin for some
element i, while we know the necessary minimal and optimal quantities Qimin and
Qimax. It is thus possible to deduce qimin, which, introduced into the equation ei(q),
gives eimin (as indicated in Section 2.3).

3.2. THE OBJECTIVE

The problem is to find the set of quantity-vectors q* such that the corresponding effect
vectors e(q*) belong to the feasible Pareto optimal boundary and are such that the
half-lines that join them to the origin form a minimum angle with R.

3.3. EXISTENCE AND UNIQUENESS

If the necessary minimum effects are excessive as a whole, the feasible set is empty;
therefore, the problem is without solution. However, for those cases where determining
the minimum quantities is open to variations, we have introduced certain indications
as to modifications to be used each time. Solution uniqueness is not guaranteed in
general, but the various different solutions produce the same effects (payoffs).

3.4. SOLUTION METHODS

Determining the optimal combination of q depends clearly on the form of the effects
function e(q). Below, we shall present the solutions for free bilinear functions (Section 4)
and for truncated bilinear functions (Section 5) providing closed form formulae and
geometrical descriptions. For what concerns cases in which the effect functions are of
different types, we refer to Carfì et al. (2013).

4. FREE BILINEAR CASE

In such cases, the function e(q) of each effect is defined as follows:

e1 = q1(1− q2) + q1q2qδ1

e2 = (1− q1)q2 + q1q2δ2

The problem of minimizing the angle between R and E is defined as:

min
q1,q2

∣∣∣∣e2e1 − r
∣∣∣∣

We shall examine the various types of interference separately, varying the values of δ
under the constraint (1).
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We shall represent such types as graphs with corresponding numbers. In each
of these graphs, the grey portion indicates the area in which δ can vary, while the
bold line indicates the feasible Pareto optimal boundary.

We shall then give the solutions along with the relative steps for achieving them
in the corresponding tables.

4.1. TYPE 1 (INDEPENDENT OR SYNERGIC ELEMENTS)

This type can be either δ1 = δ2 = 1 (independent elements) or δ1 > 1, δ2 ≥ 1 (synergic
elements) and is illustrated in Figure 2.
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min
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min
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Fig. 2. n = 2, case 1 (independent or synergic elements)

The set of effects is represented by the quadrangle having vertices (0, 0), (0, 1),
(1, 0), and (δ1, δ2). The feasible Pareto optimal boundary is made up of the single
point δ. The input condition (2) guarantees the existence of the solution, given in
Table 1.

Table 1. The optimal solution in type 1

values

optimal effects x∗= (δ1, δ2)

optimal quantities q1 = 1,q2 = 1

4.2. TYPE 2 (PARTIALLY SYNERGIC
AND PARTIALLY ANTAGONISTIC ELEMENTS)

This is the case δ1+ δ2 > 1, δ1 ≥ 1, δ2 < 1. It is illustrated in Figure 3.
The set of effects is described by the quadrangle having vertices (0, 0), (0, 1),

(1, 0), and (δ1, δ2).
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Fig. 3. n = 2, case 2 (partially synergic and partially antagonistic elements)

In order to simplify the notations, we define:

a1 = max(0, emin
1 )

b1 = min

(
δ1,

δ1

δ2 − 1
(emin

2 − 1)

)
The existence of a solution requires, besides (2), the additional condition:

emin
1 ≤ b1

This condition results in a1≤ b1 and not-emptiness of the feasible Pareto optimal
boundary. This boundary is the set of points (x1, x2) such that

x1 ∈ [a1, b1]

x2 =
δ2 − 1

δ1
x1 + 1

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 as follows:

– by fixing emin
2 , we can use emin

1 = δ1

δ2−1 (emin
2 − 1);

– by fixing emin
1 , we can use emin

2 = δ2−1
δ1

emin
1 + 1.

Other ways are also open, if both emin
1 and emin

2 are modified. The solution is given
in the final row of Table 2.



34 D. Carfì, G. Gambarelli

Table 2. The optimal solution in type 2

existence
condition emin

1 ≤ min

(
δ1,

δ1

δ2 − 1
(emin

2 − 1)

)
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

(
emin
1 ,

δ2 − 1

δ1
emin
1 + 1

)
R = (R1, R2) =

(
δ1

δ2 − 1
(max

(
δ2, e

min
2

)
− 1), max

(
δ2, e

min
2

))
optimal
effects

L2/L1 ≤ r ≤ R2/R1 x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

optimal
solution

L2/L1 ≤ r ≤ R2/R1 q∗1 = 1/(rδ1 − δ2 + 1)
q∗2 = 1

r > L2/L1 q∗1 = emin
1 /δ1

q∗2 = 1

r < R2/R1 q∗1 =
max

(
δ2, e

min
2

)
− 1

δ2 − 1
q∗2 = 1

4.3. TYPE 3 (WEAKLY ANTAGONISTIC ELEMENTS)

With this type, we have δ1+ δ2≥ 1, δ1 < 1, δ2 < 1. This is illustrated in Figure 4.
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Fig. 4. n = 2, case 3 (weakly antagonist elements)
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The set of effects is represented by the quadrangle having vertices (0, 0), (0, 1),
(1, 0) and (δ1, δ2).

In order to simplify the notations, we define:

a1 = max(0, emin
1 ),

b1 = min(δ1,
δ1

δ2−1 (emin
2 − 1))

a2 = max(δ1, e
min
1 ),

b2 = min(1, (δ1−1)
δ2

emin
2 + 1)

The existence of a solution requires, besides (2), the additional condition:

emin
1 ≤ max (b1, b2)

This condition results in a1≤ b1 e a2≤ b2 and the feasible Pareto optimal boundary
is not empty. This boundary is the set of points (x1, x2) given byR1

⋃
R2, where:

R1 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
(δ2 − 1)

δ1
x1 + 1

x1 ∈ [a1, b1]


∅

if emin
1 ≤ δ1

otherwise

and

R2 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
δ2

(δ1 − 1)
(x1 − 1)

x1 ∈ [a2, b2]


∅

if emin
2 ≤ δ2

otherwise

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 as follows:

– by fixing emin
2 , we can use

emin
1 = max

(
δ1

δ2 − 1
(emin

2 − 1),
δ1 − 1

δ2
emin
2 + 1

)
;

– by fixing emin
1 , we can use

emin
2 = min

(
δ2 − 1

δ1
emin
1 + 1,

δ2

δ1 − 1
(emin

1 − 1)

)
;

Other ways are also open, if both emin
1 and emin

2 are modified. The solution is given in
the final row of Table 3.
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Table 3. The optimal solution in type 3

existence
condition emin

1 ≤ max

(
min

(
δ1,

δ1

(δ2 − 1)
(emin

2 − 1)

)
,min

(
1,

(δ1 − 1)

δ2
emin
2 + 1

))
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

 emin
1 ,

(
δ2 − 1

δ1
emin
1 + 1

)
χ
(
emin
1 ≤ δ1

)
+

+

(
δ2

δ1 − 1
(emin

1 − 1)

)
χ
(
emin
1 > δ1

)


R = (R1, R2) =


(
δ1 − 1

δ2
emin
2 + 1

)
χ
(
emin
2 ≤ δ2

)
+

+

(
δ1

δ2 − 1
(emin

2 − 1)

)
χ
(
emin
2 > δ2

)
, emin

2


optimal
effects

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

δ2/δ1 ≤ r ≤ L2/L1 x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

R2/R1 ≤ r ≤ δ2/δ1 x∗ = (w1, w2)
w1 = −δ2/(rδ1 − r − δ2)
w2 = rw1

optimal
quantities

r > L2/L1 q∗1 =
emin
1
δ1
χ
(
emin
1 ≤ δ1

)
+ χ

(
emin
1 > δ1

)
q∗2 =

= χ
(
emin
1 ≤ δ1

)
+

emin
1 −1

δ1−1
χ
(
emin
1 > δ1

)
r < R2/R1 q∗1 = 1

q∗2 =
emin
2
δ2
χ
(
emin
2 ≤ δ2

)
+

emin
2

1−δ1
χ
(
emin
2 > δ2

)
δ2/δ1 ≤ r ≤ L2/L1 q∗1 =

1

rδ1 + 1− δ2
q∗2 = 1

R2/R1 ≤ r ≤ δ2/δ1 q∗1 = 1

q∗2 = − r

rδ1 − δ2 − r

4.4. TYPE 4 (STRONGLY ANTAGONISTIC ELEMENTS)

This is the case δ1 + δ2 < 1. This is illustrated in Figure 5.
It may be deduced from Carfì (2009e, pages 42–44) that the set of effects is the

pseudo-triangle with vertices (0, 0), (0, 1), and (1, 0), delimited at North-East by the
curve now to be defined. Having called δ

′

1 = 1− δ1 and δ
′

2 = 1− δ2, the resulting line
is the union of:

– the segment of extremes (0, 1) and H = (H 1, H 2) = (δ21/δ
′

2,δ
′

1),
– the segment of extremes (1, 0) and K = (K 1, placeK 2) = (δ

′

2,δ22/δ
′

1),
– the section of the curve between H and K, having equation x2 = (1−

√
δ
′
2x1)2/δ

′

1
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Fig. 5. n = 2, case 4 (strongly antagonist elements)

Remark. For other examples of similar calculations, we suggest to read the papers
by Carfì and Schilirò (2014a, 2014b, 2013, 2012a, 2012b, 2012c, 2012d, 2011a, 2011b,
2011c) and by Carfì (2012a, 2012b, 2010, 2009a, 2009b, 2009c, 2009d, 2009e, 2008);
the interested readers could also see Carfì and Musolino (2015a, 2015b, 2014a, 2014b,
2013a, 2013b, 2013c, 2012a, 2012b, 2012c, 2011a, 2011b). Other important applications,
of the complete examination methodology, are shown in Agreste, Carfì, and Ricciardello
(2012), Arthanari, Carfì and Musolino (2015), Baglieri, Carfì, and Dagnino (2012),
Carfì and Fici (2012), Carfì, Gambarelli and Uristani (2013), Carfì and Lanzafame
(2013), Carfì, Patanè, and Pellegrino (2011), Carfì and Romeo (2015).

Note that H belongs to the segment connecting (0, 1) and (δ1, δ2), and K belongs
to the segment connecting (1, 0) and (δ1, δ2); then H1 ≤ δ1 and H2 ≤ δ2.

In order to simplify the notations, we define:

a1 = max(0, emin
1 ),

b1 = min
(
H1,

δ1

(δ2−1) (e
min
2 − 1)

)
a2 = max(K1, e

min
1 ),

b2 = min
(

1, (δ1−1)
δ2

emin
2 + 1

)
a3 = max(H1, e

min
1 ),

b3 = min
(
K1,

(
1−
√

(1−δ1)emin
2

)2
1−δ2

)
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The existence of a solution requires, besides (2), the additional condition

emin
1 ≤ max (b1, b2, b3)

This condition results in a1≤ b1, a2≤ b2, and a3≤ b3. In this case, the feasible
Pareto optimal boundary is not empty. This boundary is the set of points (x1, x2)
given byR1

⋃
R2

⋃
R3, where:

R1 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
(δ2 − 1)

δ1
x1 + 1

x1 ∈ [a1, b1]


∅

if emin
1 ≤ H1

otherwise

and

R2 =



x = (x1, x2)

∣∣∣∣∣∣x2 =
δ2

(δ1 − 1)
(x1 − 1)

x1 ∈ [a2, b2]


∅

if emin
2 ≤ K2

otherwise

and

R3 =



x = (x1, x2)

∣∣∣∣∣∣∣x2 =

(
1−
√

(1− δ2)x1

)2
1− δ1

x1 ∈ [a3, b3]


∅

if K2 ≤ emin
2 ≤ H2

and H1 ≤ emin
1 ≤ K1

otherwise

In the event of no solution, the existence of one may be brought about by modifying
emin
1 and/or emin

2 in a way analogous to the previous cases:

– by fixing emin
2 , we can use

emin
1 = max

(
δ1

δ2 − 1
(emin

2 − 1),
(δ1 − 1)

δ2
emin
2 + 1,

(1−
√

(1−δ1)emin
2 )2

1− δ2

)
;

– by fixing emin
1 , we can use

emin
2 = min

(
δ2 − 1

δ1
emin
1 + 1,

δ2

δ1 − 1
(emin

1 − 1),
(1−

√
(1−δ2)emin

1 )2

1− δ1

)
;

Intermediate solutions are also possible, in which both emin
i are modified. The solution

is given in the final row of Table 4.
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Table 4. The optimal solution in type 4

existence
condition

emin
1 ≤ max


min

(
H1,

δ1
(δ2−1)

(emin
2 − 1)

)
,

min
(
1,

(δ1−1)
δ2

emin
2 + 1

)
,min

K1,

(
1−
√

(1− δ1)emin
2

)2
1− δ2




extremes of
the feasible
P.O.
boundary

L = (L1, L2) =



emin
1 ,(
δ2 − 1

δ1
emin
1 + 1

)
χ
(
emin
1 ≤ H1

)
+

(
δ2

δ1 − 1
(emin

1 − 1)

)
χ
(
emin
1 ≥ K1

)
+

 (1−
√

(1−δ2)emin
1 )2

1− δ1

 χ (K1 < emin
1 < H1

)



R = (R1, R2) =



(
δ1 − 1

δ2
emin
2 + 1

)
χ
(
emin
2 ≤ K2

)
+

(
δ1

δ2 − 1
(emin

2 − 1)

)
χ
(
emin
2 ≥ H2

)
+

(
1−

√
(1−δ1)emin

2

)2
1− δ2

χ
(
K2 < emin

2 < H2

)
,

emin
2


optimal
effects

r ≥ L2/L1 x∗ = L

r ≤ R2/R1 x∗ = R

r ≥ H2/H1

r < L2/L1

r > R2/R1

x∗= (w1, w2)
w1 = δ1/(rδ1 − δ2 + 1)
w2 = rw1

H2/H1 ≤ r ≤
K2/K1

r < L2/L1

r > R2/R1

x∗ = (w1, w2)

w1 =

(
2((1− δ2) + r(1− δ1))− 2

√
ξ

2((1− δ2) + r(1− δ1))2

)
w2= rw1

where
ξ =

√
r(δ1 − 1)(δ2 − 1)

r ≤ K2/K1

r < L2/L1

r > R2/R1

x∗= (w1, w2)

w1=
(

δ2

δ2 + r(1− δ1)

)
w2 = rw1

optimal
quantities

r ≥ L2/L1 q∗1 =

(
emin
1

δ1

)
χ
(
emin
1 ≤ H1

)
+ χ

(
emin
1 ≥ K1

)
+

(
(emin

1 (δ2−1) + η

η(δ1 − 1)

)
χ
(
H1 < emin

1 < K1

)
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Table 4. cont.

optimal
quantities

r ≥ L2/L1 q∗2 = χ
(
emin
1 ≤ H1

)
+

(
emin
1 − 1

δ1 − 1

)
χ
(
emin
1 ≥ K1

)
+

(
η

1− δ2

)
χ
(
H1 < emin

1 < K1

)
where

η =
√
emin
1 (1− δ2)

r ≤ R2/R1 q∗1 = χ
(
emin
2 ≤ K2

)
+

(
emin
2 − 1

δ2 − 1

)
χ
(
emin
2 ≥ H2

)
+

−
(
θ+ emin

2 (δ1 − 1)

θ(δ2 − 1)

)
χ
(
K2 < emin

2 < H2

)
q∗2 =

(
emin
2

δ2

)
χ
(
emin
2 ≤ K2

)
+ χ

(
emin
2 ≥ H2

)
+

+

(
θ

1− δ1

)
χ
(
K2 < emin

2 < H2

)
where

θ =
√
emin
2 (1− δ1)

r ≥ H2/H1

r < L2/L1

r > R2/R1

q∗1 = −
δ1 − 1

2(δ2 − 1)2
√

(δ1 − 1)/(δ2 − 1)

q∗2 = −
δ2 − 1

2(δ1 − 1)2
√

(δ2 − 1)/(δ1 − 1)

H2/H1 ≤ r ≤
K2/K1

r < L2/L1

r > R2/R1

If δ1 = δ2

q∗1 = −
(
1

2

1√
(δ2 − 1)/(δ1 − 1)

δ2 − 1

(δ1 − 1)2

)

q∗2 = −
(
1

2

1√
(δ1 − 1)/(δ2 − 1)

δ1 − 1

(δ2 − 1)2

)
otherwise

q∗1 = −
(

δ1 − 1 + ξ

(δ1 − 1)(δ1 − δ2)

)
q∗2 = −

(
δ2 − 1 + ξ

(δ2 − 1)(δ1 − δ2)

)
where
ξ =

√
(δ1 − 1)(δ2 − 1)

r ≤ K2/K1

r < L2/L1

r > R2/R1

q∗1 = 1

q∗2 = −
r

rδ1 − δ2 − r

5. TRUNCATED BILINEAR CASE

These cases involve situations in which the effects (beyond a certain maximum level)
fall to zero. The symbol χ will be used in the text to denote the indicator function; i.e.,

χ (condition) =

{
1

0

if the condition is satisfied

if the condition is not satisfied
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Using the above symbol, we can define the effect-function e(q) of truncated bilinear
cases as follows:

e1 = χ(q1(1− q2) + q1q2δ1 ≤ 1)[q1(1− q2) + q1q2δ1]

e2 = χ(q2(1− q1) + q1q2δ2 ≤ 1)[(1− q1)q2 + q1q2δ2]

5.1. TYPE 1 TRUNCATED (INDEPENDENT OR SYNERGIC ELEMENTS)

This type corresponds either to (δ1 = δ2 = 1) or (δ1 > 1, δ2 ≥ 1). This is illustrated
in Figure 6.

22 

 

(0,1) 

(1,0) (0,0) 

           (δ1, δ2) 
x2 

x1 

min

1e  

min

2e  

Fig. 6. n = 2, case 1 (independent or synergic elements)

The set of effects is the quadrangle having vertices (0, 0), (0, 1), (1, 0), and
(δ1, δ2). The feasible Pareto optimal boundary is made up of the single point (1, 1).
Therefore, x 1 = x 2 = 1.

The input condition (2) guarantees the existence of the solution, which is given
in Table 5.

Table 5. the optimal solution in type 1T

δ1 = δ2 = 1 δ1 > 1 δ2 = 1 otherwise

optimal effects x∗ = (1, 1) x∗ = (1, 1) x∗ = (1, 1)

optimal
quantities

q1 =
1

δ1
q2 = 1

q1 = 1
q2 = 1

q1 =
1

1 + q2(δ2 − 1)

q2 =

√
κ2 − κ+ 4(δ1 − 1)

2(δ1 − 1)
κ = (1− (δ1 − 1) + (δ2 − 1))
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5.2. TYPE 2 TRUNCATED (PARTIALLY SYNERGIC
AND PARTIALLY ANTAGONISTIC ELEMENTS)

This is the case δ1 + δ2 > 1, δ1 ≥ 1, δ2 < 1. This is illustrated in Figure 7.

23 

 

(0,1) 

(1,0)   (0,0) 

x2 

x1 

(δ1, δ2)  

min

1e  

min

2e  

Fig. 7. n = 2, case 2 (partially synergic and partially antagonistic elements)

The set of effects is the quadrangle having vertices (0, 0), (0, 1), (1, 0), and
(δ1, δ2). Although it is analogous to Type 2 in the case given in the previous paragraph,
the effects cannot exceed the value of 1 in this case.

In order to simplify the notation, we define:

a1 = max (0, emin
1 )

b1 = min

(
1,

δ1

δ2 − 1
(emin

2 − 1)

)
Using the above notations, the conditions for the existence of a solution, calcula-

tions, and all related considerations are the same as those for Section 4.2. The solution
is given in the final row of Table 6.

Table 6. The optimal solution in type 2T

existence
condition

emin
1 ≤ min

(
1,

δ1

δ2 − 1
(emin

2 − 1)

)
extremes of
the feasible
P.O.
boundary

L = (L1, L2) =

(
emin
1 ,

δ2 − 1

δ1
emin
1 + 1

)

R =

(
δ1

δ2 − 1

(
max

(
δ2 − 1

δ1
+ 1, emin

2

)
− 1

)
, max

(
δ2 − 1

δ1
+ 1, emin

2

))
optimal
effects

L2/L1 ≤ r ≤
R2/R1

x∗ = (w1, w2)
w1 = δ1/(rδ1 − δ+ 1)
w2 = rw1
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Table 6. cont.

r > L2/L1 x∗ = L

r < R2/R1 x∗ = R

optimal
solution

L2/L1 ≤ r ≤
R2/R1

q∗1 = 1/(rδ1 − δ2 + 1)
q∗2 = 1

r > L2/L1 q∗1 = emin
1 /δ1

q∗2 = 1

r < R2/R1 δ1= 1 q∗1 = R1

q∗2 = 1

δ1 >
1 q∗1 =

δ1
δ2−1

max
(

δ2−1
δ1

+ 1, emin
2

)
− 1

1 + q2(δ1 − 1)

q∗2 =
(δ1 − ϑ− 1) +

√
(δ1 − ϑ− 1)2 + 4ϑ(δ1 − 1)

2(δ1 − 1)

ϑ = max

(
δ2 − 1

δ1
+ 1, emin

2

)

5.3. TYPES 3 AND 4 TRUNCATED

Types 3 and 4 truncated are the same as those of the bilinear free case. We therefore
refer the reader to the considerations given in Sections 4.3 and 4.4.

6. AN ALGORITHM

The input data is δ, emin, and the option free-truncated function.
We begin by acquiring the data and by doublechecking the conditions required in

Section 2.
With regard to r, it is quite possible that the user is unable to determine this

a priori, and it is therefore useful to supply the user with an interval of variability
r_int to allow this parameter to be established.

The algorithm proceeds using the tables given in Sections 4 and 5. If a feasible
solution is reached, the process stops. Otherwise, the user has to be informed that
e1min and/or e2min are too binding and should be modified, giving suitable indications
for doing this.

A definitive calculation can now be made and the results communicated.

7. SOME APPLICATIONS

In Industrial Economics, finding the optimal quantities of goods to be produced is
a well-known problem. Some goods may be complementary or substitutes; hence, their
demands may influence each other. If the same firm produces such kinds of goods,
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it is profitable to optimally decide the production quantities of each product. This
decision also depends on the willingness of the decision-maker to potentially sacrifice
part of the demand of one product. This willingness to cannibalize a product depends
on various factors, examples being the future market situation of the two products
and a company’s desire to place itself at a strategic advantage in an emerging market
(for a detailed analysis of the factors influencing the willingness to cannibalize, see
Chandy et al., 1998; Nijssen et al., 2004 and Battaggion et al., 2009).

The model can be used analogously in Public Economics to calibrate two differing
economic policies that are interfering with each other.

In Medicine and Veterinarian practice, the balance of interfering drugs is usually
performed by successive approximations, keeping the patient monitored.

Finally, further applications can be seen in Zootechnics (to optimize diets),
in Agriculture (to calculate dosages of parasiticides or additives so as to increase
production), and so on.

8. SOME OPEN PROBLEMS

Figure 8 shows a graph corresponding to Figure 1 for the case n = 3. Working with
graphic methods (as in this paper) is more difficult in the case of multilinear functions,
but not impossible.

21 

 

q1 

q2 

q3 

x1 

x2 

x3 

Fig. 8. n = 3

Further studies could apply this technique to Cooperative Game Theory, where
bilinear functions are often applied (see Fragnelli and Gambarelli, 2013a, 2013b).
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Allocating Pooled Inventory According
to Contributions and Entitlements
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Abstract. Inventory pooling, whether by centralization of stock or by mutual assistance, is
known to be beneficial when demands are uncertain. But when the retailers are independent,
the question is how to divide the benefits of pooling. e consider a decentralized inventory-
pooling scheme where a retailer’s entitlements to the allocation during a shortage depend
on his/her contributions to the pool. We derive the Nash equilibrium and specialize it to
symmetric cases.
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1. INTRODUCTION

Inventory pooling in a decentralized system raises the issue of how to divide benefits
among the parties, which is typically done using concepts from cooperative games
(e.g., Gerchak and Gupta 1991; Hartman et al., 2000; Müller et al., 2002; Montruc-
chio et al., 2012); In particular, if the before-pooling optimal expected profits are
π∗1 (q∗1)and π∗2 (q∗2), and the optimal expected profit after pooling is π∗ (q∗), the gain,
π∗ (q∗)−π∗1 (q∗1)−π∗2 (q∗2) could be divided proportionally to π∗1 (q∗1) and π∗2 (q∗2). That
allocation can be shown to belong to the (non-empty) core. We propose a very different
“operational” non-cooperative scheme according to which the parties have entitlements
that are increasing functions of their contributions to the pool rather than a typical
division of benefits. The idea was proposed by Ben-Zvi and Gerchak (2012, sec. 11.5);
but here, we analyze the consequences of a somewhat-modified scheme. The scheme
can be shown to be beneficial to all parties vis-á-vis a no-pooling situation, namely is
in core.

The scheme works as follows: each party (e.g., retailer) contributes a quantity of
its choice to the pool. There is no inventory at the retailers’ locales. The choice of
these quantities is simultaneous. If the quantity of pooled inventory is not sufficient to
∗ Tel Aviv University, Department of Industrial Engineering, Israel, e-mail: yigal@post.tau.ac.il
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meet all realized demands, a retailer whose contribution exceeds its demand receives
an allocation equal to its demand. The other retailer (whose demand exceeds its
contribution) receives the rest of the inventory. If both demands exceed the respective
contributions, each retailer receives its contribution. The scheme can be shown to be
beneficial for all parties vis-ŕ-vis a no-pooling scenario. Mathematically (but not in
type of motivations), our model is related to Shao et al. (2011).

The simultaneous selection of quantities to contribute to the pool is a non-
cooperative game. In a symmetric scenario (unit cost, revenue, demand distributions),
we solve directly for the (common) order quantity. We provide an example.

2. GENERAL MODEL

Let ri be the unit revenue and ci unit production cost of party i, ri > ci∀i. The
distributions of the independent demands, X1 and X2, are F1 and F2. The parties are
simultaneously looking for their best contribution quantities q1 and q2. The actual
allocations to the parties as a function of demand realizations (x1, x2)are denoted by
a1 and a2.

The policy (contract) is as follows.
If xi ≤ qi, then ai = xi;
if, in addition, xj ≤ qj then aj = xj ;
if xj > qj and xi + xj ≤ qi + qj , then aj = xj ;
if xj > qj and xi + xj > qi + qj , then aj = qi + qj − xi (≤ xj). [This is the

case where inventory pooling helps party j].
If xi > qi and xj > qj , then ai = qi and aj = qj . ‖
So party i′s expected profit is:

Ei = −ciqi + ri

{ qi∫
xi=0

xi

qj∫
xj=0

fi (xi) fj (xj) dxjdxi

+

qi+qj∫
xi=qi

qi+qj−xi∫
xj=0

xifi (xi) fj (xj) dxjdxi

+

qi+qj∫
xi=qi

qj∫
xj=qi+qj−xi

(qi + qj − xj) fj (xj) fi (xi) dxjdxi

+

∞∫
xi=qi+qj

qj∫
xj=0

(qi + qj − xj) fj (xj) fi (xi) dxjdxi

+

∞∫
xi=qi

∞∫
xj=qj

qifi (xi) fj (xj) dxjdxi

}
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so:

dEi/dqi = −ci + ri

{
2F j (qj)F i (qi)− qifi (qi)F j (qj)

+ qjFj (qj)− qifj (qj)Fi (qi + qj)

+

qi+qj∫
xi=qj

Fj (qi + qj − xi) dxi + Fj (qj)F i (qi + qj)− qifj (qj)

}

Note that Ei is an explicit function of only ci and ri. On the other hand, it depends
on both Fi and Fj .

In the symmetric case (c1 = c2 ≡ c, r1 = r2 ≡ r), F1 = F2 ≡ F , where we will
look for a symmetric equilibrium, q1 = q2 ≡ q, we have (r > c)

dE/dq = −c+ r

{
2
[
F (q)

]2 − qf(q)F (q) + qF (q)− qf(q)F (2q)

+ F (q)F (2q)− qf(q) +

2q∫
q

F (2q − x)dx

}
dE/dq|q=0 = −c+ 2r > 0⇒ q∗ > 0

3. UNIFORMLY DISTRIBUTED DEMANDS

Here X ∼ U [0, 1], so 0 ≤ q ≤ 1.
If q ≤ 1

2 , the optimality condition becomes:

−c+ r
(
−3q2 − 3q + 2

)
= 0

i.e., 3q2 + 6q − 4 + 2c
r = 0.

So:

q∗ = 1−

√
21− 6c

r

3

(
<

1

2

)
.

If q > 1
2 , the optimality condition becomes:

−c+ r

(
9

2
q2 − 7q + 2

)
= 0

i.e., q2 − 14q + 4− 2c
r = 0

⇒ q∗∗ = 7−
√

45 +
2c

r

However, q∗∗ < 1
2 . Thus, the solution in this range is either boundary q = 1

2 or q = 1.
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4. CONCLUDING REMARKS

In partnerships, the partners’ entitlements to profits are often based on their ownership
shares. We use a similar philosophy in allocating scarce inventories. That translates to
a non-cooperative game.

Issues that were not explored in this context but might be of interest include:
1) Non-Linear productions costs (Gerchak and Schwarz, 2014).
2) Holding some inventory at the retailers’ locales ("partial pooling"), possibly with

transshipment costs from the pool.
3) More insight into the case of non-symmetric parameters.
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Abstract. Recently, in some negotiation application areas, the usual assumption that negotia-
tors are symmetric has been relaxed. In particular, weights have been introduced to the Nash
Bargaining Solution to reflect the different powers of the players. Yet, we feel that operating
with non-symmetric bargaining solutions and their implications is not well understood. We
analyze the properties and optimization of the non-symmetric Nash Bargaining Solution and
of a non-symmetric Kalai–Smorodinsky Bargaining Solution. We provide extensive compara-
tive statics, then comment on the implications of the concepts in supply chain coordination
contexts.
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1. INTRODUCTION

The original Nash Bargaining Solution (NBS) is symmetric in the excesses of the
players’ utilities over their disagreement utilities. Thus, bargainers are envisioned to
be on “equal footing.” In an attempt to give one player a “priority” over the other(s),
Kalai (1977) axiomatized and presented the non-symmetric NBS (NSNBS). It uses
different powers of the excesses over the disagreement values, summing to one. While
Kalai (1977) and others explored the axiomatics of the NSNBS, its optimization and
economic implications have not been fully explored. As the NSNBS is being recently
used in various supply chain settings (Nagarajan and Sosic, 2008; Wu et al., 2009;
Mantin et al., 2014), it is important that the SCM and other communities that use such
bargaining models will know their general properties. We also consider a lesser-known,
non-symmetric version of the Kalai–Smorodinsky solution, where the excesses of the
ideal point over the disagreement point are taken to differing powers (Durba, 2001).
We then discuss the uses of these concepts in Supply Chain settings.
∗ Tel Aviv University, Department of Industrial Engineering, Israel, e-mail: yigal@post.tau.ac.il
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2. NBS ANALYSIS

The non-symmetric, two-player NBS is the solution of the maximization problem:

max
A

f (A) ≡ (A− x)
α

(K −A− y)
1−α

, 0 ≤ α ≤ 1, A ≥ x,K ≥ x+ y,

where K is the quantity of the resource to be divided (the first player receives A) and x
and y are the respective disagreement values. Note that for A = x or A = K−y, f = 0.
The parameter α reflects the relative priority (power) of the first player. When α = 0.5,
one obtains the symmetric NBS. Now:

∂f/∂A = (A− x)
α−1

(K −A− y)
−α [

α (K − x− y ) − (A− x)
]

so:

∂2f
/
∂A2 = (A− x) α−2 (K −A− y)

−α−1
{
α (α− 1) (K −A− y)

2

+ α2
(

(K − x− y) (A− x) − α (A− x)
2
)
− α (A− x) (K −A− y)

}
the sign of which is that of (α− 1) (K −A− y)

2 − α (A− x) which is negative since
0 ≤ α ≤ 1.

Thus, the function is concave in A.
Now:

∂f/∂A = 0⇔ the only relevant solution is A∗ = α (K − y − x) + x

Note that A∗ linearly increases inα, which is intuitive, as α signifies the power of the
first player. It also linearly increases in x and linearly decreases in y. When a player
has a large “fallback” position, he will have to be “compensated” more.

A more-general scenario is where if one player gets A, the other gets g(A), where
g′ < 0 and g′′ < 0. Thus, although what is left for the second player is decreasing in
the first’s use, that impact is decreasing. So, the objective becomes:

max
A

h(A) ≡ (A− x)
α

[g (A)− y]
1−α

Note that h (x) = h
(
g−1(y)

)
= 0; as with such allocation, both players will rather

stay at their disagreement point.
Now:

dh/∂A = (A− x)
α−1

[g (A)− y]
−α {

α [g (A) − y] + (1− α)(A− x)g′(A)
}

so:

∂2h
/
∂A2 = (α− 1) (A− x)

α−2
[g (A)− y]

−α−1
{
−αg′ (A) [α (g (A) − y)]

+ (1− α) (A− x) g′ (A) + (g (A) − y) [g′ (A) +Ag′′ (A)]

}
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Since 0 ≤ α ≤ 1, the quantity in {} is positive, as
(
1− α2

)
g′ (A) [g (A)−y] is negative

and so is (1− α) g′ (A) (A− x).
Thus, h is concave in A.
The optimality condition is:

α[g (A∗) − y] + (1− α) (A∗ − x) g′ (A∗) = 0

The direction of the dependence of A∗ on α can be obtained by comparative statics:

dA∗/dα =
−g (A) + y + [A− x] g′ (A)

(1− α) (A− x) g′′ (A) + g′ (A)

As both numerator and denominator are negative, dA∗/dα ≥ 0.

That is, the more powerful the first player, the more he is allocated.

3. EXAMPLES

3.1. EXAMPLE 1

A2 +B2 = K ⇒ g (A) =
√
K −A2

g′(A) = −A
/√

K −A2 < 0

g
′′
(A) = K

/
K(K −A2)

3
2 ≤ 0⇒ concave

0 ≡ ∂

∂A
= α

[√
K −A2 − y

]
+ (1− α) (A− x) .

−2A

2
√
K −A2

so the optimality condition is:

αK − αy
√
K −A∗2 + x(1− α)A∗ −A∗2 = 0

That leads to a quartic equation in A.
If x = y = 0, then A∗ =

√
αK.

If y = 0

A∗2 − x (1− α)A∗ − αK = 0

A∗ =
x (1− α) +

√
x2 (1− α)

2
+ 4αK

2
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3.2. EXAMPLE 2

This example has a convex function g.

AB = K

A,B ≥ 1⇒ g (A) = K/A⇒ g′ (A) = −K
/
A2 ⇒ g′′ (A) = 2K

/
A3 > 0

Thus:

α[K/A− y] + (1− α) (A− x)
(
−K
/
A2
)

= 0

⇒ A∗ =
K (2α− 1) +

√
4α2K2 − 4αK2 +K2 + 4α(1− α)xyK

2αy

Easy to see that ∆ ≥ 0, and that A∗ ≥ 0.
dA∗

dα
has the sign of

2K
[
(2α− 1) (K − xy) +

√
4α2K2 − 4αK2 +K2 − 4α(1− α)xyK

]
Thus, if α < 3−

√
3

6 ≈ 0.2, the condition for dA∗

dα > 0 is K ≥ xy(2α−1)
2(6α2−6α+1) . If

α > 3−
√
3

6 , dA
∗

dα < 0 always. Interestingly, here an increase in one’s power increases its
share only if his power was initially low.

4. NBS WITH N PLAYERS

Here, the function being maximized is:

g (A1,...,An−1) =

[
n−1∏
i=1

(Ai − xi)αi

] (
K −

n−1∑
i=1

Ai − xn
)αn

αi ≥ 0,
n∑
i=1

αi = 1.

This model was also discussed by Kalai (1977).
Now:

∂g

∂Ai
= αi (Ai − xi)αi−1 ∏

j 6=i (Aj − xj)αj

(
K −

∑n−1
i=1 Ai − xn

)αn

−
[∏n−1

i=1 (Ai − xi)αi

]
αn

(
K −

∑n−1
i=1 Ai − xn

)αn−1

=
[∏n−1

j 6=i (Aj − xj)αj

]
(Ai − xi)αi−1

(
K −

∑n−1
i=1 Ai − xn

)αn−1

×
{
αi (Ai − xi)αi−1

(
K −

∑n−1
i=1 Ai − xn

)
− αn

}
= 0
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As:
A

i
> xi ⇒

αi

(
K −

∑n−1
i=1 Ai − xn

)
(Ai − xi)αi−1 = αn .⇒

A∗i = xi + [αn

αi
(K −

∑n−1
j=1 Aj − xn]

1
αi−1 , i = 1, ....., n− 1

Note that, since 1
αi−1 < −1, A∗i decreases in the quantity in [ ]. Thus,A∗i ↑ xi, and,

A∗i ↓ K, Ai ↓
∑
Aj ,A∗i ↓ αn, A∗i ↑ αi.

The non-intuitive implication is that A∗i is decreasing in K. We cannot explain
this implication.

5. K-S SOLUTION

Let (d1 , d2) be the disagreement point and (M, N ) the ideal point, where each player
obtains his highest utility on S, where N ≥ d2, M ≥ d1. Then, the K-S solution is the
pair (u1, u2), where u1 + u2 = S, satisfying

u2 − d2
u1 − d1

=
N − d2
M − d1

, u1 ≥ d1, u2 ≥ d2

(though the utilities might be negative) (Kalai and Smorodinsky, 1975).
An asymmetric generalization could be (Dubra, 2001):

u2 − d2
u1 − d1

=
(N − d2)

α

(M − d1)
1−α , 0 ≤ α ≤ 1.

It follows that:

u2 =
d2 (M − d1)

1−α
+ (S − d1) (N − d2)

α

(M − d1)
1−α

+ (N − d2)
α

while:

u1 = S − u2.

One can also show that:

u′2 (α) =
(u2 − d2) (M − d1)

1−α
log (M − d1) + (S − u2 − d1) (N − d2)

α
log (N − d2)

(M − d1)
1−α

+ (N − d2)
α

So, u′2 (α) > 0. This is intuitive.
Note that u1 = S − u2 is similar to the linear resource constraint A+B = K in

NBS. One could thus try the generalization suggested there (u1 = g (u2, S)), but we
shall not do so here.
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6. EXAMPLE

Suppose that u21 +u22 = S. Note that d2i ≤ S, i = 1, 2. The utilities may be negative.

So
√
S−u2

1−d2
u1−d1 = (N−d2)α

(M−d1)1−α ≡ R [note that dR
dα > 0]

⇒
(
1 +R2

)
u21 − 2R (Rd1 − d2)u1 + d21R

2 − S − 2d1d2R+ d22 = 0

u1 =
R (Rd1 − d2)±

√
S (1 +R2) − (Rd1 − d2)

2

1 +R2

To have ∆ ≥ 0 , we require that:

S ≥ (Rd1 − d2)
2

1 +R2

We note that, if N ≥ (M − d1)−2 + d2, then R2 ≥ 1 , and it can be shown that then,
for the positive roots, du1/dR ≥ 0.

7. POSSIBLE RELEVANCE TO SUPPLY CHAIN ISSUES

Horizontal supply chains are created when several retailers (at the same echelon of
a supply chain that faces random demands) share inventories. This can be achieved
either by pooling inventories in a central location or by sharing inventories when one
retailer would have a shortage and the other an excess. Such pooling/sharing will
result in savings (e.g., Eppen, 1979); but, if the retailers are independent firms, the
question is how to divide the savings. This issue was explored using NBS by Hanany
and Gerchak (2008). If some retailers are more powerful than others, introducing
a-symmetry (NSNBS or NS K-S) would be natural.

Vertical decentralized supply chains [e.g., supplier(s)/manufacturer(s) and re-
tailer(s)] were explored extensively in operations-management literature (e.g., Cachon,
2003). There, after finding a type of contract that will coordinate the supply chain
(i.e., make it behave as an integrated chain), the issue that arises is how to divide
the profits. Mantin et al. (2014) propose an NSNBS manufacturer-retailer bargaining
model. Possibly, the NSK-S solution could also be employed, since each party’s ideal
point is obtaining all of the profit.

8. CONCLUDING REMARKS

The Symmetric NBS is a Non-Transferable Utility (NTU) concept; that is, at that
solution, all players’ situations improve vis-á-vis their disagreement points. No player
needs to compensate another for that to happen (as in TU), which is rather attractive.
This property is maintained by the NSNBS, and also holds for the NS K-S solution.
We provide some insight into the optimization of these non-symmetric functionals,
and extensive comparative statistics for them.
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of Continuous Games
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Abstract. The problem of seeking strong Nash equilibria of a continuous game is considered.
For some games, these points cannot be found analytically, only numerically. Interval methods
provide us with an approach to rigorously verify the existence of equilibria in certain points.
A proper algorithm is presented. We formulate and prove propositions, that give us features
which have to be used by the algorithm (to the best knowledge of the authors, these
propositions and properties are original). Parallelization of the algorithm is also considered,
and numerical results are presented. As a particular example, we consider the game of
“misanthropic individuals”, a game, invented by the first author, that may have several strong
Nash equilibria depending on the number of players. Our algorithm is able to localize and
verify these equilibria.
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1. INTRODUCTION

Game theory tries to predict decisions and/or advise the decision makers on how to
behave in a situation when several players (sometimes called “agents”) have to choose
their behavior (strategy; the i-th player chooses the strategy xi ∈ Xi) that will also
influence the others. Usually, we assume that each player tends to minimize his cost
function (or maximize his utility) qi(x1, . . . , xn).

So, each of the decision makers solves the following problem:

min qi(x
1, . . . , xn) (1)

s.t.
xi ∈ Xi
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What solution are they going to choose?
One of the oldest, most famous, and still widely-used concepts is the Nash

equilibrium (Nash, 1950). It can be defined as a situation (an assignment of strategies
to all players), when each player’s strategy is optimal against those of the others.

Formally, the tuple x∗ = (x1∗, . . . , xn∗) is a Nash equilibrium, if:

(∀i = 1, . . . , n) (∀xi ∈ Xi) qi(x
1∗, . . . , xi−1∗, xi, xi+1∗, . . . , xn∗) ≥ qi(x1∗, . . . , xn∗) (2)

We shall use a shorter notation, also: ∀i = 1, . . . , n ∀xi qi(x
\i∗, xi) ≥ qi(x\i∗, xi∗).

Such points, however, have several drawbacks – both theoretical (rather strong
assumptions about the players’ knowledge and rationality) and practical (they can
be Pareto-inefficient; i.e., it is possible to improve the outcome of one player without
worsening the others’ results (Miettinen, 1999)).

Hence, several “refinements” to the notion have been introduced, including the
strong Nash equilibrium (SNE, for short), in particular; see (Aumann, 1959). For
such points, not only none of the players can improve their performance by changing
strategy, but also no coalition of players can improve the performance of all of its
members by mutually deviating from the SNE. Formally:

(∀I ⊆ {1, . . . , n}) (∀xI ∈ ×i∈IXi) (∃i ∈ I) qi(x
\I∗, xI) ≥ qi(x\I∗, xI∗) (3)

Also, the notion of a k-SNE (or k-equilibrium) is sometimes encountered. Its definition
is similar to ordinary SNE, but the coalition I in (3) can consist of k members at most.
Obviously, a (k + l)-SNE is also a k-SNE (if l > 0) and, in particular, a SNE is also
a k-SNE for any k = 1, 2, . . . , n.

Strong Nash equilibria have been long thought to be too restrictive to be useful
in practical situations, but they have received increased interest in recent years.
Apparently, there exist some important games having SNE; e.g., some congestion games
(Rosenthal, 1973), as pointed out in (Holzman and Law-Yone, 1997), or economies
with multilateral environmental externalities; e.g., (Nessah and Tian, 2014). Existence
of such a “strong” equilibrium may result in great stability of the system, as virtually
no group of players will intend to change the status quo. Verifying the existence (or
non-existence) of such a point and locating it may be very important. Consequently,
the interest in computing SNE grows, also – see; e.g., (Gatti et al., 2013; Nessah and
Tian, 2014).

In this paper, we consider continuous single-stage games; i.e., the case, when
the player’s strategy is a tuple of numbers (vector) they choose from the given set,
i.e. xi =

(
xi1, . . . , x

i
ki

)
∈ Xi ⊆ Rki . Let us denote Ki – the set of components of the

i-th player decision variable xi, ki – its size, KI – the union of all Ki for i ∈ I and
x = (x1, . . . , xn) = (x11, . . . , x

1
k1
, x21, . . . , x

2
k2
, . . . xn1 , . . . , x

n
kn

). Also, we call Nash points
(equilibria) that are not strong, “plain” Nash equilibria, to distinguish them from SNE.

Computing Nash equilibria – plain or strong ones – of such games is a hard task
in general. We are going to present an approach based on interval analysis, extending
our earlier algorithm for plain Nash points; see (Kubica and Woźniak, 2010, 2012).
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2. BASICS OF INTERVAL COMPUTATIONS

Now, we shall define some basic notions of intervals and their arithmetic. The idea
can be found in several textbooks; e.g., (Hansen and Walster, 2004; Jaulin et al., 2001;
Kearfott, 1996; Moore et al., 2009; Shary, 2013).

We define the (closed) interval [x, x] as a set {x ∈ R | x ≤ x ≤ x}. Following
(Kearfott et al., 2010), we use boldface lowercase letters to denote interval variables;
e.g., x, y, z, and IR denotes the set of all real intervals.

We design arithmetic operations on intervals so that the following condition was
fulfilled: if we have � ∈ {+,−, ·, /}, a ∈ a, b ∈ b, then a � b ∈ a � b. The actual
formulae for arithmetic operations – see; e.g., (Hansen and Walster, 2004; Jaulin et al.,
2001; Kearfott, 1996) – are as follows:

[a, a] + [b, b] = [a+ b, a+ b]

[a, a]− [b, b] = [a− b, a− b]
[a, a] · [b, b] = [min (ab, ab, ab, ab),max (ab, ab, ab, ab)]

[a, a] / [b, b] = [a, a] ·
[
1 / b, 1 / b

]
, 0 /∈ [b, b]

The definition of interval vector x, a subset of Rn is straightforward: Rn ⊃ x =
x1 × · · · × xn. Traditionally, interval vectors are called boxes.

Links between real and interval functions are set by the notion of an inclusion
function: see; e.g., (Jaulin et al., 2001); also called an interval extension; e.g., (Kearfott,
1996).
Definition 2.1. A function f : IR→ IR is an inclusion function of f : R→ R, if for
each interval x within the domain of f the following condition is satisfied:

{f(x) | x ∈ x} ⊆ f(x)

The definition is analogous for functions f : Rn → Rm.
When computing interval operations – either the ones above or computing the

enclosure for a transcendental function – we can round the lower bound downward and
the upper bound upward. This will result in an interval that will be overestimated,
but will be guaranteed to contain the true result of the real-number operation.

3. NECESSARY CONDITIONS FOR A SNE

In interval global optimization, we use the Fritz–John conditions (Kearfott, 1996) to
discard boxes that do not contain critical points. For unconstrained problems, we
can discard all boxes, where the gradient of the objective cannot be equal to zero
(unless bound constraints are active – see (Kearfott, 1996); i.e., when x belongs to the
boundary of X). We are going to denote part of the gradient of a function f with
respect to some of the variables xj = (xj1, . . . , x

j
kj

) as:

∂f

∂xj
=
( ∂f
∂xj1

, . . . ,
∂f

∂xjkj

)
The vector equality (y1, . . . , yk) = 0 is understood componentwise.
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In (Kubica and Woźniak, 2010), we considered the necessary conditions of a Nash
equilibrium and realized that – if no constraints are active – the point x has to satisfy
the following conditions to be a Nash equilibrium:

∂qi(x)

∂xi
= 0, i = 1, . . . , n

What other conditions should a point satisfy to be a SNE?

Proposition 3.1. (Necessary conditions for a 2-SNE) Consider a strategy profile x,
such that no constraints are active for x (i.e., x ∈ intX). Suppose, for two players

i and j, we have
∂qi(x)

∂xj
6= 0 and

∂qj(x)

∂xi
6= 0. Then, x is not a 2-SNE.

Interpretation
In a 2-SNE point, for no pair of players, it is possible for them to mutually improve
each other’s cost value – at least for one of them, their cost is minimized for the other’s
decision for x.

Proof. Suppose x is a 2-SNE of the game. From the definition, for each pair of players
(i, j) the pair of their cost functions

(
qi(x), qj(x)

)
has to be weakly non-dominated –

see; e.g., (Nessah and Tian, 2014):

6 ∃x′ ∈ X
(
qi(x

′) < qi(x) and qj(x′) < qj(x)
)

Necessary conditions for the weak Pareto-optimality can be formulated as follows –
see; e.g., (Miettinen, 1999) – there exist u1 ∈ [0, 1] and u2 ∈ [0, 1] such tha:

u1 ·
∂qi
∂xi

+ u2 ·
∂qj
∂xi

= 0

u1 ·
∂qi
∂xj

+ u2 ·
∂qj
∂xj

= 0

u1 + u2 = 1

From the necessary conditions of any Nash equilibrium – see; e.g., (Kubica and

Woźniak, 2010) – we know that
∂qi
∂xi

=
∂qj
∂xj

= 0. Thus, we obtain:

u2 ·
∂qj
∂xi

= 0

u1 ·
∂qi
∂xj

= 0

u1 + u2 = 1

As u1+u2 = 1, we cannot have u1 = u2 = 0. So, at most, one of the partial derivatives –
∂qj
∂xi

or
∂qi
∂xj

– has to be equal to zero.
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Proposition 3.2. (Necessary conditions for a 3-SNE) Consider a strategy profile x,
such that no constraints are active for x (i.e., x ∈ intX). Consider three players: i, j
and k. A necessary condition for x to be a 3-SNE is that the following two conditions
are satisfied:

∂qi(x)

∂xj
= 0 or

∂qj(x)

∂xk
= 0 or

∂qk(x)

∂xi
= 0 (4)

∂qi(x)

∂xk
= 0 or

∂qk(x)

∂xj
= 0 or

∂qj(x)

∂xi
= 0

Interpretation

For no trio of players, it is possible for them to mutually improve each other’s cost
value.

Proof. Suppose x is a 3-SNE of the game. Analogously to the previous proof, for
each trio of players (i, j, k) the pair of their cost functions

(
qi(x), qj(x), qk(x)

)
has to

be weakly non-dominated. Necessary conditions for weak Pareto-optimality can be
formulated as follows in this case:

u1 ·
∂qi
∂xi

+ u2 ·
∂qj
∂xi

+ u3 ·
∂qk
∂xi

= 0

u1 ·
∂qi
∂xj

+ u2 ·
∂qj
∂xj

+ u3 ·
∂qk
∂xj

= 0

u1 ·
∂qi
∂xk

+ u2 ·
∂qj
∂xk

+ u3 ·
∂qk
∂xk

= 0

u1 + u2 + u3 = 1

As earlier, we have
∂qi
∂xi

=
∂qj
∂xj

=
∂qk
∂xk

= 0, which reduces the above equations to:

u2 ·
∂qj
∂xi

+ u3 ·
∂qk
∂xi

= 0 (5)

u1 ·
∂qi
∂xj

+ u3 ·
∂qk
∂xj

= 0

u1 ·
∂qi
∂xk

+ u2 ·
∂qj
∂xk

= 0

u1 + u2 + u3 = 1

while – from the 2-SNE’s necessary conditions for each pair of players, we have:

∂qi(x)

∂xj
= 0 or

∂qj(x)

∂xi
= 0 (6)

∂qi(x)

∂xk
= 0 or

∂qk(x)

∂xi
= 0

∂qj(x)

∂xk
= 0 or

∂qk(x)

∂xj
= 0
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Conditions (6) themselves do not assure (4) – we can choose all three partial derivatives
to be equal to zero from the same line of (4). But together with (5), we can imply the
following:

– We can either choose all three pairs from various equations of (5) or two of them
from the same equation.

– If two pairs in the same equations of (5) are equal to zero, they are from both
equations of (4).

– If all three partial derivatives are chosen from separate equations of (5), the
system (5) transforms into the system of the following three equations: u1 · a = 0,
u2 · b = 0, u3 · c = 0, where a, b and c are different partial derivatives. As, at most
one ui can be equal to zero, it makes at least two of the derivatives a, b and c to
be equal to zero.

In all cases, derivatives from both lines of (4) are equal to zero.

4. THE PROPOSED APPROACH

The general schema is going to be a specific variant of the branch-and-bound type
(b&b-type) method described by the author in (Kubica, 2012, 2015). The algorithm is
going to seek points satisfying the logical conditions defined by (3).

The input of the algorithms is the game; i.e., the number of players, formulae for
cost functions of each of them, and domains of their control variables. The program
results in two sets of boxes containing “verified” and “possible” strong Nash equilibria
of the game.

To process boxes in the b&b-type algorithm, we have to use the necessary condi-
tions investigated in Section 3. Please note that these conditions form an overdeter-
mined system. There are methods to solve overdetermined systems – e.g., (Horacek
and Hladik, 2013, 2014) – but in our case, another approach seems more appropriate.
We have a system of N equations in N variables (necessary conditions for a Nash
point) plus additional conditions that are alternatives of equations.

It seems reasonable to consider the first system separately. We use the following
tools to solve it:

– a variant of the monotonicity test – Algorithm 2; see also (Kubica and Woźniak,
2010),

– a variant of the “concavity” test – Algorithm 4; e.g., (Kearfott, 1996),

– an interval Newton operator (see below).

Hence, the 2-SNE necessary conditions investigated in Proposition 3.1 are used in
Algorithm 3. Conditions for k-SNE, k ≥ 3 are not checked in the current implementation
– it seems to be a costly procedure and unlikely to be very useful.

Conditions from the definition of SNE – equation (3) – are directly verified in the
second phase of Algorithm 1.



Interval Methods for Computing Strong Nash Equilibria of Continuous Games 69

The “concavity” test – Algorithm 4 – could more precisely be called the “non-
convexity” test. It verifies whether the function can be convex on the box x; i.e., if no
component of the Hesse matrix is negative. If bound constraints can be active, the
check is not performed, as even a function that is concave with respect to some of its
variables can still have a minimum on the boundaries.

The general b&b-type algorithm is implemented by Algorithm 1.

Algorithm 1 The branch-and-bound-type method for seeking SNE

Require: x0, q(·), ε
1: Lver = Lpos = Lcheck = Lsmall = ∅
2: x = x(0)

3: loop
4: xold = x
5: perform the monotonicity test (Algorithm 2) on (x, x(0), xold, q)
6: perform the 2-SNE-monotonicity test (Algorithm 3) on (x, x(0), xold, q)
7: perform the “concavity” test (Algorithm 4) on (x, x(0), xold, q)
8: perform the Newton operator on (x, x(0), q)
9: if (x was discarded, but not all qi’s are monotonous on it) then

10: push (Lcheck, xold)
11: discard x
12: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
13: x = x(1)

14: push (L, x(2))
15: cycle loop
16: else if (wid (x) < ε ) then
17: push (Lsmall, x)
18: end if
19: if (x was discarded or x was stored) then
20: x = pop (L)
21: if (L was empty) then
22: break
23: end if
24: else
25: bisect (x), obtaining x(1) and x(2)

26: x = x(1)

27: push (L, x(2))
28: end if
29: end loop
30: {Second phase – verification}
31: for all (x ∈ Lsmall) do
32: check if another solution from Lsmall does not invalidate x (see Subsection 4.1)
33: verify if no box from Lcheck contains a point that would invalidate x
34: put x to Lver, Lpos or discard it, according to the results
35: end for
36: return Lver, Lpos



70 B.J. Kubica, A. Woźniak

Algorithm 2 The monotonicity test
Require: x,x(0),xold, q(·)
1: nmon = 0
2: for (i = 1, . . . , n) do
3: for (k = 1, . . . , ki) do
4: if ( ∂qi(x)

∂xi
k

> 0) then

5: if (xik > x
i(0)
k ) then

6: increment nmon

7: break {the inner loop}
8: else
9: set xik = x

i(0)
k

10: end if
11: else if ( ∂qi(x)

∂xi
k

< 0) then

12: if (xik < x
i(0)
k ) then

13: increment nmon

14: break {the inner loop}
15: else
16: set xik = x

i(0)
k

17: end if
18: end if
19: end for
20: end for
21: if (nmon > 0) then
22: if (nmon < n) then
23: push (Lcheck, xold)
24: end if
25: discard x
26: end if

Algorithm 3 The 2-SNE monotonicity test
Require: x,x(0),xold, q(·)
1: for (i = 1, . . . , n) do
2: for (j = i+ 1, . . . , n) do
3: ith_has_no_zero = jth_has_no_zero = false
4: for (k = 1, . . . , kj) do
5: if (xjk < x

j(0)
k and ∂qi(x)

∂x
j
k

< 0) or (xjk > x
j(0)
k and ∂qi(x)

∂x
j
k

> 0) then

6: ith_has_no_zero = true
7: end if
8: end for
9: for (k = 1, . . . , ki) do
10: if (xik < x

i(0)
k and ∂qj(x)

∂xi
k

< 0) or (xik > x
i(0)
k and ∂qj(x)

∂xi
k

> 0) then

11: jth_has_no_zero = true
12: end if
13: end for
14: if (ith_has_no_zero and jth_has_no_zero) then
15: discard x
16: return
17: end if
18: end for
19: end for
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Algorithm 4 The “concavity” test
Require: x,x(0),xold, q(·)
1: nconc = 0
2: if (not x ⊂ intx(0)) then
3: return
4: end if
5: for (i = 1, . . . , n) do
6: {check the Hesse matrix of qi(x) with respect to xi}

7: if ( ∂
2qi(x)

∂(xi
k
)2

< 0 for some k = 1, . . . , ki) then
8: increment nconc

9: end if
10: end for
11: if (nconc > 0) then
12: if (nconc < n) then
13: push (Lcheck, xold)
14: end if
15: discard x
16: end if

As the Newton operator, we use the interval Gauss-Seidel operator with the
inverse-midpoint preconditioner. We shall not present the code, as it is available in
several textbooks; e.g., (Hansen and Walster, 2004; Kearfott, 1996; Moore et al., 2009;
Shary, 2013).

4.1. THE SECOND PHASE – VERIFICATION

Verification of the solutions obtained in the b&b-type algorithm is based on the
following property:

Property 4.1. The point x∗ = (x1∗, . . . , xn∗) is a SNE, if ∀x = (x1, . . . , xn) ∈ X:(
(∃i = 1, . . . , n)

(
qi(x) ≥ qi(x∗)

)
and (xi 6= xi∗)

)
or(

(∀i = 1, . . . , n) (xi = xi∗)
) (7)

Proof. From (3), we infer that no coalition I ⊆ {1, . . . , n} can improve the objectives
of all of its members. If x is the strategy profile when players cooperating in coalition I
deviated from x∗, it means that, at least for one i ∈ I, the value of qi has not improved,
and for i /∈ I, the players did not change their strategy; i.e., xi = xi∗.

Proposition 4.1 means that, to invalidate x∗ as a SNE, we have to find the strategy
profile x such that:(

(∀i = 1, . . . , n)
(
qi(x) < qi(x

∗)
)
or (xi = xi∗)

)
and(

(∃i = 1, . . . , n) (xi 6= xi∗)
) (8)

This condition can easilly be checked for all other points in the list Lsmall. Boxes in
Lcheck are larger, and – in general – we need to bisect them, performing a “nested” b&b-
-type procedure to verify if they contain a point invalidating a specific solution or not.
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4.2. PARALLELIZATION

The algorithm is parallelized using threads.
In the first phase, we have a shared queue L – guarded by two mutexes, as

described in (Kubica and Woźniak, 2010) – and several threads processing boxes in
parallel.

In the second phase, we verify different boxes from Lsmall in parallel; i.e., we
parallelize the loop in line 31. The verification procedure in line 33 (that is a nested
b&b-type algorithm) is not parallelized, as – being a recursive procedure – it would
require more sophisticated parallelization methods; e.g., using Intel Threading Building
Blocks; see (Kubica, 2012, 2015).

5. EXAMPLES OF GAMES TO SOLVE

We are going to present results from a few test problems. The first three have been
discussed in (Ślepowrońska, 1996) and then considered in (Jauernig et al., 2006;
Kołodziej et al., 2006; Kubica and Woźniak, 2010).

The first game has two players; each of them controls one real-valued decision
variable.

min
x1

(
q1(x1, x2) = (x1 − x2 + 1)2

)
(9)

min
x2

(
q2(x1, x2) = (x2 − x21)2 + (x1 − 1)2

)
x1 ∈ [−1, 2.5], x2 ∈ [−1, 3]

This game has three Nash equilibria: (2, 3) on the boundary and two in the interior
of the feasible set: (−0.618034, 0.381966) and (1.618033, 2.618033). It is not known
a priori if they are strong or not; our solver indicates that they are. Accuracy ε = 10−7

is used for this game.
The second game is also a game of two players, but now each of them has 9 decision

variables.

min
x1,...,x9

(
q1(x) = (x1 − 1)2 + (x2 − 1)2 + x23 + (x4 − 1)2 + x25 + (x6 − 1)2 (10)

+(x7 − 1)2 + x28 + x29 + x211 + (x12 − 0.5)2 + x213 + (x16 + 0.5)2 + (x18 − 1)2
)

min
x10,...,x18

(
q2(x) = (x10 + 1)2 + x211 + (x12 − 1)2 + x213 + x214 + (x15 + 1)2

+(x17 − 1)2 + x216 + (x18 − 1)2 + (x2 − 0.5)2 + x23 + (x4 − 0.5)2 + (x8 − 0.5)2
)

xi ∈ [−2, 2.4]9 i = 1, 2

The game has one Nash equilibrium: (1, 1, 0, 1, 0, 1, 1, 0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 1).
According to our results, this point seems to be a SNE. Accuracy ε = 10−4 is used for
our solver.
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In the third game, we have three players with two decision variables each.

min
x1,x2

(
q1(x) = (x1 + 1)2(x1 − 1)2 + (x2 + 1)2(x2 − 1)2 + x3x4 + x5x6

)
(11)

min
x3,x4

(
q2(x) = (x4 − 0.5)2(x4 + 1)2 + (x3 + 1)2 + x1x2 + x5x6

)
min
x5,x6

(
q3(x) = (x5 + 0.5)2(x5 − 1)2 + (x6 − 1)2 + x1x2 + x3x4

)
xi ∈ [−2, 2.4]6 i = 1, 2, 3

This game has 16 Nash equilibria (they are listed in (Kołodziej et al., 2006; Śle-
powrońska, 1996); none of them is a SNE. We use accuracy parameter ε = 10−7.

The fourth test problem is a game of two players; both have a single real-valued
decision variable:

min
x1

(
q1(x1, x2) = x21 · (x21 − 3.75 · x1 + 3.25) + 1 + x22

)
(12)

min
x2

(
q2(x1, x2) = x22 · (x22 − 3.75 · x2 + 3.25) + 1 + x21

)
xi ∈ [−3, 3.2], i = 1, 2

The game has a single Nash point at (2, 2), but it is not a SNE – mutually deviating
from 2 to 0 is beneficial for both players (but the point (0, 0) is not a Nash point,
at all!). Accuracy is set to ε = 10−7.

5.1. THE GAME OF MISANTHROPIC INDIVIDUALS

This game has been proposed by the first author. Inspirations for it were congestion
games (Rosenthal, 1973) and the game of dog and rabbit by Hugo Steinhaus (Steinhaus,
1960).

Consider n players, choosing their positions on a compact board – a two-
dimensional domain for which we choose rectangle D = [−3, 3]×[−2, 2]. Their objective
is to be as far from the others as possible. Specifically, we assume that each of the
players (let us give him the number i = 1, . . . , n) maximizes, by choosing position
(xi, yi) ∈ D, the following function:

qi(xi, yi) =

n∑
j=1,j 6=i

(
(xi − xj)2 + (yi − yj)2

)
(13)

Solutions of the game

Depending on n, the game can have different numbers of Nash equilibria – all or
none of them being strong.

For two players, we have 4 Nash equilibrium points, each of them are strong.
Their structures are obvious: one of the individuals is located in one of the four corners
and the other one – diagonally opposite to him. It is clear that all of them are SNE –
cooperation of both players cannot increase their distance in any way. This case is
a “degenerate” case of a game, as both players maximize the same function – the
(square of) the distance between them.
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For three players we have 36 Nash equilibria: 24 with all three individuals located
in different corners (4× 3× 2) and 12 with one of the three individuals in a corner and
both others diagonally opposite to him (one of the 3 individuals × 4 corners). In all
cases, one of the individuals has a better position than the two others. And actually,
none of these solutions is strong – the two players with worse values can always collude
to change their positions and improve their payoffs at the expense of the third player.

For four players, we have 36 Nash equilibria: 24 solutions with each individual
in his own corner (4× 3× 2) and 12 solutions with two pairs of players in opposite
corners. Counter-intuitively, formula (13) makes their values identical for both types
of solutions. All of these 36 solutions are strong Nash equilibria.

For larger number of players, it is very difficult to analyze all possible solutions
and their structures. In Section 6, we present; i.a., computational results for such
situations (Tables 2 and 3).

6. NUMERICAL EXPERIMENTS

Numerical experiments were performed on a computer with four cores (allowing hyper-
threading), namely, an Intel Core i7-3632QM with 2.2GHz clock. The machine ran
under control of a 64-bit Manjaro 0.8.8 GNU/Linux operating system with the GCC
4.8.2, glibc 2.18 and the Linux kernel 3.10.22-1-MANJARO.

The solver is written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.3) (C-XSC, 2013) was used for interval computations.

The parallelization was done using the threads of the C++11 standard. OpenBLAS
0.2.8 (OpenBLAS, 2013) was linked for BLAS operations.

6.1. RESULTS FOR PROBLEMS (9)–(11)

Computational results for these problems can be found in Table 1.

Table 1. Computational results for the solver, with a single thread

problem (9) (10) (11) (12)
cost fun. evals 26557 356776 0 238
gradient evals 6875 93914 0 134
Hesse matrix evals 204 182 609 162
bisections 49 45 101 29
deleted monot. test. 35 45 67 21
deleted strong mon. 0 0 35 1
deleted “conc.” 0 0 0 3
deleted Newton 0 0 0 7
boxes after 1st ph. 3 1 0 3
possibly dominating 41 45 102 32
deleted 2nd phase 0 0 0 3
possible solutions 3 1 0 0
verified solutions 0 0 0 0
time (milisec.) 491 2358 459 461
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6.2. RESULTS FOR THE GAME OF MISANTHROPIC INDIVIDUALS

We present results for computing SNE and plain Nash equilibria – Tables 2 and 3,
respectively. Accuracy ε = 10−8 is set in all cases.

Table 2. Computational results for the solver, with four threads

players number 2 3 4 5 6 7
cost fun. evals 7616 1164 4853056 70235 5576803158 1519735
gradient evals 0 0 728800 0 1210016856 0
Hesse matrix evals 3774 18141 71164 300555 1136634 4677113
bisections 943 3023 8895 30055 94719 334079
deleted monot. test. 0 0 220 168 256 1536
deleted strong mon. 0 0 0 0 0 0
deleted “conc.” 928 2960 8640 28864 90368 316160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16384
possibly dominating 944 3280 10304 41972 133120 516864
deleted 2nd phase 12 64 220 1024 3696 16384
possible solutions 0 0 36 0 400 0
verified solutions 4 0 0 0 0 0
time (sec.) 0.452 0.555 4.442 5.577 5221 189

Table 3. Computational results for computing plain Nash equilibria, using four threads

players number 2 3 4 5 6 7
cost fun. evals 5196 47335 47602 685225 1111178 14443406
gradient evals 0 0 0 0 0 0
Hesse matrix evals 3774 18141 71164 300555 1136634 4677113
bisections 943 3023 8895 30055 94719 334079
deleted monot. test. 0 0 0 168 256 1536
deleted “conc.” 928 2960 8640 28864 90368 316160
deleted Newton 0 0 0 0 0 0
boxes after 1st ph. 16 64 256 1024 4096 16384
possibly dominating 944 3280 10304 41972 133120 516864
deleted 2nd phase 12 28 220 624 3696 11484
possible solutions 0 32 0 336 0 4000
verified solutions 4 4 36 64 400 900
time (sec.) 0.474 0.581 1.220 7.296 37 483

7. ANALYSIS OF THE RESULTS

The algorithm finds the SNE in all cases, but it is rarely able to verify them. The
conditions are a bit complicated to be verified rigorously – actually, the verification
was successful in one case only – and a very specific one (the game of misanthropic
individuals, n = 2).
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The solver finds the solution for problem (11) very quickly. This is because, for
this game, all 16 Nash equilibrium points can be verified not to be SNE early – in
the first phase (see the row “boxes after 1st ph.”), using the 2-SNE monotonicity test
(Algorithm 3). See Table 1 for specific results.

In the game of misanthropic individuals – problem (13) – for some n’s, the number
of gradient evaluations is equal to zero. This usually happens when the number of
points to verify in the second phase is equal to zero.

Gradients are computed in two cases:

– in the interval Newton operator, verifying first-order conditions for the Nash
equilibria,

– in the second phase – also, in the Newton operator, but now verifying the inequality
that qi(x) is lower than the verified value.

For the game of misanthropic individuals, cost functions qi are concave, so we never
apply the Newton operator in the first phase. Nor we do in the second phase, if there
are no solutions to verify (in the case, we simply do nothing in the second phase).

It is worth noting how the computational effort changes with n for the game of
misanthropic individuals. For odd numbers of players (n = 3, 5, 7), the effort of finding
all strong Nash equilibria is particularly low. The reason is simple – there is no SNE
(this hypothesis has been verified by numerical experiments for n = 3, 5, 7; we haven’t
proven it for other values of n, but it seems plausible) and all possible solutions are
quickly discarded by comparisons with other possible solutions (see Subsection 4.1).
The time-consuming nested branch-and-bound type procedure does not have to be
executed at all. Because of this, the solver for SNE is more efficient than for plain
Nash equilibria for these points; see Tables 2 and 3.

For n = 6, the solver finds 400 points that are strong Nash equilibria, probably.
Isolating so many solutions of the game is possible thanks to the virtues of the interval
calculus: see; e.g., (Kubica, 2015; Shary, 2013).

8. CONCLUSIONS

We presented an interval solver able to compute strong Nash equilibrium points
of continuous games. We tested it on a few test problems, showing its usefulness.
Parallelization using threads allows us to handle relatively difficult problems. For one
of the examples, it allowed us to isolate 400 equilibrium points.

Also, a specific test problem has been proposed – the game of misanthropic
individuals; a continuous game with an arbitrary number of players, having various
numbers of plain and strong Nash equilibria, depending on the number of players. It
seems an interesting benchmark, due to its complex and counter-intuitive properties.
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Abstract. This paper presents a model of bank-loan repayment as a signaling game with a set
of discrete types of borrowers. The type of borrower is the return on an investment project.
A possibility of renegotiation of the loan agreement leads to an equilibrium in which the
borrower adjusts the repaid amount to the liquidation value of its assets (from the bank’s
point of view). In the equilibrium, there are numerous pooling equilibrium points, with values
rising according to the expected liquidation value of the loan. The article additionally proposes
a mechanism forcing the borrower to pay all of his return instead of the common liquidation
value of subset of types of the borrower. The paper contains also a simple numerical example
explaining this mechanism.
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1. INTRODUCTION

A bank, granting a loan, has no possibility of influencing its actual spending; hence,
a precise credit agreement should be signed. The main elements of a loan agreement are:
the amount of the loan, the amount of repayment and collateral. Due to the asymmetry
of information, a necessary component of the loan agreement is collateral, imposing
on the debtor an incentive to repay the loan. However, the option to renegotiate the
loan agreement, changes the relationship between the bank and the borrower.

The possibility of renegotiation inclines the borrower to transfer a part of the risk
to the lender. The research belonging to the theory of incomplete contracts suggest
that the borrower renegotiate a contract or even does not make repayment if the
liquidation value of collateral is low. This idea is incorporated, among others, in the
works of: Aghion and Bolton (1992), Bester (1994), Hart and Moor (1994 and 1998),
Bolton and Scharfstein (1996), Lacker (2001) and Paliński (2013).
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According to this research, the liquidation value of collateral determines not only
the amounts recovered by the bank in the absence of repayment of the loan, but also
affects the results of renegotiation of the debt. This is due to the fact that the threat
of liquidation of assets motivates the borrower to avoid insolvency; consequently, the
liquidation value determines the amount of debt repayment. When the liquidation
value is low – the bargaining power of the borrower increases and the amount of debt
repayment reduces.

The main aim of this article is to analyze a model of loan repayment as a signaling
game in which the borrower sends a signal – a proposed amount of repayment –
whereas the bank receives the signal and takes action – accepts or rejects the proposal
(Cho and Kreps, 1987; Fudenberg and Tirole, 1991). Depending on the liquidation
value of the borrower’s assets, the possibility of the debt renegotiation plays a crucial
role in the model. The presented model refers to the issue of the role of collateral
for the repayment of the loan and the renegotiation considered by Bester (1994). In
addition, a voluntary repayment of the loan is assumed in the model, in which the
borrower determines the amount of repayment, trying to avoid enforcement of the debt.
This approach refers to models of Krasa–Villamil (2000) and Krasa–Sharma–Villamil
(2005).

The remainder of this paper is organized as follows: Section 2 presents the
assumptions of the model and the analysis of the equilibrium in the model. Section 3
contains a proposition of an incentive mechanism, motivating the borrower to repay
the highest possible amount. Section 4 provides main conclusions.

2. THE MODEL

Consider an economy with two risk neutral agents: an entrepreneur and a bank (their
indexes are, respectively, E and B). Assume that the entrepreneur signed a credit
agreement with the bank to finance a venture. The credit agreement (I, R1, C) with
the bank is a triplet that with a given amount of the loan I determines the amount of
repayment R1 and collateral C. Loan repayment R1 is independent of realization of
the project; thus, we assume that the credit agreement as a standard debt contract
(SDC) with collateral. The standard debt contract is a contract in which a borrower
agrees to pay a fixed amount, and non-payment allows a bank to seize the borrower’s
assets being the output of the project.

The return of the project is a random variable Y with discrete realizations
y ∈ W = {0, . . . ,y} ⊂ R+, where y > 0, with cumulative distribution F (y). This
return of the project is observable without costs only to the entrepreneur, what is
known to both agents before signing the agreement. Agents have common knowledge
of the prior beliefs β(·) on the set of possible realizations of Y, where β(y) > 0.

In case of default, the entrepreneur can turn to the bank for debt restructuring
involving a cancellation of the debt. The bank may restructure the debt or seize
collateral together with the venture.

The value of collateral is lower for the bank than for the borrower because of
the cost of acquisition and liquidation, and is bC, where 0 ≤ b < 1. Similarly, the
acquisition and management of the project generates considerable costs, thus the value
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of the project for the bank is aY, where 0 ≤ a < 1. Assume further that bC ≤ R1,
which means that the bank does not have collateral exceeding the value of the loan.
Assume also a reservation utility of the bank u, which can be positive for an insolvent
borrower or negative for a promising borrower. Let us define the value of the borrower’s
asset from the bank’s point of view in the case of default as follows.

Definition 2.1. The value L (y) = ay + bC + u is called the liquidation value of loan.
After signing the credit agreement (I, R1, C ) in period t = 0, the game of loan

repayment is as follows.
1) In the first period t = 1, nature selects the return of the project y.
2) In the next period t = 2, the entrepreneur observes the realization of the project.

Knowing the return of the project the entrepreneur decides to make voluntary
payment v ∈ V = [0, y] ⊂ R+. If v < R1, then the entrepreneur declares default
and counts on debt forgiveness. The pure strategy of the entrepreneur is the
payment v made after observing the return of the project y. The decision on
the payment v can no longer be changed at a later date (due to the inclusion of
relevant data in financial books).

3) In the last period t = 3, the bank observes proposed v, but does not know the true
state of nature. When v < R1, the bank decides whether to restructure the debt
and sign a new credit agreement (I, v, C ) or to seize the project with collateral.
If proposed v = R1, the bank accepts payment in accordance with the credit
agreement. The behavior strategy of the lender σB ∈

∑
B = [0, 1] is the probability

of loan restructuring and acceptance of payment υ. The strategy σB = 1 means
the acceptance of the payment υ; moreover, if υ < R1 – this means a new contract
and partial cancellation of the debt on amount x = R1 − υ. While σB = 0 means
the liquidation of the loan.
Expected payoff of the entrepreneur EπE and the bank EπB for the pair of

strategies υ and σB after observing the return y by the entrepreneur are as follows:

Eυ,σB
πE(y, υ,σB) = σB(y − υ)− (1− σB)C (1)

and:
EσBπB(y, ν,σB) =

∑
y∈W

β(y|υ)[σBυ + (1− σB)(ay + bC)] (2)

An updated belief β (y|υ) is the probability assigned by the bank to the type of
the entrepreneur y after observing the proposed payment υ.

Definition 2.2. A strategy profile v,σB along with beliefs β (y), β (y|v) is a perfect
Bayesian equilibrium if and only if:
(i) v ∈ V maximizes Eυ,σB

πE(y, υ,σB) for every y.
(ii) σB ∈

∑
B maximizes EσB

πB(y, υ,σB) for every υ.
(iii) β (y|v) = υ(y)β(y)∑

y
′∈Y [υ(y′)β(y′)]

if it is possible. Otherwise β (y|υ) is any probability

on {y ∈W |y ≥ υ}.
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Conditions (i) and (ii) impose a requirement that each strategy was perfect
Bayesian equilibrium for each subgame with some beliefs. The return on the project y is,
at the same time, the type of entrepreneur in the game. Condition (iii) specifies how
to update beliefs after observing the amount of repayment v using Bayes’s rule (Bayes,
Price, 1763; see: Fudenberg and Tirole, 1991).

The entrepreneur, knowing the return on the project y and deciding to make
a payment υ, has to solve the following problem.

Problem 2.1. At time t = 2 find υ and σB to solve the following optimization problem

max
υ,σB

Eυ,σB
πE (y, υ,σB) (3)

subject to:

EσB
πB (y, υ,σB) ≥

∑
y∈W

β(y|υ)min {R1, L (y)} for each y,

having β (y|υ) > 0 (4)

0 ≤ υ ≤ y and υ ≤ R1 for all y (5)

υ,σB ,β (y) ,β (y|υ) are a perfect Bayesian equilibrium at t = 3 (6)

The individual rationality constraint of the bank (4) indicates that in case of
payment lower than the payment R1 required by the credit agreement the bank in the
worst case is assured of the expected liquidation value of the loan.

Condition (5) imposes a requirement on the voluntary payment υ that it be no
greater than the return on the project y and does not exceed R1.

Definition 2.3. Let yk ∈W is an arbitrary chosen type of the borrower. The expected
liquidation value of the loan, ELk, for types y ∈W, y ≥ yk, is defined as follows:

ELk = max
y∈W

∑
y≥yk

β (y) (ay + bC + u)∑
y≥yk

β (y)
≤ yk (7)

where y1 = min
y≥ bC+u

(1−a)

y, yk+1 = min
y>yk

y such that ELk > yk, k = 1, 2, 3, . . . , n.

The expected liquidation value ELk is defined as the maximum expected value
of liquidation of some subset of types greater or equal than yk, for which this value
is not greater than the return on the project of the lowest type yk in the subset.
The yk belongs to a discrete set of types, whereas the expected liquidation value ELk is
a real number; therefore, there is a weak inequality in formula (7). The next expected
liquidation value ELk+1 can be calculated for a subset of types greater than the largest
type in the previous subset.
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Proposition 2.1. The solution of Problem 2.1 is the following perfect Bayesian
equilibrium in which
1) The strategy of the borrower is:

v (y) =



0, y <
bC + u

(1− a)
,

ELk,
bC + u

(1− a)
≤ y < R1 − bC − u

a
,

R1, y ≥ R1 − bC − u
a

.

k = 1, 2, 3, . . . , n,

2) The strategy of the bank is:

σB (υ) =


0, υ <

bC + u

(1− a)

1, υ ≥ bC + u

(1− a)

Proof. Consider a borrower whose return is less than his liquidation value of the loan
L(y), that is y < ay + bC + u = L(y). Such borrower is able to pay υ ≤ y < L(y).
An updated belief of the borrower’s type is β (y < (bC + u)/(1− a)|υ) = 1, so the
strategy of the bank is liquidation σB = 0 and the strategy of the borrower is not to
pay, which satisfies conditions (i) and (ii) of Definition 2.2.

Consider a borrower y1 ∈ W , whose return is equal to or greater than
his liquidation value, such that y1 = min bC +u

1−a ≤ y≤ y
y. He is able to pay υ ≥

(bC + u)/(1 − a) to avoid liquidation. Consider further types of borrower y ∈{
y1, . . . , y1

}
⊂
[
bC +u
1− a , y

]
, where y1 ≥ y1, for which the expected liquidation value is

1∑
y∈{yk,...,yk} β(y)

[∑
y∈{y1,...,y1} β (y) ay + bC + u

]
= EL1 ≤ y1. Rather than pay an

amount equal to their return on investment y (which will give them an income equal
zero), they can pretend a lower return and pay υ = EL1, which gives them y – EL1 ≥ 0.
On the basis of the proposed repayment v, the bank is not able to distinguish the type
of borrower and an updated belief is β (y ≥ (bC + u)/(1− a)|υ = EL1) = 1. As the
expected liquidation value is EL1 = υ, the bank will accept this payment, and will
use a strategy σB (υ) = 1. Liquidation would give the bank no more.

None of the types of borrower can individually change the strategy to repay less
than the liquidation value of the common EL1, even if its own liquidation value is
below the common value EL1, because in the absence of correlation with other types,
this would reduce the value of the repayment below the expected liquidation value.
In case EL1 > υ, the bank would prefer liquidation and repayment v less than the
liquidation value EL1 by the borrower of any type would result in the change of bank’s
strategy to σB (v) = 0, which would give the borrower income –C. Hence, repayment
υ < EL1 is not the optimal strategy of the borrower.
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Consequently, both strategies satisfy conditions (i) and (ii) of Definition 2.2. There
exist conditions for pooling equilibrium in which borrower of types y ∈

{
y1, . . . , y1

}
pay the same amount v = EL1.

If, however, the expected liquidation value of the loan EL1 for all types of
y ≥ (bC + u)/(1 − a) was greater than y1, then for types y > y1 must be created
another equilibrium υ = EL2 > y1 ≥ EL1 providing loan restructuring. Otherwise,
the bank would prefer to liquidate, giving him a higher expected payoff, rather than
restructuring the debt.

This reasoning should be repeated for the next ELk until the expected liquidation
value of the loan for a certain type y exceeds repayment R1 required in the loan
agreement. Substituting y with R1 in the formula of the liquidation value we get
y ≥ (R1 − bC − u)/a. Above this value, the borrower repays the amount υ = R1, and
the bank has to accept payment according to the loan agreement.

Figure 1 depicts a diagram of debt repayment depending on the amount of return
on the project resulting from Proposition 2.1. Repayment of the loan R1, specified in
the loan contract, begins not when return is y = R1, but when the expected liquidation
value of the loan is equal to R1, that is for y satisfying the inequality ay+bC+u ≥ R1.

 

v(y)

y

R1

y = (R1-bC-u)/a

Fig. 1. Loan repayment diagram resulting from Proposition 2.1

3. EXTENSION OF THE MODEL – FUTURE LOANS

There exists a great amount of literature the on so-called relationship lending. Such
a term covers the economic value of long-term cooperation between a bank and
a borrower – an important role in this field plays the model of Rajan (1992) (see
Boot, 2000 for overview of the models; examples of empirical studies can be found in
works of: Petersen and Rajan, 1994, Degryse, 2000, Bharath et al., 2007). Omitting
complex interdependencies of such relationship, each entrepreneur thinking about
further operating activity, needs future loans.
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Let us assume that the enterprise – current borrower – has ability to run next
project that can give him the expected payoff Eπ2. The enterprise requires external
sources of financing to run this project. Taking into account the finding of Proposi-
tion 2.1. we would like to construct a mechanism that would force the borrower to pay
all his return on the first project instead of the expected liquidation value. If we made
the probability of granting the next loan by the incumbent bank dependent on the
amount repaid for the first loan we would achieve the mechanism of true payment.

Assumption 3.1. Let m be the probability of granting the next loan. Correct mech-
anism m (υ) depending on the amount of the repayment of the previous loan must
meet the following conditions:
1) Repayment v ≤ (bC + u)/(1− a) means taking over collateral and usually results

in bankruptcy of the borrower – not giving a chance to grant another loan, i.e.
m (υ ≤ (bC + u)/(1− a)) = 0.

2) Repayment required in the loan agreement and equal to R1 is reworded in certainty
of getting another loan, i.e. m (υ = R1) = 1.

3) Repayment between these extreme values υ ∈
(
bC +u
1− a , R1

)
allows for another

loan with the probability that is a linear function of the repaid amount on the
interval specified by extreme values. This is due to the fact that a standard debt
contract for y < R1 is a linear function of the return on the business venture and
is R(y) = y (cf. Gale and Helwig, 1985).
Condition 3) should ensure that υ (y) = y.

Lemma 3.1. The mechanism satisfying Assumption 3.1. is described by the following
function:

m (υ) =


0, υ <

bC + u

(1− a)

υ − bC +u
1− a

R1 − bC +u
1− a

, υ ≥ bC + u

(1− a)

Proof.
(1) m

(
υ = bC +u

1− a

)
= 0.

(2) m (υ = R1) = 1.

(3) The function m (υ) is linear for υ ∈
[
bC + u

1− a
,R1

]
.

The effectiveness of such a mechanism to incentivize the borrower to allocate the
total return on the project y for repayment of the loan will depend on the value of
the expected return on the next investment project Eπ2. The expected value of a new
project from the point of view of the entrepreneur is also dependent on the probability
of granting the next loan, without which it will be impossible to undertake the project
due to a lack of funds.
Proposition 3.1. Mechanism m (υ) is effective when:

Eπ2 ≥
1

1− a
[R1 − L (R1)] .
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Proof. According to Proposition 2.1., some types of borrower try to form pooling
equilibrium υ, for which their total expected liquidation value is no less than their
possible payment υ. The payment υ is lower than or equal to return y for each type
forming the pooling equilibrium.

To avoid forming an equilibrium, it is necessary for each type of borrower that the
expected value of payoff from the next investment project after repayment of the whole
return of the current project y is not less than the excess return y over the payment υ.
For this purpose two conditions must be fulfilled:
1) m (y)Eπ2 ≥ y − L (y), for each bC +u

1− a ≤ y ≤ R1.
2) [m (y′′)−m (y′)]Eπ2 ≥ y′′ − y′, for each y

′′
> y

′
, where y

′′
, y
′ ∈ W , bC +u

1− a ≤
y′ ≤ R1, bC +u

1− a ≤ y
′′ ≤ R1.

The first condition is that the lowest possible payment v equal to the expected
liquidation value for any type is not profitable. The second condition implies that
if EL(y

′′
) ≥ y

′
, the strategy of pretending lower return and payment υ = y

′
is also

unprofitable.
Starting from Condition (1) and substitutingm (υ) with function from Lemma 3.1.,

we have:

m (y)Eπ2 =
y − bC +u

1− a

R1 − bC +u
1− a

Eπ2 ≥ y − L (y) = y − ay + bC + u

which, after transformation, gives:

Eπ2 ≥ (1− a)R1 − bC − u = R1 − L (R1)

Considering Condition (2) we have:

[m (y′′)−m (y′)]Eπ2 =

[
y′′ − bC +u

1− a

R1 − bC +u
1− a

−
y′ − bC +u

1− a

R1 − bC +u
1− a

]
Eπ2 ≥ y

′′
− y

′

Rearranging we get:(
y
′′
− y′

)
Eπ2 ≥ (y′′ − y′)

(
R1 −

bC + u

1− a

)
which leads to:

Eπ2 ≥ R1 −
bC + u

1− a
=

1

1− a
[(1− a)R1 − bC − u]

and finally gives:

Eπ2 ≥
1

1− a
[R1 − L (R1)]

Since 1/(1− a) ≥ 1, Condition (2) imposes a higher or equal value on Eπ2 than
Condition (1); therefore, Condition (2) is binding.
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Mechanism m (v) appears to be effective when the expected payoff from a future
project is not less than the difference between the repayment under a loan agreement R1

and the repayment of the liquidation value for y equal to repayment R1 multiplied by
the reciprocal of the coefficient of the loss of value of the project. In the case of the
standard debt contract return on the project y = R1 is the border point, below which
there is an area of insolvency.

The result of Proposition 3.1. is not very optimistic. The expected value of a new
project planned by the borrower must be high so that the borrower would spend the
whole return from the first project to repay the loan. This is illustrated by a simple
numerical example. Let us take the following assumptions: R1 = 100, C = 100, u = 0.
The minimum Eπ2, value depending on the recovery coefficients a and b, is shown in
Table 1.

Table 1. The minimum expected payoff of the next project Eπ2 incentivizing the borrower to
repay the first loan depending on recovery coefficients a and b

Coefficient a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
oe
ffi
ci
en
t
b

0.1 88.89 87.50 85.71 83.33 80.00 75.00 66.67 50.00 –

0.2 77.78 75.00 71.43 66.67 60.00 50.00 33.33 – –

0.3 66.67 62.50 57.14 50.00 40.00 25.00 – – –

0.4 55.56 50.00 42.86 33.33 20.00 – – – –

0.5 44.44 37.50 28.57 16.67 – – – – –

0.6 33.33 25.00 14.29 – – – – – –

0.7 22.22 12.50 – – – – – – –

0.8 11.11 – – – – – – – –

0.9 – – – – – – – – –

Under normal economic conditions, most common recovery rates are of 0.2–0.5,
the profitability of assets is equal from several to more than ten percent, and the share
of debt in financing a project is about half of the investment funds. In this situation,
the next business project would have to be several times larger than the previous
project to ensure the required expected payoff, which is hardly possible in practice.

4. CONCLUSIONS

The key role for the repayment of the bank loan plays the liquidation value of assets
of the borrower. In the game of loan repayment, a perfect Bayesian equilibrium is
formed from a plurality of pooling equilibria in which the amount of the repayment
of the loan is equal to the common expected liquidation value of several types. Each
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following point of pooling equilibrium is created by a subset of types of the borrower
with a higher common expected liquidation value.

We can construct a mechanism motivating the borrower to use the total return on
the investment project to repay the loan, if the repayment is not in accordance with
the loan agreement. This mechanism is based on the dependence of the probability
of granting a future loan on the repayment of the former loan. Unfortunately, the
effectiveness of this mechanism is limited by the high expected value of the future
investment project.
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Hyperbolicity of Systems Describing Value Functions
in Differential Games which Model Duopoly Problems
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Abstract. Based on the Bressan and Shen approach (Bressan and Shen, 2004; Shen, 2009), we
present an extension of the class of non-zero sum differential games for which value functions
are described by a weakly hyperbolic Hamilton–Jacobi system. The considered value functions
are determined by a Pareto optimality condition for instantaneous gain functions, for which
we compare two methods of the unique choice Pareto optimal strategies. We present the
procedure of applying this approach for duopoly.

Keywords: duopoly models, semi-cooperative feedback strategies, Pareto optimality, hyper-
bolic partial differential equations
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1. INTRODUCTION

Dynamic models describe situations in which two or more players make their decisions
about their own behavior under the same circumstances. In this paper, we shall consider
games with a finite duration of time. We shall be interested in solving theoretical
maximizing problems that can be applied to finding better strategies in models of
duopoly. Our effort is focused on finding a better solution than the Nash equilibrium.
On the one hand, we want the solution to provide greater payoffs for both players,
but also we want to obtain a well-posed system of PDEs describing value functions.

We assume that the evolution of state is described by the following differential
equation:

ẋ = f(x) + φ(x)u1 +ψ(x)u2 (1)

with initial data:
x(τ) = y ∈ Rm (2)
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where f : Rm → Rm, φ, ψ : Rm → Mm×n(R) and ui are feedback strategies – they
depend on time t and state x(t), (i = 1, 2). The goal of the i-th player is to maximize
his payoff function; i.e.,

Ji(τ, y, u1, u2) = gi(x(T ))−
T∫

τ

hi(x(t), ui(t))dt (3)

where

a terminal payoff gi : Rm → R is a non negative and smooth function (4)

and
a running cost hi : Rm × Rn → R is a smooth function such that

hi(x, ·) is strictly convex for every x ∈ Rm (5)

We consider the instantaneous gain functions:

Y1(x, p1, p2, u1, u2) = p1 · F (x, u1, u2)− h1(x, u1)

Y2(x, p1, p2, u1, u2) = p2 · F (x, u1, u2)− h2(x, u2)
(6)

where F (x, u1, u2) is the right side of the dynamic and the dot denotes the scalar
product (in (1), we have F (x, u1, u2) = f(x)+φ(x)u1 +ψ(x)u2). Fixing x, p1, p2 ∈ Rm
and s > 0, we can find Pareto optimal1 choices UPi (x, p1, p2, s) for the static game
Yi(x, p1, p2, ·, ·), i = 1, 2, in the following way: if (uP1 , u

P
2 ) is the maximum of the

combined payoff Ys = sY1+Y2, then the strategies (uP1 , u
P
2 ) give Pareto optimal payoffs

in game (Y1, Y2). As a result, strategies UPi depend on s. We choose a smooth function
s(x, p1, p2) and define feedback strategies Usi (x, p1, p2) = UPi (x, p1, p2, s(x, p1, p2)) for
the problem (1)–(3). Such strategies are called semi-cooperative (Bressan and Shen,
2004). If functions:

V si (τ, y) = Ji(τ, y, U
s
1 , U

s
2 )

are smooth enough, then they satisfy the following system:{
V1,t +H1(x,∇xV1,∇xV2) = 0

V2,t +H2(x,∇xV1,∇xV2) = 0
(7)

with the terminal data:

V1(T, x) = g1(x) and V2(T, x) = g2(x) (8)

where the Hamiltonian functions are given by:

Hi(x, p1, p2) = Yi(x, p1, p2, U
s
1 (x, p1, p2), Us2 (x, p1, p2))

and they depend on s. Functions V si are usually called the value functions.
1 We say that (uP1 , u

P
2 ) is a pair of Pareto optimal choices for the game, which is given by

payoff functions Yi(u1, u2) (i = 1, 2), if there exists no pair (u1, u2) such that Y1(u1, u2) >
Y1(uP1 , u

P
2 ) and Y2(u1, u2) > Y2(uP1 , u

P
2 ). This means that no pair of admissible strategies exists

that improve both payoffs simultaneously.
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In Section 2, we shall prove that system (7) is weakly hyperbolic and is hyperbolic
except for some curves on the (p1, p2)-plane (see Theorem 2.1). If the system is
hyperbolic, then it is well-posed and this fact is crucial for numerical solutions (for
more details, see (Serre, 2000)). This result is a generalization of Theorem 3 from
(Bressan and Shen, 2004). In that paper, it is shown that, if we consider the dynamic:

ẋ = f(x) + u1 + u2, (9)

then system (7) is weakly hyperbolic and is hyperbolic except some curves on the
(p1, p2)-plane.

In Section 3, we compare two methods of stating a Pareto optimum for functionals
(Y1, Y2). In both cases, the referential point is a Nash equilibrium payoff (Y N1 , Y N2 ), and
we require Pareto optimal outcomes to be greater than those for the Nash equilibrium:

Y Pi > Y Ni for i = 1, 2

Obviously, the above criterion does not determine Pareto optimal strategies uniquely.
Bressan and Shen (2004) receive the uniqueness of Pareto optimal choices by using
the following condition:

Y P1 − Y N1 = Y P2 − Y N2
The second criterion of choosing Pareto optimal strategies is based on the concept of
the Nash solution to the bargaining problem (see (Nash, 1950)). The pair (Ỹ P1 , Ỹ

P
2 ) is

such a solution if:

(Ỹ P1 − Y N1 )(Ỹ P2 − Y N2 ) > (Y P1 − Y N1 )(Y P2 − Y N2 ) for every (Y P1 , Y
P
2 ).

The above condition can be reformulated using function s:

s(x, p1, p2) = arg max
s>0
{(Y P1 (s)− Y N1 )(Y P2 (s)− Y N2 )}

The main advantage of the second approach is that, considering the dynamics such as
the Lanchester duopoly model used in (Chintagunta and Vilcassim, 1992) and (Wang
and Wu, 2001) in which the dynamic is given by the equation:

ẋ = u1(1− x)− u2x (10)

and the duopoly model from (Bressan and Shen, 2004) given by the formula:

ẋ = x(1− x)(u1 − u2) (11)

it is possible to compute function s analytically, as we shall study in Section 3, and
determine the system (7) effectively. In view of Theorem 2.1, the obtained systems are
hyperbolic except for some curves on the (p1, p2)-plane.

A natural consequence of the above result should be solving numerically received
systems and using them to construct semi-cooperative strategies for empirical examples
of a duopoly. Unfortunately, we have no ready algorithms for such problems at the
moment. Although, the situation seems not to be hopeless. Hamilton–Jacobi systems
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can be transformed into systems of conservation laws, and for such problems, there
exist numerical algorithms. For now, a numerical solvability will not be the subject of
this paper.

The Nash equilibrium is the most common approach to the problem of maximizing
payoff (3) for the dynamic given by (1) and (2). As Bressan and Shen (2004) show, in
general, such an approach leads to unstable systems of partial differential equations.
Therefore, we shall use a Pareto optimality condition. Moreover, our result is not
only a theoretical generalization of the Bressan and Shen dynamic, because (9) is
not sufficient for empirical research. Let us notice that duopoly models (10) and (11)
are not of the (9) form, but they are of the (1) form.

2. PARETO OPTIMAL CHOICES – THE MAIN RESULT

First, we recall the basic definitions and facts concerning the hyperbolicity of linear
and nonlinear systems of PDEs. One can find details in (Bressan and Shen, 2004;
Serre, 2000).

We consider a linear system on Rm with constant coefficients:

Vt +

m∑
α=1

AαVxα
= 0 (12)

where t is time, x ∈ Rm, V : R× Rm → Rk. Let us notice that k corresponds to the
number of players in a game and m is the dimension of the state space. We define the
linear combination:

A(ξ) =

m∑
α=1

ξαAα

where ξ ∈ Rm.

Definition 2.1. System (12) is hyperbolic if there exists a constant C such that

sup
ξ∈IRm

|| exp iA(ξ)|| 6 C

where:

exp iA(ξ) =

∞∑
n=0

(iA(ξ))n

n!

Definition 2.2. System (12) is weakly hyperbolic, if for every ξ ∈ Rm, the matrix
A(ξ) has k real eigenvalues λ1(ξ), . . . , λk(ξ).

In (Bressan and Shen, 2004), it is shown that the initial value problem for system
(12) is well-posed in L2(Rm) if and only if the system is hyperbolic. We have the
following necessary condition of hyperbolicity.

Lemma 2.1. If system (12) is hyperbolic, then it is weakly hyperbolic.
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The next result refers to the one-dimensional case, when system (12) takes the
form:

Vt +AVx = 0 (13)

Lemma 2.2. System (13) is hyperbolic if and only if the matrix A admits a basis of
real eigenvectors.

It is also easy to see that the following statement is true.

Remark 1. Let A ∈ M2×2(R). The matrix A has two real eigenvalues if and only if
(A11 − A22)2 + 4A12A21 > 0. Moreover, if (A11 − A22)2 + 4A12A21 > 0, then the
eigenvectors span the space R2.

In view of Lemma 2.1, it is reasonable to check the weak hyperbolicity in the first
place. We mainly receive nonlinear systems, so it is necessary to understand what the
hyperbolicity means in this case. Consider the system of Hamilton–Jacobi equations:

(Vi)t +Hi(x, (V1)x, . . . , (Vk)x) = 0 i = 1, . . . , k (14)

The linearization of (14) takes the following form:

(Vi)t +
∑
j,α

[
∂Hi

∂pjα
(x, p1, p2, . . . , pk)

]
· ∂Vj
∂xα

= 0 i = 1, . . . , k (15)

where (x, p1, p2, . . . , pk) ∈ R(1+k)m and pi = (Vi)x. If we denote:

(Aα)ij :=
∂Hi

∂pjα
(x, p1, p2, . . . , pk) (16)

then equations (15) are of the (12) form.

Definition 2.3. The nonlinear system (14) is hyperbolic (weakly hyperbolic) on the
domain Ω ∈ R(1+k)m, if for every (x, p1, p2, . . . , pk) ∈ Ω its linearisation (15) is
hyperbolic (weakly hyperbolic).

Due to the fact that we are interested in solving empirical problems in a duopoly
and applying numerical methods, we need to know that our systems have a unique
solution, and this solution’s behavior changes continuously with the initial conditions.
For this reason, hyperbolicity is crucial.

Our aim is to study the hyperbolicity of a system of Hamilton–Jacobi equations
describing value functions generated by a Pareto optimality condition for instantaneous
gain functions. The evolution of the state is described by (1) with the initial data given
by (2). The goal of the i-th player (i = 1, 2) is to maximize his payoff function (3),
where gi and hi satisfy the assumptions (4), (5). We shall consider instantaneous gain
functions:

Y1(x, p1, p2, u1, u2) = p1 · (f(x) + φ(x)u1 + ψ(x)u2)− h1(x, u1)

Y2(x, p1, p2, u1, u2) = p2 · (f(x) + φ(x)u1 + ψ(x)u2)− h2(x, u2)
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Fixing x, p1, p2 ∈ Rm and s > 0, we can find Pareto optimal choices UPi (x, p1, p2, s) for
static game Yi(x, p1, p2, ·, ·), i = 1, 2, in the following way: if (uP1 , u

P
2 ) is the maximum

of function Ys = sY1 + Y2, then strategies (uP1 , u
P
2 ) give Pareto optimal payoffs in

game (Y1, Y2). This is the reason why strategies UPi depend on s. We choose a smooth
function s(x, p1, p2) and define the semi-cooperative feedback strategies:

Usi (x, p1, p2) = UPi (x, p1, p2, s(x, p1, p2)) i = 1, 2 (17)

We define the Hamiltonian functions as follows:

H1(x, p1, p2) = Y1(x, p1, p2, U
s
1 (x, p1, p2), Us2 (x, p1, p2))

H2(x, p1, p2) = Y2(x, p1, p2, U
s
1 (x, p1, p2), Us2 (x, p1, p2))

If value functions:
V si (τ, y) = Ji(τ, y, U

s
1 , U

s
2 ) i = 1, 2

are smooth, then they satisfy the system of Hamilton–Jacobi equations:{
V1,t +H1(x,∇xV1,∇xV2) = 0

V2,t +H2(x,∇xV1,∇xV2) = 0
(18)

Theorem 2.1. Consider problem (1)–(5). As gradients (p1, p2) of the value functions
range in open region Ω ⊂ R2m, assume that the players adopt Pareto optimal strategies
of form (17) for some smooth function s = s(x, p1, p2). Then, system (18) is weakly
hyperbolic on domain Ω. Moreover, if we consider one-dimension case (m = 1),
system (18) is hyperbolic except for some curves on the (p1, p2)-plane.

The method of proof is similar to the proof of Theorem 3 in (Bressan and
Shen, 2004).

Proof. We define functions ki : Rm → Rn – i = 1, 2 as follows:

k1(ξ) = k1(ξ, v, x) = arg max
ω∈Rn

{ξ(f(x) + φ(x)ω + ψ(x)v)− h1(x, ω)}

and:

k2(ξ) = k2(ξ, v, x) = arg max
ω∈Rn

{ξ(f(x) + φ(x)v + ψ(x)ω)− h2(x, ω)}

where x ∈ Rm and v ∈ Rn. Since h1, h2 are smooth functions that satisfy (5), one can
observe that

∂h1
∂u1

(x, k1(ξ)) = ξφ(x) and
∂h2
∂u2

(x, k2(ξ)) = ξψ(x) (19)

We seek Pareto optimal choices by maximizing function Ys = sY1 +Y2. In view of (19),
we can formulate Pareto optimal strategies using functions k1 and k2:

uP1 (x, p1, p2, s) = k1(p1 +
p2
s

) and uP2 (x, p1, p2, s) = k2(sp1 + p2) (20)
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The necessary condition for a local maximum implies that:

s
∂Y1
∂u1

+
∂Y2
∂u1

= s
∂Y1
∂u2

+
∂Y2
∂u2

= 0 (21)

Denoting:

Y Pi = Yi(x, p1, p2, u
P
1 (x, p1, p2, s), u

P
2 (x, p1, p2, s)) i = 1, 2

and recalling (21), we obtain the following equality:

∂Y P1
∂s

= −1

s

∂Y P2
∂s

(22)

Now, we compute the linearization of system (18). From (20), we get:

Y P1 = p1

(
f(x) + φ(x)k1

(
p1 +

p2
s

)
+ ψ(x)k2(sp1 + p2)

)
− h1

(
x, k1

(
p1 +

p2
s

))

Y P2 = p2

(
f(x) + φ(x)k1

(
p1 +

p2
s

)
+ ψ(x)k2(sp1 + p2)

)
− h2(x, k2(sp1 + p2))

To clarify further computations, let us temporarily assume that m = n = 1 and
that s = const. The linearization takes the following form:[
f + φk1 + ψk2 + p1(φk

′
1 + sψk′2)− h′1k′1 p1(

1
s
φk′1 + ψk′2)− 1

s
h′1k
′
1

p2(φk
′
1 + sψk′2)− sh′2k′2 f + φk1 + ψk2 + p2(

1
s
φk′1 + ψk′2)− h′2k′2

]
(23)

where:
h′1 =

∂h1
∂u1

and h′2 =
∂h2
∂u2

Let a := ψp1k
′
2 − 1

s2φp2k
′
1. We can write matrix (23) as follows:

A :=

[
f + φk1 + ψk2 + sa a
−s2a f + φk1 + ψk2 − sa

]
= (f + φk1 + ψk2)I +A]

where:
I =

[
1 0
0 1

]
and A] =

[
sa a
−s2a −sa

]
In view of Remark 1, it is obvious that A is weakly hyperbolic.

Now let s = s(x, p1, p2). In this situation, the linearization matrix is the following:

A = (f + φk1 + ψk2)I +A] +A[

where:

A[ =

 ∂Y P
1

∂s
∂s
∂p1

∂Y P
1

∂s
∂s
∂p2

∂Y P
2

∂s
∂s
∂p1

∂Y P
2

∂s
∂s
∂p2


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Using (22) and denoting c :=
∂Y P

1

∂s
∂s
∂p1

, d :=
∂Y P

1

∂s
∂s
∂p2

, we obtain:

A[ =

[
c d
−sc −sd

]
From Remark 1, it is easy to verify that matrix A has two real eigenvalues: λ1 =
f +φk1 +ψk2 and λ2 = f +φk1 +ψk2 + c− sd; thus, the system is weakly hyperbolic.
Furthermore, the system is hyperbolic when c 6= sd and pi 6= 0 for i = 1, 2.

Now let m,n ∈ N. We need to verify if matrix:

A(ξ) =

m∑
α=1

ξαAα

is weakly hyperbolic where, as in (16),

Aα =

[
∂Hi

∂pjα
(x, p1, p2)

]2
i,j=1

Repeating the reasoning for α’s coordinate of p1 and p2, we receive:

Aα = (fα + (φk1)α + (ψk2)α)I +A]α +A[α

where:

A]α =

[
saα aα
−saα −saα

]
, A[α =

[
cα dα
−scα −sdα

]
and aα = ψ(Dk2 · p1)α − 1

s2φ(Dk1 · p2)α, cα =
∂Y P

1

∂s
∂s
∂p1α

, dα =
∂Y P

1

∂s
∂s
∂p2α

. This means
that matrix A(ξ) has the following form:

A(ξ) =

m∑
α=1

ξαAα = (ξ · f + ξ · φk1 + ξ · ψk2)I +A](ξ) +A[(ξ)

where:

A](ξ) =

[
ξ · sa ξ · a
−ξ · s2a −ξ · sa

]
, A[(ξ) =

[
ξ · c ξ · d
−ξ · sc −ξ · sd

]
Matrix A(ξ) has the two real eigenvalues:

λ1(ξ) = ξ · (f + φk1 + ψk2) and λ2(ξ) = ξ · (f + φk1 + ψk2 + c− sd).

Remark 2. If s is constant, then our problem becomes a cooperative game, and
there is no guarantee that Pareto optimal payoffs dominate Nash payoffs. Such
dominance is crucial for our considerations, because we want to improve outcomes in
a reasonable way.
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3. THE UNIQUENESS OF THE PARETO OPTIMAL CHOICES

The choice of Pareto optimal strategies is a very important issue. Since Pareto optimal
outcomes are not unique, we present two meaningfully different criteria. In this section,
we compare the Bressan and Shen criterion (2004) with the criterion proposed by us,
which is based on the Nash solution to the bargaining problem. Finally, we determine
Pareto optimal solutions for two duopoly models.

Bressan and Shen formulate the choice of s basing on the fairness conditions:

Y Pi (s) > Y Ni for i = 1, 2 (24)

and:
Y P1 (s)− Y N1 = Y P2 (s)− Y N2 (25)

Condition (24) is necessary to receive better outcomes than the Nash equilibrium ones,
and it is essential to convince players to use a Pareto optimal approach. Unfortunately,
conditions (24), (25) are not easy to apply in the examples. Accordingly, we suggest
using the Nash solution to the bargaining problem. Firstly, the choice should not make
the payoffs worse:

Y Pi (s) > Y Ni for i = 1, 2 (26)

Pair (Ỹ P1 , Ỹ
P
2 ) is the Nash solution to the bargaining problem if:

(Ỹ P1 − Y N1 )(Ỹ P2 − Y N2 ) > (Y P1 − Y N1 )(Y P2 − Y N2 ) for every (Y P1 , Y
P
2 )

In the examples, we use the following reformulated form:

s(x, p1, p2) = arg max
s>0
{(Y P1 (s)− Y N1 )(Y P2 (s)− Y N2 )} (27)

If the intersection of the image of function Y = (Y1, Y2) and set {(y1, y2) : yi > Y Ni ,
i = 1, 2} is convex, then conditions (26), (27) provide the unique s. We compare these
two approaches for two dynamics, the Lanchester duopoly model:

ẋ = u1(1− x)− u2x (28)

and the duopoly model from (Bressan and Shen, 2004):

ẋ = x(1− x)(u1 − u2) (29)

In both cases, state x ∈ [0, 1] characterizes the market share. We shall use the following
payoff function:

Ji(τ, y, u1, u2) = xi(T ) +

∫ T

τ

[
xi(t)−

1

2
u2i (t)

]
dt (30)

where x1(t) = x(t) is the market share of the first company at time t ∈ [τ, T ], while
x2(t) = 1− x(t) is the market share of the second. Both methods require comparing
new values with Nash equilibrium payoffs Y N1 , Y N2 – the instantaneous gain functions
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for Nash equilibrium strategies uN1 , uN2 . The strategies can be found from the following
conditions:

∂Y1
∂u1

= 0 and
∂Y2
∂u2

= 0 (31)

Example 1
Let us consider the Lanchester duopoly model, which is given by (28), with the payoff
function (30). The instantaneous gain functions take form:

Yi(x, p1, p2, u1, u2) = pi(u1(1− x)− u2x) + xi −
1

2
u2i i = 1, 2

where x1 = x and x2 = 1 − x. Using (31), we obtain that uN1 = p1(1 − x) and
uN2 = −p2x. The Nash payoffs are the following:

Y N1 = Y1(x, p1, p2, u
N
1 , u

N
2 ) =

1

2
p21(1− x)2 + p1p2x

2 + x

Y N2 = Y2(x, p1, p2, u
N
1 , u

N
2 ) =

1

2
p22x

2 + p1p2(1− x)2 + 1− x

Now, we find the set of Pareto optimal choices. We maximize function Ys = sY1 + Y2:

Ys(x, p1, p2, u1, u2) = sp1(u1(1−x)−u2x)+sx−s1

2
u21+p2(u1(1−x)−u2x)+1−x−1

2
u22.

Using necessary condition:

∂Ys
∂u1

= 0 and
∂Ys
∂u2

= 0 (32)

we receive uP1 = (p1 + 1
sp2)(1− x) and uP2 = −(sp1 + p2)x. The respective payoffs are:

Y P1 = p1

((
p1 +

1

s
p2

)
(1− x)2 + (sp1 + p2)x2

)
+ x− 1

2

(
p1 +

1

s
p2

)2

(1− x)2

Y P2 = p2

((
p1 +

1

s
p2

)
(1− x)2 + (sp1 + p2)x2

)
+ 1− x− 1

2

(
sp1 + p2

)2

x2

Firstly, we shall use fairness condition (24) and (25). Condition (25) allows us to
present function s as one of the solutions of the following equation:

(p1x)2s4 + 2(p1x)2s3 − 2(p2(1− x))2s− (p2(1− x))2 = 0 (33)

Unfortunately, condition (33) does not provide solutions that could be presented in
one simple, analytically computed formula. On the other hand, applying conditions
(26) and (27) we obtain that the seeking function s is given by the formula:

s(x, p1, p2) =

(
p2(1− x)

p1x

) 2
3

(34)
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The Hamilton functions for (34) are the following:

H1(x, p1, p2) =
1

2

p21 −
((

x

1− x

)2

p21p2

) 2
3

 (1− x)2 +

(
p1p2 +

((
1− x
x

)
p21p2

) 2
3

)
x2 + x

H2(x, p1, p2) =
1

2

p22 −
((

1− x
x

)2

p1p
2
2

) 2
3

x2 +

(
p1p2 +

((
x

1− x

)
p1p

2
2

) 2
3

)
(1− x)2 + 1− x

The matrix of the linearization of (18), in this case, takes the form:

(
p1 −

2φ2(x)(p1p22)
1
3

3

)
(1− x)2 −

φ2(x)
(
p41p
−1
2

) 1
3

3
(1− x)2

+

(
p2 +

4(p1p22)
1
3

3φ(x)

)
x2 +

p1 +
2
(
p41p
−1
2

) 1
3

3φ(x)

x2

−
(
p−1
1 p42

) 1
3

3φ2(x)
x2

(
p2 −

2(p21p2)
1
3

3φ2(x)

)
x2

+

p2 +
2φ(x)

(
p−1
1 p42

) 1
3

3

 (1− x)2 +

(
p1 +

4φ(x)(p21p2)
1
3

3

)
(1− x)2


p1=∇xV1,p2=∇xV2

where φ(x) =
(

x
1−x

) 2
3

.

Example 2
Let us consider the second duopoly model, which is given in (29). The payoff functions
are given in (30); thus, the instantaneous gain functions take the following form:

Yi(x, p1, p2, u1, u2) = pix(1− x)(u1 − u2) + xi −
1

2
u2i i = 1, 2

where x1 = x and x2 = 1 − x. Using (31), we obtain that uN1 = p1x(1 − x) and
uN2 = −p2x(1− x) with the Nash payoffs:

Y N1 = (x(1− x))2
(

1

2
p21 + p1p2

)
+ x, Y N2 = (x(1− x))2

(
1

2
p22 + p1p2

)
+ 1− x

Now, we need to find the set of Pareto optimal choices. To do that, we shall maximize
function Ys = sY1 + Y2, (s > 0 is fixed):

Ys(x, p1, p2, u1, u2) = sp1x(1−x)(u1−u2)+sx−s1

2
u21+p2x(1−x)(u1−u2)+1−x− 1

2
u22

Using necessary condition (32), we get uP1 =

(
p1+ 1

sp2

)
x(1−x) and uP2 = −(sp1+p2)

x(1− x), and the Pareto optimal payoffs are:

Y P1 = (x(1− x))2
[(

1

2
+ s

)
p21 + p1p2 −

p22
2s2

]
+ x
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Y P2 = (x(1− x))2
[(

1

2
+

1

s

)
p22 + p1p2 −

s2p21
2

]
+ 1− x

Applying (25), we get a very similar polynomial as in Example 1:

(p1)2s4 + 2(p1)2s3 − 2(p2)2s− (p2)2 = 0

On the other hand, from conditions (26) and (27), we find that seeking function s is
given by the following formula:

s(x, p1, p2) =

(
p2
p1

) 2
3

(35)

The Hamilton functions for (35) are the following:

H1(x, p1, p2) = x2(1− x)2
(

1

2
p21 + p1p2 +

1

2

(
p21p2

) 2
3

)
+ x

H2(x, p1, p2) = x2(1− x)2
(

1

2
p22 + p1p2 +

1

2

(
p1p

2
2

) 2
3

)
+ 1− x

The linearization of the system takes the following form:

[
V1
V2

]
t

+

φ(x)
(
p1 + p2 + 2

3

(
p1p22

) 1
3

)
φ(x)

(
p1 + 1

3

(
p41p
−1
2

) 1
3

)
φ(x)

(
p2 + 1

3

(
p−1
1 p42

) 1
3

)
φ(x)

(
p1 + p2 + 2

3

(
p21p2

) 1
3

)

p1=∇xV1,p2=∇xV2

·
[
V1
V2

]
x

=

[
0
0

]

where φ(x) = x2(1− x)2.

Criteria (26) and (27) provide an effective analytical formula describing Hamilotnian
functions H1, H2 in system (18) in both duopoly models. Our next aim is to solve the
received systems numerically and to compare the obtained solutions with empirical
data.
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