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Field-Programmable Gate Arrays (FPGAs) can be found in an increasing number of application domains, such as the telecom
industry, the automotive electronics sector, or automation technology as well as in the area of reconfgurable computing. In recent
years, it can be observed that the open-source idea which is known from the software domain for a long time also became popular
in the world of hardware and FPGA design. In the era of the Internet of Tings, many of today’s electronic devices implement
some kind of network interface with Ethernet being known as one of the most widely used network standards. Tus, there is
consequently a high demand on available Ethernet implementations for FPGA platforms. Te goal of this work is to survey
available open-source Ethernet MAC IP cores, evaluate existing designs in terms of performance, resource utilization, code
quality, or maturity, and to present and summarize the evaluation results herein. Furthermore, advantages of commercial
solutions and related publication work are discussed. To the authors’ best knowledge, this is the frst publication that evaluates and
compares existing open-source Ethernet MAC IP cores on a large scale. Tis work should help designers to select an appropriate
open-source Ethernet MAC for an FPGA design and shows possible pitfalls and things to pay attention when using an open-
source IP core in general. Finally, the authors would like to show that the open-source community can be also very helpful in the
world of hardware in terms of design reuse or time to market.

1. Introduction

Today, Ethernet is by far one of the most important, if not
the most important computer network technology [1, 2]. It
was developed in 1973 at Xerox Palo Alto Research Center
(PARC) and has been approved as the IEEE 802.3 standard
in 1983. Since then the original Ethernet technology was
further developed to a great extent, and today the IEEE 802.3
standard includes numerous supplementary sections
resulting in thousands of pages of documentation. During
the last decades, Ethernet has become the dominant LAN
technology to interconnect computers in, e.g., homes, ofce
buildings, or at university campuses. Over the years and
apart from its intended purpose, Ethernet is increasingly
used in more and more other application felds such as
telecommunications [3], the automotive sector [4], in-
dustrial automation [5], and even avionics [6]. Te eforts to

make use of Ethernet in industrial applications by replacing
traditional feldbus technologies are commonly summarized
under the term “Industrial Ethernet” [7]. However, this term
does not refer to a single standard but rather to various
approaches aiming to introduce determinism and real-time
behavior, rugged connectors, or networking infrastructure
with extended temperature range in order to work in harsh
environments. Examples for Industrial Ethernet protocols
are PROFINET, EtherCAT [7], and EtherNet/IP (where “IP”
refers to “Industrial Protocol,” see [8]).

Ethernet basically covers Layer 1 and Layer 2 of the Open
Systems Interconnection (OSI) model including specifca-
tions of the communication media (see Figure 1). Te classic
Ethernet implementationmade use of a coaxial cable while for
recent variants, twisted pair and fber optic links are the most
common types of media. Typical transmission speeds in
today’s Ethernet implementations are 10, 100, and 1000Mbit/
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s. However, bitrates of 10, 40, and 100Gbit/s are also stan-
dardized since some years and the IEEE 802.3bs physical layer
specifcation (adopted in 2017) supports a transmission speed
of up to 400Gbit/s. Te physical layer of Ethernet is often
abbreviated as Physical Layer (PHY) while the data link layer,
which includes both the Medium Access Control (MAC) and
the Logical Link Control (LLC) sublayer, is commonly re-
ferred to as Medium Access Control (MAC). Both PHY and
MAC are implemented in a hardware device while upper
protocol layers sitting on top of Ethernet (e.g., TCP, UDP, IP,
ARP, and ICMP) are most often implemented as a software
stack running on a CPU or microcontroller (however,
hardware implementations for the previously mentioned
upper protocol layers are also available, e.g., for applications
with demands on high throughput and/or low latency [9]).
Te Ethernet PHY, the MAC, and the CPU (processing the
upper protocol layers) can be either separate devices or
a single-chip solution (e.g., a microcontroller that integrates
both the PHY and the MAC on-chip). If the PHY and the
MAC are individual devices, they are interconnected over the
so called Media Independent Interface (MII) whereby dif-
ferent variants of this interface exist, such as Reduced Media
Independent Interface (RMII) or Gigabit Media Independent
Interface (GMII).Te physical media is connected to the PHY
over the Media Dependent Interface (MDI).

Due to the widespread use of Ethernet, there is conse-
quently a high demand on available Ethernet implementa-
tions. When an Ethernet interface is required for a Field-
Programmable Gate Array (FPGA) or Application-Specifc
Integrated Circuit (ASIC) design, a common method is to
integrate the MAC and the CPU (that processes, e.g., a TCP/
IP stack) on-chip. For this reason, Ethernet MACs are
available from FPGA vendors, Intellectual Property (IP)
providers, and other companies in form of an IP core.
However, existing commercial solutions come with some
limitations:

(i) IP cores from FPGA vendors are often technology-
dependent which makes it difcult to port the de-
sign to devices from other FPGA vendors.

(ii) IP cores that are provided as a netlist cannot be
modifed by the user, making it impossible to
change the existing design (in order to adjust the
receive/transmit bufer sizes, replace the on-chip
bus interface, etc.), add additional features (e.g.,
to move functionality to dedicated ofoad engines),
or to fx bugs.

(iii) Finally, license fees have to be paid for most
commercial IP cores.

Fortunately, the open-source idea that is known from the
software domain for a long time also became popular in the
world of hardware design since some years [10]. Tus, the
usage of an open-source Ethernet MAC IP core can be
a solution to overcome the limitations of commercial IP
cores mentioned previously which fnally was the motivation
for the authors of this work. Te goal of this paper is to
survey available open-source Ethernet MAC IP cores,
evaluate existing designs in terms of performance, resource
utilization, code quality, or maturity, and to present and
summarize the evaluation results herein. Te following
sections are structured as follows. Section 2 provides an
overview of existing work related to the scope of this
publication. Section 3 presents results of our survey on open-
source Ethernet MAC IP cores including information such
as Internet source and license model for each IP core, design
language, supported bitrates, PHY and application in-
terfaces, available documentation and testbenches, existing
reference implementations, and features like support for
DMA transfers, VLAN tagging, or Precision Time Protocol
(PTP). Furthermore, the consumed FPGA resources are
compared in this section in terms of logic resources,
memory, and other technology-specifc building blocks
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Figure 1: Typical implementation of TCP/IP stack over Ethernet.
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(Phase-Locked Loops (PLLs), delay elements, etc.). Here, the
synthesis and linting reports are discussed on a large basis
since they refect the code quality of the IP cores. Eight
projects have been selected for a closer evaluation whereby
details of the selection process are outlined in Section 4. In
Section 5, the evaluation and measurement setup for the
selected projects (FPGA platforms, used wrappers and
hardware environment to embed the IP cores, Ethernet
tools, etc.) is presented. Finally, the results of the various
measurements (network throughput, latency, and packet
loss at diferent frame lengths) are provided in Section 6.Te
paper is concluded by a discussion of the evaluation results
and provides a brief outlook to our future research work in
Section 7.

2. Related Work

Existing publications that are related to this work cover, e.g.,
Ethernet MAC designs for FPGAs, hardware implementa-
tions of network protocols such as IP, UDP, or ARP, and
papers where Ethernet MACs only act as a use case to in-
vestigate other research topics. For example, Qian et al.
introduced a Verilog implementation of a 10/100Mbit/s
Ethernet controller in a short paper [11]. Unfortunately,
numbers concerning network performance or resource
consumption are missing. Yi et al. presented an imple-
mentation of a Ten Gigabit Ethernet MAC in [12]. While less
details on the actual implementation of the MAC are given,
the focus of the paper is, however, on a new CRC calculation
method. Another 10Gbit/s Ethernet MAC was described in
[13] by Xiao et al. that was implemented on a Xilinx Virtex-6
FPGA device. In the bachelor thesis [14] from the University
Ilmenau/Germany, the author Kerling provided a lot of
implementation details of an Ethernet MAC coded in VHDL
and targeted at FPGAs, supporting link speeds of 10, 100,
and 1000Mbit/s. Te design is publicly available under an
open-source license. A few Ethernet MACs are listed in the
thesis under related work, but they are all commercial
IP cores.

A number of existing publications propose hardware
implementations of higher level protocols such as IP or UDP
built on top of Ethernet. In [15], the Universidad Autónoma
de Madrid and the ETH Zürich introduced “Limago,” an
FPGA-based open-source implementation of a TCP/IP stack
operating at 100Gbit/s which, according to the authors, is
the frst complete description of an FPGA-based TCP/IP
stack at this bitrate. Te design is based on Vivado-HLS and
makes use of a commercial Ethernet MAC. Te paper in-
cludes results from performance measurements of the
network stack as well as the resource consumption for
diferent confgurations of the framework. A similar TCP/IP
implementation for FPGAs called SiTCP was presented by
the University of Tokyo in [16]. In order to be vendor-
independent, here the author argues against using a hard-
macro for the Ethernet MAC and therefore makes use of
a custom built MAC. Te Technical University of Munich
presented an UDP/IP core for FPGAs based on a hard-wired
Ethernet MAC from Xilinx in [17]. Measurements have been
performed by the authors concerning network throughput

and packet loss. Moreover, a comparison of the consumed
FPGA resources with a UDP/IP stack from Löfgren et al. [18]
was done. In [19], Sütő and Oniga presented a custom built
Ethernet MAC with low resource usage that includes
hardware implementations of ARP and DHCP. Here the
intended use case is communication of sensor values from an
embedded sensor node and shall contribute to the “Internet
of Tings.”

Te “Corundum” project by the University of California
is an open-source FPGA-based prototyping platform for
network interface development at up to 100Gbit/s and
beyond [20]. Te platform has an even broader focus than
the previously mentioned work since it includes 10G/25G/
100Gbit/s Ethernet MACs, PCI Express Gen 3, a custom
PCIe DMA engine, and high-precision IEEE 1588 PTP
timestamping. It makes use of the Xilinx Ethernet CMAC
hard core for 100G Ethernet and an own FPGA-based
implementation for <100Gbit/s (which is not described in
detail by the authors). Te conference paper [21] from
Santos et al. has yet another scope and describes the FPGA-
based architecture of a modifed Ethernet switch providing
real-time communication based on the Flexible Time-
Triggered paradigm. It utilizes the Xilinx Tri-Mode Ether-
net MAC soft core which can operate at 10/100/1000Mbit/s.
Other publications such as [22, 23] implement an Ethernet
MAC only as a use case while the focus of research is
verifcation.

In summary and to the best of our knowledge, no
publication could be found that compares and evaluates
available open-source Ethernet MACs on a large scale. Tat,
as well as providing general insights into the potential
usefulness of open-source IP cores, was our primary mo-
tivation to write this survey and evaluation paper.

3. Overview of Open-Source Ethernet MAC
IP Cores

Te frst step of the overview and evaluation of open-source
Ethernet MAC IP cores described in this paper is to gain
a comprehensive overview of open-source projects available
in this context. Tree major sources for fnding these pro-
jects can be mentioned:

(1) A traditional source for open-source IP is the web
platform opencores.org. Founded in 1999, it provides
a directory and source code versioning and hosting
of various open-source IP cores targeting FPGAs and
ASICs alike. In recent years, a subset of cores has
been mirrored to other sites. For example, free-
cores.github.io is a project to mirror the source code
from opencores.org to github.com.

(2) Due to the popularity of git-based source code
hosting platforms such as github.com, a number of
analyzed IP cores have also been identifed that are
hosted on these platforms. Tese projects are harder
to fnd, having to rely on the site’s search function or
Internet search engines or third-party directories
such as the former platform librecores.org that was
closed in October 2022 (an archived version can be
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found here: https://web.archive.org/web/
20220626133000/https://www.librecores.org/
project/list (accessed: May 5, 2023)).

(3) Some projects are only available from the website or
private source code hosting instance of the respective
author or core vendor. Identifcation of these pro-
jects wholly relies on the indexing of an Internet
search engine or mention of the location in a pub-
lication (e.g., [14]).

3.1. IdentifedProjects. Te projects that have been identifed
at the time of writing identifed using the sources mentioned
above are listed in Table 1 in alphabetical order. As some of
the identifed projects are quite popular, often not only the
original repository of the core appears in search results, but
also other projects that include these cores in their designs.
Tese projects are not shown in Table 1, which aims at
showing the original set of Ethernet MAC cores found.

In addition to the identifed projects, Table 1 also pro-
vides the version of the IP core (git commit, SVN revision, or
version number), as well as the release date of the version
evaluated in this work. Furthermore, basic information
about the core and its features is provided.

Te context in which an IP core can be used in a digital
design is related to the license under which the source code is
released. While most of the identifed cores are released
under a traditional open-source software license such as
GNU General Public License (GPL) or Berkeley System
Distribution (BSD), in recent years licenses especially
suitable for open-source hardware such as the CERN Open
Hardware License (OHL), the Solderpad License, or the
NetFPGA Hardware-Software license have become avail-
able.Te license, for example, impacts if the core can be used
commercially at all and which parts of the source code (if
any) need to be published if it is used in a commercial
product. A discussion of licenses for open-source hardware
can be found in [42].

Te language which is used to describe the hardware of
a core impacts the ease of integration into the context of
a larger project. Most identifed cores are described in
a “traditional” hardware description language such as VHDL
or Verilog. Te two exceptions are the two projects An
Ethernet Controller and Litex Liteeth. Te former is de-
scribed in Chisel, a hardware description language based on
the Scala programming language. Chisel is, for example,
used in the Rocket Chip Generator (https://github.com/
chipsalliance/rocket-chip, accessed: May 5, 2023) to de-
scribe the RISC-V Rocket CPU core. Using the Scala Build
Tool (sbt), a synthesizable Verilog representation of the
design is generated. In contrast, Litex Liteeth is described in
Migen, a hardware description system and core library
written in Python, that also generates synthesizable Verilog.
Apart from the identifed Ethernet IP core, the Litex project
(https://github.com/enjoy-digital/litex, accessed: May 5,
2023) provides a System-on-Chip (SoC) build system and
core library (e.g., DRAM, PCIe, and SATA cores) written in
Migen.

Furthermore, the supplementary material provided by
the core’s repository is detailed in the columns “Testbench”,
“Documentation”, and “Reference Implementation” of
Table 1.

Providing a testbench with a core allows the potential
user of a core to quickly bring up and confrm the func-
tionality of the core in simulation. Furthermore, it may serve
as an indicator that some thought has been given to the
verifcation of the core by the author(s).

If a project includes reference implementations for one
or more FPGA development boards, this can serve as an
indicator that the project is indeed synthesizable and was at
some point tested in actual hardware by the author(s).
Furthermore, important implementation details such as how
to integrate the core into a functional system and which parts
of the project need to be ported for a specifc FPGA tech-
nology can be learned from such an implementation.

Te documentation a core provides has been classifed
into three categories:

(i) Code comments (CC) document the source code
itself inline.

(ii) Readme (R) fles are often short text fles describing
the most important aspects of a core (e.g., intended
application, FPGA family, and build system). In
projects hosted on github.com or a similar system,
these fles are rendered as a project’s “landing page.”

(iii) Some projects also provide long-form (LF) docu-
mentation, either in the form of a user manual,
specifcation document(s), or both.

Availability of high-quality documentation signifcantly
reduces the time needed until a project can be used pro-
ductively. Otherwise, this information needs to be extracted
from example implementations, testbenches, or the source
code of the core itself.

Te principal set of features along which the identifed IP
cores are classifed is shown in Table 2.

Concerning the supported communication speed, three
classes were introduced: (1) 10/100Mbit/s, the “traditional”
Ethernet speed, (2) 1Gbit/s, a standard speed nowadays, and
(3) >1Gbit/s, e.g., 10, 25, or more Gbit/s as a fast com-
munication speed. While some cores only support one speed
class, others support multiple standards. Te supported
speed is closely related to the supported MII variant to
interface to an Ethernet PHY. For example, the original MII
(4 bit parallel data, 25MHz clock frequency) was introduced
in the 100Mbit/s Fast Ethernet standard. RMII falls into the
same Ethernet speed class but doubles the frequency to
50MHz in order to halve the number of required data
signals. Gigabit Ethernet requires a diferent MII variant,
such as GMII (8 bit parallel data, 125MHz clock frequency),
the double-data-rate Reduced Gigabit Media Independent
Interface (RGMII) (4 bit parallel data, 125MHz clock fre-
quency, one nibble transferred per clock edge), or the
625MHz double-data-rate Serial Gigabit Media In-
dependent Interface (SGMII). Even faster Ethernet speeds
require even more complex interfaces such as the
156.25MHz double-data-rate 32-bit parallel Ten Gigabit
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Media Independent Interface (XGMII). An exception to the
support of one or more MII variants is the WhiteRabbit
project that only supports direct connection to a Physical
Coding Sublayer (PCS) core.

Furthermore, the interface that a core provides to access
its features is an important detail to consider when in-
tegrating the core into a planned or existing system. Two
kinds of tasks for the core’s interface have been considered in
this work: the control part of the interface that is used to
confgure the core or alter its behavior (e.g., setting MAC
address fltering), and the data part of the interface that is
used to transfer data to be sent into the core and data re-
ceived out of the core. In some cases, both of these parts are
actually integrated into one single interface. Tis is, for
example, the case for a core that provides a single memory
mapped address space which allows access to confguration
registers and data bufers via an on-chip bus system. In other
cases, a separate interface exists for the two tasks. In the
“Interface” columns of Table 2, apart from standard on-chip
bus interfaces such as Wishbone, Advanced Microcontroller
Bus Architecture (AMBA) Advanced High-Performance
Bus (AHB), AMBA Advanced Peripheral Bus (APB),
AMBA Advanced eXtensible Interface Bus (AXI), and Open
Core Protocol (OCP), also non-standard interfaces had to be
considered. In this context, Register Transfer Level (RTL)
stands for discrete ports that must be driven by external logic
but do not follow a well-defned interface. A core is classifed
as having an “External FIFO Interface” if it exposes a read/
write request signal along with a read/write data signal for
connection of an external FIFO, while it is classifed as
having an “Internal FIFO Interface” if it exposes these signals
for external access to a FIFO contained in the core. Addi-
tionally, a core is classifed as having an “other address/data
bus” if it does not use a standard on-chip bus but exposes
a generic address and data bus as well as control signals for
external access. Finally, some cores are able to retrieve
frames to be sent, and store received frames, in external
memory acting as a bus master, i.e., provide Direct Memory
Access (DMA) capabilities. In these cases, the control in-
terface is used to establish DMA descriptors that the core
then uses to access the correct memory locations. Tese
cores are described as having a “master” interface.

While a standardized bus interface may be preferred
when integrating a core into a complex or CPU-centered
SoC, other interfaces such as a plain FIFO or streaming
interface may be easier to interface from arbitrary logic that
would else potentially be required to generate sequences of
bus transactions just to bring up the core for transmission or
reception.

Te (technology) Primitives column of Table 2 shows
for which FPGA vendor—if any—a core instantiates
technology primitives. If such primitives are instantiated in
the RTL description of a core, these need to be replaced
when porting the core to another FPGA family or vendor.
For some technology-dependent components (e.g.,
BRAM), current synthesis tools are able to infer these
components from an RTL description. However, when
using more complex components such as Double Data Rate
(DDR) components or transceivers necessary for high-

speed Ethernet standards, direct instantiation of these
primitives becomes necessary.

Table 3 provides further insight into the technical fea-
tures the cores provide. It can be seen that almost all cores
provide checking and insertion of the Ethernet Frame
Checksum (FCS) as well as First-In-First-Out (FIFO) bufers
for decoupling the MAC from the network and/or from the
user logic.

While often required, an implementation for Manage-
ment Data Input Output (MDIO) for confguration and
monitoring of the PHY is only provided by a subset of the
identifed cores. If MDIO is not present, the user must either
supply an external implementation or use the PHY’s power-
up defaults, which may not be possible in every case.

Several cores provide DMA support to ofoad the task of
reading frames to be transmitted and writing received
frames into memory from the CPU. In these cases, the cores
often require the setup of elaborate DMA descriptor systems
that point to locations in memory where the core should
place received frames or fetch frames to be transmitted from.
Further ofoading is provided by those cores that allow
fltering incoming frames for specifc MAC addresses or
allow insertion of the host’s MAC address into transmitted
frames.

As an alternative to DMA, some cores include internal
memory-mapped RAM bufers themselves that can be read
from or written to from a bus interface.

A small subset of the cores provides special features such
as support for VLAN tagging or the PTP for clock
synchronization.

While Ethernet standards for transmission speeds lower
than 10Gbit/s include half-duplex operations, only three
cores support this mode of operation.Tis includes handling
the carrier sense (CRS) and collision (COL) signals gener-
ated by the PHY, as well as implementing Carrier Sense
Multiple Access/Collision Detection (CSMACD). However,
as nowadays the vast majority of Ethernet networks employ
switches and full-duplex operations, these features were not
evaluated in hardware.

Finally, the (default) width of the data path of the an-
alyzed cores is provided in Table 3. Te majority of the
analyzed cores use a data path width geared towards modern
on-chip bus systems and CPU interfaces of 32 or 64 bit. As
an exception, P. Kerling’s MAC and some variants of the
Verilog-Ethernet project’s MAC provide byte-wise access to
the transmitted or received data. Te default network-side
interface supported by the WhiteRabbit wr-endpoint core is
a 16-bit variant of PCS. Finally, the LMAC3 project—geared
towards data rates of up to 100Gbit/s—provides a 256-bit
wide interface.

3.2. Out-of-Context Synthesis. In order to confrm com-
pleteness and basic synthesizability of the identifed IP core
projects, the cores were synthesized using Xilinx’s Vivado
2019.1 FPGA implementation tool. For cores that allow
signifcantly diferent variants (e.g., diferent confgurations,
speeds, and interfaces), multiple synthesis runs were per-
formed. Tese synthesis runs were done in Out-of-Context
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(OOC) mode, which is Vivado’s term for performing
a synthesis run only, with no required physical (e.g., pin)
constraints and without insertion of IO bufers. Te result of
this synthesis run is a technology-dependent gate-level
netlist that can—in an actual design fow—be instantiated
in a hierarchical design.

Te OOC synthesis runs allow to judge if a core is
synthesizable as-is, or, alternatively which components of
the core need to be ported to the specifc FPGA technology
in order to be synthesizable. Furthermore, basic resource
usage after synthesis allows comparison between the cores
and identifcation of possible bugs (e.g., unintended in-
stantiation of latches). Finally, it provides access to Vivado’s
linting capabilities. For example, its (critical) synthesis
warnings can be analyzed and used as an indicator of basic
code quality. In the context of Ethernet, also the results of
Vivado’s Clock Domain Crossing (CDC) analysis tool are
relevant because most cores incorporate CDCs from the
interface clock domain to the MII clock domain and
vice versa.

As a target technology for the preliminary OOC syn-
thesis, the widely used Artix 7 device family by Xilinx was
chosen. Tis technology provides 6-input fracturable Look-
Up Tables (LUTs), 18Kbit and 36Kbit memory blocks, and
25×18 DSP blocks.

3.2.1. Synthesized Cores and Variants. In order to perform
OOC synthesis for each of the cores listed in Table 1,
Hardware Description Language (HDL) wrappers that in-
stantiate the respective core and set top-level parameters
were implemented. Te parameter values were chosen to
refect default values set either in the core’s top-level module
or mentioned in the documentation. In those cases where
a core was available in diferent variants (e.g., diferent
interface types or Ethernet speeds), multiple variants were
synthesized. Tis concerns the following cores:

(i) LeWiz’s LMAC cores provide a native interface to
internal receive and transmit FIFOs and an AXI-
Stream interface. Te LMAC1 core was thus syn-
thesized in the native variant, referred to as
LMAC_CORE_TOP after the top-level module that
was synthesized. Additionally, the LMAC1_COR-
E_AXIS variant contains the AXI-Stream interface
mentioned above.
Additionally, LeWiz’s LMAC cores contain a FIFO
implementation inferred from HDL. However, it
was seen during synthesis that this description is not
completely understood as intended by Xilinx
Vivado, which implements the FIFO’s logic in fip-
fops and LUTs instead of more suitable memory
resources. Tus, each of the variants of the LMAC1
core mentioned above was synthesized in two
variants: one with the original inferred FIFO
implementation and one where this implementation
has been replaced by a macro provided by Xilinx
(using the Xilinx Parameterized Macro (XPM)-
FIFO core).

Te remaining cores provided by LeWiz (LMAC2
and LMAC3) were only synthesized in variants that
use the native interface and the XPM-based FIFO
implementation.

(ii) Litex’s Liteeth provides several diferent interfaces
to PHYs (and thus also diferent Ethernet speeds)
and diferent application interfaces as well. Both
variants provide internal, memory-mapped data
bufers for received and transmitted Ethernet
frames that can be read and written via Wishbone.

(iii) Te 10Gbit/s project NFMAC10G provides a bare
variant that places tight constraints on the interface
to external logic and a more comfortable user in-
terface. According to NFMAC10G’s documenta-
tion, this interface allows for fow control on the
receive side and more fexible interfaces on the
transmit side. Additionally, this interface also flters
out received frames with invalid FCSs. Te bare
variant is referred to as nfmac10g, and the variant
with the more convenient interface is referred to as
nfmac10g_user_intf (see Table 4).

(iv) In a similar way, P. Kerling’s Ethernet MAC pro-
vides a bare variant that requires external FIFOs and
one where these FIFOs are implemented internally,
and the read and write port to them is exposed on
the interface.

(v) Te Verilog-Ethernet project provides a large va-
riety of MACs supporting diferent PHY interfaces.
Five diferent variants, instantiating a subset of these
interfaces, were synthesized. All of the variants
provide AXI-Stream access to internal receive and
transmit FIFOs.

(vi) WhiteRabbit is a complete system for highly ac-
curate clock synchronization for data transfer and
control at CERN. Te WhiteRabbit code repository
provides a variety of diferent cores to implement
this system, among others a complete SoC imple-
menting Network Interface Controller (NIC),
containing elaborate fltering and even a Lattice
Mico32 CPU core. Only the MAC implementation
of this project was synthesized for this work
(wr_endpoint).

In addition, synthesis constraint fles (.xdc fles) for
Xilinx Vivado were implemented that defne clocks for the
top-level clock inputs in order to enable Vivado to perform
CDC analysis. To that end, except if noted otherwise, each
clock input was considered to drive a clock that is asyn-
chronous to all other clock inputs. Additionally, this con-
straint fle allows to constrain clock multiplexers. Several of
the analyzed cores (cores capable of 10/100Mbit/s and
1Gbit/s) use clock multiplexers to select between the
25MHzMII transmission clock generated by the PHY in 10/
100Mbit/s mode and the 125MHz GMII gigabit trans-
mission clock generated by the MAC in 1Gbit/s mode.
Vivado requires manual constraining of clock multiplexers
in order to perform correct case analysis of the propagated
clocks [43].
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Furthermore, some cores need manually ported com-
ponents (e.g., IO components such as DDR inputs and
outputs or FIFO bufers), which were added in a pre-
liminarily form to allow synthesis. While these imple-
mentations were not verifed in simulation or hardware, they
should nevertheless provide information about the ap-
proximate relative resource usage of the cores.

3.2.2. Resource Results. Te primary output of the OOC
synthesis process is a technology-dependent netlist of the
synthesized cores and thus information about the amount of
FPGA resources needed to implement them. Basic resource
usage data for the synthesized variants can be found in
alphabetical order in Table 4, and usage of additional, more
specialized resources can be found in Table 5. Tese results
were obtained by running Vivado’s OOC synthesis (syn-
th_design -mode out_of_context) with default options and
one pass of optimization (opt_design) afterwards. Te latter
command performs basic optimizations such as propagating
constants and removing nets and cells with no fan-out [44].

Due to missing VHDL package fles, containing, e.g.,
type defnitions, the project Opencores Gbiteth was not
synthesizable and thus could not be analyzed in this and the
following steps.

On frst glance, the dramatic resource usage of the
LMAC1 variants that use inferred FIFOs—obviously in
a way not correctly recognized by Vivado—can be spotted in
Table 4. If RAM-based FIFOs are instantiated in these cases,
more sensible resource results are produced.

Furthermore, LeWiz’s LMAC3 core consumes a large
number of LUTs even in the XPM-FIFO variant compared to
the other analyzed MACs. Analyzing the hierarchical re-
source results reveals that the majority of the additional
resource usage (more than 30000 LUTs and 7000 fip-fops)
compared to LMAC2 stems from the implementation of
receive and transmit CRC blocks. As LMAC3 uses a 256 bit
wide data path and supports data rates of up to 100Gbit/s,
a high-performing but less resource-efcient CRC imple-
mentation may have been chosen. An increase in resource
usage when increasing the transmission speed above 1Gbit/s
can also be seen when comparing the Verilog-Ethernet
1Gbit/s variants to the 10Gbit/s variant.

Apart from the outliers mentioned above, it can be seen
that the analyzed cores span a wide range of sizes. While
some implementations (e.g., the 100Mbit/s and 1Gbit/s
variants of Verilog-Ethernet) use close to 500 LUTs and FFs,
apparently more complex implementations such as the
LMAC variants and to a limited extent also GRETH,
Opencores Ethernet Tri Mode, and Opencores Ethmac
consume 1000 s of each. When comparing the resource
usage of the diferent cores, the vastly diferent amount of
functionality provided by the individual cores must be taken
into account. For example, the MACs provided by the
Verilog-Ethernet project are relatively bare-bone—these
cores allow to place frames to be sent into a FIFO and
read received ones from another FIFO, with little additional
functionality apart from checking FCS validity on incoming
frames and inserting the FCS in outgoing ones. On the other

hand, for MACs such as Gaisler’s GRETH or Ethmac, the
focus seems to be on CPU-based systems, with these cores
providing a large number of confguration registers, in-
terrupt circuitry, and DMA functionality. Furthermore, the
width of the data path may play a role in the used LUTs
and FFs.

Diferent sizes of provided FIFOs and bufers explain the
diference in LUT-based RAM (LUTRAM) and Block RAM
(BRAM) seen among the diferent cores. For example, both
Litex variants and Ariane-Ethernet provide internal
memory-mapped receive and transmit RAM bufers in
contrast to Gaisler GRETH and Opencores Ethmac that use
DMA to write to external memory.

Another important insight provided by the resource
counts is the number of instantiated latches (in contrast to
the number of instantiated fip-fops). Latches inferred by
the synthesis tool instead of fip-fops are often the result of
incorrect descriptions of combinational or sequential logic
in an HDL (sometimes called “unintended latches”), as they
may, among other problems, complicate correct static
timing analysis [45]. If latches are instantiated, this
prompts analysis into the responsible sections of the
hardware description in order to verify if the latch was
actually intended. In Table 4, the only cores that instantiate
latches are LeWiz’s LMAC cores. Part of the latches in-
stantiated by Vivado may be caused by the incompatible
description of the FIFO inferred from HDL. However, also
the variants that use an instantiated XPM FIFO contain at
least one latch. Analysis of the source code of LMAC1 and
LMAC2 revealed that the latch in both cases is instantiated
in the design unit tcore_rx_xgmii. Here, the signal pre_-
pkt_we_wire is assigned in a way that requires imple-
mentation as a latch, and it thus must be counted as an
intended latch. Listing 1 shows an excerpt of the re-
sponsible Verilog code in LMAC2. LMAC3 applies similar
patterns in its design units tcore_rx_cgmii and
eth_crc32_gen. Te larger number in the LMAC3 case
stems from the CRC generator because the afected signal in
this case is 32 bits wide, and the design unit is instantiated
once in the receive and once in the transmit path. Fur-
thermore, as these latches fan out to a large number of cells,
the synthesis tool replicates each latch two or three times.

Most cores themselves do not require FPGA resources
beyond LUTs, fip-fops, and block memory to implement
their functionality. Only the subset of cores listed in Table 5
requires additional, more specialized resources. Among the
required resources are the following IO- and clock-related
FPGA resources:

(i) OBUF and IBUF elements that are ordinary bufers
for input and output signals in Xilinx FPGAs that
have been explicitly instantiated in the RTL
description.

(ii) ODDR and IDDR elements that implement drivers
or receivers of double-data-rate signals. Tese ele-
ments either receive a DDR data signal and clock,
and generate two single data rate signals from it, or
vice versa [46]. Tis is needed for DDR PHY in-
terfaces such as RGMII.
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(iii) IDELAYE2 elements that allow to delay signals
(either coming from a pin or the FPGA fabric) by
a confgurable duration [46]. Tese elements are
used in some cores to, for example, delay incoming
data and control signals relative to their clock to
improve signal stability when sampled. In order to
function properly, either the core itself (as in the
case of Ariane-Ethernet) or the instantiating logic
must instantiate an IDELAYCTRL element that
calibrates the IDELAYE2’s delay taps to
a reference clock.

(iv) BUFIO elements that implement clock bufers that
can drive global clock nets from an input pin [47].

(v) PLLE2_ADV elements that instantiate one of the
FPGA’s PLLs for clock synthesis, skew compensa-
tion, and phase shifting [47].

3.2.3. Linting Results. Important side efects of the OOC
synthesis experiments are the automated linting checks that
are performed during the synthesis process. Generally
speaking, Xilinx Vivado’s synthesis process is rather sensi-
tive when generating warnings, warning both about minor
imperfections in the input HDL as well as about potential
bugs. Two kinds of warnings are generated: Warnings, for
situations that may lead to suboptimal results and where
user action thus may be taken, and Critical Warnings for
constructs Vivado deems “outside the best practices for an
FPGA family” and thus recommends user action [44].

Table 6 shows a summary of the number of warnings
generated during OOC synthesis of the analyzed cores. Te
generated warnings have been summarized into the fol-
lowing categories:

(i) Warnings concerning constraints, for example,
clocks.

(ii) Warnings concerning the generation of (potentially
unintended) latches.

(iii) Linting warnings that contain information about
benign imperfections of the HDL code.

(iv) Warnings that describe which parts of the design
are trimmed or optimized away.

(v) Simulation mismatch warnings that refer to con-
structs that may lead to diferent behavior in
hardware and in logic simulation.

(vi) Warnings concerning the structure of the design.
(vii) As their own category due to their observed

number, warnings that inform about internally
unconnected ports. Vivado reacts rather sensitive to
this condition, generating warnings of this kind
even if not all bits of a vector are used in a module
that is driven by this vector.

Vivado limits reporting of each individual warning
message to 100 occurrences. In these cases, a warning count
of “100+” is shown in Table 6. Te actual warning IDs
generated by Vivado that have been subsumed into the
categories described above are listed in Table 7.

Of these categories, we consider warnings that fall into
the constraints, latches, simulation mismatch, and structural
categories to be especially serious.

Most of the analyzed cores and their variants generate
relatively few serious warnings. Te variants of LMAC1 that
have been synthesized using the original FIFO inferred from
HDL are the candidates that produce the most of these
warnings. Once the problematic FIFO descriptions are
replaced with vendor-defned instantiated ones, most of
these warnings disappear. However, in all LMAC variants, as
also seen in Section 3.2.2 some latches are generated. In
addition, Vivado warns about a latch being generated in the
WhiteRabbit core that appears to be later optimized away as
the fnal resource count in Table 4 shows no latches in-
stantiated for this core. Listing 2 shows the VHDL code that
causes Vivado to infer a latch. Te conditional assignment
statement is missing an else case, requiring con-
sistency_match to hold its value when the condition is not
met. As the responsible VHDL description never lets the
signal return to zero and the signal is not initialized at
declaration, this may constitute a bug resulting in an un-
intended latch description.

Few cores, namely, Gaisler GRETH, Opencores Ethernet
Tri Mode, Opencores Ethmac, and Opencores XGE LL
MAC, cause warnings in the simulation mismatch category.
As seen in Table 7, warnings in this category concern (1) the
sensitivity lists of processes and (2) the description of the
reset behavior of fip-fops. In the case of Gaisler GRETH,
one signal that is read in a combinational process is not part
of the process sensitivity list. Tis may cause a logic sim-
ulator not to reevaluate the process when only this signal of
the process's inputs changes. Te same issue is present for
one signal in the Opencores Ethernet Tri Mode project, one

(1) always @ (∗ ) begin
(2) pre_pkt_we_wire�

(3) !rst_ ? 1′b0:
(4) <. . .cond1. . .> ? 1′b0:
(5) <. . .cond2. . .> ? 1′b0:
(6) <. . .cond3. . .> ? 1′b1:
(7) pre_pkt_we_wire
(8) ;
(9) end

LISTING 1: Latch description in LMAC2.
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signal in the Opencores Ethmac project, and one signal in
the Opencores XGE LL MAC project.

Furthermore, in the Opencores Ethernet Tri Mode
project, Vivado complains about the register description
shown in Listing 3 with a Synth 8–5788 warning (see Ta-
ble 7). If the input RegInit is tied to a constant in an in-
stantiation, Vivado infers fip-fops with asynchronous reset
for the 0-bits and fip-fops with asynchronous set for the 1-
bits. In the RTL description, all RegInit inputs are tied to
constants at instantiations of RegCPUData. If they, however,
were not tied to constants—which is apparently assumed by
Vivado during OOC synthesis at frst—the value that is
asynchronously loaded into each of the fip-fops making up
RegOut would depend on a non-constant value. As this is
not supported by the fip-fops provided by Xilinx’s 7 Series
FPGAs, this would need to be implemented using additional
logic, which Synth 8–5788 warns about.

Finally, some cores leave (parts of) signals unassigned,
i.e., with no driver, resulting in Synth 8–3848 warnings,
which are classifed as Structural. Tis is (relatively) benign
when the respective signals are not used but can evolve into
a bug if they drive logic in the future. If they are used, the

synthesis tool assumes a value for the concerned signal (e.g.,
assumes constant zero), which may or may not behave as
intended.

In addition to Ethernet MAC functionality, Gaisler
GRETH optionally implements a UDP-to-AHB bridge re-
ferred to as Ethernet Debug Communication Link (EDCL).
Te top level of GRETH provides a secondary AHB master
interface for EDCL that operates in parallel to the primary
AHB master, the bus interface of GRETH’s DMA engine. If
EDCL is not used, the outputs of the signals of this secondary
AHB master are left unconnected. No immediate efects on
the design due to these unconnected signals are to be ex-
pected as long as the secondary AHB interface is also left
unconnected at instantiation externally.

In the case of nfmac10g, the two concerned undriven
signals are outputs of a module that are not used at in-
stantiation. Tus, no immediate efects on the functionality
of the core are to be expected in this case. In the case of
Opencores Ethmac, this concerns a single “debug” signal
that can be read from the Wishbone-mapped “Debug”
register. Opencores Triple Speed Ethernet, however, does
not drive several nets that feed into the MIIM (i.e., MDIO)

Table 7: Vivado warning categories.

Category Warning ID Warning text

Constraints Timing 38–493
Port name has one or several leaf clock pins in its transitive fan-out without any
clock bufer on the path and no clock reaching the clock pin(s). Vivado cannot infer
the clock source when no clock bufer is found on the path to a leaf clock pin.

Latches Synth 8–327 Inferring latch for variable name
Linting Synth 8–151 Case item value is unreachable
Linting Synth 8–2490 Overwriting previous defnition of module name
Linting Synth 8–2507 Parameter declaration becomes local in name with formal parameter declaration list
Linting Synth 8–2644 Root scope declaration is not allowed in Verilog 95/2K mode
Linting Synth 8–3917 Design name has port name driven by constant value
Linting Synth 8–4747 Shared variables must be of a protected type
Linting Synth 8–639 System function call name not supported
Linting Synth 8–689 Width (N) of port connection name does not match port width (M) of module name
Linting Synth 8–7023 Instance name of module name has N connections declared, but only M given
Optimization Synth 8–3332 Sequential element name is unused and will be removed from module name
Optimization Synth 8–3936 Found unconnected internal register name and it is trimmed from N to M bits
Optimization Synth 8–4446 All outputs are unconnected for this instance and logic may be removed
Optimization Synth 8–6014 Unused sequential element name was removed
Simulation mismatch Synth 8–567 Referenced signal name should be on the sensitivity list

Simulation mismatch Synth 8–5788 Register name in module name has both set and reset with same priority. Tis may
cause simulation mismatches. Consider rewriting code

Simulation mismatch Synth 8–614 Signal name is read in the process but is not in the sensitivity list

Simulation mismatch Synth 8–6426 Mix of sync and async assignments to register name in module name in the same
process may cause logic issues

Structural Synth 8–3848 Net name in module/entity name does not have driver
Structural Synth 8–6104 Input port name has an internal driver
Unconnected (internal) port Synth 8–3331 Design name has unconnected port name

(1) consistency_match<� ‘1’ when
(2) (<. . .cond1. . .> and
(3) <. . .cond2. . .> and
(4) <. . .cond3. . .>);

LISTING 2: Latch description in WhiteRabbit wr-endpoint.
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block from the confguration register module. Tis has the
efect that no transactions on the MDIO interface can be
issued from the control interface, and thus most of the
MDIO logic is optimized away.

As mentioned before, in addition to the “normal”
warnings discussed above, Vivado also generates Critical
Warnings for constructs deemed especially dangerous. Only
three kinds of these critical warnings were observed in the
cores that were subjected to the OOC synthesis process, as
shown in Table 8:

(i) Warnings about multi-driven nets (Vivado Warn-
ings Synth 8–6858 and Synth 8–6859). Tis is only
the case in LeWiz’s LMAC1 core. Here, in two
design units, two Verilog coding errors are re-
sponsible: (1) a reg that is driven from an always
block also has a continuous assign statement driving
it and (2) a reg that is reset in one always block is
driven in another.

(ii) Warnings about incorrect BRAM instantiation
(Vivado Warning Netlist 29–368), which are gen-
erated if not all input ports necessary for the in-
stantiated RAM width are connected. Vivado warns
that this might cause incorrect BRAM behavior.
Tis only concerns the Opencores Ethernet Tri
Mode MAC core.

(iii) Cores that use tri-state cells generate warnings of
type Synth 8–5799 with the message “Converted
tricell instance <name> to logic.” Tis happens
because in OOC synthesis, (1) tri-state ports are not
supported and (2) internal tri-state nets are not
supported in general. In the case of both Litex
Liteeth variants, both variants of P. Kerling’s
Ethernet MAC, and WGE 100, these critical
warnings can be traced to MDIO implementations,
where the data signal is bidirectional and imple-
mented as an inout port in these cases. However, in
Opencores Ethmac, a description of an inferred
memory block (eth_spram_256×32) triggers the
warning as it contains the assignment shown in
Listing 4.

3.2.4. Clock Domain Crossings. A further important in-
dicator of the quality of a complex IP core is the handling of
CDCs. In most analyzed cores, CDCs are present. For ex-
ample, any core that allows the chip-side interface to run
with a clock that is not related to the MII clock needs CDCs.

CDCs are considered a critical part of any digital design
because improper handling may lead to timing (setup/hold)
violations at runtime, leading to unwanted behavior due to
metastability. Tus, there are some “best-practice” accepted
design patterns for dealing with CDCs of diferent types,
such as

(i) Synchronizer chains of multiple fip-fops for single-
bit signals

(ii) Synchronizer chains for control logic that controls
consistent sampling of multi-bit signals

(iii) Encoding multi-bit signals using Gray code
(iv) Use of dual-clocked technology elements such as

dual-clock FIFOs and dual-port BRAMs

CDC analysis is a state-of-the art verifcation technique
provided by tools such as Mentor Graphics Questa CDC
(https://eda.sw.siemens.com/en-US/ic/questa/design-
solutions/clock-domain-crossing/, accessed: May 5, 2023)
and Synopsys Spyglass CDC (https://www.synopsys.com/
verifcation/static-and-formal-verifcation/spyglass/
spyglass-cdc.html, accessed: May 5, 2023). Xilinx Vivado
also provides some support for structural CDC analysis in
the form of the report_cdc command. Vivado’s CDC
analysis identifes paths crossing from one clock domain to
another. It then tries to identify “best-practice” CDC
structures according to vendor-defned guidelines [48]. If
such “safe” structures cannot be determined or unsafe
structures are detected, Vivado generates CDC warnings. As
these warnings might be overly sensitive, they have to be
reviewed by a designer. Te result of this review can then
either be to introduce a fx of the identifed error or to
document why the particular CDC is safe in a way that is not
understood by the analysis tool.

Tere are some cores where a CDC analysis is not ap-
plicable as they do not include clock domain crossings:

(1) module RegCPUData (. . ., RegInit, RegOut, . . .);
(2) . . .

(3) input [15 : 0] RegInit;
(4) output [15 : 0] RegOut;
(5) . . .

(6) always @ (posedge Reset or posedge Clk)
(7) if (Reset)
(8) RegOut<�RegInit;
(9) else if (<conditions>)
(10) RegOut<�CD_in_reg;
(11) endmodule

LISTING 3: Register Description in Opencores Ethernet Tri Mode.
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(i) Te entire logic of An Ethernet Controller is clocked
at the interface clock. Te 25MHz MII RX and TX
clocks are sampled and used as control signals for
the respective RX and TX logic.Tis logic thus relies
on being clocked signifcantly faster than the MII
clock.Te RX and TX clocks are synchronized to the
interface clock with a 2-stage synchronizer. In the
synchronized clock, rising edges are detected, and
this rising-edge signal (synchronous to the interface
clock) is then used as a control signal to load theMII
RX signals into fip-fops.

(ii) In its basic version (nfmac10g variant), the
NFMAC10G project does not provide clock domain
crossings. Te RX and TX parts of the MAC are
expected to run with the XGMII RX and TX clocks,
respectively. However, the nfmac10g_with_user_-
intf variant provides FIFOs for decoupling the user
logic and the XGMII interfaces.

(iii) In the same way, Opencores XGE LL MAC requires
that the core is clocked with the XGMII clock. It
does not support diferent RX and TX clocks.

(iv) While the various LeWiz LMAC cores in their basic
variant (LMAC_COREx_TOP) provide multiple
clock inputs that indicate that support for diferent
MII and interface clocks should be possible, it is
evident from the provided FPGA example projects
that the authors’ intention is to input the same clock
signal into each of these clock ports. Decoupling
between user logic and the MII clock happens in the
AXI-Stream Interface module that was evaluated for
the LMAC1 variant (LMAC_CORE1_AXIS and
LMAC_CORE1_AXIS_XPM_FIFO).

Te number of clocks, as well as asynchronous clock
pairs with actual paths between the source and destination

clock, and the results of CDC analysis performed using
Vivado after OOC synthesis can be found in Table 9. Te
table shows the total count of warnings in the CDC report,
the number of Critical CDC warnings, and the warnings
triggered by each core (CDC-1, CDC-2, etc.). Critical
warnings have been marked with an asterisk. Tese are the
warnings that Vivado classifed as especially critical, re-
quiring user intervention. A description of these warning
IDs is shown in Table 10.

Of the warnings shown in Tables 9 and 10, at least
CDC-15 can be considered informational only.Tis warning
is generated by Vivado when a clock-enable controlled CDC
structure is detected. In this CDC structure, a control signal
(e.g., a “valid” signal) is synchronized to the destination
clock using a synchronizer chain and often converted to
a pulse. Tis signal is then used as clock-enable signal of fip-
fops that sample a multi-bit signal into the destination clock
domain without any other synchronizing logic. Te correct
operation of this structure depends on surrounding logic to
ensure that the multi-bit signal does not change during
sampling (e.g., by employing a handshake pattern).Tus, the
CDC-15 warning suggests the considered CDC for review. It
does, however, not indicate the detection of a potentially
dangerous design pattern. In the same way, CDC-2 could be
considered as (relatively) benign. Xilinx suggests to inform
the implementation tool of a register used in a synchronizer
by setting the ASYNC_REG property of the corresponding
RTL signal.Tis prevents, e.g., absorbing these fip-fops into
non-CDC capable FPGA resources such as LUT-based shift
registers (SRL16 and SRL32). A missing ASYNC_REG
property indicates that this might happen in future imple-
mentation runs, even if it did not happen in the current run
and the CDC was correctly detected.

Considered more serious—although non-
critical—warnings are CDC-5 and CDC-6. Tese

Table 8: Vivado critical synthesis warnings.

Project Variant BRAM instantiation Multi-driven nets Tri-cell conversion
LeWiz LMAC1 LMAC_CORE1_AXIS — 12 —
LeWiz LMAC1 LMAC_CORE1_AXIS_XPM_FIFO — 12 —
LeWiz LMAC1 LMAC_CORE_TOP — 12 —
LeWiz LMAC1 LMAC_CORE_TOP_XPM_FIFO — 12 —
Litex Liteeth liteeth — — 1
Litex Liteeth liteeth-rgmii — — 1
Opencores Ethernet Tri Mode clk_reg_is_clk_user 12 — —
Opencores Ethernet Tri Mode clk_reg_is_not_clk_user 12 — —
Opencores Ethmac — — — 32
Opencores Minimac — — — 1
P. Kerling Ethernet MAC pkerling_ethernet_mac — — 1
P. Kerling Ethernet MAC pkerling_ethernet_mac_with_ffos — — 1
WGE 100 — — — 1

(1) //Data output drivers
(2) assign dato� (oe& ce) ? q: 32 1′bz􏽮 􏽯􏽮 􏽯;

LISTING 4: Internal Tri-State in Opencores Ethmac.
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warnings are generated if a bus is synchronized using
a synchronizer for each bit. If the bits of the bus are not
required to be consistent in each clock cycle after syn-
chronization, this may be acceptable. Te warnings indicate
that the respective RTL should be reviewed to ensure that
this is the case.Te diference between CDC-5 and CDC-6 is
that CDC-5 additionally warns about missing ASYNC_REG
properties.

Finally, CDC-26 is a rather technology-specifc warning.
It indicates that the write port of a LUTRAM and the fip-
fop latching its output are clocked with two diferent clocks,
efectively forming a CDC. As reading of the LUTRAM in 7
Series FPGAs happens asynchronously [49], there exists
a path that crosses directly from the write to the read clock
domain in the case that the read and write addresses are set
to the same value. If the user logic ensures that this never
happens, a LUTRAM can be used safely for a CDC [48].
Warning CDC-26 thus informs the user to review that this is
always the case.

If the analysis tool cannot match the logic on a path
between diferent clock domains to a known “safe” CDC
pattern or if it recognizes an “unsafe” pattern, Critical CDC
warnings are generated. Tese are marked in Table 9 with an
asterisk following the warning ID.

If the logic on a CDC path cannot be matched to a single
or multiple-bit synchronizer and also does not match to an
enable-, multiplexer-, or BRAM-based design pattern, the
Critical warnings CDC-1 (for single-bit signals) and CDC-4
(for multi-bit signals) are generated. If the asynchronous
reset or set signal of a fip-fop is concerned instead of its data
(D) or clock enable (CE) input, the CDC-7Criticalwarning is
generated.

Critical warnings CDC-10, CDC-11, and CDC-12 in-
form about synchronizers that have been recognized but
violate some “best practices” such that the input of a syn-
chronizer should directly originate from a fip-fop in the
source clock domain, not from combinational logic as this
may introduce glitches into the synchronizer, reducing the
Mean Time Between Failures (MTBF).

Finally, CDC-13 and CDC-14 are technology-specifc
critical warnings, informing the user that a CDC is present
between a fip-fop of the source clock domain and another
technology element that is clocked by the destination clock.
Tismay, for example, happen if a synchronizer chain (with no
reset of the fip-fops) is not constrained with the ASYNC_REG
attribute. In this case, the chain of fip-fops may be interpreted
as a shift register by the implementation tool and mapped to
a LUT-based shift register (SRL16 or SRL32 [49]), especially if
more than two are used.Tis is also the case if a fip-fop in the
source clock domain directly feeds into a port of a memory
block clocked by the destination clock.

Te warnings generated by Vivado’s CDC analysis in-
dicate potential problems in the circuit; however, not all
warnings correspond to actually critical circuitry. Tus,
besides the actual count of warnings in the respective cat-
egory, in-depth analysis of the reported paths is necessary to
judge the quality of the implemented CDCs. In the fol-
lowing, for each analyzed core or core variant, a brief de-
scription of the sources of the CDC warnings is provided.

(i) Ariane Ethernet causes relatively few CDCwarnings
to be generated during OOC synthesis. Te CDC-7
and CDC-10 warnings concern 3-stage reset syn-
chronizers, which contain combinational logic to OR
multiple reset sources either before the frst stage or
between the frst and the second stage. Te CDC-13
warning refers to an intended synchronizer that is
however not constrained as such. Tis register chain
is mapped by Vivado to a LUT-based shift register,
which is not recommended by Xilinx for imple-
menting synchronizers. Finally, the tool warns about
multi-bit signals that are synchronized from one
clock domain into another, which concerns Gray-
coded pointers in the RX and TX FIFO here, which is
a commonly used design pattern.

(ii) Gaisler’s GRETH employs clock-enable con-
trolled structures for its many clock domain
crossings. Here, a “valid” signal from the RX or TX

Table 10: CDC warning description.

ID Severity Description
CDC-1 Critical A single-bit CDC path is not synchronized or has unknown CDC circuitry

CDC-2 Warning A single-bit CDC path is synchronized with a 2+ stage synchronizer but the
ASYNC_REG property is missing on all or some of the synchronizer fip-fops

CDC-4 Critical A multi-bit bus CDC path is not synchronized or has unknown CDC circuitry

CDC-5 Warning A multi-bit bus CDC path is synchronized with a 2+ stage synchronizer but the
ASYNC_REG property is missing on all or some of the synchronizer fip-fops

CDC-6 Warning A multi-bit bus CDC path is synchronized with a 2+ stage synchronizer and the
ASYNC_REG property is present

CDC-7 Critical An asynchronous signal (clear or preset) is not synchronized or has unknown CDC
circuitry

CDC-10 Critical Combinatorial logic has been detected in the fan-in of a synchronization circuit
CDC-11 Critical A fan-out has been detected before a synchronization circuit
CDC-12 Critical Data from multiple clocks are found in the fan-in of a synchronization circuit
CDC-13 Critical 1-bit CDC detected on a non-FD primitive
CDC-14 Critical Multi-bit CDC detected on a non-FD primitive
CDC-15 Warning Clock-enable controlled CDC
CDC-26 Warning RAM-to-FD CDC: LUTRAM read/write potential collision
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clock domain is synchronized into the core clock
domain.Tis signal gates the transfer of other signals
from the source clock domain into the destination
clock domain (or vice versa). However, these paths
are often not fully constrained for Xilinx tools (via
the ASYNC_REG property), even when using the
constraint fles for Xilinx Artix 7 supplied by the
authors of the core. Tis leads to the synthesis tool
often not implementing the intended pattern by
combining the synchronized control signal with
other signals from the destination clock domain to
form the data input signal to the destination fip-
fops.Tis explains the CDC-1 and CDC-4 warnings.
Furthermore, two reset synchronizers receive the
output of combinational logic ORing the external
reset with an internal one, leading to two CDC-10
warnings. Finally, the CDC-13 warning refers to
a clock domain crossing within an inferred FIFO,
where the “write enable” port of a dual-ported LUT-
based memory is driven from one clock domain, the
data however from another clock domain.

(iii) From the implementation examples provided by
LeWiz LMAC1, it can be seen that all clock inputs
with the exception of the AXI-Stream read and write
clocks are intended to be driven from the same clock
source. Tus, only the AXI-variants have paths that
cross between clock domains. For these variants,
Vivado reports very few (original variant with
inferred FIFO) to no CDC warnings at all (modifed
variant with XPM instantiated FIFO). Te CDC-4
warnings in the original variant concern the use of
latches in the FIFOs, which are considered unsafe by
Vivado for implementing clock domain crossings.
Te remaining LeWiz’s LMAC cores (LMAC 2 and
LMAC 3) were only synthesized in the non-AXI
variant, and thus no CDCs are reported here.

(iv) BothLitex variants (MII andRGMII) generate very few
CDCwarnings.Te critical CDC-10 warnings concern
reset synchronizers that are driven in theMII variant by
combinational functions that generate reset signals for
the RX andTX clock domains.Tenon-critical CDC-6
warnings inform that some multi-bit signals are syn-
chronized. As this concerns Gray-coded pointers in the
FIFOs, these are considered to be benign.

(v) Te NFMAC10G project provides two variants:
a bare-bone variant without any clock domain
crossings into a user clock domain (the interface runs
with the PHY’s receive and transmit clocks, re-
spectively) and a variant with a more comfortable
interface. Only the latter variant is considered for
CDC analysis. For this variant, Vivado reported four
paths where a single signal (a control signal) passes
between two clock domains. Tis is intended to be
the signal that controls transfer of wider buses in
a “CE-controlled” fashion. However, the synchro-
nizer is coded on RTL in a way that Vivado does not
infer a clean chain of fip-fops. Rather, it instantiates
fip-fops with combinational logic in between that

are capable of setting the individual stages to a par-
ticular reset value. Tis leads to the intended syn-
chronizer not acting as such and prompts the
reported CDC-1 warnings. Furthermore, as the
control signal is now not synchronized properly, the
“CE-controlled” pattern is also not recognized as
such, and the respective paths are reported as critical
CDC-4 warnings. Overall, there are nevertheless very
few paths criticized by Vivado’s CDC analysis.

(vi) Tere are several clocking issues with theOpencores
Ethernet Tri Mode project. Firstly, the design is
constructed in a way that both the MII clock and
clock with half its frequency are needed. Te pro-
vided design unit for dividing this clock does this
using a fip-fop. It is noted in a comment that this
unit is intended “for simulation only” and needs to be
“replaced according to technology.” However, the
supplied example implementation for Virtex 5 also
uses this exact design unit. Due to the clock skew
incurred by this clock divider, the two clocks are
considered as asynchronous to each other. As these
clocks are mutually exclusive, however, this leads to
no additional clock domain crossing warnings.
Another potential problem is the use of Xilinx’s
BUFGMUX primitive as a clock multiplexer. On 7
Series FPGA, this uses the BUFGCTRL resource with
the clock enable pins (CE0 and CE1) used to select
between the two source clocks.However, using theCE
pins on BUFGCTRLmay cause glitches on the output
clock if the signal driving the CE inputs violates the
setup/hold time of either source clock [47]. Tis leads
to clock domain crossings between the clock driving
the select inputs and both input clocks to be selected
using the clock multiplexer. Tese are reported as
critical CDC-13 warnings. As an alternative, the
BUFGMUX_CTRL macro switches the clocks glitch-
free using the S0 and S1 inputs [47]. However, this
alternative can only be used if both input clocks are
free-running, which may not be applicable in this
situation (when switching over fromMII toGMII, the
MII TX clock may already be disabled).
As there are multiple clock multiplexers in the
design—that have been constrained for this work
properly—and a destination fip-fop of a CDC is
clocked by the output of this clock multiplexer,
Vivado naturally detects two clock domain cross-
ings for any given path to such fip-fops, if both
clocks are considered asynchronous to the source
clock. Tus, the high count of CDC warnings with
this project can partly be explained by duplicate
warnings due to the use of clock multiplexers.
However, the main problem that leads to massive
numbers of critical warnings in the CDC report is
that registers from the register bank are controlled
via Wishbone and thus clocked by the Wishbone
clock. Tey, however, fan out to the RX and TX
clock domains without synchronization. It may be
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the case that the authors assumed that the con-
fguration registers are not changed very often, and
thus the probability of a metastability event during
the entire time of operation was considered low.
However, these paths are detected by Vivado and
reported as critical CDC-1 and CDC-4 warnings.
Additionally, there are some paths between the
diferent clock domains that are insufciently
synchronized: A single fip-fop is used to transfer
the signal from the source clock domain into the
destination clock domain, with an additional fip-
fop often used for edge detection.Tis also leads to
a substantial amount of CDC-1 warnings. Tis is
also stated in an open issue in the issue tracker on
the project’s page on Opencores (https://
opencores.org/projects/ethernet_tri_mode/issues/
12, open since 2008, accessed: May 5, 2023).
Finally, the design provides two diferent interface
clock inputs: the user clock and the register clock.
Te user clock is used to clock the data interface to
the RX and TX MAC components, while the
register clock drives the (control/status) register
bank and the MDIO module. Te documentation
treats these as two unrelated clocks, which is also
done in the variant clk_reg_is_not_clk_user.
However, there are no synchronizers on the CDCs
between these two clock domains, and the pro-
vided implementation example connects the same
clock signal to both inputs. Tis leads to a slightly
reduced number of CDC warnings as shown in the
results for variant clk_reg_is_clk_user.

(vii) TeOpencores Ethmac project partially sufers from
the same problem as Opencores Ethernet Tri Mode:
Te register bank that contains confguration and
status registers is clocked by the Wishbone clock,
while its outputs are often used in combinational
signals that feed into various fip-fops in the RX and
TX clock domains. Tese lead to the majority of
critical CDC-1 warnings issued by Vivado.
Furthermore, for handling PAUSE frames, but also
for the purpose of enabling internal loopback, there
are some paths that cross directly from the RX clock
domain to the TX clock domain. Tese paths lack
synchronization to the target domain, also con-
tributing to the critical CDC-1 warnings. Tis
would only be acceptable if it is always guaranteed
that the RX and TX clock signals are in phase.
However, the MII standard specifes that the TX
clock is a free-running clock generated by the PHY,
while the RX clock is recovered from incoming data.
Furthermore, the core also includes fip-fop chains
as synchronizers on some paths. Constraints for
Xilinx tools (ASYNC_REG) are missing for all of
these synchronizers, leading to some CDC-2
warnings. Additionally, some of these synchro-
nizers are not correctly implemented, using the
output of the frst fip-fop to drive combinational

logic. Tis causes Vivado to not accept them as
valid synchronizers, contributing additional CDC-
1 warnings. With some synchronizers, the only
detected problem is however that they are fed from
combinational logic in the source clock domain,
leading to a few CDC-10 warnings.

(viii) On the other hand, the Opencores Minimac
project contains very few, and correctly imple-
mented, synchronizers. Tese synchronizers
transport reset signals and a TX control signal
from the interface clock domain to the RX and TX
clock domains and FIFO status signals (full and
empty) from the RX and TX clock domains back to
the interface clock domain. However, no con-
straints for Xilinx tools are provided, leading to
warnings about these missing constraints (CDC-
2).

(ix) Te Opencores XGE_MAC contains few clock
domain crossings, which generally follow accepted
design patterns (clock-enable controlled CDCs
where a control signal is synchronized and sub-
sequently used to transfer data into the destination
domain and Gray-coded pointers in the FIFOs).
However, the project does not provide constraints
for Xilinx Vivado, leading to some non-critical
CDC-2 (single bits) and CDC-5 (Gray-coded
pointers) warnings.

Furthermore, as there is no constraint used to direct
the synthesis tool on how to implement thememory
bufers for the inferred FIFOs, Vivado implements
them as LUT-based memory due to their size. Tis
leads to some CDC-26 warnings that warn about
using LUTRAM in a CDC. If these memories are
constrained to be implemented in block memory
resources (as done with variant xge_mac_ramstyle)
by setting the constraint SYN_RAMSTYLE=block
on the memory, these warnings disappear.

(x) P. Kerling’s Ethernet MAC is a triple-speed
implementation, supporting MII and GMII. Tus,
it also requires the use of clockmultiplexers to select
between the diferent clocking patterns employed by
these two interfaces. Te use of clock multiplexers
once again has the potential to double the number
of CDCs reported by Xilinx Vivado because one
CDC is reported for each destination clock that may
reach a fip-fop through the clock multiplexer.

Te majority of CDC-1 warnings are caused by
clock domain crossings between the clock for the
MDIO interface and the other clocks in the design
(125MHzGMII clock, as well as RX and TX clocks).
Tis is the case because the MDIO interface gen-
erates a speed [2 : 0] signal that selects between
10Mbit/s, 100Mbit/s, and 1Gbit/s operation. Tis
signal is not synchronized to any of the clock do-
mains mentioned above. It may be the case that this
signal is not expected to change value very often;
however, this should then be documented.
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Furthermore, also in this case, the asynchronously
switching BUFGMUX instead of the synchronous
BUFGMUX_CTRL is used, leading to some
CDC-13 warnings. Tis is justifed in a code
comment for the instantiation of BUFGMUX with
the need to perform switchover while one of the
clocks is inactive.

(xi) Te various evaluated variants of the Verilog-
Ethernet project, with various PHY interfaces,
generally lead to relatively few CDC warnings.
Furthermore, constraint fles for Xilinx Vivado and
Intel Quartus are provided. In the Xilinx case, these
constrain, for example, the synchronizers using
ASYNC_REG properties.
One general pattern that can be found in all of the
variants is that some reset synchronizers either are
driven by combinational logic that ORs multiple
reset sources or use combinational logic between
the frst and second stage of the usually three-stage
synchronizers, explaining the CDC-7 and CDC-10
warnings.
Temulti-bit CDCs reported (as CDC-5 and CDC-
6 warnings) for these variants are generally either
Gray-coded pointers in asynchronous FIFOs or
two status signals (error_bad_fcs and error_-
bad_frame). In the latter case, these are directly
connected to top-level outputs, shifting the re-
sponsibility to deal with potential inconsistencies
between the two signals during one interface clock
cycle to the user.
Te CDC-12 warning in the GMII variant of
Verilog-Ethernet is caused by a reset synchronizer
that receives ORed reset signals from the TX and
user clock domains, while the CDC-13 warning is
once again the result of using the asynchronously
switching BUFGMUX clock multiplexer.
Finally, the CDC-26 warnings in the MII, GMII,
and RGMII variants are generated for paths from
reset input pins to the reset inputs of fip-fops of
the respective reset synchronizers. Tese warnings
are only generated by Vivado when “false-path”
constraints are set for the reset inputs of these fip-
fops, which is done by the constraint fles for the
respective PHY interfaces supplied by the Verilog-
Ethernet project. When the set_false_path con-
straints are removed, the CDC-26 warnings are no
longer generated.
As described earlier, the CDC-26 warning informs
the designer to review a certain path that uses
LUTRAM as a synchronization element, which is
only valid if surrounding logic prohibits that the
read and write addresses of the LUTcarry the same
value. As no LUTRAM is involved in the paths for
which the CDC-26 warnings are generated (pre-
cisely, no LUTRAM is used in any of the three
designs, as can be seen in Table 4) and the warnings
vanish when the “false-path” constraint for the

reset inputs of the concerned fip-fops are re-
moved, it is assumed that Vivado erroneously
generates CDC-26 warnings for these paths.
However, it might be the case that Vivado intends
to generate a diferent warning for these paths but
mischaracterizes it as belonging to the CDC-26
category.

(xii) Te WGE 100 Ethernet MAC is triple-speed ca-
pable, once again requiring clock multiplexers.
However, as the input delay is not constrained, no
CDC-13 warnings concerning the clock multi-
plexers are generated. Te present critical CDC-13
warnings are generated on paths that feed into
BRAM cells, with the destination port being
clocked by a diferent clock than the source of
the path.
As a further consequence of clock multiplexers
being used, some warnings appear to be duplicates
as discussed in the context of other cores above.
Te design furthermore uses a fip-fop based clock
divider to divide the RX clock provided by the PHY
by two. Tus, the divided clock is considered as
asynchronous to the input clock. A large number
of CDC-1 warnings originate from the (G) MII
input signals. Tese signals (data and data valid)
are initially sampled directly by the RX clock
provided by the PHY. Tey are then resampled
using the divided clock if MII (as opposed to
GMII) is selected. Under these circumstances, the
source clock and destination clock are considered
asynchronous to each other, leading to a large
number of CDC-1 warnings. Furthermore, a sec-
ond fip-fop-based clock divider is used to divide
the TX clock. Tis leads to further CDC-1 warn-
ings and a CDC-4 warning that is caused by TX
data signals being resampled by the TX clock di-
rectly feeding into the PHY.
One reset synchronizer is driven by combinational
logic, causing a critical CDC-10 warning.
Finally, less critically, a number of correctly
implemented two-stage synchronizers are part of
the design. Tese are, however, not constrained for
Xilinx Vivado (ASYNC_REG), leading to non-
critical CDC-2 warnings.

(xiii) Finally, WhiteRabbit wr-core contains a number
of paths that fan out from one clock domain to
another without synchronizers in between, causing
the critical CDC-1 warnings reported by Vivado.
From the HDL code, “CE-controlled” patterns may
be intended here, but not implemented by the
synthesis tool as such. Constraining the synchro-
nizers for the control signals for Xilinx tools
(ASYNC_REG) may cause these patterns being
implemented correctly. Tese missing constraints
are reported on some correctly detected syn-
chronizers as non-critical CDC-2 warnings. Some
of these synchronizers, however, are driven by
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combinational logic instead of by a fip-fop,
causing the CDC-10 warnings. Tis also concerns
a small number of reset synchronizers, reported as
CDC-7 warnings.
In a single instance, a signal (the PTP timestamp
trigger signal) is synchronized with two parallel
synchronizers into the same destination clock do-
main.Tis is done once on the rising and once on the
falling clock edge. Tis violates Vivado’s corre-
sponding rule CDC-11 that forbids the same signal
being synchronized twice into the same clock domain.
Finally, multi-bit CDCs (concerning pointers in
FIFOs) are correctly implemented as Gray code
pointers, reported by Vivado as non-critical CDC-
6 warnings.

In summary, three groups of cores can be identifed
based on the analysis of their clock domain crossings: (1)
Cores that seem to correctly handle the CDCs present in
their respective designs, leading to very few to no problems
during CDC analysis. If there are (critical) warnings at all,
they concern (relatively) benign patterns like missing
ASYNC_REG constraints (that are solvable without
changing the source code by the use of a constraint fle) or
warnings concerning combinational logic feeding into reset
synchronizers (e.g., ORing multiple reset inputs). Ariane
Ethernet, LeWiz LMAC1 (AXI Variant), Litex Liteeth,
NFMAC10G, Opencores Minimac, Opencores XGE_MAC,
and all variants of the Verilog-Ethernet project fall into this
category. (2) Projects that contain best-practice clock do-
main crossing logic that is however not correctly imple-
mented by the synthesis tool due to missing constraints or
potentially due to coding style. Tese problems may be fxed
by additional constraints via constraint fles but may also
require restructuring HDL code to make the intended CDC
pattern clear to the synthesis tool. Gaisler’s GRETH falls into
this category. (3) Finally, some projects contain both a large
number of paths between clock domains, and at least some
of these paths have been shown to not include (correct)
synchronization logic. Some of these paths may have been
considered “safe” by the authors, as they—for exam-
ple—“change only seldomly” (code comment in P. Kerling’s
Ethernet MAC) or “[are] available long time before its actual
use” (in the “Ethernet IP Core Design Document” for
Opencores Ethmac). Tis should then, however, be docu-
mented clearly and on a per-path basis—either in the form of
constraints (analysis tools often allow to “waive” CDC
warnings on specifc paths) or in long-form documentation.
In some cases, clearer documentation of which clock inputs
are considered to be in phase to each other would also be
desirable. It might even be necessary, if a core in this cat-
egory is to be used, to review the identifed potentially unsafe
CDC in detail and patch the core’s HDL code with safer
CDC patterns. Opencores Ethernet Tri Mode and Ethmac as
well as P. Kerling’s Ethernet MAC, WGE-100, and White-
Rabbit fall into this category.

Finally, while the analysis presented above may be used
to guide selection of a MAC IP core, it is certainly benefcial
for a user of any of these cores to perform a CDC analysis of
the entire design that also helps to identify problems that
may arise in the interface from user logic to the selected core.

4. Evaluation Scope

In addition to the analysis of the OOC synthesis results (i.e.,
resource, linting, and CDC analysis results) discussed in
Section 3, a subset of the identifed MAC cores was also
subjected to evaluation in physical hardware. Tis allows
testing the interoperability with known-working network
hardware (i.e., PC Ethernet interfaces) and measuring the
performance of the evaluated cores. In terms of performance
measurements, the receive and transmit latency of the cores
as well as their supported throughput was measured.

Tis evaluation was carried out on a subset of the cores
shown in Table 4.Tis subset was selected for evaluation due
to the following criteria:

(i) C1 (Ethernet speed): Due to their ubiquity in to-
day’s network infrastructure, especially when con-
sidering the context of embedded systems, the core
to be evaluated shall support 10/100Mbit/s or
1Gbit/s Ethernet speeds. Tis precludes MACs
from evaluation that only support Ethernet speeds
above 1Gbit/s, e.g., 2.5 Gbit/s, 10Gbit/s, and higher,
such as LMAC2 and LMAC3, as well as
NFMAC10G, XGE_(LL)_MAC, and the 10Gbit/s
variant provided by Verilog-Ethernet.

(ii) C2 (documentation): Te evaluated MACs shall
provide sufcient documentation and/or example
code that provides guidance in how to port the core
to a new hardware platform. Both Ariane-Ethernet
and An Ethernet Controller provide little to no
documentation or implementation examples at all,
and thus these cores were not evaluated. Further-
more, a detailed analysis of the source code of
Ariane-Ethernet revealed that its Ethernet compo-
nent heavily draws on an older version of Verilog-
Ethernet’s source code and basically only adapts its
AXI-Stream interface to a memory-mapped con-
trol/status register and frame bufer interface.

(iii) C3 (porting efort): Te porting process to a “stan-
dard” 10/100Mbit/s or 1Gbit/s Ethernet platform
shall involve no extensive implementation work other
than (1) porting memory-based components—e.g.,
FIFOs—as well as clock and I/O components to the
target FPGA and (2) the development of an interface
module that allows the MAC to loop back received
data with slight changes (e.g., inverting every received
byte). Tis precludes three cores or variants from
evaluation—the variants of LeWiz’s LMAC that use an
inferred FIFO lead to massive usage of FPGA re-
sources, and thus only the variants where these FIFOs
were replaced by an instantiated XPM
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implementation could be evaluated. Opencores
Minimac does not provide internal FCS checking and
calculation. Evaluating this core in the sameway as the
other cores would entail implementing a mechanism
for calculating and updating a FCS for each outgoing
frame. WhiteRabbit wr-endpoint does not provide an
MII/RMII/GMII/RGMII interface. Instead, it provides
a PCS/PMA interface intended for direct connection
to—for example—Xilinx’s GTP or GTH hard macros,
or Intel’s equivalent transceivers.

(iv) C4 (variant selection): Finally, some cores provide
diferent variants, for example, in the form of
diferent interfaces to the PHY. Here, a selection
was made for which variant(s) to evaluate. Tis
decision was based on which variant fts the
available target platforms for 100Mbit/s or 1 Gbit/
s best.

Te selection process can be seen in Table 11.
Tus, we arrive at eight projects to be evaluated in total

(in ten variants—two for Litex Liteeth and Verilog-Ethernet
each). Of these eight projects, a subset of seven projects was
evaluated with a 100Mbit/s Ethernet capable platform.
Another subset of six projects was evaluated with a 1Gbit/s
capable platform, with an overlap of fve projects (Litex
Liteeth, Opencores Ethernet Tri-Mode, P. Kerling’s Ethernet
MAC, Verilog-Ethernet, and WGE 100) that were evaluated
on both platforms.

5. Evaluation Setup

In order to perform the function, throughput, and latency
tests in a hardware implementation of the cores selected in
Section 3, an evaluation platform is needed. Te main task of
this platform is to instantiate the respective core under test,
supply it with the required clock signals, confgure the core via
its control interface, and fnally to operate its data interface.
Furthermore, the platform needs to adapt the individual
MAC’s PHY interfaces to the PHY available on the board to
be used. In this section, Section 5.1 describes the general setup
of the evaluation platform, and Section 5.2 details the MAC-
specifc hardware needed to operate each core, as well as
adaptations made in order to be operable with the test
platform.

5.1. Approach and Evaluation Platforms. Evaluations were
carried out on two diferent Xilinx-based platforms: Cores
capable of 100Mbit/s Ethernet speed were evaluated on
a Digilent BASYS3 development board, which is based on an
Artix 7 FPGA. As this board does not provide Ethernet
connectivity by itself, an external RMII PHY—a Microchip
LAN8720 [50]—was externally connected. Cores that are
capable of 1Gbit/s Ethernet speed were additionally eval-
uated on a Kintex Ultrascale-based AVNET KU040 devel-
opment board. Tis board provides two Texas Instruments
DP83867 Gigabit-capable RGMII PHYs [51].

Te main functionality of the harness implemented on
both platforms is to implement a loopback of received
frames on the user-side interface, allowing to send back

frames received from an external Ethernet device. As each
MAC provides a diferent user interface—some provide
AXI-Stream or FIFO interfaces, others access to memory-
mapped bufers, and others require DMA bufers—this
module needs to be implemented for each MAC in-
dividually. In order to allow to diferentiate between frames
sent by the external device and those looped back by the
MAC under test in a packet capture fle, this interface block
negates each data word in the loopback process. Tis fur-
thermore has the efect that the MAC has to calculate a new
FCS, and thereby this functionality is also tested by the
performed evaluations.

Additionally, our platform supports the intended latency
measurements by taking timestamps at certain points in the
receive and transmit paths of the respective cores, as well as
measurement of the received Inter-Frame Gap (IFG). Mea-
suring the received IFG allows to roughly judge the throughput
achieved by the Control PC and is done by counting clock cycles
between deassertion and re-assertion of the respective RMII or
RGMII valid signal. If the PC achieves themaximumbandwidth
specifed by the respective Ethernet standards, the expected IFG
for 100Mbit/s Ethernet is 960ns and 96ns for 1Gbit/s Ethernet;
if the achieved bandwidth is lower due to factors infuenced by
the packet generator software, operating system, or network
interface hardware, a longer received IFG is expected. For la-
tencymeasurements, timestamps are taken in the receive path at
the reception of special Ethernet frames on the PHY interface
and at the frst indication of the core’s user-side interface that
a new frame is available. In the transmit path, timestamps are
taken when a frame to be transmitted is placed into the re-
sponsibility of the MAC and at the time the frame is visible on
the PHY interface. Te exact point where the timestamp for
received and transmitted frames is taken difers between the
RMII (100Mbit/s) and RGMII (1Gbit/s) version. In the latter
case, the timestamp is taken after conversion of RGMII toGMII.
Tis is done because RGMII requires special DDR IO resources
that are directly connected to an FPGA pin and thus cannot fan
out to a second receiver. Furthermore, the PHY employed in the
RGMII variant requires some confguration that is sent via
MDIO. Tis is not necessary with the used RMII PHY.

A fnal task of our hardware platform implemented on
the target FPGA is to adapt the PHY interface provided by
each core to the PHY interface provided by the board (RMII
for 100Mbit/s and RGMII for 1Gbit/s) in case the respective
PHY does not support the interface supplied by the board. A
block diagram of our platform can be found in Figure 2.

Te function, throughput, and latency tests are carried
out by a host PC (3.2GHz Intel i5-3470U CPU with 4 cores,
8 GB RAM, Intel 82571EB/GB PCIe Gigabit Ethernet NIC)
running Debian GNU/Linux 11 (Kernel 5.10.0-14). In order
to disable automatic IFG adaptation and to provide an IFG
above the one specifed by the relevant Ethernet standards,
a patched e1000e Linux driver was used for the NIC.

Function as well as throughput is tested by transmitting
100000 Ethernet frames of various sizes (48 (padded to
64 bytes by PC’s network stack according to the Ethernet
standard), 64, 128, 256, 512, 1024, 1400, and 1536(maximum
standard Ethernet frame length) bytes) from the PC to the
MAC under test. Tis is done with each of the packet
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generator programs packETH (command-line version)
(https://github.com/jemcek/packETH, accessed: May 5,
2023) and trafgen (part of the netsnif-ng toolkit, see https://
netsnif-ng.org/, accessed:May 5, 2023) at themaximum rate
the host PC can achieve. Concerning throughput, it must be
noted that not only the throughput of the MAC but also of
theMAC-specifc interface hardware modules, implemented
for this work, is tested. Tus, if frame loss does occur, the
evaluated MAC might not be the single culprit.

For transmission with packETH, frst a PCAP fle con-
taining the frame to be sent is generated by a Python script
using the Scapy module. Tis frame contains the Ethernet
header to be sent and a payload to bring the entire frame size
up to the size to be tested (see above). Te payload is ini-
tialized with pseudo-random data. Subsequently, this frame is
handed to packeth, which replaces frst bytes of the payload
with a sequence number incremented at each sent frame and
a short ASCII text containing the name of the MAC.

Table 11: Core selection for hardware evaluation.
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Figure 2: Block diagram of evaluation platform.
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Testing with trafgen is done to corroborate the results
obtained with packETH. Here, the same frame sizes are sent,
however, with a payload consisting of a repetition of the
same byte (0x4C), and without counters. Tis would, in
theory, allow higher transmission rates. As trafgen per de-
fault uses multiple CPU threads to generate frames, this
would impact the CPU time available for the packet capture
tool. In order to minimize frames dropped due to high CPU
utilization, trafgen was restricted to using only one thread.

Te MACs, with the help of the purpose-built interface
hardware, loop back each received frame to the PC. Each
data byte is inverted in the interface hardware in order to
allow diferentiation between frames sent by the PC and
those sent by the MAC. In parallel, the IFG between in-
coming frames is sampled and can be queried by the PC via
the serial interface. Tis is done so that the actually achieved
average throughput during testing (as achieved by the PC)
is known.

Te PC, in turn, records every returning frame using the
packet capture program tcpdump into a PCAP fle. Tis fle
can then subsequently be analyzed if (1) the appropriate
number of frames has been sent back (or frame loss oc-
curred, for example, due to limited throughput in the MAC
and erroneous FCS calculation), (2) each frame has the
expected frame length, and (3) each frame contains the
expected data. One diference between the results for tests
with packETH and trafgen is that only with the former
incoming as well as frames can be captured using tcpdump.
While both tools use a raw socket in the PF_PACKET
protocol family, packETH uses the sendto (2) system call to
send data, and trafgen places frames directly into a bufer
shared with the kernel. Tus, only incoming frames show up
in tcpdump’s PCAP fles when transmitting with the latter
packet generator.

For the latency tests, 128 individual frames for each
frame size are sent using Scapy. Te RX frame detector
monitors for the frst 24 bytes of a special Ethernet frame and
takes a timestamp in case it is detected. Subsequently, the
MAC interface block takes timestamps when a frame be-
comes available on the MAC’s RX interface as well as when
the frame is placed into the TX interface. Finally, another TX
frame detector monitors for the start of the looped-back
special frame and takes a timestamp when it is observed.
Tese timestamps are continuously transmitted by the
MicroBlaze CPU to the host PC, which monitors them on
a serial interface.

A sequence of events for reception of a frame can be seen
in Figure 3, and that for transmission of a frame can be seen
in Figure 4. Te actually reported reception latency for each
MAC is calculated as the diference of the MII timestamp
and interface timestamps, minus the transmission duration
that remains after the frame has been detected by the RX
frame detector. In a similar way, the transmission latency is
calculated from the individual timestamps.

5.2. Evaluated Cores. In the following, the cores selected for
evaluation as shown in Table 11 are described in further
detail. In addition, the MAC interface module developed for

each core and the necessary adaptions to port the core to the
target platforms are described. Finally, information about
the core’s receive and transmit sequence is provided along
with information about the points where timestamps for
latency measurements are taken.

Te following MACs were evaluated on the 100Mbit/s
Ethernet platform (BASYS3, RMII, and LAN8720). All
MACs were instantiated in their MII variant (even if others
were available) and interfaced to the RMII LAN8720 PHY
using Xilinx’s MII to RMII converter core.

(i) Gaisler’s GRETH MAC is part of Gaisler’s IP core
library GRIP. It provides an AMBA AHB/APB
memory-mapped interface on the user side and
multiple MII variants on the PHY side. An overview
of the wrapper can be seen in the block diagram in
Figure 5.
Tis MAC handles receiving and transmitting
frames via DMA. It requires the user to set up DMA
descriptors for received and transmitted frames
containing memory locations where to write re-
ceived frames to and where to read transmitted
frames from.Tus, in addition to this setup, which is
done via an APB slave interface, the core also re-
quires access to system memory via its DMA port
implemented as an AHB master. Tis memory
contains both the stored frame data as well as the
DMA descriptors.
Furthermore, a mechanism is required that moni-
tors the status of the RX and TXDMAdescriptors in
order to perform the intended loopback function-
ality in hardware.Tis mechanismmust transfer the
addresses and frame lengths of RXDMAdescriptors
once they hold a received frame to TX DMA de-
scriptors and re-enable the RX and TX descriptors
when they are no longer used.
Confguration of the MAC’s APB registers is done
via a state machine. For holding the DMA de-
scriptors as well as the frame data, a custom AHB
module is employed. Tis module infers memory
from VHDL for storage of the data elements dis-
cussed above. In addition, however, the AHB is
monitored. When an RX descriptor is written back
with the frame length and status value, the corre-
sponding address is written into a FIFO addition-
ally. Furthermore, the next available RX bufer (of 8
available bufers) is enabled. Te FIFO of available
frames to be transmitted back is queried every time
the core requests a new TX descriptor.
Timestamps are taken in hardware when (1) the
DMA engine writes back an RX descriptor with
status and length, indicating that a new RX frame is
available in systemmemory, and (2) when a new TX
descriptor is enabled, indicating that a frame to be
transmitted is placed in the responsibility of the
DMA engine. Furthermore, an informational
timestamp is taken when the TX descriptor is
written back, indicating that transmission is done.
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RX MII Timestamp:
Frame Detected on xMII 

RX MAC Timestamp:
RX Indication on Interface 

Reported RX Latency

Reception of Ethernet Frame
into MAC Bufer

Processing in MAC IP Core
(copying, FCS validation,

interrupt generation)

Loopback via MAC-specific
Interface Block

t (xMII clock cycles)

Remaining Frame
Transmission Time

Interrupt/Status Signal (s)Start of Preamble (RX_DV ) End of Frame (RX_DV )

Figure 3: Sequence for RX latency measurement.

TX MII Timestamp:
Frame Detected on xMII 
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Loopback via MAC-specific
Interface Block

t (xMII clock cycles)

Elapsed Preamble/"ID" Bytes
Transmission Time

Control Signal (s) Start of Preamble (TX_EN ) End of Frame (TX_EN )

Figure 4: Sequence for TX latency measurement.
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Figure 5: Wrapper for Gaisler GRETH.
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(ii) Litex Liteeth is a MAC written in Migen, a Python-
based environment for describing hardware, which
can be exported to VHDL and Verilog. Diferent
user interfaces and capabilities are provided by the
project, among others a Wishbone memory-
mapped interface that provides access to the re-
ceived and transmitted Ethernet frames, as well as
an Etherbone [52] compatible interface that pro-
vides a UDP-to-Wishbone bridge.
For this evaluation, the Wishbone-based bare-metal
Ethernet variant was used. Tis interface provides
access to a set of control and status registers as well
as internal RAM bufers for two received frames and
two frames to be transmitted. Tis means that for
looping back a received frame, it has to be copied
from the RX to the TX bufer.
Handling the control interface, as well as copying
frames to be sent back, is done by a Finite State
Machine (FSM). It frst sets up the control registers
(confguring the current slot to receive and enabling
reception) and then waits for an RX interrupt to
occur. Subsequently, the state machine reads the
frame length, copies the data to be sent back, and
fnally writes the TX frame length and enables
transmission. Te presence of two bufers means
that while one frame is being transmitted, another
one can be received at the same time. An overview of
the wrapper can be seen in Figure 6.
Te interface RX timestamp is taken when an RX
interrupt is received by the core, indicating that
a new frame is available in the corresponding bufer.
Te TX timestamp is taken when enabling the
“SRAM Reader,” i.e., the component that reads the
frame to be transmitted from the internal transmit
bufer.

(iii) Te control interface provided by Opencores
Ethernet Tri Mode MAC is a memory-mapped
parallel interface to control/status registers, while
the received and transmitted frames are exchanged
over a FIFO interface, i.e., an interface consisting of
a read/write signal, a 32-bit data bus, a “byte-enable”
signal that indicates how many bytes in this bus are
valid, and a set of three status signals (start-of-
frame, end-of-frame, and data available/free).
Concerning the confguration, the high and low
watermark values for the receive and transmit
FIFOs need to be set via the register interface, as well
as the Ethernet speed. Tis is done by a state ma-
chine before operation, after which frames are
simply looped back by connecting the TX FIFO
interface back to back to the RX FIFO interface.
Te RX timestamp is taken on the rising edge of the
RX FIFO’s “data available” signal, indicating that
a received frame is present on the FIFO interface. In
turn, the TX timestamp is taken on the rising edge of
the end-of-frame signal that feeds into the TX FIFO
interface.

(iv) Opencores Ethmac is controlled by a Wishbone
slave interface that allows to access a bank of
confguration registers. Furthermore, this slave in-
terface includes a memory-mapped bufer area to
write DMA descriptors into. Received frames are
stored in external memory using a Wishbone
master, which also fetches frames to be sent from
external bufers.
A principle similar to Gaisler’s GRETH is followed
for looping back frames received via this core: A
state machine confgures the MAC initially (i.e., sets
the confguration registers and confgures an initial
RX DMA descriptor). Subsequently, the interrupt
line is monitored until a new frame is received. Te
state machine then reacts by (1) setting the pointer
in the RX DMA descriptor to the next bufer seg-
ment, and re-enables it so that the next frame can be
received, and (2) storing the bufer address and
frame length of the currently received frame into
a FIFO. Once the RX DMA descriptor has been
enabled, the state machine checks if the MAC’s
transmitter is ready to send a new frame. If this is
the case, the next bufer address and frame length
are retrieved from the FIFO and confgured as a TX
DMA descriptor. Once this descriptor is updated
and enabled, the MAC transmits the stored frame
back to the PC.
For this purpose, in the wrapper module, an XPM
FIFO has been instantiated, and a Wishbone-
compatible byte-enabled RAM bufer (for storing
received frames) has been inferred. An overview of
the wrapper can be seen in Figure 7.
Te receive timestamp is taken when the state
machine handles an RX interrupt, while the
transmit timestamp is taken when handing of
a frame to the transmitter is fnished (by loading the
next TX DMA descriptor).

(v) P. Kerling’s Ethernet MAC needs minimal con-
fguration (e.g., Ethernet speed if not using auto
negotiation via MDIO) on some RTL ports. In the
MAC-with-FIFOs variant, the data interface is
a relatively straight-forward FIFO interface con-
sisting of conventional read/write, 8-bit wide data,
and empty/full signals. However, as the frame
length is stored in the same FIFO, there is a protocol
to be followed when reading a received frame or
writing a frame to be sent. Te frst two bytes
contain the frame length; subsequently, the frame
content is stored. Tis protocol is implemented in
a state machine that communicates to the core via
these FIFO ports.
Several components needed to be ported to the
Artix 7 based target platform in order to evaluate
this core:

(1) For triple-speed operation, the core uses clock
multiplexers to select between the MII and
GMII clock signals. As it is used in single-speed
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mode for our evaluations, this construct was
removed.

(2) Te core provides FIFO components as Xilinx
ISE IP core fles.Tese needed to be upgraded to
be usable with Vivado for Artix 7.

(3) Some I/O components needed to be removed/
deactivated. Te original core is intended to
directly interface to a GMII PHY. It directly
instantiates I/O bufers in an attempt to guar-
antee a certain clock-to-input/output delay and
to make sure that some registers are directly
packed into the I/O resources. However, as the
core is instantiated in a wrapper and commu-
nicates to the PHY via an MII-to-RMII con-
verter, these direct instantiations of I/O
resources are no longer needed and in fact not
accepted by the implementation tool.

Te RX timestamp is taken when the state machine
waits for the RX FIFO to indicate that it is no longer
empty, while the TX timestamp is taken when writing
the last byte to be sent to the TX FIFO.

(vi) All MACs provided by the Verilog-Ethernet
project allow only minimal confguration (the
IFG to be transmitted via an RTL port). Tey
provide two AMBA AXI-Stream interfaces for
received frames and frames to be transmitted.
Tese interfaces include the standard AXI-
StreamTLAST signal to indicate the end of
a frame, while the beginning is assumed once data
become frst available after a reset and after the end
of the previous frame has been indicated. On the
RX interface, data become only available if the
frame checksum has been checked. Tus, once the
AXI-StreamTREADY signal is asserted by the core
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Figure 6: Wrapper for Litex Liteeth.
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on this interface, it can be assumed that it only is
deasserted when the frame has been read out in its
entirety.
Tis interface allows for an extremely simple
loopback implementation—just connecting the
two AXI-Stream interfaces back to back.
Te RX timestamp is taken when the TREADY
signal is asserted, while the TX timestamp is taken
when placing the last frame to be transmitted on
the TX AXI-Stream interface (i.e., when the TX
TLAST signal is asserted).

(viii) Finally, WGE 100 employs a similar interface to
P. Kerling’s MAC: Both RX and TX data are
accessed via a FIFO interface with data, start-of-
frame, read/write and full/empty signals. Before
the actual frame data, the frame length is stored in
either FIFO. However, in contrast to the interface
provided by P. Kerling’s MAC, this core provides
a 32-bit interface. In this case, the upper 16 bits of
the frst word in the RX FIFO contain the frame
length, requiring that this length is stored in the TX
FIFO unaltered, while the remainder must be
inverted (as inverted data shall be sent back as
stated above).Tis is done by somemultiplexing in
the wrapper; otherwise, the loopback logic consists
of connecting the RX and TX FIFOs back to back.
Tis MAC, similar to P. Kerling’s MAC, in-
stantiates some specialized I/O resources to drive
the GMII interface. As this interface is connected
to an internal MII-to-RMII converter, this is not
needed and was replaced by a direct connection.
Te MAC provides FIFO instantiations for Xilinx
Spartan 3E devices in the form of NGC netlists
generated by Xilinx ISE. Tese netlists are com-
patible with Artix 7 and thus could be used directly
without re-generating the FIFO IP cores.
Te receive timestamp for this core is taken when
the start-of-frame signal of the RX FIFO interface
is activated, while the transmit timestamp is taken
on the falling edge of the write signal to the TX
FIFO—this is possible because once a frame is
indicated to be available in the RX FIFO, it can be
read out (and thus written to the TX FIFO) without
ever deasserting the read/write signals.

Te MACs Litex Liteeth, Opencores Ethernet Tri Mode,
P. Kerling Ethernet MAC, Verilog-Ethernet, and WGE 100
were evaluated on the 100Mbit/s platform as well as on the
1Gbit/s platform. On the interface side, no signifcant
changes were needed in most cases in order to support
1Gbit/s Ethernet speed.

Both Litex Liteeth and Verilog-Ethernet provide support
for RGMII, and thus no adapter was needed in between
MAC and PHY for these cores. However, the other MACs
only support GMII. Tese cores were adapted to the
available RGMII PHY by using the applicable converter
provided by the Verilog-Ethernet project.

Furthermore, for the operation of the 1Gbit/s PHY,
implementing an MDIO interface was required in order to
confgure the PHY to 1Gbit/s Ethernet speed.Tis was done
for all evaluated MACs using code provided in an example
from the Verilog-Ethernet project.

Te following signifcant adaptations were needed for
performing the evaluations on the 1Gbit/s Ethernet plat-
form (KU040, RGMII):

(i) LeWiz’s LMAC1 was only evaluated on the 1Gbit/s
Ethernet platform. Tus, an additional interface
module tailored to the core’s interface had to be
implemented. Te confguration for the core (i.e.,
Ethernet speed, local MAC address, and support for
broadcast frames and promiscuous mode) is done
via RTL ports.
As a data interface on the user side, this MAC
provides a FIFO interface. However, it does not only
provide RX and TX FIFOs but also a FIFO that
contains the packet lengths of received frames. For
reception, the “frame length” FIFO must frst be
read out, and then the appropriate number of words
from the data FIFO. For transmission, frst the
frame length needs to be written to the TX FIFO
followed by the frame content. Handling the two
receive FIFOs and the transmit FIFO was done
using a state machine. Tis state machine also de-
tects when the frame length and data FIFOs are
inconsistent (when more data should be available in
the data FIFO according to the frame length read
earlier, but the data FIFO indicates emptiness). In
this case, a reset of the core is triggered.
Furthermore, while it is claimed in the core’s
documentation that GMII is supported, the core
actually implements an XGMII-like interface. In
contrast to standard XGMII, which is 32 bits wide,
this interface is only 8 bits wide. It however requires
a start-of-frame and end-of-frame symbol indicated
using a single “control” signal (standard XGMII has
four control signals). Tis interface is adapted to
GMII using a purpose-built interface module that
inserts control symbols in received GMII transfers
and removes them from outgoing transfers.
Te RX timestamp is taken when the RX data FIFO’s
“empty” signal is deactivated, while the TX time-
stamp is taken by the state machine when all data
have been written to the TX FIFO.
An overview of the wrapper can be seen in Figure 8.
In addition, the inferred FIFOs provided by the core
had to be replaced by instantiated XPM FIFOs as
done in the OOC synthesis experiments.

(ii) Litex Liteeth: As the RGMII interface provided by
this core uses an IDELAY element, the instantiation
of a DELAYCTRL primitive is required anywhere in
the design. Te DELAYCTRL primitive tunes the
delay taps of all the FPGA’s delay elements to
a reference clock. As this primitive is not
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instantiated by the core, the instantiation is however
enforced by Vivado’s design rule check, and the
interface module does this instantiation.

(iii) WGE 100:Te NGC netlists for the FIFOs required
by the core are not compatible with the Ultrascale
design fow as reported by Xilinx Vivado. In order to
continue using the netlists—and thereby avoiding
the need to re-generate these IP cores—the NGC
netlists were converted to Verilog netlists using
Xilinx ISE 14.7.

6. Evaluation Results

As mentioned in Section 5.1, measuring the received IFG
may serve as a rough quantifcation of the throughput
achieved by the PC.Tese values were measured in hardware
by counting the number of RMII or RGMII clock cycles
between the deassertion and subsequent assertion of the
respective “data valid” signal.

Table 12 shows the average Inter-Frame Gaps (IFGs)
and their standard deviations generated by the PC in the
100Mbit/s experiments when using each frame generator
program. It can be seen that (1) the generated IFGs are
longer than the minimum transmitted IFG of 960 ns
defned in IEEE 802.3-2018 and (2) that there seems to be
no signifcant diference with frame length and between
both frame generators in the average output data rate.
Table 13 shows similar data for the 1 Gbit/s experiments.
Te IFGs here once more are longer than the minimum
transmitted IFG of 96 ns defned in IEEE 802.3-2018.
Furthermore, when the PC sends short frames (especially
with packETH), the generated IFGs seem to be signif-
cantly longer than when it sends frames in the range of 128
to 1400 bytes. Additionally, the variance is increased when
sending especially short frames (48 and 64 bytes) when
compared to longer ones. At the maximum frame length

(1518 bytes), longer average delays between frames have
been measured. It can be seen that the maximum theo-
retical throughput as allowed by the relevant Ethernet
standards was not achieved during these tests. However,
the throughput experiments can nevertheless yield in-
formation about the ability of the evaluated cores to
replicate this “realistic” throughput in addition to an
overall function test with reference “known-good”
Ethernet equipment.
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Figure 8: Wrapper for LeWiz LMAC1.

Table 12: Average PC⟶ FPGA IFGs (100MBit/s).

Frame length (bytes)
Average IFG (ns)

packETH trafgen
48 1127.95 ± 11.18 1129.20 ± 11.18
64 1128.04 ± 10.36 1128.39 ± 10.76
128 1127.68 ± 10.80 1127.95 ± 11.18
256 1128.30 ± 10.75 1128.66 ± 10.80
512 1127.59 ± 10.94 1128.30 ± 11.55
1024 1127.86 ± 12.38 1129.46 ± 11.19
1280 1127.68 ± 11.60 1125.71 ± 11.50
1400 1127.32 ± 12.56 1127.41 ± 12.15
1518 1128.48 ± 11.42 1128.39 ± 12.17

Table 13: Average PC⟶ FPGA IFGs (1GBit/s).

Frame length (bytes)
Average IFG (ns)

packETH trafgen
48 424.50 ± 179.28 255.17 ± 513.90
64 422.71 ± 105.67 135.92 ± 0.81
128 133.33 ± 5.98 136.00 ± 0.00
256 133.33 ± 5.98 133.29 ± 5.99
512 133.33 ± 5.98 136.00 ± 0.00
1024 133.33 ± 5.98 136.00 ± 0.00
1280 133.33 ± 5.98 136.00 ± 0.00
1400 133.33 ± 5.98 136.00 ± 0.00
1518 146.67 ± 11.96 152.00 ± 0.00
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For these throughput tests, as discussed in Section 5.1,
100000 Ethernet frames of varying sizes were sent to the
MAC, which looped them back to the PC where they have
been recorded for checking. When testing with PackETH,
the frames include an incrementing sequence number well as
pseudo-random data in the remaining payload. As PackETH
allows recording of outgoing and incoming frames, the
generated PCAP fle could then be analyzed to verify that all
sent frames were correctly looped back by the MAC. Tis
was done by verifying the sequence number and the
remaining payload against the sent data.

When transmitting data using trafgen, the outgoing data
cannot be recorded in the same way using tcpdump. With
trafgen, only the content of the received frames and their
absolute count could be verifed (100000 sent frames should
result in 100000 frames looped back by the MAC).

Testing the selection ofMACs for 100Mbit/s (Opencores
Ethernet Tri Mode, Opencores Ethmac, Gaisler GRETH,
Litex Liteeth, P. Kerling, WGE 100, and Verilog-Ethernet)
yielded the following results:

(i) With packETH as frame generator, all of the checks
described above for all of the MACs tested at that
speed and frame sizes were successful. All 100000
pairs of frames transmitted by the PC were correctly
looped back by the MACs under test, and thus
200000 frames could be captured in total.

(ii) With trafgen, only received frames coming from the
MAC could be captured. However, summing up the
frames that could be captured successfully by
tcpdump, it was verifed that all MACs transmitted
back 100000 frames.

Considering the selection of MACs tested at 1Gbit/s
(Opencores Ethernet Tri Mode, LeWiz LMAC1, Litex
Liteeth, P. Kerling, WGE 100, and Verilog-Ethernet), all
MACs correctly looped back the frames transmitted to them
with the exception of LeWiz LMAC1. When testing LeWiz
LMAC1 with packETH and when testing it with trafgen,
some frame loss could be observed. Tis can be seen in (a)
and (b) in Table 4. Here, on the one hand, the expected
number of captured frames (200000 for packETH and
100000 for trafgen) can be seen. On the other hand, these
tables show the frames actually captured by tcpdump, re-
vealing a considerable discrepancy. Te packet capture
software tcpdump did not report any dropped fra-
mes—neither by the Kernel (“Dropped—K”) nor the in-
terface (“Dropped—IF”). As this efect occurred at every
frame size and did occur only with this MAC, it is assumed
that the frames are either dropped due to the MAC-specifc
loopback logic implemented for LMAC1 or due to problems
internal to the core (“Dropped—Core”).

Latency results are plotted for the 100Mbit/s experi-
ments in Figure 9. While there exists some variation between
the exact latency of the cores, the cores evaluated for
100Mbit/s exhibit both receive and transmit latencies in the
same order of magnitude.Te latency variations between the
cores may also be impacted by the signals in the design
where the receive and transmit interface timestamps have

been taken. Tus, no actually “fastest” core can be selected
on the basis of these data. Te results, however, may allow
the conclusion that all cores seem to be suitable for efcient
100Mbit/s operation.

Figure 10 shows latency results for the cores evaluated
with 1Gbit/s Ethernet speed. Concerning transmit latency,
all evaluated cores are fairly consistent in the time it takes to
begin to send a frame—give or take a few clock cycles. Te
only major diference between the cores can be seen with the
receive latency: while fve of the six cores tested at 1Gbit/s
forward a received frame to the interface within ≤ 20 clock
cycles, it takes more than 200 for LeWiz LMAC1.

7. Discussion and Future Work

In the era of the Internet of Tings, many of today’s elec-
tronic devices implement some kind of network interface
with Ethernet being known as one of the most widely used
network standards. Tere is consequently a high demand on
available Ethernet implementations for FPGA platforms.
Existing commercial solutions for Ethernet MAC IP cores
may come with some limitations such as technology de-
pendencies, license fees, and the inability to perform design
changes or to add special features. Here, the usage of an
open-source IP core can be a solution to overcome these
drawbacks. Since to the best of our knowledge no publi-
cation could be found that compares available open-source
Ethernet MACs on a large basis (see Section 2), we wanted to
provide an overview of existing open-source IP cores in-
cluding an evaluation in terms of performance, resource
utilization, or code quality herein.

During our survey, 18 open-source projects could be
found at Internet sources like opencores.org or github.com
that have been listed in Table 1. Concerning code quality, the
availability of a reference implementation may be a frst
indicator of the maturity of an IP core (see Table 1 and
discussions in Section 3.1). Next, the reports of a logic
synthesis tool typically provide important information in
that context. One of the 18 projects shown in Table 1
(Opencores Gbiteth) was not synthesizable at all and thus
was excluded from further evaluation. Te synthesis
warnings for the remaining 17 cores are summarized in
Table 6. Here, especially warnings in the categories “con-
straints,” “latches,” “simulation mismatch,” and “structural”
have been considered to be serious (see discussion in Section
3.2.3). However, except for the variants of the LeWiz
LMAC1 core, most of the analyzed IP cores show relatively
few of those serious warnings. Furthermore, in every digital
design, special attention should be paid to signals that cross
clock domains since improper handling may lead to
metastability efects and faults that can be extremely hard to
debug. Based on our analysis, the cores Gaisler GRETH,
Opencores Ethernet Tri Mode, Opencores Ethmac,
P. Kerling’s Ethernet MAC, WGE 100, and WhiteRabbit
may be problematic in that context, and therefore signal
paths mentioned in Section 3.2.4 should be closely examined
and improved before one of those IP cores is used in
a project.
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Figure 9: Latency measurements for 100Mbit/s MACs.
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Some of the 17 synthesizable cores shown in Table 1 have
not been evaluated further due to insufcient documenta-
tion or because the porting efort to a specifc FPGA
technology has been considered as being too high (for de-
tails, see Section 4). Moreover, only Ethernet MACs with
support for network speeds of either 10/100Mbit/s or
1Gbit/s have been selected for a prototype evaluation since
these bitrates are most widely used today. Tis results in
a number of eight projects (see Table 11) that have been
closely examined on an FPGA-based prototype platform
(described in Section 5). As the measurement results in
Section 6 show, all of the eight Ethernet MACs could be
successfully operated on a real-world hardware platform.
However, packet loss could be observed for the LeWiz
LMAC1 core (see (a) and (b) in Table 14). As shown in
Figure 8, the receive and transmit latencies for the cores
evaluated at 100Mbit/s are in the same order of magnitude
while for the cores that have been operated at 1Gbit/s, the
receive latency of the LeWiz LMAC1 MAC is much higher
than that of other cores (see Figure 9).

In summary, 16 out the 18 Ethernet MAC IP cores
shown in Table 1 can be principally recommended to be used
without larger re-design work (Opencores Gbiteth is not
synthesizable and for the LeWiz LMAC1, a number of se-
rious synthesis warnings and packet loss during prototyping
could be observed). However, the integration and porting
eforts of the IP cores An Ethernet Controller and Ariane-
Ethernet may be higher than those of other cores while the
clock domain crossings of the cores Gaisler GRETH,
Opencores Ethernet Tri Mode, Opencores Ethmac,
P. Kerling’s Ethernet MAC, WGE 100, and WhiteRabbit are
strongly suggested to be improved before these IP cores are
used in a project.

Concerning the remaining Ethernet MACs and based on
our evaluations, there is no “best” IP core. Instead, pa-
rameters such as the supported network bitrate (10/
100Mbit/s, 1Gbit/s, >1Gbit/s, etc.), the PHY interface (MII,
GMII, RGMII, etc.), or the application interface (AXI,
Wishbone, propriety interface, etc.) may heavily infuence
whether an IP core is suitable for a specifc application or not
(see Table 2).

Te same applies to special features such as support for
DMA transfers, VLAN tagging, or PTP (see Table 3). Tis is
also refected by the FPGA resources consumed by an IP core
which largely depends on the implemented features (see
Section 3.2.2 and Tables 4 and 5). Besides, the license model
may impact whether the core can be used commercially at all
and which parts of the source code need to be disclosed if
being used in a commercial product. On the other hand, the
design language (shown in Table 1) should not be an issue
since all surveyed cores are available in VHDL, Verilog, or
System Verilog, and modern FPGA tools can typically
handle all of these languages. However, for two cores (An
Ethernet Controller and Litex Liteeth), a special “build tool”
must be used in order to generate synthesizable HDL code.

As already mentioned, the selection of an Ethernet
MAC highly depends on the intended use case. Let us focus,
for example, on applications with requirements on high
bandwidth and/or low latencies. Such requirements exist,

e.g., in the telecommunications sector where demand for
bandwidth is ever increasing due to developments such as
High Defnition (HD) and Ultra High Defnition (UHD)
video streaming. Also, in the automotive area where
Ethernet is used for quite some time as an in-vehicle
network, bandwidth requirements are constantly grow-
ing. With the advent of Advanced Driver-Assistance Sys-
tems (ADASs) and automated driving, substantially more
data need to be exchanged with sensor data coming from
diferent places and have to be distributed to various lo-
cations [4]. For data centers which are used for large-scale
computation or to host services such as Internet search
machines (e.g., Google, Bing, etc.) and video streaming
platforms (YouTube, Netfix, etc.), the bandwidth re-
quirements on the network infrastructure are enormous
[53]. When such high-performance computing clusters are
used to process, e.g., artifcial intelligence applications,
latencies are important as well since due to the huge
network trafc, the network latency heavily infuences the
time needed for the distributed calculations [54]. In in-
dustrial communication systems, low latencies are also
often a must to minimize response times [7]. Te same
applies to control networks in avionics [6].

Based on our measurements described in Section 6,
a ranking of the evaluated 1Gbit/s Ethernet MACs in terms
of network speed and latency can be derived as shown in
Table 15. Tis table shows the cores ranked by their average
measured transmit latency (in clock cycles at 125MHz) as
well as the average latency measurements and standard
deviations for both received and transmitted frames. Tis
ranking may help designers to select an open-source
Ethernet core when a high-speed/low-latency MAC is
needed for a particular application. Of course, the ranking
can be completely diferent if other requirements than speed
or latency are in the focus of an application.

Table 14: 1Gbit/s throughput results for LeWiz LMAC1.

Size Expected
Dropped

Captured
K IF Core

(a) Using packETH as trafc generator
48 200000 0 0 53 199947
64 200000 0 0 58 199942
128 200000 0 0 10 199990
256 200000 0 0 2 199998
512 200000 0 0 14 199986
1024 200000 0 0 4 199996
1280 200000 0 0 19 199981
1400 200000 0 0 9 199991
1518 200000 0 0 198 199802
(b) Using trafgen as trafc generator
48 100000 0 0 59 99941
64 100000 0 0 66 99934
128 100000 0 0 124 99876
256 100000 0 0 219 99781
512 100000 0 0 158 99842
1024 100000 0 0 871 99129
1280 100000 0 0 1095 98905
1400 100000 0 0 430 99570
1518 100000 0 0 1302 98698
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To the authors’ best knowledge, this is the frst publi-
cation that evaluates and compares existing open-source
Ethernet MAC IP cores on a large scale. Tis work should
help designers to select an appropriate open-source Ethernet
MAC for an FPGA design and shows possible pitfalls and
things to pay attention when using an open-source IP core in
general. Finally, the authors would like to show that the
open-source community can be also very helpful in the
world of hardware in terms of design reuse or time to
market.

As part of future work, we hope to evaluate open-source
hardware implementations of higher-level protocols such as
IP or UDP built on top of Ethernet that have already been
mentioned in Section 2. Moreover, a comparison of open-
source and freely available TCP/IP network stacks is in our
research focus as well.
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