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1. INTRODUCTION

The Atiyah-Singer index Theorem ([2,3]) gives a cohomological interpretation of the Fredholm index of an elliptic operator. The Atiyah-Bott-
Segal-Singer index formula, which called the equivariant index theorem, is a generalization with group action of the Atiyah-Singer index
theorem. The first direct proof of this result was given by Patodi, Gilkey, Atiyah-Bott-Patodi partly by using invariant theory [1,12]. This
theorem generalizes the Atiyah-Singer index theorem and the Atiyah-Bott fixed point formula for elliptic complexes, which is a generalization
of the Lefschetz fixed point formula. In [7], Berline and Vergne gave a heat kernel proof of the Atiyah-Bott-Segal-Singer index formula.
Moreover, Lafferty, Yu and Zhang [14] presented a simple and direct geometric proof of the equivariant index theorem for an orientation-
preserving isometry on an even dimensional spin manifold by using Clifford asymptotics of heat kernel. Furthermore, Ponge and H. Wang
gave a different proof of the equivariant index formula by the Greiner’s approach to the heat kernel asymptotics [19]. In [15], in order to
prove family rigidity theorems, Liu and Ma proved the equivariant family index formula. In [22], Y. Wang gave another proof of the local
equivarint index theorem for a family of Dirac operators by the Greiner’s approach to the heat kernel asymptotics. In [21], using the Greiner’s
approach to the heat kernel asymptotics, Y. Wang proved the equivariant Gauss-Bonnet-Chern formula and gave the variation formulas for
the equivariant Ray-Singer metric, which are originally due to J. M. Bismut and W. Zhang [9].

In parallel, Freed [11] considered the case of an orientation reversing involution acting on an odd dimensional spin manifold and gave
the associated Lefschetz formulas by the K-theretical way. In [20], Wang constructed an even spectral triple by the Dirac operator and
the orientation-reversing involution and computed the Connes-Chern character for this spectral triple. In [16], Liu and Wang proved
an equivariant odd index theorem for Dirac operators with involution parity and the Atiyah-Hirzebruch vanishing theorems for odd
dimensional spin manifolds. In [24] and [25], Zhang introduced the sub-signature operators and proved a local index formula for these
operators. By computing the adiabatic limit of eta-invariants associated to the so-called sub-signature operators, a new proof of the Riemann-
Roch-Grothendieck type formula of Bismut-Lott was given in [17] and [10]. The motivation of the present article is to prove a local
equivariant index formula for sub-signature operators. As the subsignature operator is locally a twisted Dirac operator, we can obtain our
theorem by the proof of equivariant twisted Dirac operators. We give a direct proof of a local equivariant index theorem for subsignature
operators by the Volterra calculus, rather than derived from the local equivariant index theorem of twisted Dirac operators. Thus our
direct proof of the equivariant index theorem of the subsignature operators using Volterra calculus can be seen as analogous to the works
[21,23,26].

This paper is organized as follows: In Section 2, we recall some background on sub-signature operators. In Section 3.1, we prove a local
equivariant index formula for sub-signature operators in even dimension. In Section 3.2, we prove a local equivariant odd dimensional
index formula for sub-signature operators with an orientation-reversing involution.
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2. THE SUB-SIGNATURE OPERATORS

In this section, we give the standard setup (also see Section 1 in [24]). Let M be an oriented closed manifold of dimension n. Let E be
an oriented sub-bundle of the tangent vector bundle TM. Let g™ be a metric on TM. Let g¥ be the induced metric on E. Let E- be the

sub-bundle of TM orthogonal to E with respect to g™. Let gEL be the metric on E* induced from ¢g™. Then (TM, g™) has the following
orthogonal splittings

TM = E® E, .1)
1
sM=gFog. 2.2)
Clearly, E* carries a canonically induced orientation. We identify the quotient bundle TM/E with E*.

Let QM) = Pj Q1 (M) = @ I'(A'(T*M)) be the set of smooth sections of A(T*M). Let * be the Hodge star operator of g™ Then Q (M)
inherits the following inner product

(o, B) :/ aA%B, a,B e QM). (2.3)
M

We use g™ to identify TM and T*M. For any e € I'(TM), let eA and i, be the standard notation for exterior and interior multiplications on
Q(M). Let c(e) = e A —i,, ¢(e) = e A +i, be the Clifford actions on €2 (M) verifying that

c(e)c(€) + c(e)cle) = —2{e, e/)gm, (2.4)
cle)e(e) + c(e)c(e) = 2(e, €/>gTM, (2.5)
c(e)c(e) + ¢(e)c(e) = 0. (2.6)
Denote k = dimE and we assume k is even. Let {f, - - - , fx} be an oriented (local) orthonormal basis of E. Set
CE.g°) = &(f) -+~ &(fo), 2.7)

where ¢(E, gE) does not depend on the choice of the orthonormal basis. Let
€ = Idneven(epr) — Id/\odd(T*M)
be the Z,-grading operator of
AT M) = A" (T*M) & A“4(T*M).

Set
r(M,gE) = (ﬁ) eE(E,gE). (2.8)
It is easy to check
(M, g% =1. (2.9)

Let
AL(T*M, gF) = {w € AM(T*M), (M, gF)o = o)

the (even/odd) eigen-bundles of (M, gF) and by Q. (M, gf) the corresponding set of smooth sections. Let § = d* be the formal adjoint
operator of the exterior differential operator d on €2 (M) with respect to the inner product (2.3). Set on Q(M) = I'(AT*M)

L/, .
D = 5 ({Eg"@+8) + (~DF(d +0)2(E,g")). (2.10)
Then we can check
Dp(M,g") = ~7(M,g")Dp, (2.11)
* k(k+1)
Di=(-1) 7 Dp (2.12)
where D, is the formal adjoint operator of D with respect to the inner product (2.3). Set
~ k(k+1)
Dg = (\/ —1) 2~ Dg.

From (2.11), Dg is a formal self-adjoint first order elliptic differential operator on €2 (M) interchanging Q4 (M, gE).

Definition 2.1. The sub-signature operator Dg . with respect to (E, g™) is the restriction of Dg on Q4 (M, gF).
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If we denote the restriction of Dg on Q4 (M, gE) by bgi, then
D, = Dg.
Recall that E is the subbundle of TM and that we have the orthogonal decomposition (2.1) of TM and the metric g"™. Let PF (resp. PEL) be

the orthogonal projection from TM to E(resp. E*). Let VM be the Levi-Civita connection of g". We will use the same notation for its lift
to Q2 (M). Set

vE = pEvTMpE, (2.13)
VE" = pE yTMpE" (2.14)
Then VE (resp.VEi) is a Euclidean connection on E(resp.EJ-), and we will use the same notation for its lifting on Q (E*)(resp. (EL*)). Let
S be the tensor defined by
VM = vE L vES 4

Then S takes values in skew-adjoint endomorphisms of TM, and interchanges E and El.Let{e;,--- ey} be an oriented (local) orthonormal
base of TM. To specify the role of E, set {f1,- - - , fx} be an oriented (local) orthonormal basis of E. We will use the greek subscripts for the
basis of E. Then by Proposition 1.4 in [24], we have

Proposition 2.2. The following identity holds,
- k(k+1) [, 1 «
Dp= (/D" (EgHA+0) + 32V, ). (2.15)

1

Similar to Lemma 1.1 in [24], we have

Lemma 2.3. For any X € I'(TM), the following identity holds,

VM ") = —4(E.gP) D ESCOfIE(fa). (2.16)
o
Let A™,  AF be the Bochner Laplacians

ATM _ Zn:(ng,z _ V%/z[wei% (2.17)

:
AF =3 (VE - Vige,) (2.18)

i
Let K be the scalar curvature of (M,gTM). Let R™ (resp., RE, REL) be the curvature of V™ (resp., VE, VEL). Let {hy,--- ,h,_k} be an

oriented (local) orthonormal base of E+. Now we can state the following Lichnerowicz type formula for D%. From Theorem 1.1 in [24],
we have

Theorem 2.4. [24] The following identity holds,

- K
Df=—a™+ 2 + % DY (RE(ene)fp fadclecle)e(fa)E(fp)

1<ij<nl<a,B<k

1 1
g 2 X (RE" (s, ), hs)cle)eep)(he)eChy) + LY (a™ — AL f

1<ij<n1<st<n—k o

1 3
+) (2<S<ei>fa>8(fa)V§M — &S(eN Vefo) () + 5 (VfV;M_vg)eja) &fo) + 7 1l SCenfer) ||2)

1 A A Arp A
+ ‘Z# &S(efa)2(S(enf)e(fa)e(fp). (2.19)

3. A LOCAL EQUIVARIANT INDEX THEOREM FOR SUB-SIGNATURE OPERATORS

3.1. A Local Even Dimensional Equivariant Index Theorem for Sub-Signature Operators

Let M be a closed oriented Riemannian manifold of even dimension #n and ¢ an orientation-preserving isometry on M. Then the smooth
map ¢ induces amap ¢ = ¢~ 1* : ATIM — ATy M on the exterior algebra bundle ATYM. Let D be the sub-signature operator. We
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assume that d¢ preserves E and E* and their orientations, then Ge(E, gE) = ¢(E, gE)qg. Then ¢Dg = Dpp. We will compute the equivariant
index

Indy(D}) = Tr(&|kerﬁz) — Tr(q3|kerbb__). (3.1)

We recall the Greiner’s approach to the heat kernel asymptotics as in [19] and [4,5,13]. Define the operator given by
(Qou) (x,5) = fo e Pl — 91t u € To(M x R, AT*M), (32)
maps u continuously to D'(M x R, AT*M)) which is the dual space of I'.(M x R, AT*M)). We have
<D§ + %) Qou = Qo (D@ + %) u=u, u€Tl(MxR,AT*M)). (3.3)

Let (D% + %)_1 be the Volterra inverse of f)fE + 687 as in [5]. That is

—1 —1
Dp+ + 2 Dp+ + 9 I—-R Dp+ + 2 Dp+ + 9y I—R (3.4)
E, &+ 9t E+ 9t = 1> E+ 9t E,+ 9t = 2> B

where Ry, R; are smoothing operators. Let

(Qouw)(x,t) = / Kaqy (%, y, t — s)u(y, s)dyds, (3.5)
MxR
and k;(x, y) is the heat kernel of e~DF We get
Ko, (%, y,t) = k¢(x,y) when t > 0, whent < 0, Kg,(x,y,t) = 0. (3.6)

Then Qo has the Volterra property, i.e., it has a distribution kernel of the form Kq, (x, y, t — s) where Kq, (x, , t) vanishes on the region ¢ < 0.
The parabolic homogeneity of the heat operator D% + %, i.e. the homogeneity with respect to the dilations of R” x R! given by

roE D) =0EAMD, G eR'xRYL A £0. (3.7)
Let p>(x, &) +p1(x, &) +po(x, &) be the symbol of D?, then the symbol of D2 + 2 is /=17 +pa(x, £) +p1 (x, §) -+ po(x, §), it is homogeneous
with respect to (&, 7).

In the following, for g € S(R"*!) and A # 0, we let g be the tempered distribution defined by

(0. 0, uE, D) = 17" (g6, 0, u(71E,2720)), we SR™. (3.8)
Definition 3.1. A distribution g € S(R") is parabolic homogeneous of degree m, m € Z, if for any A # 0, we have g, = A™g.
Let C_ denote the complex halfplane {Imt < 0} with closure C_. Then:
Lemma 3.2. [5] Let q(§,7) € C*((R" x R)/0) be a parabolic homogeneous symbol of degree m such that:

(i) q extends to a continuous function on (R x C_)\O in such way to be holomorphic in the last variable when the latter is restricted to C_.
Then there is a unique g € S(R"1) agreeing with q on R"*1\0 so that:

(ii) g is homogeneous of degree m;

(iii) The inverse Fourier transform g(x, t) vanishes for t < 0.

Let U be an open subset of R”. We define Volterra symbols and Volterra WDOs on U x R"*1\0 as follows.

Definition 3.3. ST/(U x R"™Y), m € Z, consists in smooth functions q(x,&,7) on U x R" x R with an asymptotic expansion q ~ ijo Gm—j»
where:

(i) q1 € C®°(U x [(R" x R)/0] is a homogeneous Volterra symbol of degree 1, i.e. q; is parabolic homogeneous of degree I and satisfies the
property (i) in Lemma 2.3 with respect to the last n + 1 variables;

(ii) The sign ~ means that, for any integer N and any compact K, U, there is a constant Cngagk > 0 such that for x € K and for || + |r|% > 1
we have

L N—I8|—
1920805 = 3 qmp) (6. 6,7 = Cagapr(I€] + |73y NIBI=2%, (3.9)
j<N
Definition 3.4. W{/(U x R), m € Z, consists in continuous operators Qq from CZ°(Uy x Ry) to C*°(Uy x Ry) such that:

(i) Qo has the Volterra property;
(ii)) Qo = q(x, Dx, Dt) + R for some symbol q in S{}(U x R) and some smoothing operator R.
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In what follows, if Qp is a Volterra WDO, we let Kq, (x, ¥, t — s) denote its distribution kernel, so that the distribution Kq, (x, y, ) vanishes
fort < 0.

Definition 3.5. Let q,,(x,£,7) € C®(U x (R"1/0)) be a homogeneous Volterra symbol of order m and let g, € C®(U) ® S'(R"*1) denote
its unique homogeneous extension given by Lemma 2.3. Then:

(i) Gm(x, y,t) is the inverse Fourier transform of gm(x, &, T) in the last n + 1 variables;
(ii) gm (x, Dy, Dy) is the operator with kernel g, (x,y — X, t).

Proposition 3.6. ([5,13]) The following properties hold.

1) Composition. Let Q; € ‘-II?,H (U x R), j = 1,2 have symbol q; and suppose that Q, or Qy is properly supported. Then Q,Qy is a Volterra
WDO of order my + my with symbol q1 o gz ~ > éngngqz.
2) Parametrices. An operator Q is the order m Volterra WDO with the paramatrix P then

QP=1—R;, PQ=1—-R; (3.10)

where Ry, Ry are smoothing operators.

Proposition 3.7. ([5,13]) The differential operator D% + 3 is invertible and its inverse (D% + ;)" is a Volterra WDO of order —2.

We denote by M? the fixed-point set of ¢, and fora = 0,--- ,n, we let M? = UOgaSn MZ), where Mf is an a-dimensional submanifold.

Given a fixed-point xp in a component MZ’, consider some local coordinates x = (x!,- - - ,x*) around xq. Setting b = n — a, we may further
assume that over the range of the domain of the local coordinates there is an orthonormal frame e; (x), - - - , ep(x) of Nf . This defines fiber
coordinates v = (vy,- - - , v). Composing with the map (x,v) € N®(go) — exp, (v) we then get local coordinates xb e x® v, VP for

M near the fixed point x. We shall refer to this type of coordinates as tubular coordinates. Then N? (g9) is homeomorphic with a tubular
neighborhood of M?. Set iygs : M® < M be an inclusion map. Since d¢ preserves E and E*, considering the oriented (local) orthonormal

basis {f1,- - s fes F1s - -+ 5 Bu—k)s set

_ (exp(Ly) 0
d¢X0 - < 0 CXP(L2)> > (311)
where L; € so(k) and L, € so(n — k)
Let
~ RM’ /47 . . 0
ARM ) =detz [ —— L ); vy RY) i= det™2 (1 — ¢Ne 7). 3.12
(RT) = de Snh(RM® /47 Vvp(RT) i=det 2 (1 —¢Te” 27) (3.12)

The aim of this section is to prove the following result.

Theorem 3.8. (Local Equivariant Sub-Signature Index Theorem. Even Dimension)

Let xg € M®, then

5o . E
lim Str [ Ce0) K (x0, 6 (k00 | = (#) 2t {A(RM“’)v¢<RN¢)i;4¢ [det? <cosh (f? - E))

/—1 2
(a,0)
. Bt L
sinh (1317 - 72> RE* L,
x det2 W Pf E - 7 (xo), (313)
4 2
REC I, , REC I,
where Ly € so(k), Ly € so(n — k) and Pt | %— — 3 | denotes the Pfaffian of | 7 — % |
Next we give a detailed proof of Theorem 3.9. Let Q = (D% +3;)" L. Forx € M? and t > 0 set
Io(x,t) == 5()6)71 /N“’ ¢ (exp,v)Kq(exp, v, expx(d)/(x)v),t)dv. (3.14)
x (€)

Here we use a trivialization over A(T*M) about the tubular coordinates. Using the tubular coordinates, we have

Iox, ) = b(x,0) " b (x, V) Ko (x, v; X, ¢’ (x)v; t)dlv. (3.15)

lvl<e
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Let

M (6 58,03 7) = B, 0) T B, Vg 13, 13 7). (3.16)

We mention the following result

Proposition 3.9. [19] Let Q € WV} (M x R, A(T*M)), m € Z. Uniformly on each component Mf

Io(x,t) ~ Z t_(%"'[%]"'l)lg(x) as t — 07, (3.17)
j=0
where Ig(x) is defined by
. Va % \V2
Bw= > f = (agqg[(élﬁgﬂal) (x, 050, (1 — ¢ (x))v; 1)dv. (3.18)

lo|<m—[F1+2j

Similar to Theorem 1.2 in [15] and Section 2 (d) in [8], we have

Stre[dexp(—tD)] = (V1) /M Stre [E(E, g5)ke (x, ¢ (x))] dx

= (/D /M Stre[2(E g°)K 5451 (6 6 (0, D]dx. (3.19)

We will compute the local index in this trivialization. Let (V, g) be a finite dimensional real vector space equipped with a quadratic form.
Let C(V, q) be the associated Clifford algebra, i.e., the associative algebra generated by V with the relations v - w + w - v = —2q(v, w) for
v,w € V.Let{e},- - ,e,} be an orthomormal basis of (V, g), let C(V, q)®C( V, —q) be the grading tensor product of C(V, g) and C(V, —¢q),
and A*V&® A* V be the grading tensor product of A*V and A*V. Define the symbol map:

0 : C(V,)®C(V,—q) = AV A* V; (3.20)
where o (c(ej,) - - - c(e) ®1) = A AR o(1 ®c(e;) - - - Clej)) = 1®&! A--- A&l Using the interior multiplication 1(g) : A*V —
A*71V and the exterior multiplication e(e) : A*V — A*F1V, we define representations of C(V, q) and C(V, —q) on the exterior algebra:

c:C(V,q9) — End AV, ¢j > c(ej) : e(ej) — t(ej)s (3.21)
C:C(V,—q) — End AV, ej > C(gj) = e(e)) + t(ej). (3.22)
The tensor product of these representations yields an isomorphism of superalgebras

c®C:C(V,9)®C(V,—q) — End A V (3.23)
which we will also denote by c. We obtain a supfrtrace (i.e., a linear functional vanishing on supercommutators) on C(V, q)®C( V,—q) by
setting Str(a) = Strgndaavic(a)] for a € C(V, q)®(V, —q), where Strgpqav is the canonical supertrace on EndV.

Lemma3.10. For1 <ij <:--- <ip<m1=<j <+ <j,<n whenp=gq=n,

n(n

Strlc(es) - - c(e;, )e(er,) - -~ &(er, )] = (—1) 22" (3.24)

and otherwise equals zero.

We will also denote the volume element in AV® AVbyw = el A---Ae"Aet A-- A" Fora € AV® AV, let Ta be the coefficient of w. The
n(n+1)

linear functional T : AV® A V — Ris called the Berezin trace. Then foraa € C(V, q)®(V, .q), we have Strg(a) = (=1)" 2 2"(To)(a).
We define the Getzler order as follows:

1 .
degd; = idegat = —deg¥ =1, degc(e)) =1, degi(e)) = 0. (3.25)
Let Q € Wi, (R" x R, A*T*M) have symbol
Ax%ET) ~ Y qr(nE, 1), (3.26)
k<m’

where gy (x, &, ) is an order k symbol. Then taking components in each subspace ANVT*M ® A'T*M of AT*M ® AT*M and using Taylor
expansions at x = 0 give formal expansions
. x¥
olqE 01~ Y olg g 01 ~ 3 o

ok jka

(0% qx(0,&,7)]9). (3.27)
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The symbol Z—ja[aﬁ‘ qx(0, &, )19 is the Getzler homogeneous of k + j — |«|. Therefore, we can expand o[g(x, &, T)] as
olg &, D1~ Y qmp®%ET), G #0, (3.28)
j=0
where q(mm—j) is a Getzler homogeneous symbol of degree m — j.

Definition 3.11. The integer m is called as the Getzler order of Q. The symbol qm) is the principal Getzler homogeneous symbol of Q. The
operator Q(m)y = q(m) (%, Dx, Dy) is called the model operator of Q.

Letey,. .., e, be an oriented orthonormal basis of Tx,M such thatey, - - - , e, span TxOM‘7’ and eg41,- - , e, Span Nfo. This provides us with
normal coordinates (xj, - - - ,x,) —> exp o (x'e;+- - -+x"e,). Moreover using parallel translation enables us to construct a synchronous local

oriented tangent frame e} (x), ..., e,(x) such that e; (x), - - - , e5(x) form an oriented frame of TMf and e;11(x), - - - , e, (x) form an (oriented)
frame N™ (when both frames are restricted to M?). This gives rise to trivializations of the tangent and exterior algebra bundles. Write

¢'(0) = < é ¢ON ) = exp(Ay), (3.29)

where A;; € s0(n).

Let A(n) = A*R” be the exterior algebra of R". We shall use the following gradings on A& A (n),

A& A () = g A ()& Ak (), (3.30)
<ki,ky<a
= llylz <b
where /\kj(n) is the space of forms dx" A - A dx'*T with1 < i < -+ < if < aanda+1 < igy < -+ < ir,; < n.Givena

form w € A(M)Q A (n), denote by wkvi(kab) g component in /\(n)(kljl)@) Alk2h) (n). We denote by || @9(@0) the Berezin integral
w050 @0:(@0) of jts component w00 jn A0 (1),

Let A € CI(V,9)®CI(V, —q), then
~ n 1
Str[$A] = (‘””"(‘Z)%det“ — ¢M)o (4)| (@O0
+(_1)§2n Z |0(5)((0,11),(0,12))U(A)((a,h—ll),(ﬂ,b—lz)) |(Vl,ﬂ)_ (3.31)
0<l<b,0<L<b

In order to calculate Str[aA], we need to consider the representation of |U($)((O’b)’(0’12))a (A) (@0 @b=0))|(n1) 1 et the matrix N equal

Aapy

n
2

&N = N Aay = cos.Q%_H smG%_H A
: 2t —sinflay, costlay,

cosOn sinfx
- 2 2 ). (3.32)

—sinfr  cosfzn
2 2

From Lemma 3.2 in [26], then

Lemma 3.12. We have

s 1\ . .
¢ = (*) ]_[ [(1 4 cos)) — (1 — cost))c(esj—1)c(ez))E(e2j—1)E(e2))

2
j=35+1
+Sil’19j (6(62];1)(3(62]') — 2(82];1)2‘(62]'))] . (3.33)
Then we obtain
n—a n ((0,17),(0,12))
- 1\ z ) . .
U(¢)((0,b),(0,lz)) = (E) o 1_[ [—(1 — cost)c(ezj—1)c(ezj)c(ezj—1)c(ez;) + sinb; (c(ezj_l)c(ezj))]
j=5+1

0.,12)

1\ 7 "
— <,) ATUA A 1_[ [—(1 — cost)C(ezj—1)c(ezy) + sinGj]
j=5+1
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0,)

- 6; 0; 0;

Ao 2sin2 | cos=L — sin—2&(ezi_1)e(en;

1_[ 2[ 5 5 Cleaj-1)e(er))

j=5+1

0,12)

1 1
onedetz(1— Mo |exp | == Ajic(e;)c(e;

A —¢Mo |exp| =1 > Ageleni(e)

1<ij<n

1 N 1 ~ ~
o Aedetz (1 —¢M)o | exp 2 Z (Ly)gefe(s)
1<ij<k
0,)

1 Al NA
=1 2 EkikreCh)eChy)

1<ij<n—k

Next we calculate |o(A)|(@0-@b=1)) In the following, we shall use the following “curvature forms”: R’

(Ratia+j)1<ij<b- Let

and

By (2.19),let F = 13129, we get
Proposition 3.13. The model operator of F is

n

1
R=2 )0 RYafp)efa)ilfy),

1<a,8<k

3 (RE ho h)ehoehy);

1<s,t<n—k

. 1
R=-
4

k=1 3 (R~ Lfefs)eGiGy),
1<a,B<k

= 1

k=< 1<tz<fk<(REL = Ly)hs, hy)e(ho)e(hy).

2

(Riph<ij<a> R”

1 o 1 o
Foy=-)Y_ b+ > (R™(ei, e eryie A el +3 Do (REenefp.fude A E(f)(fp)

r=1 1<ijl<n

EDID I

1<ij<n1<st<n—k

1<ij<n1<a,B<k

(eir)hs, hy)e' A &E(hy)e(hy).

From the representation of F(), we get the model operator of % + Dis % + F(2). And we have

Similar to Lemma 2.9 in [19], we get

0
(g + F(2)> KQ(fz) (x,y,t) = 0.

Lemma 3.14. Let Q € W(=D(R" x R, A(T*M)) be a parametrix for (Fp) + 3;) L. Then
(1) Q has Getzler order -2 and its model operator is (F) + 9, L.

(2) Forallt > 0,

(VD 2B g 5y 11 (0.1) = (VD)3 2(E, &)

Similar to Lemma 3.6 in [22]. we have

Lemma 3.15. Q € V{;(R" x R, A(T*M)) has

j—m—a—1
2

(1) o[Ig(0, ]9 = O(t
(2) 5 11o(0,H]% = o(t™"=

®
2

sinh (%)

dmt)”2
(177) L dets
detz (1 — ¢N)

the Getzler order m and model operator Q). Then ast — 07

), if m — j is odd.
Yo (0,9 + 0t

a
), if m — j is even.

(3.34)

(3.35)

(3.36)

det (1= g"eexp (1R + ). 337)
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In particular, for m = —2 and j = a and a is even we get

olIq(0, ] (@M@ = 1oy (0, 1)@ @b-E) 1 O(r2), (3.38)

With all these preparations, we are going to prove the local even dimensional equivariant index theorem for sub-signature operators.
Substituting (3.34), (3.37) into (3.31), we obtain

lim Stre [ $(x0) (V=) SE(E, 5 r- 5y 1 (30, 1) |

— (—ni2 (%) )t /oDE

k
! orls ok 1 RE L
= <«/7—T> 22 {A(RM¢)V¢(RN¢)1M¢ |:det2 (cosh (E _ 71))

(a,0)

~ 7 = 71(@0).n)
A(RM¢)U¢(RN¢)G [?:(ﬁ) . ?:(fk)exp(R + R)]‘

Ly

. EL
1 sinh <117 — 7) REL L,
X det2| — 2 | Pf| — — = (x0). (3.39)

RE* L 4r 2

4 2

Where we have used the algebraic result of Proposition 3.13 in [6], and the Berezin integral in the right hand side of (3.39) is the application
of the following lemma.

Lemma 3.16. Let L, € so(k),L, € so(n — k), we have

‘G [E(fl) T E(I[k)eXP(li + li)] ‘(n) = (—l)nTikdet% (cosh (RE ; L

EL
Pf (R LZ) . (3.40)

Proof. In order to compute this differential form, we make use of the Chern root algorithm (see [22]). Assume that n = dimM and k = dimE
are both even integers. Asin [7],let L; € so(k), L, € so(n — k), we write

0 —91 O —é]
A 0
(o 7) ° G o)

RE_L, = JRE I, = . (3.41)

(e}
—
nY
| o
[STEd
|
S
[S1E
S——"
(e}
S
D>
=
N\‘ =
bl
|
o &
L
S~———"

Then we obtain

1 1
T 2 (R - LOffpltf0ef) = 5 Y (RE = L)fafp)elf)e(fp)
1<a,B<k 1<a<pB=<k
1
=5 D Oilhi-)eh); (3.42)
1<j<k
1 1 1 1
1 2 (RE —Lhoh)ehith) = - 30 (R = Lok h)e(h)E(h)
1<st<n—k 1<s<t<n—k
1 ~
=5 2 Ot )i, (3.43)
1515“7"‘

Then the left hand side of (3.40) is
R ~ 7 ] (n)
‘CT (c(fl) - C(fexp(R + R))’
(n)

1 1A
=|o | ¢(fi)---E(fe) ]_[ exp (EGjE(fzj—l)e(ij)) exp (5913(’72171)3(}121))

_k —k
1<j<5 I<i<E
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(n)
\ \ 0 b o 0, )
=lo | c(f)---e(fi) 1_[ [coszj—smzjc(fzj,l)c(fzj)] | k|:coszl—sm21c(h21l)c(hzl):|
1<i<=

_k
15j=3

. 6; 6
(—I)Tk coszj 1_[ sinzl. (3.44)

.k —k
1<j<3 1<l<’5=

Now we consider the right hand side of (3.40),

2p
0 0
(R =11)" = (=P : (3.45)
2
. 95’ 0
0o oF
2
Then
k k LN V=15 k
RE-1L 26\ (—1)P 2 V=1 Zre T ode T & 6
det% cosh ! = 1_[ Z 2z St = l_[cosh EA- ¢ te = cos—2. (3.46)
2 , 2 (2p)! , 2 . 2 : 2
j=1 \p=0 j=1 j=1 =1
Similarly, we have
L
sinh <L ;LZ) nk g
det% _ | = 1—[ g (3.47)
(RE" — L5)/2 el
=2
On the other hand,
n—k
RE — Ly RE — Ly t éj 2j—1 2j o éJ
Pf <2) =T (exp (Z(Zhs,ht)hs ANh =T |exp Eh] AN = 1_[ 5 (3.48)
s<t lﬁjfnT_k j=1
Combining these equations, the proof of lemma 3.17 is complete. O

To summarize, we have proved Theorem 3.9.

3.2. The Local Odd Dimensional Equivariant Index Theorem for Sub-Signature Operators

In this section, we give a proof of a local odd dimensional equivariant index theorem for sub-signature operators. Let M be an odd
dimensional oriented closed Riemannian manifold. Using (2.19) in Section 2, we may define the sub-signature operators Dg. Let y be an
orientation reversing involution isometric acting on M. Let dy preserve E, E* and preserve the orientation of E, then 7 7 (E, gF) = #(E, gF)7,
where 7 is the lift on the exterior algebra bundle AT*M of dy. There exists a self-adjoint lift ¥ : T'(M; A(T*M)) — T'(M; A(T*M)) of dy
satisfying
7> =1; Dgy = —¥Dp. (3.49)

Now the +1 and —1 eigenspaces of ¥ give a splitting

I'(M; A(T*M)) = T (M; A(T* M))DT ™ (M; A(T*M))) (3.50)
then the sub-signature operator interchanges I'"(M; A(T*M)) and T'~(M; A(T*M)), and &(E,gF) preserves I'H(M; A(T*M)) and
'~ (M; A(T*M)).

Denotes by 1~)§ the restriction of Dg to I'T (M, A(T*M)). We assume dimE = k is even, then (Dg)&(E, g%) = ¢(E, g%)(Dg) and &(E, gF) is a
linear map from kerf);;E to kerlNDjJ;E.

The purpose of this section is to compute

indz g g8y [(DF)] = Tr@(E g0 leripy) — TrE(E &) lerit)- (3.51)
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By the Mckean-Singer formula, we have

inds s g0, (D) = fM (VD T PE(E, gE)ki (x, v ()l

k ~A
= / (V=D 2Tt[7e(E ) K p1g,)-1 (%, ¥ (x), D]dx. (3.52)
M
Let
0 -0
0 =6 0 (é 01> 0
6, 0 !
RE_L, = JRES I, = - . . (3.53)
0 _0 ( 0 —an1>
0 - 0 j ’
(9_)2( 0 ) 9n*72<*1 0
0
and
n—k—1
REL —L, 2 ).
Pfl—=) = ey 3.54
( 5 ) ]]1 ) (3.54)

Similar to Theorem 3.9, we get the main Theorem in this section.

Theorem 3.17. (Local odd dimensional equivariant index Theorem for sub-signature operators)

Let xo € M, then

kg B
- N 1 2 n |~ " 1 R L
lim Tr [7 (x0)E(E, ") (-a-1 (%0, D)] = = (ﬁ) 22 {A(RMV)V¢(RNy)zMy [detz <cosh (E - %))

(a,0)

. RES L
1 sinh o 72> RE* L
det2| ——— % | Pf| — — = . 3.55
x de L o 5 (x0) (3.55)
4w 2

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTION

KB and YW contributed in study conceptualization and writing (review and editing) the manuscript. JW and YW contributed in data
curation, formal analysis and writing (original draft). YW contributed in funding acquisition and project administration, supervised the
project, formal analysis and writing (original draft) the manuscript.

FUNDING
This research was funded by National Natural Science Foundation of China: No. 11771070. NSFC. 11901322

ACKNOWLEDGMENTS

The work of the first author was supported by NSFC. 11901322. The work of the third author was supported by NSFC. 11771070. The authors
also thank the referees for their careful reading and helpful comments.

REFERENCES

[1] M.E Atiyah, R. Bott, V. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
[2] M.E Atiyah, M. Singer, The index of elliptic operators: I, Ann. of Math. 87 (1968), 484-530.
[3] M.E. Atiyah, I.M. Singer, The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-604.


https://doi.org/10.1007/bf01425417

320

(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]
[12]
(13]
[14]
(15]
[16]
(17]
(18]
(19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

K. Bao et al. / Journal of Nonlinear Mathematical Physics 28(3) 309-320

R. Beals, P.C. Greiner, Calculus on Heisenberg manifolds, Ann. Math. Studies, (AM-119), 119 (1988), 194.

R. Beals, P.C. Greiner, N.K. Stanton, The heat equation on a CR manifold, J. Differential Geom. 20 (1984), 343-387.

N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, Berlin, 1992.

N. Berline, M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113 (1985), 305-345.

J.M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs, Invent. math. 83 (1986), 91-151.

J.M. Bismut, W. Zhang, Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal. 4 (1994), 136-212.
X. Dai, W. Zhang, Adiabatic limit, Bismut-Freed connection, and the real analytic torsion form, J. reine angew. Math. 647 (2010), 87-113.

D. Freed, Two index theorems in odd dimensions, Commu. Anal. Geom. 6 (1998), 317-329.

P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, 1984.

P. Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163-218.

].D. Lafferty, Y.L. Yu, W.P. Zhang, A direct geometric proof of Lefschetz fixed point formulas, Trans. AMS. 329 (1992), 571-583.

K. Liu, X. Ma, On family rigidity theorems, I. Duke Math. J. 102 (2000), 451-474.

K. Liu, Y. Wang, Rigidity theorems on odd dimensional manifolds, Pure and Appl. Math. Quarterly 5 (2009), 1139-1159.

X. Ma, W. Zhang, Eta-invariants, torsion forms and flat vector bundles, Math. Ann. 340 (2008), 569-624.

R. Ponge, A new short proof of the local index formula and some of its applications, Comm. Math. Phys. 241 (2003), 215-234.

R. Ponge, H. Wang, Noncommutative geometry and conformal geometry, II. Connes-Chern character and the local equivariant index theorem,
J. Noncomm. Geom. 10 (2016), 307-378.

Y. Wang, Chern-Connes character for the invariant Dirac operator in odd dimensions, Sci. China Ser. A 48 (2005), 1124-1134.

Y. Wang, The Greiner’s approach of heat kernel asymptotics and the variation formulas for the equivariant Ray-Singer metric, Int. J. Geom Methods
Mod. Phy. 12 (2015), 1550066.

Y. Wang, Volterra calculus, local equivariant family index theorem and equivariant eta forms, Asian J. Math. 20 (2016), 759-784.

Y. Yanlin, Local index theorem for signature operators, Acta Math. Sinica. 3 (1987), 363-372.

W. Zhang, Sub-signature operators, n-invariants and a Riemann-Roch theorem for flat vector bundles, Chin. Ann. Math. 25 (2004), 7-36.

W. Zhang, Sub-signature operator and its local index theorem, Chin. Sci. Bull. 41 (1996), 294-295.

J.W. Zhou, A geometric proof of the Lefschetz fixed-point theorem for signature operators (Chinese), Acta Math. Sinica. 35 (1992), 230-239.


https://doi.org/10.4310/jdg/1214439284
https://doi.org/10.24033/bsmf.2036
https://doi.org/10.1007/BF01388755
https://doi.org/10.1007/bf01895837
https://doi.org/10.1515/crelle.2010.074
https://doi.org/10.1090/s0002-9947-1992-1022168-9
https://doi.org/10.1007/s00208-007-0160-9
https://doi.org/10.1007/s00220-003-0915-4
https://doi.org/10.4171/jncg/235
https://doi.org/10.1360/022004-47
https://doi.org/10.4310/ajm.2016.v20.n4.a8
https://doi.org/10.1007/bf02559916
https://doi.org/10.1142/s0252959904000032

	CONFLICTS OF INTEREST
	AUTHORS' CONTRIBUTION
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

