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Abstract Background: Liquid biopsy provides real-time data about prognosis and actionable

mutations in metastatic breast cancer (MBC). The aim of this study was to explore the com-

bination of circulating tumour DNA (ctDNA) analysis and circulating tumour cells (CTCs)

enumeration in estimating target organs more susceptible to MBC involvement.

Methods: This retrospective study analysed 88 MBC patients characterised for both CTCs and

ctDNA at baseline. CTCs were isolated through the CellSearch kit, while ctDNA was analysed

using the Guardant360 NGS-based assay. Sites of disease were collected on the basis of imag-

ing. Associations were explored both through uni- and multivariate logistic regression and

Fisher’s exact test and the random forest machine learning algorithm.

Results: After multivariate logistic regression, ESR1 mutation was the only significant factor

associated with liver metastases (OR 8.10), while PIK3CA was associated with lung localisa-

tions (OR 3.74). CTC enumeration was independently associated with bone metastases (OR

10.41) and TP53 was associated with lymph node localisations (OR 2.98). The metastatic

behaviour was further investigated through a random forest machine learning algorithm. Bone
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SA.
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involvement was described by CTC enumeration and alterations in ESR1, GATA3, KIT,

CDK4 and ERBB2, while subtype, CTC enumeration, inflammatory BC diagnosis, ESR1

and KIT aberrations described liver metastases. PIK3CA, MET, AR, CTC enumeration and

TP53 were associated with lung organotropism. The model, moreover, showed that AR,

CCNE1, ESR1, MYC and CTC enumeration were the main drivers in HR positive MBC met-

astatic pattern.

Conclusions: These results indicate that ctDNA and CTCs enumeration could provide useful

insights regarding MBC organotropism, suggesting a possible role for future monitoring stra-

tegies that dynamically focus on high-risk organs defined by tumourbiology.

ª 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

Breast cancer (BC) is the most frequently diagnosed
cancer and the leading cause of cancer death in women

[1]. Although about 6e7% of newly diagnosed cases

present as de novo metastatic disease, distant involve-

ment usually occurs as a later event in approximately

30% of patients initially diagnosed with early-stage BC

[2,3]. For this reason, knowing the potential organo-

tropism of the disease could be critical for an effective

personalised follow-up strategy [4].
The combined immunohistochemistry (IHC) and in

situ hybridisation (ISH) diagnostic approach on the

basis of hormone receptors (HRs) and human epidermal

growth factor receptor 2 (HER2) expression and

amplification are currently the most common clinical

tools used for BC classification. It is recognised that

each clinical subtype has different preferential sites of

metastatic involvement. For example, hormone-receptor
positive (HR positive) BC more commonly metastasises

to the bone, a site that is less likely to be observed in

triple-negative (TN) BC. Furthermore, HR-positive BC

has a less pronounced organotropism for visceral organs

as compared with HER2-positive BC and TNBC which

often metastasises to the central nervous system (CNS),

liver, and lungs [3,5]. There are currently no diagnostic

tools with the ability to predict site of recurrences and
facilitate monitoring and design of organ-specific in-

terventions. Liquid biopsy provides real-time data in

metastatic breast cancer (MBC) through the detection

and isolation of circulating tumour DNA (ctDNA),

circulating tumour cells (CTCs), exosomes, and other

blood-based biomarkers for prognostic stratification

and genomic characterisation.

Previous studies have been performed to utilise a
liquid biopsy paradigm to better define risk stratifica-

tion by site of disease using Circulating tumour Cells

(CTCs) characterisation. On the basis of a DEPArray-

based strategy, CTCs were classified as epithelial,

epithelial to mesenchymal, mesenchymal and negative,
highlighting a significant association between epithelial

CTCs, bone and liver involvement and negative circu-

lating cells and CNS [6]. These data suggest the po-

tential to capture and describe the biological

characteristics of the disease through liquid biopsy,
with possible implications both in terms of the depth of

characterisation achievable and in its scalability over

time.

Machine learning (ML) is an application of artificial

intelligence that provides systems that automatically

learn on the basis of training datasets without being

explicitly programmed. Through an ability to recognise

and analyze patterns, ML algorithms are able to
adaptively improve performance and define natural

groups or latent parameters in data through general-

ising solutions. This potential can be applied to the

clinical and biomedical field, where ML offers predic-

tive models that are able to map highly heterogeneous

data, even when relationships could not be determined

due to complexity or lack of biological understanding

[7,8]. Among the different ML algorithms, random
forest is one of the most widespread and flexible. A

random forest algorithm consists of a large number of

individual decision trees that operate as an ensemble.

Decision trees are a list of all possible alternative mo-

dalities that every feature in the model can have, each

individual tree in the random forest model gives an

independent classification prediction and the one with

the highest votes is considered the most reliable [7,8].
The application of this approach to studying sites of

metastatic recurrence in BC using clinical and genomic

data is currently limited.

Based on these premises, the aim of this study was to

explore the combination of clinical characteristics,

ctDNA-detected aberrations, and CTC enumeration in

estimating target organs more susceptible to MBC

involvement. This study examined a novel ML model-
ling approach to describe the metastatic behaviour as an

emerging propriety on the basis of clinical features and

detectable gene alterations.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Landscape plot of all detected alterations in the analysed cohort. Incidence of the single aberrations [copy number variations (CNV),

deletion (Del), insertion (ins), splicing variants (Spl), premature termination codons (PTC) and single nucleotide variation (SNV)] are

represented on the center, while the magnitude of the described CNVs is showed on the left and the mutant allele frequency (MAF) of each

mutation on the right. TP53, PIK3CA, ERBB2, MYC, NF1, ESR1 ARID1A and MET were the most commonly altered genes

(red Z above the median), while PIK3CA, ERBB2, MYC and MET had also CNVs. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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2. Methods

2.1. Cohort design

The study analysed a cohort of 88 MBC patients treated

and characterised for CTCs and ctDNA at the Robert

H. Lurie Comprehensive Cancer Center at North-

western University (Chicago, IL, USA) between 2016
and 2018. Patient enrolment was performed under the
Investigator Initiated Trial (IIT) NU16B06. CTC and

ctDNA collection were performed at baseline, prior to

treatment start. No selection was made on the basis of

treatment line.

The baseline staging was performed before treatment

start concomitantly to liquid biopsy sampling. Imaging

was chosen according to the investigators’ common



Table 1
Clinico-pathological characteristics of the analysed cohort.

N %

Age

<50 35 39.77

�50 53 60.23

IBC

No 45 51.14

Yes 43 48.86

BC Subtype

Luminal-like 35 43.21

HER2 positive 20 24.69

Triple Negative 26 32.10

Liver

No 58 65.91

Yes 30 34.09

Lung

No 55 62.50

Yes 33 37.50

Bone

No 44 50.00

Yes 44 50.00

Lymph node

No 46 52.27

Yes 42 47.73

CNS

No 80 90.9

Yes 8 9.1

Serosa

No 79 89.8

Yes 9 10.2

CTC enumeration

Median 1 IQR 0e12.5

Stage IVindolent 58 65.91

Stage IVaggressive 30 34.09

MAF

Median 2.6 IQR 0.4e15.2

NDA

Median 4 IQR 2e7
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practice [e.g. Computed Tomography (CT) Scan, Posi-

tron Emission Tomography (PET)]. Distant local-

isations were categorised based to the presence of

specific organ involvement (e.g. liver involvement, yes

vs. no) independently from other metastatic sites.

2.2. CTC detection and enumeration

CTC analysis was performed though the CellSearch�
immunomagnetic System (Menarini Silicon Biosystems,

PA, USA). CellSave Stabilising Tubes were used for

blood collection (10 ml of whole blood). Sample were
processed via Celltracks Autoprep for EpCAM-based

immunomagnetic sorting and subsequent characterisa-

tion for pan-cytokeratin (CK), fluorescent dye 4’-6-

Diamidino-2-phenylindole (DAPI), and CD45 cells. The

enriched and labelled samples were then reviewed via the

Celltracks Analyzer II. CTCs were defined as CK/

EpCAM/DAPI positive, CD45 negative. Patients with

�5 CTC/7.5 ml of blood were defined as Stage IVag-

gressive as previously reported [9].

2.3. ctDNA sequencing

ctDNA samples were analysed using the Guardant360�
next-generation sequencing (NGS) commercial platform

(Guardant Health, CA). Two 10-ml of whole blood were

drawn for each patient using standard stabilising tubes

(Streck, NE). ctDNA extraction (QIAGEN Inc., MD)

was performed in a Clinical Laboratory Improvement

Amendments (CLIA)-certified, College of American

Pathologists (CAP)-accredited, clinical laboratory [10].
NGS was on the basis of a 74 gene panel using a single-

molecule digital sequencing technology for somatic

single nucleotide variants (SNVs), insertions/deletions

(indels), gene fusions/rearrangements and copy number

variations (CNVs) as previously described with reported

analytical sensitivity and specificity >99% [10e12]. The

range of genes examined in this particular cohort is

represented in Fig. 1.

2.4. Statistical analysis

Clinical and pathological variables were reported using
descriptive analyses. Categorical variables were reported

as frequency distribution, whereas continuous variables

were described according to the median and inter-

quartile range (IQR). CTC enumeration was considered

both as a continuous variable (nCTCs) and dichotom-

ised according to the threshold of �5 CTC/7.5 ml (Stage

IV aggressive versus Stage IV indolent) [9]. Differences

in distribution of continuous variables such as nCTCs,
number of detected alterations (NDA) and mutant allele

frequency (MAF) of the highest clone across different

metastatic sites were tested through the ManneWhitney

U test.
The associations among CTCs, specific genomic al-

terations, and metastatic sites were explored through
unconditional uni- and multivariate logistic regression

inclusive of odds ratio (OR) and a 95% confidence in-

terval (95% CI) computation. Two-sided Fisher’s exact

test was applied when statistically appropriate. To

ensure model stability, gene variants were tested if

adequately represented in the population

(Supplementary Table 1).

Statistical analysis was conducted using the Stata-
Corp 2016 Stata Statistical Software: Release 14.2

(College Station, Texas, USA).
2.5. Machine learning

Random Forrest was implemented on python using

h2oai. The optimal hyperparameters were selected using
grid search approach to increase the accuracy of specific

model [13,14]. The data were split beforehand into 80%

training and 20% test partitions. Model was developed

with balance Class option activate for increase the
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Fig. 2. Box plot of the nCTCs distribution across different metastatic sites. nCTCs was significantly higher in patients with bone metastasis

(A), liver involvement (B) and serosal localisation (G). No significant associations were observed for the remaining metastatic sites.

Significance was tested though the ManneWhitney U test.
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weight of minority class. All models were developed in a

10� 5-fold cross validation (CV) schema on the training

partition. Performance was assessed in terms of accu-

racy (ACC). Feature importance reflects the role of each

single feature within the whole model suggesting the

putative relation from the data.

All the experiments were run on a 32-core Intel Core

i7 workstation with 128GB of RAM running CentOS
7.5.

The models comprised all detected gene variants

(Fig. 1), together with IBC diagnosis, CTC enumeration

and BC subtype.

3. Results

3.1. Cohort characteristics and detected gene alterations

The cohort consisted of 88 metastatic breast cancer

(MBC) patients with a median age at the first blood
draw for ctDNA of 55years (range: 29e82years). Forty-

three patients (49%) were diagnosed with inflammatory

BC. Moreover, 43% had hormone receptor (HR) posi-

tive MBC, 32% had triple negative breast cancer

(TNBC), and 25% had human epidermal growth factor

receptor 2 (HER2)-positive MBC with 34% defined as

stage IV aggressive. The median number of prior treatment

lines at baseline collection was 1 (IQR: 1e3), while the
median number of metastatic sites was 3 (IQR: 1e3)

with the most observed sites being lymph nodes (42%),

lung (38%), bone (34%) and liver (34%) (Table 1).

Across the tested genes, TP53, PIK3CA, ERBB2,

MYC, NF1, ESR1 ARID1A and MET were the most

commonly observed ctDNA-detected aberrations

(Fig. 1). Notably PIK3CA, ERBB2, MYC and MET

were the most common copy number variations (CNVs)
(Fig. 1).

The median number of detected alterations (NDA)

per patient was 4 (IQR: 2e7), while the median mutant
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Fig. 3. Box plot of the MAF distribution across different metastatic sites. MAF was significantly higher in patients with bone metastasis (A).

No significant associations were observed for the remaining metastatic sites. Significance was tested though the ManneWhitney U test.
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allele frequency (MAF) of the highest clone was 2.6%

(IQR: 0.4e15.2%).

3.2. NDA, MAF and nCTCs across different metastatic

sites

The association with different sites of distant involve-
ment was tested for NDA, MAF, and nCTCs.

nCTCs was significantly higher in patients with bone

(median nCTCs: 11.5, IQR: 1e34 versus median

nCTCs: 0, IQR: 0e1 respectively in bone yes versus no)

(P < 0.0001) (Fig. 2A), liver (median nCTCs: 5, IQR

1e28 and median CTCs: 0, IQR 0e5 respectively in liver

yes versus no) (P Z 0.0045) (Fig. 2B) and serosal

involvement (median nCTCs: 12, IQR: 3e39 and me-
dian CTCs: 1, IQR: 0e11 respectively in serosa yes

versus no P Z 0.0096) (Fig. 2G).

Higher MAF was observed in patients with bone

involvement (median MAF: 3.8, IQR 0.6e21.6 and
median MAF: 0.8, IQR 0.3e5.3 respectively in bone yes

versus no P Z 0.0179) (Fig. 3A).
Significantly higher NDA was observed in patients

with liver metastases (median NDA: 6.5, IQR 2e10 and

median NDA: 4, IQR 2e6 respectively in liver yes

versus no P Z 0.0424) (Fig. 4B).

No significant associations were observed for the

remaining metastatic sites (Figs. 2e4).

3.3. Associations between ctDNA-detected gene

alterations and metastatic sites

The association between the detected gene alterations

(Fig. 1), CTC enumeration, clinical characteristics and

metastatic sites was tested through univariate analysis
(Supplemental Table 1) and confirmed in the resulting

multivariate models. ESR1 mutations was the only sig-

nificant factor associated with liver metastases in

multivariate analysis (OR 8.10, P Z 0.025), while
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Fig. 4. Box plot of the NDA distribution across different metastatic sites. NDA was significantly higher in patients with liver involvement

(B). A numerical difference was observed for lymph node localisations (D). No significant associations were observed for the remaining

metastatic sites. Significance was tested though the ManneWhitney U test.
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PIK3CA was associated with lung localisations (OR

3.74, P Z 0.010) (Table 2). All HR positive MBC pa-

tients with ESR1 mutations had bone metastases

(P Z 0.022), while Stage IVaggressive was independently
associated with bone metastases (OR 10.41, P Z
<0.001) (Table 2) [9]. TP53 was associated with lymph

node localisations (OR 2.98, P Z 0.032), while CCND1

alterations were associated with serosal involvement

(OR 24.58, P Z 0.003) (Table 2). Notably, TNBC was

associated with soft tissue spreading (OR 3.42,

P Z 0.040) (Table 2).

Among patients with liver metastases, eight in-
dividuals had a single ESR1 variant (D538G, E380Q,

L536P, L536R, Y537N or Y537S), while three showed

concomitant variants (D538G/Y537N/Y537, E380Q/

F461I/P535R/G442R, or Y537S/Y537N/D538G

respectively). Amplification was the most observed
PIK3CA alteration observed in patients with lung

metastases, both as a single alteration and concomi-

tantly with other PIK3CA variants (Amplification/

E81A, E542K/E726K/Amplification or H1047R/
Amplification), while three patients showed concomi-

tant single nucleotide variations (SNVs) (E542K/

E726K, E545K/D1017H and H1047R/N426S), the

remaining detected PIK3CA variants were exclusive

(E542K, E545K, H1047R, N345K or Q546K). A high

number of concomitant TP53 variants was observed in

patients with lymph nodes involvement (A159V/

R248W, Exon 5 Deletion/H193L/R280G, G245S/
D281Y/K101*/R181P, K132R/R248W, P151A/I50fs,

Q167)/H179D, R196)/M237I, R248Q/Y163N/P177L,

R273H/M246V or R273H/R209fs). CCND1 amplifi-

cation was the only variant observed in patients with

serosal localisations.



Table 2
Multivariate logistic regression models across different metastatic sites.

Liver metastases were associated with ESR1 mutations, while PIK3CA

was associated with lung localisations. Bone metastases were associ-

ated with Stage IV aggressive, ESR1 mutations were not inserted in the

model due to the high concordance of patients with an ESR1 alteration

and bone metastases (Fisher’s exact test P Z 0.022). Lymph node

localisations were associated with TP53 alterations. CCND1 alter-

ations were associated with serosal involvement.

Odds Ratio 95% C.I. P Value

Liver

Subtype HR positive 1

HER2 positive 0.14 0.01 1.27 0.080

TNBC 0.84 0.24 2.94 0.788

CTC Enumeration Stage IVIndolent 1

Stage IVAggressive 1.46 0.43 4.92 0.539

ARID1A Wild type 1

Altered 1.80 0.21 15.69 0.596

AR Wild type 1

Altered 1.74 0.32 9.38 0.518

ESR1 Wild type 1

Altered 8.10 1.30 50.31 0.025

Bone*

Subtype HR positive 1

HER2 positive 0.26 0.07 1.07 0.063

TNBC 0.31 0.08 1.26 0.103

CTC Enumeration Stage IVIndolent 1

Stage IVAggressive 10.41 2.80 38.67 <0.001

MYC Wild type 1

Altered 3.35 0.78 14.45 0.104

TP53 Wild type 1

Altered 0.49 0.14 1.76 0.277

Lung

Subtype HR positive

HER2 positive 0.80 0.22 2.95 0.741

TNBC 2.53 0.83 7.72 0.104

PIK3CA Wild type 1

Altered 3.74 1.37 10.20 0.010

Lymph nodes

TP53 Wild type 1
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3.4. Contribution of clinical and liquid biopsy-derived

features across metastatic sites through an exploratory

machine learning approach

The potential of combining clinical and liquid biopsy-

derived features to describe the metastatic behaviour of

patients with MBC was investigated. Bone involvement

was mainly described by nCTC, and genomic abnor-

malities in ESR1, GATA3, KIT, CDK4 and ERBB2

(ACC: 0.743 � 0.240) (Fig. 5A). Disease subtype (i.e.

HR positive, HER2 positive and TNBC), nCTC, in-
flammatory BC diagnosis, and aberrations in ESR1 and

KIT highly contributed in describing liver metastases

(ACC: 0.852 � 0.184) (Fig. 5B), while PIK3CA, MET,

AR, nCTC and TP53 were associated with lung orga-

notropism (ACC: 0.502 � 0.268) (Fig. 5C).

Gene alterations in NF1 CDK6, MYC, MET and

CCNE1 and nCTCs were linked to nodal involvement

(ACC: 0.558 � 0.39) (Fig. 5D), while ERBB2, FGFR1
and nCTC were linked to soft tissue involvement (ACC:

0.561 � 0.32) (Fig. 5E). CCNE1, FGFR1, TP53, MYC

and ERBB2 were features linked to CNS localisations

(ACC: 0.450 � 0.04) (Fig. 5F).

Accuracy coefficients relative to all models across

metastatic sites are reported in Table 3.

The model was then implemented to investigate the

overall metastatic pattern across MBC subtypes by
considering not only single metastatic sites but also their

combination. AR, CCNE1, ESR1, MYC and nCTC

were the main drivers in HR positive MBC (mean per

class error 0.467, cross validation accuracy

0.4772e0.0321) (Fig. 6). Modeling was not reliable in

the HER2 positive and TNBC subgroups due to insuf-

ficient sample size (data not shown).

Altered 2.98 1.10 8.12 0.032

CCNE1 Wild type 1

Altered 1.65 0.40 6.80 0.488

FGFR1 Wild type 1

Altered 3.59 0.79 16.17 0.097

RAF1 Wild type 1

Altered 8.82 0.88 88.68 0.064

Soft tissue

Subtype HR positive 1

HER2 positive 2.55 0.76 8.49 0.128

TNBC 3.42 1.06 11.05 0.040

TP53 Wild type 1

Altered 2.23 0.75 6.63 0.150

Serosa

CTC Enumeration Stage IVIndolent 1

Stage IVAggressive 3.24 0.45 23.21 0.241

CCND1 Wild type 1

Altered 24.58 2.89 209.04 0.003

ESR1 Wild type 1

Altered 2.73 0.39 19.14 0.313

TP53 Wild type 1

Altered 0.20 0.03 1.39 0.105
4. Discussion

Although metastasis has been well characterised to drive

clinical prognosis, the underlying biology needs to be

further elucidated. The present study analysed a cohort

of MBC patients characterised for both CTCs and

ctDNA with the aim of capturing the real-time biolog-

ical features of the disease according to different sites of

metastasis.
First, the study showed that specific metastatic sites

were associated with higher nCTCs NDA, and MAF,

suggesting that potential differences in biology linked to

specific metastatic sites resulted in a detectable read-out

though liquid biopsy.

Second, the study examined the contribution of

nCTCs and genomic alterations though uni- and

multivariate logistic regression analysis, highlighting the
preeminent role of ESR1 and CTCs enumeration with

respect to liver and bone metastases. These findings were

in line with the observed association of bone metastases

with higher CTCs or Stage IVaggressive and the strong
association with the absolute and relative levels of CTCs
expressing epithelial markers after EpCam independent

enrichment [6,9,15].



Fig. 5. Relative importance of biomarker across different metastatic sites. Histograms show VIMP (Variable importance. High importance

values indicate variables with predictive ability, whereas zero or negative values identify non-predictive variables to be filtered.

Table 3
Random forest models performances. Accuracy coefficient relative to all

models for each metastatic site.

Response ACC (mean � sd) ACC test

Liver 0.853 � 0.183 0.7714

Bone 0.743 � 0.240 0.657

Lung 0.502 � 0.268 0.799

CNS 0.450 � 0.04; 0.75

Soft tissue 0.561 � 0.32 0.44

Lymph Nodes 0.558 � 0.39 0.736

Fig. 6. Factors linked to the overall metastatic pattern in HR pos-

itive MBC. The model considered not only single metastatic sites

but also their combination. Large importance values indicate

variables with predictive ability, whereas zero or negative values

identify non-predictive variables to be filtered.
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The constant exposure to endocrine therapy (ET)

agents such as aromatase inhibitors (AIs) and selective

estrogen modulators and degraders such as Tamoxifen

and Fulvestrant, can induce the onset or the selection of

genetic and epigenetic alterations of the ESR1 gene,

such as activating mutations in the ligand-binding

domain or increased methylation of the promoter
[16e19]. These alterations confer not only treatment

resistance, but can potentially change cell phenotype

through changes in the chromatin recruitment tran-

scriptional network, which results in neomorphic prop-

erties (i.e. a novel gene function or pattern of gene

expression) [20e22]. This is a crucial aspect, since it

suggests how treatment resistance is linked not only to

target-dependent alterations, but how resistance also
affects the overall phenotype and consequently the dis-

ease’s clinical behaviour.

Third, the interplay among ctDNA, CTCs and met-

astatic sites, was also explored though ML. Intriguingly,
ESR1 was a recurrent factor across the different random

forest models, together with other potential factors, such

as aberrations in PIK3CA, GATA3, ERBB2, KIT,

FGFR1, MYC, MET and AR. Moreover, CTCs were

also highlighted as an important factor in all the
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investigated sites, with the exception of the CNS in

which CTCs appeared to contribute less in our

modeling. We previously reported the interplay between

a higher nCTCs and genomic alterations in ESR1,

GATA3, CDH1, and CCND1. The independent valida-

tion of these results with respect to ESR1 and GATA3 in

the present study, further supports the relation between

CTCs and distinctive biological features linked to ESR1

[23].

In addition to describing the biology of MBC, the

present study could provide initial clinical insights on

MBC management. If validated, these results may define

a potential role of a careful monitoring strategy with

dynamic assessments using liquid biopsy. While baseline

characteristics could detect high-risk patients, who may

require a more intensive approach, the emergence of
new gene alterations could identify patients more likely

to develop certain disease localisations, suggesting a

potential restaging strategy with the highest pre-test

probability.

The application of ML to cancer genomics is a novel,

yet promising, approach that is starting to show inter-

esting implications in oncology. An algorithm trained

on 7791 tumours prospectively sequenced in a cohort of
patients with advanced cancer was capable to predict the

correct tumour type in 5748 of the 7791 patients (73.8%)

in the training set as well as 8623 of 11 644 patients

(74.1%) in an independent cohort [24].

This approach yield to accurate predictions in 45 of

60 cases (75.0%) when applied to ctDNA samples [24].

Applying this method prospectively to patients under

active care enabled genome-directed reassessment of
diagnosis in 2 patients initially presumed to have

metastatic breast cancer, leading to the selection of

more appropriate treatments, which elicited clinical

responses [24]. The present study, while still explor-

atory, demonstrates a novel liquid-biopsy based

approach for integrating clinical and blood-based

tumour data focused not only on relapse risk stratifi-

cation, but also to define distant sites of disease more
prone to metastatic involvement. This new concept

could pave the way to new studies focused on liquid

biopsy-assisted follow-up strategies in Early Breast

Cancer.

The present study has several limitations. First, the

relatively small sample size may have limited the ML

and logistic regression performance, especially in un-

derrepresented subgroups (e.g. CNS involvement). Sec-
ond, there was a particularly high incidence of IBC

patients in the cohort, which reflected the academic

referral center bias where the data were collected.

Therefore, there may be some limits to the general-

isability of the findings. Third, the single time point of

analysis warrants further studies focussed both on vali-

dation and on the implementation of a longitudinal

model capable of capturing clonal evolution and the
resulting changes in organotropism.
5. Conclusions

This novel approach suggests that integrating both CTC

enumeration and genomic characterisation by ctDNA

could help define sites of metastasis, paving the way for

a more tailored monitoring and therapeutic approach.
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