arXiv:2204.06793v2 [math.AP] 7 Dec 2023

A GENERAL FRAMEWORK FOR NONLOCAL NEUMANN PROBLEMS

GUY FOGHEM' AND MORITZ KASSMANN?*
HTTPS://DX.DOI.0RG/10.4310/CMS.2024.V22.N1.A2

ABSTRACT. Within the framework of Hilbert spaces, we solve nonlocal problems in bounded
domains with prescribed conditions on the complement of the domain. Our main focus is
on the inhomogeneous Neumann problem in a rather general setting. We also study the
transition from complement value problems to local boundary value problems. Several
results are new even for the fractional Laplace operator. The setting also covers relevant
models in the framework of peridynamics.

1. INTRODUCTION

1.1. Main Results. Over the last years, there have been several studies of nonlocal Neu-
mann problems of the following type: Given a bounded open set @ C R?, one is interested
in well-posedness for

Lu = fin Q, Nu=gon RN\Q, (N)

where L is an integral or integro-differential operator and A is a related integral operator,
which plays the role of some kind of normal derivative on R? \Q. The main goal of this
article is to prove well-posedness results for (V) in a general setting. We assume:

Lu(z) = p.v. /Rd (u(:v) — u(y))k:(:v, y)dy (z € RY),

Nuly) = | (ul) = ) ke, )da (ye o).
Here, k : R? x R?\ diag — [0, 00) is measurable and satisfies
A_llj(y—gj) < ]{Z(I‘,y) SAV(y_'I) (l’,yERd), (E)

where v : R*\{0} — [0, 00) is the density of a symmetric Lévy measure, i.e., v satisfies
v(h) =v(—h) for all h # 0 and / (LA AP v(h)dh < co. (L)
Rd

The main new contributions of the present article include the following:

(a) Extending previous results, e.g. from [DROV17], [MPL19], [DTZ22], we treat the
inhomogeneous problem for natural choices of data g. The corresponding results are
new for the fractional Laplace operator.
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(b) We provide a general framework that includes integrable and singular kernels at the
same time.

(c) We show that the trace spaces introduced in [DK19] and [BGPR20] coincide.

(d) We introduce a new Dirichlet-to-Neumann operator based on the operator A

(e) Our well-posedness results are aligned with classical results for second order partial
differential operators. We show convergence of nonlocal to local problems, where we
treat singular and bounded kernels together.

Let us explain condition (E). We denote a A b = min(a,b) for a,b € R. In the case
k(x,y) = v(y — x) with v as above, the operator L is translation invariant and generates a
symmetric Lévy process. The density v defines the “order” of the operator L, which becomes
apparent in the case of v(h) = Cy,|h|7® for h # 0 where a € (0,2) is fixed and Cy,, is
an appropriate constant. The resulting operator is the so-called fractional Laplace operator

(—=A)*/2. The choice of Cy, ensures the relation (—A)*/2u(£) = |£|°u(€) for all functions
u in C=°(R%). Let us mention that asymptotically one has Cy, < a(2 — «). This will play
an important role for our analysis. Further details about the fractional Laplacian (—A)%/2
and the constant Cy, can be found in [AAS67, NPV12,FG20]. Finally, let us mention that,
the assumptions (E) and (L) are not sufficient in order to guarantee the existence of the
pointwise expression Lu(z) in the general case, even if u is smooth. The Hilbert space
approach used in Section 4 avoids this issue because we only deal with the corresponding
quadratic forms. It is worth to mention that the nonlocal operator N was initially introduced
by [DROV17] and is called the nonlocal normal derivative operator across the boundary of

) with respect to v. Another type of such an operator appeared earlier in the literature see
for instance [DGLZ12].

Let us quickly review the classical Neumann problem, for the reader’s convenience. Let 2 C
R? be a bounded open subset whose boundary 9 is sufficiently regular. Given f:Q — R
and g : 92 — R measurable, the classical inhomogeneous Neumann problem associated to
the data f and g consists in finding a function u : {2 — R satisfying

—Au=f in and gu—g on 0. (1.1)

Here g—z denotes the outward normal derivative of u on 0f). From a weak formulation point
of view, u is said to be a weak solution of (1.1) if u € H(f2) satisfies

/Vu( ) - Vou(z dx—/f dx—l—/mg(y)v(y)da(y), for all v € H'(Q).

The Neumann boundary problem has received considerably less attention in the literature
compared to the Dirichlet boundary problem. Classical textbooks like [Mik78] treat the basic
aspects. A rigorous treatment including regularity up to the boundary, Schauder estimates,
LP estimates and the variational formulation can be found in the lecture notes [Leol3]. A
recent article covering classical results for elliptic equations in divergence form is [DV09).

Following [FKV15,SV14,SV13] we introduce a bilinear form £ by

// u(®)) (v(z) — v(y)) (z—y)da dy (1.2)

QCXQC (&



for all smooth functions with compact support. As in the local case, a main tool in the study
of Neumann problems, is a Gauss-Green type formula for u,v € C2° (Rd), see Proposition A.5:

/ Lu(z)v(z)de = E(u,v) — [ Nu(y)v(y)dy. (1.3)
Q Qe
Relation (1.3) motivates us to introduce an energy space V,(Q|R?) as the vector space of
all measurable functions u : R? — R such that the restriction u|q belongs to L*(Q) and
E(u,u) is finite. See Section 2.2 for more details. The energy space V,(Q|R?) can be seen
as a nonlocal analog of H'(Q). Let us make an interesting observation. Let f € L*(Q)
and u € V,(QR?) be a minimizer of the functional v — % &(v,v) — Jo, fv in the space
V,(QR?). Then &(u,v) = 0 for all smooth functions with compact support in R*\Q. Since
u,v € V,(QR?), the Fubini theorem implies

Nu(y)v(y)dy = E(u,v) =0,
Qc
which implies Mu = 0 in Q°, see Corollary 4.8. On the one hand, this observation is aligned
with the classical theory where the normal derivative appears naturally when minimizing
the energy. On the other hand, and this is interesting, here we do not need to assume any
regularity of the kernel k(x,y) and the boundary 0f2.

Let us summarize the main results of this work.

(i) The first step is to define a base space L*(R%, 7'), in which we can define the comple-
ment value problems. We define v and two alternative options 7, v* in Definition 2.15.
In Section 2.2 we study embedding results of corresponding function spaces.

(ii) The next step is to introduce T,(Q°) as the trace space of V,(QR?) in Section 2.6.
In this section, we study equivalent norms of the trace space and a density result.

(iii) An important tool in the proof of well-posedness results is the compact embedding
V,(Q|R?Y) < L?*(Q), which is a core result in Section 3, see Theorem 3.10.

(iv) Section 4 is dedicated to well-posedness results. We focus on the Neumann problem
in Section 4.1. An existence result for problem (V) is given in Theorem 4.11. We
also discuss a more general Robin-type complement value problem.

(v) The setup of this work allows to define a fully nonlocal Dirichlet-to-Neumann map
with the help of the nonlocal Neumann-type derivative Al For @ € R?, the Dirich-
let data are given on ¢ and mapped to NMu on Q°, where u satisfies the nonlocal
equation in 2. Thus, this map can be viewed as a nonlocal analog of the well-known
Dirichlet-to-Neumann operator given in [CS07]. Basic properties are formulated in
Theorem 4.20 together with spectral properties in Theorem 4.23.

(vi) The analogy between the classical Neumann problem and problem (V) leads to a
convergence result when considering a sequence of complement value problems for
the fractional Laplace operator (—A)*/2? where a — 2. Theorem 5.4 establishes the
convergence of the corresponding sequence of solutions u, as o — 2.

1.2. Related literature. Nonlocal complements value problems have been studied in sev-
eral works. In particular, the Dirichlet problem is studied in many articles. For translation in-
variant problems, see the survey [RO16, AFR20] for fine regularity results and [FKV15,BV16]

for the Hilbert space approach in a similar setting as in this work.
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An early contribution to nonlocal Neumann problems is [DROV17], where also the Gauss-
Green formula appears for a special case. There is a difference between our approach and
the one in [DROV17], which explains why we are able to study the inhomogeneous Neumann
problem. Let us explain our approach for the simplest setup of the fractional Laplace operator
(=A)*2 e, v(h) = Cyalh|74. Given f € L*(Q2) and g € L*(Q°, (1+|z|)¥*dx), motivated
by the Gauss-Green formula (1.3) we say that u € V, (Q| R?) is a weak solution or a variational
solution of the inhomogeneous Neumann problem () if

E(u,v) = /Qf(:z)v(at)dx +/ g(y)v(y)dy for all v € V,(Q|R?). (V)

C

By testing (1/) with v = 1 gives the following necessary compatibility condition

[ s@ae+ [ gts=o. (©)

Equality (V') should be contrasted with the variational formulation of (1.1) in the classical
case: Given f € L*(Q) and g € L*(09), find u € H*(Q) such that

/Q Vu(z) - Vo(z)dz /Q F(@)o(@)ds + /8 o(u)e)doly) forall ve 1),

Note that [DROV17, Def. 3.6] and subsequent definitions like [MPL19, Definition 2.7] look
very similar to (1) at first glance. However, the norm of the test space defined in [DROV17,
Eq. (3.1)], [MPL19, Section 2| depends on the Neumann data g, which is not natural. Our
test space V,(Q|R?) in the weak formulation (') does not depend on the Neumann data g.
For the general case, we refer the reader to Definition 4.3. It is worth mentioning that the
weighted space L2(Q°, (1+ |z|)4t*dx) is the natural function space for the Neumann data g.
In fact in Theorem 4.13 we are able to find some g not belonging to L*(Q¢, (1 + |z|)4*tedx),
2 = By(0) for which the variational Neumann problem (V') with f = 0 does not have any
weak solution in V,,(QR?).

The aforementioned issue does not show up for homogeneous nonlocal Neumann problems.
For such problems, several results have been proved, e.g., regularity up to a boundary of
a domain for the fractional Laplace operator in [AFR20]. A particular observation linking
the homogeneous Neumann problem to the regional fractional Laplace operator is provided
in [Aba20]. Eigenvalues of nonlocal mixed problems are studied in [LMP*18]. Various
nonlinear Neumann problems are studied in [Chel8, MPL19, CC20, ATL20, MPL21, BS21].
Some higher order nonlocal Neumann problems are treated in [BMPS20]. The classical
Neumann problem is closely linked to reflected diffusions. It turns out to be a challenging
problem to establish a similar link between the nonlocal Neumann problem and a Markov
jump process together with its reflection. An attempt is made in [Von21], which we comment
on in detail in Remark 2.38.

1.3. Peridynamics and volume constraints on bounded sets.

In the literature, several nonlocal problems are studied in the area of peridynamics. Most
of these models require complement conditions (a.k.a. volume constraints) not necessarily
on the whole complement of the domain €2 but only often on a part of the complement.
Here, we would like to point out that our setting can be adapted to fit such requirements.
Let us exemplify this with a simple model. Consider the symmetric kernel of the form

k(z,y) = v(x — y) with v supported around the origin, say supp v C Bs(0) for some 6 > 0.
4



A popular example of a kernel in peridynamic models is given by v(h) = 1p,(h). In this case
it is natural to assume the complement condition not on the whole complement R\ Q but
only on Q(8) = {z € R*\Q : dist(z, Q) < §}. A nonlocal problem of the form Lu = f in
Q) is then supplemented with a complement condition prescribed on the volume constraint
Q(9), e.g., u = g on () for a Dirichlet problem or Nu = ¢g on Q(9) for a Neumann problem.
Here, f : Q@ — R and ¢ : Q(5) — R are given data. Our approach can easily be adopted
to cover this case. In comparison to the weak formulation (17), one would need to replace
V,(QR%) by the space V,(Q|E) defined as in (2.3), with E = Q U Q(0) and recall that
v(h) = 1g,(h). Indeed, assuming for simplicity that €2 is bounded Lipschitz and connected,
the well-posedness of the Neumann and the Dirichlet problem can be formulated as follows.

Corollary 1.1. Let f € L*(Q) and g € L*(Q(0)). Then there is a unique variational solution
ue V,(QE)* = V,(QE)N{[,udx = 0} to the Neumann problem Lu = f in Q and Nu = g
on (6), i.e.,

E(u,v) = /Qf(:v)v(a?)dx + /Q(é) gy)v(y)dy  for allv € V,(QE)~. (1.4)

Moreover, there is a constant C' > 0 independent of f and g such that

lullvi@izy < C(Iflz2w + lgllz2@e)-

Corollary 1.2. Let f € L*(Q) and g € V,,(Q|E). Then there is a unique variational solution
u € V,(QE) to the Dirichlet problem Lu = f in Q and u = g on Q(9), i.e.,

w—gEVio(QE)  and  E(uv)= / f@yo(z)dz  for all v e Vio(QRY).  (L5)
Q

Here we denote V,o(QE) = V,(QE) N {ulaw) = 0}. Moreover, there is a constant C > 0
independent of f and g such that

lullv,@iz) < C(I1f 2@ + lgllviioim))-

The proofs of Corollary 1.1 and Corollary 1.2 are analogous to the ones of Theorem 4.11
and Theorem 4.18; we also refer to [Fog23a] for a more general setting. Both results are
well known for special cases of v in the area of peridynamics, see [DTZ22, Section 3.2]
and [KMS19]. We refer the reader to the exposition and the references in [Dul9]. Let us
mention some related results. An early work is [BT10] where several nonlocal complement
value problems are studied for integrable kernels with fixed support (horizon). Problems
for nonlocal nonlinear problems involving nonlocal operators of regional type are studied in
[BM14,BMCP15]. Nonlocal Dirichlet problems driven by nonsymmetric singular kernels are
considered in [FKV15] for scalar functions and in [KMS19] for vector-valued functions. The
vanishing-horizon limit has been considered in several works, see Section 5. For references
related to numerical results see [DY21]. We provide I'-convergence results for vanishing
horizons in Example 5.2 and mention related results from peridynamics. Our systematic
approach in terms of functional analysis allows to treat general cases of v resp. general data
¢ in comparison with [DTZ22].

The paper is organized as follows. In Section 2 we introduce some nonlocal function spaces
and the corresponding trace spaces that will be used in the sequel. In Section 3 we establish

global compact embedding of nonlocal Sobolev spaces in to L2-spaces. This allows us to prove
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Poincaré type inequalities for various ranges of Lévy integrable kernel v. The Section 4 is
devoted to the study of the well-posedness of nonlocal problems with Dirichlet, Neumann
and Robin conditions associated with the Lévy operator L. Afterwards, we investigate the
Dirichlet-to-Neumann map for the Lévy operator L. In Section 5 we show that local elliptic
problems can be viewed as the limit of the nonlocal ones. Last, in Appendix A we highlight
some elementary properties of the Lévy operator L.

Acknowledgment: During his PhD studies Guy Foghem has spent a research stay at Seoul
National University in the framework of the International Research Training Group 2235
“Searching for the regular in the irregular: Analysis of random and singular systems” between
Bielefeld University and Seoul National University. The authors thank his host, Prof. Ki-
Ahm Lee, for helpful discussions on trace spaces.

Further remarks: Several results of this work are based on the PhD thesis of the first author
[FG20]. Related research questions are subject to an ongoing PhD project of Michael Vu
from Trier University. Equivalent norms of the trace space T, (£2¢) in case of the fractional
Laplace operator have recently been identified by F. Grube and Th. Hensiek together with
convergence results that recover H/2(9€) in the limit o — 2.

2. LEVY MEASURES AND NONLOCAL FUNCTION SPACES

In this section we introduce generalized Sobolev-Slobodeckij-like function spaces with re-
spect to a Lévy measure v and an open subset  C R?, in particular V, (Q| R%) and nonlocal
trace spaces T, (€2¢). The function spaces are tailor-made for nonlocal elliptic complement
value problems including the Neumann problem. We prove the existence of an embedding
of V,(QIRY) into weighted spaces L?(R% 1) for different measures v/ and into the non-
local trace space T,(€2°). We are able to compare T,(2°) with known trace spaces, see
Proposition 2.32. A main result of this section is Theorem 2.26, which proves that the bi-
linear form (&,V,(QIR%) is a regular Dirichlet form on L?(R% 1/). This result allows to
construct jump processes with some sort of reflection.

Throughout this work, let v be a Lévy measure whose density is a measurable symmetric
function v : R\ {0} — [0, 00) satisfying (L). We will impose further conditions on v where
needed. For simplicity, we assume in our main results that v has full support. See Section 1.3
for a discussion on how this can be relaxed.

2.1. Lévy condition and energy forms. Before we begin, let us make an observation
that nicely links (L) with nonlocal energies.

Theorem 2.1. Assume v : R?\ {0} — [0, 00) is measurable and radial *. Then the energy

2
I, () =uta)va=y) dydo
R4 R4
is finite for every u € C®(RY) if and only if v satisfies (L).
Note added in proof: As we learned from Florian Grube, the assertion of the theorem holds true for any

Borel measure v. The LP-setting is treated in [Fog23al.
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Proof. By (2.7), it is easy to see that condition (L) implies finiteness of the energy for
u € C2(R?). For the converse, let u € C=°(R%) be nontrivial and € > 0, then there is § > 0
such that

|Vu(-+h) — Vu||L2 riy < € if |h] <9

Using the fundamental theorem of calculus, 162 < a®+ (b—a)? and polar coordinates yields

//Rde(U(y)_U( ) viw=y) dydf’f>/ /B(s /Vua:+th hdt‘ h)dh dz
> %/R /Sdl Vu(x) .w|2dad_1(w)(/o rd+1y(r)dr>dx—€/96(0) |h|2v(h)dh

1
> (3 Kanl|Vulse) — <) / hPu(h)dh
B;(0)

Recall that, invariance of the Lebesgue measure under rotations implies for all z € R?

. 1
][ lw - 2|2dog 1 (w) = Kga|2|* with Kgp = ][ lw - e|*dog_1(w) = 7
sd-t §d—1

Therefore, choosing ¢ = inQHVUHi%Rd), we obtain

[ 0 ) e 2 Al [ vt

B;s(0)

It remains to show that v is integrable away from the origin. Consider another v € C°(R?)
with suppu C B;(0) and 0 < 7 < §/2. For all x € B, we have B;(0) C Bs(x) and hence

//Rde (u(y)—u(x))21/(9:—y) dydz > 2/7(0) |u(x)|*dx /Rd\BT((]) v(z —y)dy
22 e[ e

This together with the previous estimate implies that v € L'(R% 1 A |h|?dh), i.e., v satisfies
condition (L). O

2.2. Sobolev-Slobodeckij-like spaces. Let Q C R? be open. Define the space H, () by
H,(Q) = {u € L*(Q) : Eqlu,u) < oo},
equipped with the norm |Jul|? Q) = ||u||%2(9) + Eq(u, u), where
alw0) = [[ (ue) = u(w) (v(e) - v(w)) vie-y)dody. .)
91¢)
When v € L'(R%), e.g., in the case v(h) = 1p, (h), the space H,(Q) equals L(Q).
Following [FKV15] we introduce the vector space V, (2] R?) as follows:

V,(QRY) = {u ' RY = R meas. : ulg € L*(Q), |u|%,V(Q‘Rd) < oo},
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where the seminorm is defined by

|u|%/y(Q|Rd) = // (u(z) — u(y))2 v(ix—y)dxdy < oo.

QR4
We endow the vector space V,,(Q| R?) with the norm || - v, (0 rey given by
HUH%/V (QIRY) — HUH%?(Q + |u|%/V(Q|Rd)‘

Next, given functions u,v € V,(Q|R?), we define a bilinear form £ by

// (1)) (v(x) —v(y)) v(z—y)dzdy.

QCXQC ¢

Lemma 2.2. We have [u[?, < E(u,u) < 20ul?, for any measurable function u.

Vi, (QR?) Vi (Q|RY)

Proof. On the one hand, the inequality
//(u(x) —u(y)) (:5 y)dydr < // (:L'—y)dy dz =2&(u,u)
QRd (QcXQc c

holds trivially true. On the other hand,
)= J] (1) = w))? [ta(@) v ta(w)]vla-y)dyds
Rd R4

< 2 // []lg( ) + Lo(y)]v(z—y)dy dx

R? R4

— ] (wle) = uw))* vio- )y,

QR4

which completes the proof.

Some authors find it convenient to work with the smaller space V,(Q| R%) N L?(R?) equipped
with its corresponding norm. For the study of nonlocal Dirichlet problems this restriction is
not necessary, though. On the other hand, the requirement u|q € L*(Q) for u € V,(Q|RY)

is natural as shown by the following observation.

Proposition 2.3. Let v be a unimodal Lévy measure and Q@ C R be a bounded open set.
Assume Q C Bg2(0) for some R > 1 withv(R) # 0. Then E(u,u) < oo implies ulg € L*(12).

The condition that v is unimodal is not restrictive at all and we recall its definition for the

readers’ convenience.

Definition 2.4. A Lévy density v is called unimodal if it is radial with an almost decreasing

profile, i.e., there is a constant ¢ > 1 such that v(r) < cv(s) for all r,s > 0 with s <.

Remark 2.5. There are radial Lévy measures, which are not almost decreasing such as

—d—1 [ 2+cos(|z ‘$‘4
() = faf 0 (2



Proof of Proposition 2.5. First, since Q C Bpj(0), then for all z,y € Q we have v(z—y) > ¢
with ¢ = cv(R) > 0. By Jensen’s inequality, we have

[ w@ - uw)sa- ydxdy>c/ (Ju(@)] — u(y)))dz dy

(QexQe)e
> c’|Q|/ (ju(z)| ~ fy lul) .
Q

This shows that the mean value f, |u| is finite. We conclude u € L*(2) because of

/Q|u(x)|2d:)3 < 2/9 <|u(:v)| - fQ|u|)2d:L' n 2|Q|<f9 |u|>2.

Definition 2.6. We define V, (2 R?) as follows:
Voo QRY) = {u € V,(QRY) |u=0 ae. on R"\Q}

={uec H,RY) |u=0 ae on R"\Q}. (22)

Remark 2.7. The nonlocal Sobolev spaces H,(f2), V, (| R?) and V,,4(Q| R?) are well suited
for nonlocal linear problems. Interested readers may consult [FG20, Fog23b, Fog21, GH22,
Fog23a, GK23] for further expositions on this type of nonlocal function spaces including the
LP-setting and trace resp. extension results.

Remark 2.8. The function space (H,(Q), ||-||u, (o)) is a separable Hilbert space, see [FKV15,
FKV20]. The norms [|- ||y, g and |- ||, @) agree on V,, o(] R%) and V,,o(Q| R?) is a closed
subspace of H,(R?), hence a Hilbert space.

Proposition 2.9. If v has full support, then (V, (€] RY), || - ||VV(Q|Rd)) is a separable Hilbert
space.

We refer the reader to [FKV15,DROV17] for a proof in a special setting and to [FG20, Thm
3.46] for the general case.
It is worthwhile noticing that || - |y, q|re) is always a norm on V,,o(€| R), but not in general
a norm on V,(QR?) if v is not fully supported. A simple counterexample is given by
v(h) = 1p,()(h) and Q@ = B;(0). For the function u(x) = 1pg)(x) we have [lully, s =0
whereas u # 0. With regard to this comment and the discussion in Section 1.3 let us define
V,(QIE) for Q ¢ E C R%:

V(QIE) = {u . E— R meas. : ula € L*(Q), |ul?, qm < oo}, (2.3)

where the seminorm is defined by

i = [ (o)~ ) vy ds < oo.
QF

V,(Q|E) is a seminormed space with respect to the seminorm HUH%/L(QI E) = [jul|? T2y T

|u|%/u(ﬂl g)- We refer to [Fog23a] for the proof of the next result.
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Proposition 2.10. If E = Q + supp(v) and 0 € supp(v) then (V,(QE),| - |lv.«r) is a
separable Hilbert space, whenever and w > 0 a.e. on E '\ Q where we put

w(z) = / (1A vz — y))dy.

As already seen in Theorem 2.1, the condition (L) is important for the properties of the
spaces H,(Q) and V,(QRY).

Proposition 2.11. Let v : R = [0, 00] be symmetric. The following assertions hold true.
(i) If v € L*(RY), then H,(RY) = L*(R?) with equivalence in norm.
(i) If v € L*(R% 1 A |h2dh) and Q is bounded, then H,(Q) and V,(Q|R?) contain all
bounded Lipschitz functions.
(iii) If v is radial and [ |h|*v(h)dh = oo and S5, V(R)dh < oo for every 6 > 0, then
u e CYRY N H,(RY) implies that u is constant.
(iv) If v is radial, then for every u € H'(R?) there is § = 6(u) > 0, such that
1
= / BPR)AR) [Vl oy < Nl ey < Aot mppan 1l (24)
B;(0)
The proof is analogous to the one of Theorem 2.1. See also [Fog23b, Proposition 2.14]
or [FG20, Proposition 3.46] for a general setting.

For many results it is crucial that smooth functions with compact support are dense in
the function space under consideration. Let us summarize some important results in this
direction.

Theorem 2.12. Let v satisfies (L) with full support and let Q@ C R? be open.
(1) C=(Q)N H,(Q) is dense in H,(Q).

(ii) If Q has a compact continuous boundary 02, then C>°(Q) is dense in H, ().
(i33) If Q has a compact continuous boundary 09, then C=(Q) is dense in V,o(QRY).
(i) If Q has a compact Lipschitz boundary 09, then C=°(R?) is dense in V,(Q|R?) with

. 2
respect to the norms || - ||y, qrey and |[-llly, @ rey with ([ullly, qorey = ||U||iz( +

R%)
2
[uly, oy re):
The proofs of the first and second statement can be found in [FG20] and [DK21]. The first

statement is similar to a Meyers-Serrin density type result. Note that C°(Q) is defined as
{v]g: v € C®(R?Y}. The proof of the third statement is given in [FSV15,Grill] for a special
choice of v and in [FG20], [BGPR20] for the general case. The proof of the fourth assertion

is given in [FKV20].

Remark 2.13. Concerning the question, whether is is necessary to assume the continuity of
99 for the density of C2°(Q) in V,,5(Q| R?) or not, it is interesting to compare [FSV15, Remark
7] with [CF12, Theorem 3.3.9].

Remark 2.14. For the kernel v(h) = |h|=4, a € (0,2), let V/2(Q|R?), V*(QR?) and
H*2(Q) be the spaces V,(Q|RY), V,o(QR?) and H,(Q) respectively. It is worth nothing
that, see [Grill], if 2 has a compact Lipschitz boundary and « # 1 then

_  ya/2 d a/2(md a/2
VeI RY) = (@) O = e = e,

c c
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where the first and the second equality follow from Theorem 2.12 (i7). Furthermore, if
a/2
0 < a < 1 then we also have H*/2(Q) = CgO(Q)H @,

2.3. Weighted L?-spaces. In order to set up the Dirichlet problem in L?-spaces over RY,
we define a Borel measure on R? that captures the behavior of v at infinity. There are several
possibilities.

Definition 2.15. Let v satisfies (L) with full support and B C R? be non-empty and open.
Define the weights 7,7 : R* — [0, oc] by

7(z) = / (A vl —y))dy,

v(x) = ezseglf v(ix —y).

If v is a unimodal Lévy measure, then we define the Borel measure v* : R — [0, 0o] by

vi(z) = v(R(1+ [z]),
where R > 1 is an arbitrary fixed number.

Example 2.16. Let 0 < o < 2 and v(h) = |h|7%® for h # 0. Let B C R? be open and
bounded, and R > 1. Then

U(x) < 7(z) < v*(z) < (14 |o|)7%"

where the constants behind the relation =< depend on the choice of B and R. See Theorem 2.22
for the general case.

Let us discuss important properties of the three measures v, 7, and v*. The following lemmas
show that it is possible to define certain norms on V,(Q|R?) (with nice properties), which
are equivalent to the norm || - [[y; (q|ra)-

Lemma 2.17 (Properties of 7). Let Q@ C R? be open and v satisfies (L) with full support.
Assume B C ).
(i) We have v € L=®(RY). Moreover, if |B| < co, then U € L'(R?).
(i) The embedding V,(QRY) — L*(R%, D) is continuous. If |B| < oo, then L*(R%,7) —
LY(RY, D) is continuous.

iii) If v is unimodal and B is bounded, then on V,(QR?), the norms 4 and
V Q| RY)
|| - Htfy(de) are equivalent, where
[ully? QR = / |u(z)|*7(2)dz + // u(y))?v(z—y)dzdy,
(QexQe)e
gy = | @)oo+ [ (ut) = utw)Prla—g)dady.
(QexQe)e
Furthermore, if Q0 is bounded then the norms || - ||y, qrey and || - ||}, Vo r) 97€ also equivalent.

11



Proof. Firstly, we observe 1 Av € LY(RY). Tt follows (x) < |1 A v|| ri(re) for almost every
z € RY. If | B| < oo, then Fubini’s theorem implies

/ v(z)dr < [Bl|[1A V|1 gey < 00
Rd

The continuous embedding L?(R?,7) < L'(R? %) follows directly. The continuity of the
embedding V,(Q|R?) < L*(R%,7) is obtained as follows

5 lu(z)[25(x)dz < z/B lu(y)? (/R 1A v(a — dx) dy + 2 // )21 A v(z — y)dady

<(C /Q lu(y)|*dy + C //(U(if) —u(y))?v(z —y)dedy = Cl”“”%/y(mﬂxd)'

QR4

Here Cy = 2|1 A v|| ;1 ga) + 2. The following inequalities obviously hold

VO 1 lully @ymny > Nl oy > Tl gm0

Next if v is unimodal and B is bounded, then there is a constant ¢ > 0 such that v(z) > ¢
for all x € B. The following estimates hold

[ ot + ] (ue) = ) ota = s

/

QQc
> / ju(z)Pdz + // (ule) — u(y)(z — y)dydz
QOe
> LAV / u(@)P1 A vz — y)dyde + // (ule) — u(y) Pz — y)dyda

> (1A AV o) / (@) + (u() = u(y))*]1 A vz - y)dady

1 ~
> AR A ) [ Py,

The first and the last line imply that [[ul]}, for some constant C' > 0.

V(0 Rd) = CHUHV(QURd

Thus the norms || - and || - are equivalent. If in addition € is bounded,

H Vo (QIRY) H Vo (QIRY)
then [|[1 A v ge > v(z) > ¢ for all € Q for some ¢ > 0. The equivalence of the norms

I~ llv, (o reyand | - ||V (orey 15 thus proved. O

Lemma 2.18 (Properties of 7). Assume Q C R? is open. Let v satisfies (L) with full
support. Assume B C ) is open and nonempty.
(i) 7 € L"R?) and, if v is unimodal, then T € L™(R?).
(ii) The embeddings V,(QR?) — LQ(Rd 7) — L'(R%,7) are continuous.
(731) If v is unimodal and B is bounded then the norms || - H\i(Qle) and || - I3, V(I RY

equivalent, where ||ul[7, V(IR and ||u||v (@lrd) 4T defined as in Lemma 2.17(iii) with

are

v replaced by U.
12



Furthermore, if (2 is bounded then the norms || - |y, re) and [ - ||}, are equivalent.

Vo (92 RY)

Proof. To prove (i), select zp € B and r > 0 such that Bs,(x9) C B. Note that, for
x € Bo.(z0) and y € BS,.(x9) N B or for x € BS, (z) and y € B,(z) we have |h| > r where
h = x — y. Therefore, for almost all £ € B4T(x0) and z € B,.(zg) we find that

/ essinf v(x —y)dr < / vz —&)dr = / v(h)dh,
Bay(z0) Y€BE, (x0)NB lz—y|>r |h|>r

/ essinf v(x —y)dr < / v(x —z)der = / v(h)dh.
BS, (xp) YEBr(20) ja—z|>r QES

The integrability of 7 follows since

/ v(z)de < / essinf v(xr —y)dx —|—/ essinf v(z — y)dz < 2/ v(h)dh < oo.
R4 Bay(x0) YEB4, (0)NB BS,.(z0) YEBr(@0) |h|>r

Analogously, assume v is unimodal. Since for (z,y) € Ba.(z0) X B§,.(x¢) N B or for (z,y) €
BS, (x9) X Ba.(zg) we have |z — y| > r, it follows that vg(z) < v(z —y) < cv(r).
Next, consider K’ C B to be a measurable subset such that 0 < |K’| < oo, then we have

[ @)oo < 20 Pl [ Py 2] o) = u)Pre—pady
K/
K'R¢
< CHU‘H%/V((”Rd)u

where C' = 2|K'| 7! (||7|| ;1 (ge) +1). This together with the previous step imply the continuity
of the embeddings V, (Q|RY) — L*(R%,7) — L'(R% 7). The rest of the proof is analogous
to that of Lemma 2.17. O

Lemma 2.19 (Properties of v*). Assume Q C R? is open and R > 1 satisfies | Br(0)NQ| > 0
and |Bg(0) N Q¢ > 0. Let v satisfies (L) with full support.
(i) v* € L*(RY) N L>(RY).
(ii) The embeddings V,(QR?) — Lz(]Rd, v*) — LY(RY, v*) are continuous.
(ii3) On V,(QRY), the norms ||- || Vo (| RY and H'H*VV(Q\Rd)

and ||u|| Vo Ry € defined as in Lemma 2.17(1ii) with v replaced by v*.

are equivalent, where HUH*VV(Q\Rd)

Furthermore, if (2 is bounded then the norms || - ||y, qre) and || - ||}, are equivalent.

Vu(QIRY)

The proof of Lemma 2.19 is analogous to that of Lemma 2.17 and can be found in [FKV20]

r [FG20, Lemma 3.24]. In order to show v* € L'(R?) N L*(R%), one notes that for all
h € R we have R < R(1 + |h|) and |h| < R(1 + |h|) and hence v*(h) < C(1 A v(h)). This
implies the claim because of 1 A v € L*(R?) N L>®(R).

The measures v*, 7 and v turn out to be comparable if v satisfies a certain doubling condition
at infinity.

Definition 2.20. A radial Lévy density v satisfies a doubling condition at infinity if:
For every 6 > 1 there exist ¢y, ¢y > 0 with c;v(r) <v(fr) < cov(r) forallr > 1.  (2.5)
Not that the property (2.5) is indeed equivalent to saying that

There exist ¢1, ¢y > 0 with ¢v(r) < v(2r) < cov(r) for all r > 1. (2.6)
13



Remark 2.21. The doubling condition at infinity imposes some decay of v at infinity. The
example v(h) = |h|74 'L <7y satisfies Definition 2.4 but not (2.5). Unimodality bounds
one-sided oscillations of v for all values of |z|. Fix 0 < o < 8 < 2. Define v (r) = r=4=« for
r > 1. Define vy (r) = r=4¥ for Tlﬂ <r« i and v, (r) = r=4= for Tlﬂ <r« Tlﬂ for
k € N. Then v; is not unimodal but it trivially does satisfy (2.5).

Theorem 2.22. Assume that v is unimodal and satisfies (2.5). For B C R* is bounded (e.g.
B is a ball) and R > 1 we have v(x) < v(z) < v*(x) < 1 Av(z).

Proof. Let us observe that, 7,7, v* and 1 A v are all bounded above. Indeed, for z € R? we
have R < R(1 + |z|) and |z| < R(1 + |z|) and hence v*(x) < C(1 Av(z)) < C. Obviously,
v(x) < [[1Av| g1 gae). Now, let r > 0 sufficiently small and xg € B such that Bg,(z9) C B.
If x € By, (z9) and y € B, (zo) N B or if x € BS,(v9) and y € By, (xo) then |[x —y| > r. In
both cases, 7(z) < v(x —y) < cv(r).
Next, there is no loss of generality if we assume that B C Bg. Assume |z| < 4R then
|r —y| < 5R for all y € B. The unimodality and the foregoing boundedness imply that
c'W(R(I+R) <v(R(1+|z]) <C,c'w(BR) <7(z), LAVv(4R) < cl Av(z) < C and that
1Av(BR) < cl Av(z —y) that is |B]L Av(BR) < cv(x) < C. Thus v(z) < 7(x) < v*(x) <
1A v(z) for |z| < 4R.
Now assume that |z| > 4R, then we have 1 < % < |z —y| < 2|z| for all y € B and
lz] < R(1+ |z|) < 2R|z|. The doubling condition (2.5) implies that for some constants
0 < <1< ey, wehave cv(z) < v(R(1+|z])) < cov(x) and civ(z) < v(x—y) < cov(x) for
ally € B. We get civ(z) < 7(z) < cov(x) and integrating over B implies that ¢;|B|1Av(x) <
cv(z) < co| B|1Av(x). Together with the boundedness implies v(x) < 7(z) < v*(z) < 1Av(z)
for |x| > 4R.

O

Example 2.23. As in Example 2.16, let 0 < o < 2 and v(h) = |h|7% for h # 0. Then
v(z) < 1Av(x) < (1+|h|)~4 and the space H,(2) equals the classical Sobolev-Slobodeckij
space H*/?(Q). In this case, we denote the space V,(Q|R?) by V/2(Q|R%). We have
Vel2(QRY) < LAH(RY, (14 |h])~42).

Remark 2.24. Note that Lemma 2.17 (i), Lemma 2.18 (i) and Lemma 2.19 () imply that
the weights 7, v*, 7 respectively define Radon measures on R%.

2.4. Dirichlet forms. The discussion of the L2-spaces related to v, v*, 7 together with
density results in Theorem 2.12 allows us to define a new interesting Dirichlet form. We
refer to [FOT11] for the general theory of Dirichlet forms and their corresponding Markov
processes.

The following well-known result is a direct consequence of Theorem 2.12; (ii) and (iii) .

Proposition 2.25. Let Q) be open and bounded with a continuous boundary. Let v be any
Lévy measure. Then each of the three bilinear forms (€, V,o(Q R?)), (5Q,C§°(Q)HV(Q)) and

(Eq, H,(Q)) is a reqular Dirichlet form on L*(Q)). The corresponding Markov processes are
often called killed, censored resp. reflected Lévy process.

An important side result of our work is the following theorem, which implies the existence of
a strong Markov process, which can be seen as another kind of reflected jump process with
regards to €2. The theorem is an improvement over [Von21, Theorem 4.4], see Remark 2.38.

Its proof follows from Theorem 2.12, (iv).
14



Theorem 2.26. Let v be unimodal with full support and Q C R? be open and bounded
with a Lipschitz-continuous boundary. Let V' be any of the measures U,v*,7 on R%. Then
the bilinear form (£,V,(Q|RY) is a regular Dirichlet form on L*(R%,v').

2.5. Classical Sobolev spaces. Let us comment on the connection of the spaces under
consideration with classical Sobolev spaces. Recall that for an open set Q C R? H'(Q)
denotes the classical Sobolev space endowed with the norm

HUH%H(Q) = HUH%Z(Q) + HVU||2L2(Q) :
Proposition 2.27. The following embeddings hold true:
HY(RY) — H,(RY) < V,(QRY) — H,(Q) — L*(Q).
Here we equip V,(Q RY) with the norm || - v, re) -
Proof. The proof is standard. For u € H'(R?) and h € R? we have

/Rd(U(x +h) —u(z))*dz = u(- + h) = () 72g@e < 40 ARl f g -

Integrating both sides over R? with respect to the measure v(h)dh yields

] (w) = wlw)rto—)dady < Al g a0l e (2.7)
R4 R?
This proves the first embedding, the remaining ones are trivial. U

Recall that H} () is the closure of C2°(£2) with respect to the H'(Q2). The space H(f2) also
coincides with the closure of C*(Q) in H'(R%). In addition, the zero extension to R? of any
function in H} () belongs to H'(R?). Recall the definition of V,,o(Q2| R?) from (2.2).

Proposition 2.28. Let Q C R? be open. The following embeddings hold true:
Hi(Q) < V,o(QRY) — H,(Q)

where elements of HY(Y) are extended by zero off Q0. If additionally 09 is continuous,

H,(Q)

V,0(QRY) = C>(Q) — L*(9Q).

———H,(Q
It is worth noticing that not every function u € C®(2) (

H,(R%). Indeed for this to hold, one would need
/ |u(a:)|2dx/ v(z—y)dy < oo.
Q Qe

This condition is not always true since the measure v might be very singular at the origin.

This observation shows that for some appropriate domain {2 and for some appropriate mea-
——H,(Q . .
sure v, e.g. v(h) = |h|797%/2, the spaces C>(Q) @ and V,0(Q| RY) are strictly different

although they both possess C2°(2) as dense subspace. This effect is purely nonlocal. Recall
that elements of H}(€2) can be isometrically extended by zero on R as functions of H'(R?).

) . . .
has its extension by zero in

Now assume (2 is a Lipschitz domain (or more generally an H'-extension domain). Let
u € H'(R) be an extension of a function u € H'(Q) with ||| ;1 gey < Cllull () for some
constant C' depending only on 2 and d. Within the estimate (2.7) we easily get the following

continuous embedding
15



Proposition 2.29. Assume Q C R? is an H'-extension domain then
HY(Q) — H,(Q).

The latter embedding may fail when (2 is not an extension domain (see [Fog23b, Counterex-
ample 3.8] or [NPV12, Example 9.1]). Note that H'(Q) can be viewed as limiting space of
a sequence of nonlocal spaces of type H,(Q2) and V,(Q|R?) see [Fog23b, Fog21, Fog23a] for
additional results.

2.6. Trace space of V,(Q|R?). The main goal of this subsection is to discuss the trace
space for V,(Q] R?) similarly as one does for the classical Sobolev space H'(Q2). Note that
elements of V(2| R?) are defined on the whole of R?, thus the trace space consists of functions
defined on Q¢ This contrasts with the local situation, where the trace space of H'()
consists of functions defined on the boundary 0f2. Unless otherwise stated, we assume that
v is fully supported on R? and V,(Q|R?) is endowed with the norm || - v, re)- Note
that, when studying the fractional Laplace operator, trace spaces related to V(2] R?) when
v(h) = |h|74 " for h # 0 and 0 < a < 2, have already been considered in [DK19], [BGPR20]
and [DTWY21]. Below, we comment on how our general approach relates to these studies.

Definition 2.30. We define T,,(Q2¢) as the vector space of restrictions to R%\Q of functions
of V,(QRY), i.e.,
T,(9° = {v: Q° = R measurable | v = u|ge with u € V,(Q|R%)}.
We endow T,,(£2¢) with its natural norm,
v]| 7,0y = inf{||u||vu(de) c uweV,(QRY)  with v =ulg}.

Theorem 2.31. The space T,(£2°) is a separable Hilbert space with the scalar product

1
(u, )09 = 3 (10 + 0l ey = = vl o ).

Proof. Since the norm || - ||y, ge) verifies the parallelogram law so does || - ||z, (). Thus

(-, -)T () 15 8 scalar product on T}, (€2°) with associated norm || - ||7, (o). Noting that T, (£2°)
and the quotient space V, (Q| R%)/V, (2| R) are identical with equal norm in space and that

V,0(Q| RY) is a closed subspace of V,,(QR?), one concludes that T),(Q°) is complete. O

The main question now is whether the same space T, (£2°) can be defined intrinsically. In
other words, given a measurable function v : Q¢ — R, how can one decide whether the
function belongs to 7,(Q2°) or not. In the local situation, it is possible to define a scalar
product on the space H'/2(9Q) when (2 is a Lipschitz domain, see [Din96] for a proof.

We study this question in two settings, the one of [DK19] and the one of [BGPR20]. For
the special case v(h) = |h|747 for h # 0 with 0 < « < 2, it is proved in [DK19, Theorem 3]
that for v € V,(QR?) it holds

Q/Q/ 0 Ev(x> — o) dady < 00 (2.8)

Y| + 0y + 0,)dte
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Moreover, it is shown that, if (2.8) holds true for v = g on Q°, there exists u, € V, (2| R%)
such that u,|oe = ¢ and

2
ug y))
= 2.
// |£L’— |d+a d dy = // |:)3—y|+5 +5)d+adxdy (29)

QCXQC ¢ QecQe

with the constants independent of g and u,. Therefore we obtain in this case

T,(Q°) = {v : ° — R meas. | //(|55 EU(T) — v(y))2 dedy < oo} : (2.10)

y| + 0y + 0,
QcQe

which we will make use of in Proposition 2.32.

Next, let us summarize the results of [BGPR20], which are established under the following
condition: One assumes that v is radial and its profile v € C?((0,00)) satisfies for some
Ci1,Cy>0and g € (0,2)
V() + () < C(r)  (r>1),
v(Ar) <CoXu(r)  (0<r A< 1), (A4)
v(r) < Cov(r +1) (r>1).

Assume Q¢ satisfies the volume density condition (in some works, Q¢ is called a d-set), i.e
there exists a constant ¢ > 0 such that [Q¢N B.(x)| > cr? for all z € 9Q and all r > 0.

By the Lebesgue density theorem, the latter condition automatically implies that |02 = 0.
Then under (A4,) [BGPR20, Theorem 2.3] proves that, for any g € T,(€2°) there exists a

unique u, € V,(Q|R?) such that uy|q. = g with
(9, 9) // *olw,y)dr dy = // ug(z) — ug(y ))2V(x—y)dxdy. (2.11)
QeQe (QexQe)e

The function u, satisfies the weak formulation

ﬂ 1y () — 1y (1)) (6(x) — 6(y)) vz —y)dady =0 for all ¢ € Vyo(QRY)  (2.12)

(2exQe)e

and the interaction kernel vq(x,y) is given via the Poisson kernel of Q by the formula
/QPsz —y)dz x,y € Q°.
Furthermore, a precise formula for u, in € is given by the Poisson integral
w(o) = Polol(@) = | gWPalen)dy  w€0.

From this, it is easy to show that

T,(Q°) = {v Q° — R meas. Hq(v,v) // —o(y vg(z,y)dx dy < oo}

QeQe



which is precisely the exterior space introduced in [BGPR20]. With this definition, the
connection between T,,(Q°) and V, (Q|R?) is less visible. For v € T,(Q°), by definition of
| - |7, (@), we have

||v]|?py(gc) = inf{HuH%/V(Q‘Rd) cu € V,(QRY) with v = u|ge}
> inf { /Q lu(x)]?dz : u € V,(QR?) with v = U|Qc} + Ha(v,v).
It is rather challenging to find or to estimate the quantity
int { /Q u@)Pde: ue V(QIRY) with v = ulo }.

Remember that our goal here is to explicitly define a norm which is equivalent to || - ||z, )

and has less visible connection to V,(Q|R%). To this end, we bring into play the norm

|- 113 Vo (@ BY defined in Lemma 2.17.

Proposition 2.32. Assume €2 is open and bounded, such that Q¢ satisfies the volume density
condition. Assume v satisfies (A,). Let v and || - |}, be respectively the measure and

Vi, (Q| R%)
the norm given wn Lemma 2.17. Then
T,(Q°) = {v Q° = R meas. Haq(v,v) // —(y VQ(:E,y)dxdy < oo}
QeQe
and the norms || - ||z, @), || - 17, ¢y and || - HTTV(QC) are all equivalent, where

[vl17, @) = inf{{[ully, @rY) S WE Vo, (QIRY) with v = ulqe}

||v||TD(Qc /|v )25( dx+// —u(y vg(x,y)dzzdy.

QeQe

Next, consider v(h) = (2 — a)|h|=4% for h # 0 with 0 < a < 2 fized and v(h) =
Set 0, = dist(z,092). Then

1
(1H[h])dFe

2
TV(QC)—{U Q° = R meas.| // \x—y|+5 fi)_))d+adxdy<oo}

QeQe

and the aforementioned norms are equivalent to the norm

2
(= // —v(y))
19117, e —/QC 0+ 2] d+ad T+ |x—y\+5 +5)d+adatdy

Remark 2.33. In the case v,(h) = (2 — a)|h|7@7® for h # 0 with given a € (0,2), it is
interesting to understand the limiting behaviour of the comparability estimate for ||v||5, @)

and [[v[|7, o) as @ — 27. Recent upcoming results of Th. Hensiek and F. Grube show
that one can modify the norm ||UH;,~V(QC) so that [|v]|, (qe) Would converge to [[v]| g1/2(a0) as
o — 27,
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Proof. The equivalence between || - [, () and || - |3, o) is an immediate consequence of
Lemma 2.17. By (2.11) it follows that,

||v||TV Qe inf{||u||’{/3(de) s u € V,(QRY) with v =u

e}

> inf { /Rd lu(2)|*v(z)dx : u € V,(QRY) Q} + Ha(v,v)

> [ Jol@)PF(e)dz + Ha(v.v).

Qc
which establishes ||v||TTD(QC) < |lvll7, - Hence the identity I : (T,(Q°), | - |7, ) —
(T,(929), | - ||T (0¢)) 1s continuous. The space (1,(Q2°), || - |7, o)) 1s a Hilbert space since
| - |7, ey and H ||T2V(Qc) are equivalent. Also, using the Fatou lemma one can easily show

that (T, (92°), || - H;V(QC)) is a Hilbert space. As consequence of the open mapping theorem

the norms | - ||TTV(QC) and | - [|7, -y are equivalent.
Next, let us consider v(h) = (2 — a)|h|7@* for h # 0 with 0 < a < 2 fixed. From [DK19,
Theorem 3], see (2.9) and (2.10), we conclude that there exists a constant C' > 0 such that
for all v € T,,(2°), [[v[|7, ey < C’||v||/TD(QC). The equivalence between || - [|7, ) and || - ||/TV(QC)
follows once again by the open mapping theorem.

Remark 2.34. We emphasize that the nonlocal trace does not need any special construction
via functional analysis or density arguments. Since )¢ is a d-dimensional manifold, it makes
sense to consider the restriction of a measurable function on Q°. No regularity of € resp. OS2
is required. In the classical local situation, the definition of a trace of a Sobolev function u
on the boundary 02 requires some smoothness of both, v and 0.

Let us collect some basics results results concerning the trace space T, (€2°). With the aid of
Lemma 2.17 we get the following.

Proposition 2.35. The trace map Tr : V,(Q|R?) — L*(Q°, D) with u + Tr(u) = u |ge has

the following properties: (a) Tr(V,(QR?) = T,(92°), (b) ker(Tr) = V, o(QR?) and (¢) Tr is
linear and continuous. Moreover, T,(Q2°) is dense in L*(2°, D).

Proof. This is indeed, is a direct consequence of Lemma 2.17 since v € L*(R% D) for all
u € V,(QR?) so that Tr(u) € L*(Q°,7) in particular Tr is well defined. Moreover, by
Lemma 2.17 there exists a constant C' > 0 such that,

| Tr(u) || L2 (e, < ||u||L2(Rd7D) < C||u||VV(Q|Rd) for all w € V,(QRY). (2.13)

The zero extension to Q of elements C°(Q°) are in V,(Q|R?). Thus C>*(Q°) is contained in
T,(2¢) which implies that 7},(Q°) is dense in L?(Q°, 7) since C°(Q°) is dense in L*(Q°,7) O

Remark 2.36. One may view the objects L?(Q°,7), T,,(Q°), V,(QR?) and V,,5(Q| R?) re-
spectively as the nonlocal counterpart of L2(9Q), HY/2(99Q), H(2) and H}(Q). Indeed, (i)

the classical trace operator v : H*(Q2) — L?*(99Q) whenever it exists is linear continuous, (77)
Yo(HY(Q)) = HY2(09) and (ii4) ker(ryo) = Ha(S2).

Proposition 2.37. Let C>®(Q¢) = C=(R%)|qe be set of restrictions on Q° of C functions

on R* with compact support. If Q is bounded and Lipschitz then C>°(Q°) is dense in T, (2°).
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Proof. For v € T, () we write v = u|ge with u € V,(Q|R%). From [FKV20] we know that
there exists u, € C2°(R?) such that, ||u, — ully, @rey = 0- Put, v, = uplge by (2.13) we get

v — vll100) < llun — ully, (g rey = 0
O

Remark 2.38. Let us comment on certain function spaces that are introduced in [Von21]
in order to study some reflected jump Markov processes. Instead of the natural energy space
V,(QR?) from [FKV15 the author considers V, (2| R?) N L2(R?,m) with m(z) = 1o(z) +
pu(z)lge(x) and p(x fQ v(z —y)dy for z € Q°. It is proved in [Von2l, Lemma 2.2 (iii)]
that L*(Q°, p) is the trace space of V,(Q| R%) N L2(R%, m). Note that V,(Q|R?) N L*(R%, m)
and its trace space L?(Q, 1) are much smaller than V,,(Q|R?) resp. T,(Q°), which leads to

the following issues.

e When Q is bounded, constant functions belong to V,,(Q|R%) and do not belong to
V,(QRY) N L2(R% m) in general. Thus in term of trace, z — Lge(z) belongs to
T, (9°) but not necessarily to L*(Q¢, ). Several natural Dirichlet problems, e.g. for
the fractional Laplace operator, cannot be formulated with the help of L?(Q¢, u).

e See Theorem 2.26 for a regular Dirichlet form leading to the existence of reflected
jump processes.

e Given a function v € L?(Q¢, ), its extension by zero vy = vlqe belongs to V, (2] R*)N
L*(R?,m) because of

// vo(x) — vo(y))* v(z—y)dz dy = 2 5 v(z)2p(z)dz

(e xQe)e
Moreover, the space L?*(¢, u1) is continuously embedded in T,,(€2¢), indeed,
[vll700) < lvollv, @ity < V2010l 200 )

The fact that the extension by zero belongs to the energy space for any given function
in the trace space, is rather particular.

Since V,(QRY) N L2(RY m) resp. its trace space L?(Q°, i) are small compared to the spaces
V,(Q RY) resp. T,(Q°), the range of possible nonlocal Dirichlet and Neumann problems is
rather small.

3. COMPACT EMBEDDINGS AND POINCARE INEQUALITY

In this section we prove compact embeddings of the spaces H,(Q), V, (2| R?%) and V, (2| R?)
into L2(2). Our result on global compactness, Theorem 3.10, requires some regularity as-
sumptions on 2 and v, which we introduce and discuss in Section 3.1. In Section 3.2 we
establish global compactness using ideas from [JW19] and [DMT18]. Note that [CD18, The-
orem 2.2| is a related result. However, the proof therein seems to be valid only for domains
that can be decomposed as a finite union of cubes. We circumvent this issue by an approxi-

mation argument near the boundary of €.
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3.1. Assumptions on the Lévy measure. The definitions and most of the results of
Section 2.2 do not require assumptions on the Lévy measure v beyond the classical Lévy
condition (L). In this subsection we collect further conditions on v required for the com-
pactness results in Section 3.2. Recall the concept of unimodality from Definition 2.4. We
will prove a Poincaré-inequality in Theorem 3.12 for unimodal Lévy measures with full sup-
port.

Definition 3.1. Assume Q C R? is open and bounded, and v : R*\{0} — [0, c0) satisfies
(L). We say that (v,€) is in the class 7 if
(#%) v is unimodal and has full support.

Note that, in the class .o, v is not necessarily singular near 0. In order to establish com-
pactness results in Section 3.2 we will discuss different assumptions. Note that (L) and
unimodality do not imply any lower bound on v, even v = 0 would be allowed. Furthermore,
if v € L'(R?), then the spaces V,(Q|R?) N L*(R?Y) and H,(R?) coincide with L?(R?), which
is not locally compactly embedded into L?(2). For the remainder of this section, we assume
that v satisfies (L) and

/R v(h)dh = oo, (M

Under (L), condition (I) obviously follows if |h|%v(h) — oo as |h| — 0. As explained in
Corollary 3.7, (L) and (I) imply local compactness of H,(Q) and V,(Q|R?%) in L*(Q). Let us
introduce conditions on €2 and v under which we are able to establish global compactness
results.

Definition 3.2. Assume Q C R? is open and bounded, and v : R*\{0} — [0,00) satisfies
(L) and (I). We say that (v,€2) is in the class <7 (i = 1,2,3), if

(o) ... there exists an H,(Q)-extension operator E : H,(Q) — H,(R?), ie., there is

C(v,,d) > 0 such that for every u € H,(Q), [[ull,ze) < Cllullm, ) and Eulg = u.

(o) ... 00 is Lipschitz-continuous, v is radial and ¢(d) 229 5o where

4(0) ::% / Ih[2u(R)dh. (3.1)

B;(0)

(o3) ... the following condition holds true: g(¢) 229 5o where

q(d) :== inf /Q v(h —a)dh (3.2)

acof)
with Q5 = {x € Q : dist(z,0Q) > J}.

Note that monotonicity of v is not necessarily required by any of the conditions above. The
class o/ is well studied in the literature for the case of the fractional Laplace operator. For
example, it is shown in [Zho15] that  is an extension domain for H*/2(Q), a € (0,2), if
and only if Q is a d-set and thus, (| - |797%,Q) is an element of ..

The class o7 is easy to understand because the conditions on €2 and v do not interact. If
is a bounded Lipschitz domain and v satisfies (L) and
lim |h|%v(h) = oo, (I
|h|—0
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then (v, Q) is in the class @%. Indeed, for R > 0 sufficiently large there is dy > 0 such that
|h|4v(h) > 2R whenever |h| < &. Thus ¢(6) > [S¥ YR if 0 < § < dp. This shows that (3.1)
is verified.

The class 73 and condition (3.2) are more involved due to a certain correlation between (2
and the singularity of v near the origin. Let us first provide an example of v and (2 such
that % fails. In the Euclidean plane consider v(h) = |h|™2 %1y (h) with V = {(z1,22) €
R? : |z1] < |22|} and Q = {(z1,22) € R? : 4|z — 6] < 21, 0 < 71 < 4} whose boundary
is continuous. Considering a = (0,6) € 952 one has V N (Qs — a) = 0 for every 6 > 0, see
Figure 1. Therefore q(¢) < an v(h —a)dh = 0 and the condition (3.2) fails.

FIGURE 1. Example of (v,Q) ¢ 73

Next, let us provide a positive result. Note that for every domain €2 and every 6 > 0 we

know ¢(d) < oo because, for each a € 9Q and each 6 > 0, Qs C B§(a), which implies by (L)

q(0) < fBC(O) v(h)dh < co. We will show that 9Q € C! is sufficient. Recall that Q is of
S

class C1t if for every a € 92 there is r > 0 for which B,(a) N 9Q = {z = (2, z4) € B,(a) :
xq = v(2')} represents the graph of a C%! function v : R4~ — R. That is to say ~ is a !
function whose gradient is Lipschitz. The main result in [Bar09] shows that an open set
is OB if and only if Q satisfies the interior and exterior sphere condition. We say that
satisfies the interior and exterior sphere condition at some scale r > 0 if for every a € 02 one
can find o/ € Q and a” € Q° for which B,(d') C Q, B.(a") C Q and B,(a’) N B,(a") = {a}.
Note that, the interior and exterior sphere condition holds for every scale r € (0,7y) once
it holds for 7. This characterization entails that a C1! set  is a d-set (or volume density
condition according to some authors): that is, there exist two positive constants ¢ > 0 and
ro > 0 such that for every r € (0,7¢) and every a € 0f)

QN B,.(a)| > er®.

Proposition 3.3. Assume v satisfies (L) and (I'). Assume that Q) satisfies the following

strong volume density condition: there exist positive constants 7 > 1, 09 > 0 and ¢ > 0 such
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that for all § € (0,6y) and a € OS2

|5 N Bys(a)] > co®.
Then (v,2) € .
Remark 3.4.

(i) Any bounded C*'-domain Q C R? satisfies the aforementioned strong volume density
condition. Fix a € 0%, by the interior sphere condition, consider § € (0,dy/4) for
some 0g sufficiently small. Let z € 2 depending on a and ¢ such that Bys(z) C €,
dist(z,09) = |x — a| = 20 and Bays(z) N0 = {a} then obviously, Bs(x) C Qs N
Bos(x) C Qs N Bys(a). This yields

|Q§ N B45(a)| 2 Cd(sd, with Cq = |Bl(0)| (33)

(ii) It is interesting to know whether for small 6 > 0, €5 inherits the regularity of Q. As
proven in [GTO1, Section 6.14] if 2 is of class C* with k > 2 then so is ;.

Proof. Let R > 0 and consider 7 > 1, §p > 0 as above such that if 0 < § < Jp then
|h|4v(h) > R for |h| < §. Fix a € 99, since |Qs N Bys(a)| > cd? for all 0 < § < &. Therefore,
recalling that v(h — a) > R|h — a|™* > —i% when h € B;;(a) we have

R R c
_ > = ——|QsNB > —R.
/Qs V(h a)dh — 7ol QsﬂB-ra(Elg 7d5d| 61 75(&)| - TdR
Finally,
~ c
q(6) > ﬁR
which means that (3.2) is verified since R can be arbitrarily large. O

3.2. Local and global compactness results. Before citing a result on local compactness,
we recall a well-known result about convolutions.

Lemma 3.5 (Corollary 4.28 of [Brell]). Let w € L'(R%). Then the convolution operator
T, : L*(RY) = L*(RY), T,u=wxu

is continuous with | Tyll p(z2 ey 2meyy < |wlligay- Moreover, T,, : L*(R?) — L*(K) is
compact for any compact subset K C R%.

We present the local compactness result [JW19] that we are going to use in the sequel.

Theorem 3.6. Let v : R*\{0} — [0,00) be a measurable symmetric function such that (1)
holds and

/ v(h)dh < oo for every 6 > 0. (3.4)
R%\B;(0)

Then the embedding H,(R?) — L*(R%) is locally compact. As a consequence, for Q C R?

open and bounded, the embedding V,o(Q R?) < L*(Q) is compact.
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It is worth mentioning that an earlier analogous result is provided in [PZ17, Proposition 6]
and [BJ17, Proposition 1] for periodic functions on the torus. This technique, which consist
of killing the singularity, is also used in [BJ13, Lemma 3.1]. The assertion of Theorem 3.6
is proved in [JW19, Theorem 1.1] under the additional assumption that v satisfies (L). An
analogous result is also proved in [CD18, Theorem 2.1] under restrictive assumptions on the
kernel, using the Pego criterion for compact compactness in L2(]Rd). Looking at the proof
carefully one sees that conditions (I) and (3.4) is sufficient. This would allow to consider
densities v with a very strong singularity at the origin, e.g., v(h) = |h|7?"" for h # 0 with
any 3 > 0.

As a straightforward consequence of Theorem 3.6 we have the following local compactness
of H,() in L*(Q).

Corollary 3.7. Let Q C R? be open but not necessarily bounded. Assume v : R? \{0} - R
fulfills conditions (L) and (I). The embedding H,(Q) — L*(Q) is locally compact. Fur-

thermore, for every bounded sequence (uy), there exists u € H,(S) and subsequence (uy;);

converging to u in L3 ().

Proof. There is no loss of generality if we assume that a function u € H,(Q2) is extended
by zero outside of Q. For ¢ € C®(R%), with supp ¢ C €, the map J, : H,(Q) — H,(RY),
with J,u = ugp is continuous and is thus locally compact by Theorem 3.6. Therefore the
embedding H,(Q) — L*(Q) is locally compact. Indeed, for v € H, () we have

[u(@)e(x) = uy)ey)]” = [u()(p(z) - e®)) + ey) (ulz) - uy))]’
< 2]l ey (@) P A J2 = y[?) + Loupp o () (w(z) — u(y))?].
As supp ¢ C 2 is compact, consider 0 < r < dist(supp p, 9€2). Then integrating both sides

of the above estimate over Q x R? with respect to the measure v(z—y)dydz, yields the
continuity of J,, as follows

JJ 1ot~ utrotu) vt )y

RERY

< 2l [ oo [ (OA ()L
ulz) —u 20(x—1)dydx u(z)Pdz v(h)dh
+Q/Q/<<> (1)) y>y+/ﬂ|<>| /T(O)m

< CSDHuH%{V(Q) .

Next, we prove the second statement. Consider Q5 = {z € Q : |z| < }, dist(z,0Q) > 0} =
Qs N B%(O) and define ps(x) = 154 * ]lgg/z(x) for § > 0 small enough, where ns(z) = 57n7(%)

with n € C2(R?) is supported in the unit ball B;(0), n > 0 and [4 ¢(z)dz = 1. So that
ws € CX(Q), s = 1 on O, 0 < s <1 and |Vys| < c¢/d. Given a sequence (uy,), that
is bounded in H,(2), the previous observation entails that for each § > 0, for the sequence
(Unps)n there exists a subsequence n; = n;(5), j > 1, and w’ € L?() such that the

sequence (U )n, (as Unps = U, in ) converges to some u® in L2(£2) and almost everywhere
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in Q. Employing the standard the Cantor’s diagonalization procedure with § = 2%, one can
construct a subsequence (uy,,); converging subsequence in L7, (£2) and almost everywhere in
Q to some function u. Fatou’s lemma implies that u € H,(£2) since

|l 2,0y < liminf |luy, ||, @) < oo.
j—o0
]

Let us turn to the result on global compactness. We will need some estimates near the
boundary 0f2. We begin with the following estimate involving cut-off functions.

Lemma 3.8. Let Q C R? be open and bounded. Assume v : R\{0} — [0,00) is even and
measurable. Let 0 < 6 < +diam(2). Let ¢ € C°(Q) be such that > ¢ =0 on Qs, ¢ =1 on
Q\Qs/2, 0 < p <1 and |Vo| < c/d. Foreveryu € H,(Q2), the following estimate holds true

[ (@) ~ ) vta oty < 5 [ u(w)Pde -5 // 2y y)dady

Qs /2
(3.5)
where, C'=8c* [ |h[*v(h)dh and R = diam(Q).

Proof. Firstly, since ¢ =1 on '\ Q52 we have

//([w](éf) — lugl(y))*v(z—y)dady = //(u(g;) —u(y))*v(z—y)dzdy

N\Qs5/2 N\Qs/2 N\Qs5/0 N\Qs/2

< [ twta) = utw)r(o-y)ndy.

In view of the fact that 0 < ¢ <1 and |p(x) — p(y)| < ¢/d|x —y| for every x,y € Q, we have

([ue) (@) = [up) (1)) = (p(y) (w(@) — u(y)) + u(@) () — $(y)))’

< 2(u(@) — ul(y))* + %IU@)IQII—?JIQ- (3.6)

Secondly, noticing that Q C Bg(z) for all x € Q where R = diam({2) and integrating both
sides of (3.6) over €52 X €2s5/2 we obtain the following estimate

// [up)(2) — [up)(y))*v(z—y)dady

Qs /2052
<2 [fwte) ~ utw)rie—pasty + 55 [ e / o= yPula—y)dy
00 95/2 ()
22
:2//(u(m)—u( v(x—y)dxdy + 52( / \h|?v(h /|u )|2dz .
QQ Br(0) Q52

2Take ¢ = 1 — 5 with @5 = s /4 * 119/5/2 as in the proof of Corollary 3.7.
25



Likewise to the previous estimate, using (3.6) we get

[ (@) - sl wste—pasay

Q572X NQs 2

§2//(u(m)—u(y) v(x— y)dxdy+ /W dh /\u )|*da .

Br(0) Qs /2

Altogether, the desired estimate follows as claimed since by symmetry we can use the split

S A |

QXN 96/2X96/2 Q(S/QXQ\Q(S/Q Q\Q(S/QXQ\Q(;/Z

The next lemma plays a crucial role in the sequel.

Lemma 3.9. Assume that Q C R? is open and bounded, and v : R\{0} — [0, 00) is radial.
There exists C' > 0 such that for every u € L*(2) and every positive § < %diam(Q)

2 C 2 8 2
/Q uw)fds < gz / UGS // (u(e) — uly)Pv(a—y)dady,  (37)

with q as is (3.2). Moreover, if Q has a Lipschitz boundary, then

2 C 2 8 — U 2V xr— x
[ < s [ ke s oy // () — uly) Pola—y)dady, (39

with q as in (3.1).

Proof. Let ¢ be asin Lemma 3.8 and fix a € 9€2. A routine check reveals that Qy5—a C Qs—x
for every x € Q2N Bs(a) which yields,

/QﬂB(;(a) ol (z)d /96 vz—y)dy = /QOB(S(Q)[SOUF(@C{SC /Qé_x v(h)dh
& /QQBJ(G) lpul’(z)da /Q Zé_av(h)dh > (20) /Q . [ou)*(z)da.

By a compactness argument there exist a',a?,---a" € 9Q such that 9Q C |J Bsja(a’). So
i=1

that, Q\ Qs2 € J QN Bs(a’) € 2\ Qs. pu = 0 on Qg trivially implies pu = 0 on Q.
i=1
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Therefore with the aid of the above estimate we obtain the following estimate

[ (@) - ) ey 22 [t @a- sy

O\Qs Qs

> [ e | a=y)dy > 27(2) | e

_Gl QNBs(a?) _[_]1 QN Bs(a?)

i=

> 2(26) / lpul?(x)de = 23(26) / ju()P(x)dz
A\ /2 MN\Qs/2

This combined with (3.5) gives (3.7). Next, let us assume that  is a Lipschitz domain.
Following the same procedure as in [Pon04, Eq. (22) and Eq. (23)] one arrives at

26 [[ (loul(@) - [pul)vla—g)dody = ([ Poian) [ o (@pe
00 Bas (0) O\ 2

that is,

J] (i) = @) vta—y)dody = 2026) [ ouPla)d,
Q0 O\Qs/2

which combined with (3.5) implies (3.8). O

Here is our global compactness result.

Theorem 3.10. Let Q be an open bounded subset of R* and v : R\{0} — [0,00] be
a measurable function. If the couple (v,)) belongs to the class <, 1 = 1,2,3 then the
embedding H,(Q) — L*(Q) is compact. In particular, the embedding V,(Q|R?) — L2*(Q) is
compact.

Proof. Given the continuous embedding V,(Q|R?) — H,(Q), it will be sufficient only to
prove that the embedding H,(2) < L?*(2) is compact. For (v,) belonging to the class
o/, the result is a direct consequence of Theorem 3.6. Now assume (v,€2) belongs to the
class o/ (resp. 3) then for € > 0 there is § > 0 small enough such that 8¢~'(2§) < ¢
(resp. 8¢ 1(20) < &) If (uy), is a bounded sequence of H,({2) then Corollary 3.7 infers the
existence of a subsequence (u,,); of (u,), converging to some u € H,(Q) in L*(Qy)2) i.e
ltn; — ullL2(o;,,) — 0 as j — oo. In any case, in view of Lemma 3.9, passing to the limsup
in (3.7) or in (3.8) applied to u,, —u we get

limsup/ |ty (2) — u(z)[*de < Me
j=oo Ja
where

M = 2|ully, oy + 25up [unllF, @) < oo

Finally, limsup [[u,; — ul[z2@) = 0 since ¢ > 0 is arbitrarily chosen, which achieves the
Jj—o0
proof. O
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Remark 3.11. A noteworthy consequence of what we have obtained so far is that, for an
appropriate choice of v, the well-known Rellich-Kondrachev compact embeddings H3 () <
L3(Q2) and HY(2) — L?(Q) when Q is Lipschitz, respectively derive from Theorem 3.6
combined with the continuous embedding H}(Q) < V,o(QR?) and from Theorem 3.10
combined with the continuous embedding H'(Q2) < H,(2) when € is Lipschitz.

The efforts made to establish Theorem 3.10 will be rewarded for the elaboration of the
Poincaré type inequality which will be useful in the forthcoming section.

Theorem 3.12 (Poincaré inequality). Let Q be an open bounded subset of R and v :
R4\{0} — [0, c0] be a measurable function with full support. Assume the couple (v, Q) belongs
to one of the class <f;, i = 0,1,2,3. Then there is exists a positive constant C' = C(d,Q,v)
depending only on d, Q0 and v such that

o = foyull ooy < € // (u(@) — uly)*v(z—y)dady for all we LXQ),  (3.9)

and hence

ul[poq) < CE(w,u)  forall ue V,(QRY). (3.10)
Q7L

Proof. Assume such constant does not exist then we can find a sequence (u,), elements of
H,(Q) such that for every n, f,u, =0, ||uy][12@0) = 1 and

J] ) = ) Prta—ypaady < o

The sequence (u, ), is thus bounded in H,(£2) which by Theorem 3.10 is compactly embedded
in L?(Q) whenever (v,) is in the class &7, i = 1,2,3. Therefore, if it is the case, passing
through a subsequence, (u,), converges in L*() to some function u. Clearly it follows that
fou=0and ||ul|f2q) = 1. Moreover, by Fatou’s Lemma we have

[ @)~ wtwuta—yazdy < vmint [f @) ~ w)rie-p)azay = o

which implies that u equals the constant function z — fQu = 0 almost everywhere on (2.
This goes against the fact that ||u||;2) = 1 hereby showing that our initial assumption was
wrong.

Next assume (v, 2) belongs to the class o7 then, as v has full a support, is unimodal and
is bounded, there is a constant ¢ > 0 such that v(x—y) > ¢ for all x,y € Q. Using this and
Jensen’s inequality we obtain the desired inequality as follows:

//(u(z) —u(y))’v(z—y)dedy > c|Q| /][ y))dzdy

> c|Qlu— foull7z-

The proof is complete because (3.10) is a consequence of (3.9). O
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The above Poincaré inequality (3.9)-(3.10) can be seen as the nonlocal counterpart of the
classical Poincaré inequality which states that, for a connected bounded Lipschitz domain
Q, there is C' > 0 for which

Hu - fQuHL2(Q) < C||Vul 20y , for all u € L*(Q)

where by convention we assume [|Vu|| 2@ = oo if [Vu| is not in L?(£2). Alongside to this
we also recall the classical Poincaré-Friedrichs inequality: there is C' > 0 such that

||u||L2(Q) < CHVUHLZ(Q) for all u e H&(Q) .

In the same spirit, as we will see below the corresponding nonlocal Poincaré-Friedrichs in-
equality V,,0(Q| R?) (which we recall is the closure of the C(Q) in V,,(Q|R%)) is much more
easier to obtain and no compactness argument is required. This provides an easier alternative
proof to the Poincaré-Friedrichs inequality from [FKV15, Lemma 2.7]. Furthermore, under
the condition that the embedding is V, (2| R?) < L?(Q) is compact, a similar inequality is
proved in [JW19] wherein the authors only assume §2 to be bounded in one direction.

Theorem 3.13 (Poincaré-Friedrichs inequality). Let @ C R% be open and bounded. Let
v:RUN\{0} = [0,00) be a symmetric function such that one of the two conditions holds true:

(i) Viga\ g, is nontrivial and integrable for R = diam(2)
(ii) v € L"(RY) and |{v > 0}| > 0.
Then for some constant C' = C(d,Q,v) >0

||u||2L2(Q) < C&E(u,u) for all u € V,o(QRY). (3.11)

Proof. Set R = diam(Q). Then for all 2 € Q we have Bg(z) C Q°. For u € V,o(Q|R?%) we
recall that u = 0 a.e on Q¢. Thus,

elww) = [f o)~ utn)rie—psdy+ [ fu)Pds [ ey

(&

Q0
>2 [ Ju@)Pds [ vlo—y)dy = 2vnllsgeslul o

Take C= (2|vgllf1(gey) " With vg = vlga\ g, ) This settles the first case. The second case
is treated in [FKV15, Lemma 2.7]. O

Remark 3.14. Note that a Poincaré-Friedrichs inequality of the form

lullZ20) < C//(U(x) —u(y))vz—y)dedy  (u€ CF(Q)). (3.12)

does not hold in general, independently of whether the embedding H,(Q) < L*() is com-
pact or not. For example, consider v(h) = |h|7% with 0 < a < 1. Then, C>°(2) is dense
in H%/2(Q) but H*/?(2) contains all constant functions. Thus (3.12) fails. Note that, in the
case v(h) = |h|7¥% a € (0,2), a necessary and sufficient condition on 2 for (3.12) to hold
is provided in [DK22].
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4. EXISTENCE OF WEAK SOLUTIONS AND SPECTRAL DECOMPOSITION

This section is devoted to the following results: well-posedness of the Neumann problem in
Theorem 4.11, the spectral decomposition of the corresponding operator in Theorem 4.15,
the Robin problem in Theorem 4.16, and the definition of the nonlocal Dirichlet-to-Neumann
map in Theorem 4.20 together with its spectral decomposition in Theorem 4.23. We refer
the reader to Section 1 for comments about related expositions in the literature.

Throughout this section, Q@ C R? is assumed to be open. We recall that the function
v : RY\{0} — [0,00] is assumed to be symmetric and to satisfy the Lévy integrability
condition (L). Let k : R? x R\ diag — [0, 00) be symmetric and measurable such that for
some A > 1

Aw(y —2) <k(z,y) <Av(y —2) (z,y €RY). (E)

We will formulate well-posedness results for equations Lu = f in 2, where

Lu(x) = p.v. /Rd (u(y) — u(z))k(z,y)dy . (4.1)

Note that the expression Lu(z) does not exist in general if u is smooth. One would require ad-
ditional assumptions on k. Note that L can be understood as an integro-differential operator.
The aforementioned phenomenon is similar to the fact that expressions like div (A(z)Vu(z))
do not exist in general for smooth functions u without further assumptions on the matrix
A(z). Given functions u,v € V,(QR?), we define a bilinear form & by

5[] () = uw) (o) = o)) Koz dy. (42)
(QcXQc c
Note that under the condition (E) the expression &(u,v) is well defined for u,v € V,,(QR%).

Definition 4.1. We define a nonlocal operator Macting on functions v : R — R by
Nol) = [ (o) = vlaDka s (e ) (4.9

Note that (4.3) requires some integrability condition of v. If v is a unimodal Lévy mea-
sure, then Nv(y) is well defined for v € L'(R? D), see the beginning of the proof of
Proposition A.2. Furthermore, the definition of Nv(y), y € ¢, does not require any princi-
pal value integral, because there is a positive distance between y and .

Remark 4.2. (i) We work under the assumption (E) in order to establish well-posedness
for complement value problem. One could replace this assumption by the assumption

A // (u(x) — u(y))’ vie—y)dedy < E(u,u) < A // u())’ via—y)dedy

(QexQe)e (QexQe)e
(E)

for all functions u € L7, (R?). This assumption allows for many more general cases of k, see
the discussions in [DK20,CS20]. (ii)Throughout this section we will work with the weight

v. Analogous results hold true when choosing 7 or v* from Definition 2.15.
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4.1. Neumann boundary condition. In light of the Gauss-Green formula (A.5) it is rea-
sonable to define weak solutions of the Neumann problem under consideration as follows.
Assume Q C R? is an open set. Let f: Q — R and g : R?\Q — R be two measurable
functions. The Neumann problem for the operator L associated to the data f and g is to
find a measurable function u : R? — R such that

Lu=f in Q and Nu=g on R\Q. (N)

Definition 4.3. Let f € V,(Q|R?) and g € T,(Q°)". We say that u € V,(Q|R?) is a weak
solution or a variational solution of the inhomogeneous Neumann problem (V) if

E(u,v) = (f,v) + (g,v) forall veV,(QRY, (V")

where we use the natural embedding V,(Q|R?%) < T,(Q¢). Note that the existence of a
solution u € V,(Q R?) implies the compatibility condition (f,1) + (g,1) = 0.

If, in particular, f € L*(Q) and g € L*(Q°, 7 "), then u € V,(Q|R?) is a weak solution of
(N) if

E(u,v) = /Qf(x)v(x)dij/ g(y)v(y)dy, forall v e V,(QRY). (V)

c

In this case, the compatibility condition reads
| s@is+ [ atway=o. (©)

Remark 4.4. The compatibility condition (C') is an implicit necessary requirement. Recall
that the local counterpart of this compatibility condition associated with (1.1), where g is
defined on 0f2, is given by

/Q f(z)da + /a 9()do(y) =0, (4.4)

Remark 4.5. (i) Note that [DROV17, Def. 3.6] looks very similar to (V') at first glance.
However, the norm of the test space defined in [DROV17, Eq. (3.1)] depends on the Neumann
data g, which is not natural. Our test space V,,(QR?) in the weak formulation (') does not
depend on the Neumann data g. Moreover for the existence of weak solutions to (IV), it is
sufficient to choose f € L?(2) and g € L?(Q2¢,071), see Theorem 4.12. (ii) For non-singular
kernels, Definition 4.3 coincides with the definition in [DTZ22, Section 3.2].

The next result shows that both problems (/V) and (1) are related under additional regularity
assumption.

Proposition 4.6. Let Q be an open bounded subset of R® with Lipschitz boundary. Assume
k(z,y) = v(y —x), ice., N=1. Letu € C}(RY), f € L*(Q) and g € L*(Q, 7). Then u
satisfies (N) if and only if f and g are compatible in the sense of (C') and u satisfies (V).

Proof. If u solves (N) i.e. Lu = fin Q and Nu = g on Q°, then by the Gauss-Green formula
(A.5) we obtain the following

E(u,v) :/Qf(:z)v(:z)dxjt/ gly)v(y)dy, for all v € CLRY). (4.5)

C
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As shown in (4.9)-(4.10) below, all terms involved in (4.5) are linear and continuous on
V,(Q R?) with respect to the variable v. Moreover smooth functions of compact support are
dense in V,(Q| R?) hence the relation in (4.5) remains true for functions v in V,,(Q R?) that

is (V) is satisfied. In particular taking v = 1 one gets the condition (C').
Conversely, assume u solves (V') then inserting the Gauss-Green formula (A.5) with v €

CHRY) C V,(QR?) in (4.5) yields
/ z)dx — / f(z)v(x)dx = / g)v(y)dy — [ Nu(y)v(y)dy, for all ve CHRY).
c Qc
Specializing this relation for v € C(Q) and v € C®(R?\Q) respectively we end up with

/Lu x)dx — / f(zx for all v e C(9),
/C gy)v(y)dy — [ Nu(y)v(y)dy =0 for all v € C®(R*\Q).

QC
Recall that, by Proposition A.1, Lu is well defined and bounded. Hence, Lu belongs to
L*(Q). Similarly N'u is well defined and bounded, i.e., it belongs to L>(2¢). Thus, up to
null sets, we conclude from the above equations Lu = f in Q and Nu = g on R? \ €2, which
proves (V). O

Both integrodifferential operators L and N annihilate additive constants. Whence as long
as u is a solution to the system (V) or to the variational problem (V') so is the function
u = u+c for any ¢ € R. Accordingly, both problems are ill-posed in the sense of Hadamard.
The situation is likewise in the local setting with the operators L and N respectively replaced
by the operators —A and %. In order to overcome this issue, it is common to introduce an

appropriate function space V,(Q| R?)* as follows:

V,(QRY): = {u € V,(QIRY) : /Qu(a:)dx - o}.

Assuming that € is bounded, the space V,(Q|R%)" endowed with the scalar product of
V,(QR?) is Hilbert space as well. Instead of (V) we need to consider the following weak
formulations:

&(u, )+ (g,v) for all v € V,(QR)™", (V')
(u,v) / f(x)v(x)dz —|—/ gly)v(y)dy for all v € V,(QRH*. (vh)

In contrast to (1), the variational problem (V1) possesses at most one solution since &(-, -)
defines a scalar product on V,(Q|R?)*. Analogous observations can be made in the local
setting by introducing the space H*(Q)* = {u € H*(Q) : [, u(x)dz = 0}.

By standard procedure, a solution of the variational problem (V) is characterized as a critical
point (a minimizer) of the functional

j(v)zlg(v,v)— / Fode — /Q guds (4.6)

// )V(x—y)dxdy—/ﬂfvdx—/gcgvdx.

(QCXQC )e
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Proposition 4.7. Let Q C R? be an open set. Then a function u € V,(Q|RY)* is a solution
to (VL) if and only if u is a solution of the minimization problem

Jw)= min J(v). (M)
VeV, (2 RY) L
Moreover, if f: Q2 — R and g : Q° — R are compatible in the sense of (C), u € V,(QRY)*
solves (V1) if and only if for any ¢ € R, u + ¢ solves the variational problem (V) and the
latter problem is equivalent to the minimization problem

J(u)= min J(v). (M)
vEV, (Q|RY)
Proof. Let u € V,(QR%)* so that (V) holds true for all v € V,(QR%)¥. Employing
Cauchy-Schwartz inequality yields

E(u,v) < %E(U,m + %5@,@) S u) — 2E(u,u) + %5(0,@.

2

In virtue of (V) we get J(u) < J(v) and thus u solves (M™1).
Conversely assume that u satisfies (M+) which means that J(u) < J(v) for all v €
V,(Q RHL. For fixed v € V,(Q R?)* the mapping J(u + -v) : R — R,

t—= J(u+tv) =J(u )+t{ u,v) /f dx—/cg(y)v(y)dy}jtgg(v,v)

is a polynomial of second order. For all t € R, u + tv € V,,(Q|R?) and since « minimizes J
we get that J(u) < J(u+ tv) for all t € R. Thus J(u+ -v) : R — R has a critical point at
t = 0 which implies that

0 = lim Jluttv) = I(u) = lim [ u,v) / f(x)v(z)dr — / 9(y)v(y)dy + %5(07 U)]

t—0 t t—0

equivalently

&(u,v) /f dx+/cg(y)v(y)dy-

This shows the equivalence between variational problem (/) and the minimization problem
(M+). Meanwhile, if the compatibility condition (C') holds, then it is easy to observe that
the relation in (V*) remains unchanged under additive constant and J (v + ¢) = J(v) for
all v € V,(QR?) and all ¢ € R. Accordingly, if u € V,(Q] R%)* solves (V) then we have
J(u+c)= Vrrgzrlle) J (v) which, by similar arguments as above, is equivalent to (/). O
veVy

From Proposition 4.6 and Proposition 4.7 we deduce that, analogous to the case of the
Laplace operator, the complement condition Nu = 0 turns out to be a natural condition in
the variational context:

Corollary 4.8. Let f € L*(Q). Assume u € V,(QRY) minimizes the functional v
LE&(v,v) — [, fv in the space V,,(QR?). Then Nu =0 in Q°.

A different version of this observation is given in [DLV21, Theorem 2.1]. [MPL19, Theorem
2.8] is similar in the translation invariant case. We are now in position to state the existence
and the uniqueness of a solution to (V/*) and hence to (V) up to additive constant. A direct

application of the Lax-Milgram lemma leads to the following observation.
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Theorem 4.9. We assume that Q C R is open and bounded. Let v : R* — [0,00] be the
density of a symmetric Lévy measure with full support. We further assume that the couple
(v,9Q) belongs to one of the class <, i =0,1,2,3. Let f € V,(QRY and g € T,(Q°).

(i) There exists a unique solution u € V,(Q| R to the problem (V') satisfying

lellv @iz < € (If1lv opmay + lglzaey)

with a positive constant C, which depends only on d, 2, A and v.
(i) Problem (V') is solvable if and only if (f,1) + (g,1) = 0. All solutions w are of the
form w = u+ c with ¢ € R and satisfy

lw — fo wlly, @rey < C (”f“vu(mmd)' + ||9||Tv<96)’) '

Proof. The existence and the uniqueness of solutions of (V'*) follow from the Lax-Milgram
lemma. The bilinear form £(-, ) is continuous on V, (Q| R%)*. From the Poincaré inequality
(3.10) we conclude

[0 7200) < CE(w,v)  forall wveV,(QRN

for some positive constant C. This implies coercivity of £(-,-) on V,(Q| R%)* and we obtain

Ew,v) > (1+C) " oll?, gz (4.7)

Note that, due to the continuity of the trace operator Tr : V, (Q|R?) — T}, (), the mapping
v (f,v) + (g,v) is linear and continuous on V,,(Q|R%)*. The Lax-Milgram lemma implies
(i).

For v € V,(QR?) set v = 0+ ¢ with ¢ = f;,vdz so that ¥ € V,(Q/R?)*. In addition, every
constant function w = ¢ belongs to V,(Q| RY) for every ¢ € R? because € is bounded. Hence,
V,(QRY) = V,(Q|RY) L @ R. With this observation along with the identity &(u+c,v+¢) =
E(u,v) for all ¢,¢ € R and the uniqueness of u € V, (Q| R’ solving (V'') it becomes easy
to check that under the compatibility condition (f,1) 4+ (g,1) = 0, all solutions of (V') are

of the form u + c.
O

Remark 4.10. It worth to mention that, Theorem 4.9 (i) implies that the operator @ :
Vo (QRYY x T,(Q°) — V,(QRY* mapping (f, g) to the unique solution u € V, (Q| R of
the variational problem (Vl) is linear, one-to-one, continuous with

|®(f, Q)HVV(de) < C|(f, g)HVV(de)’xTy(QC)’ .
Let us apply Theorem 4.9 in order to prove our main existence result.
Theorem 4.11. Under the assumptions of Theorem 4.9 with f € L*(Q) and g € L*(Q¢,v71)

the following holds true:
(i) There exists a unique solution u € V,(Q| R to the problem (V') satisfying

ully, @rey < C (IF 2@y + gl 2o 1))
with a positive constant C', which depends only on d,$2, A and v.
(ii) Problem (V') is solvable if and only if (C') holds true. All solutions w are of the form
w =u+ c with ¢ € R and satisfy

lw = fowllv e < C (1fll2@ + lgllzes) - (4.8)
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Proof. Tt suffices to show the continuity of the associated linear forms. For v € V, (Q| R%)*

| [ 7oe] < Wflzzolvlizen < 1o ol o (49)

From g € L*(Q°,7~') and the continuity of Tr : V,,(Q|R%) < T, (€°), we obtain
[ sternta] < ol snlllizens < Clolges gz (410
Application of Theorem 4.9 completes the proof. U

There is an alternative formulation of Theorem 4.11, which allows for more general inhomo-
geneities g. Let us define a modified Neumann problem for the operator L associated to the
data f and g as follows:

Lu=f in Q and Nu=gv on R\Q. (N.,)

Theorem 4.12. Under the assumptions of Theorem 4.9 with f € L*(2) and g € L*(Q°, ),
then the following holds true:

(i) There exists a unique weak solution u, € V,(QR* to the problem (N,), that is

Elue) = [ f@p@e+ [ @y for alve VIQIRY. (V)
satisfying

sl ey < C (122 + ll9llz2e )

with a positive constant C', which depends only on d, 2, A and v.
(ii) Problem (V.) is solvable if and only if (C.) holds true, where

S o) = [ f@p@ie s [ ooy foralve V@R, (V)

[ faye+ / 9()P(y)dy = 0. ()
Q c
All solutions w, are of the form w = u, + ¢ with ¢ € R and satisfy

— Jo Wiv,(QrY) > L2() LX(Qen)) -
[w — fow]| < (I + |9l )

The proof of Theorem 4.12 is analogous to the one of Theorem 4.11. Note that, if g €
L2(9¢,7), then

The last result in this section concerns the non-existence of weak solutions when the Neumann
data g is not in the weighted trace space L?(Q2¢,v71).

Theorem 4.13 (Non-existence of weak solution). Let By = By(0) be the unit ball in
RY. Let v(h) = |h|~*%, a € (0,2) 50 that v(h) < (1 + |h|)=4=. Let f = 0. There exists
g € LY(B§) \ L*(BS,v') with ch y)dy = 0, for which the Neumann problem Lu = 0 on

By and N'u = g on R*\B; has no weak solution in V,(B;|R?).
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Proof. We will construct a function g of the form g = g, where, given = € R,

xr
= (|2 = 1) peoy (@) ,

gy(z) = ]

with an appropriate choice of v € (=1, —%+) U (%, %). Note that for 2 € Bf(0) we have
dist(z,0B1(0)) = (Jz| — 1) and

dy —a —d—a
/ W (e = 1) A (] — 1)
B1(0

) |$ _ y|d+a

Claim 1: g, € V,(B;|R?) if and only if v € (%52, 2). Integration in polar coordinates yields

:L,2
112 s = 2 / T e — )2 / o=y edy da
TNV, (B1|RY) B2 (0) |I|2 B1(0)

= [ el = )P (o] - 1)

Claim 2: g, € L*(B{,7) if and only if v+ 3 € (=1, «). Indeed,

2
T —d—a
1g+8ll 1 5¢.2) =/ Tl =D fa]) e
B§(0) |z

1 oo
= |Sd_1|</ 7’7+Bdr—|—/ 7”+6—0‘_1d7’>.
0 1

Claim 3: Analogously, g, € L*(B{,7) if and only if v € (—
Claim 4: g € L*(B{) \ L*(B{, v ') if and only if g, € L*
v € (—=1,—3]U[2, @) by Claim 2 and Claim 3.

3 5)-
(Bi

,0) \ L?(B¢,v) if and only if

From now on, we assume v € (1, —2=) U (£,95) C (-1, —3] U [$, a).

Claim 5: Since g, (z) = —g,(—=) it follows that g = g, satisfies the compatibility condition

/B g(y)dy :/B 9,(y)v(y)dy = 0.

i
We assume the Neumann problem Lu = 0 on B; and Nu = g on R\ B, has a weak solution
u € V,(B1|R?), that is we have

E(u,v) = /B g-(y)v(y)v(y)dy for all v € V,(B;|RY).

c
1

c
1

This implies that for the constant C' = 1+ [Jully; p,|re) > 0 we have
| [ 0000)50)ds] < Cllolyomsy forall v V(BIRY.  (a10)
1
Claim 1 allows us to take v = gg € V,(B1|R?) for 8 € (252, 2). Then we obtain

lgveoller s < e(@) | 9+(1)98W)P(y)dy < Cllgallv, e (4.12)
1
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where we have used (4.11). Finally, we consider two cases. If o > 1, then we choose

ye (%) and B =a—~. If o <1, then we choose v € (—1,—%+) and g = —y — 1.
In both cases, v € (—1,—%] Ulg,a), B € (07_1,%) and v+ 5 € {—1,a}. This implies

gy € LY(B§, D)\ L*(Bs,7) and gg € V,,(B1| R?) whereas ||gy44| 11 (5, = 0. This contradicts
(4.12) since ||gﬁ||VV(Bl‘Rd) < 0. .

4.2. Neumann eigenvalues of L. Let f € L?(Q2), for g = 0 it is worthwhile to see that the
variational problem (V') coincides with (V) and both correspond to the variational(weak)
formulation of the homogeneous Neumann problem Lu = f in Q and MNu = 0 on Q°.

Definition 4.14 (Neumann eigenvalue of L). A non-zero function u € V,(Q|R?) is called a
Neumann eigenfunction of the operator L on € if there exists a real number y, which is the
eigenvalue associated to u, such that for all v € V,(Q R?)

E(u,v) = u/ﬂu(:v)v(a:)dx.

One formally writes Lu = pu in Q and Nu = 0 on Q¢, which corresponds to the aforemen-
tioned weak formulation provided that w is sufficiently regular.

It is worth noticing that, if v is a Neumann eigenfunction of L with associated eigenvalue
1, then either u € V,(QRY)" when pu # 0 or else, 4 = 0 and the constant functions
u=-c, c € R\ {0}, are the related eigenfunctions.

Theorem 4.15. Assume Q C R? is bounded and open and v : R*\{0} — [0,00) is the
density of a symmetric Lévy measure with full support. Assume that the couple (v,2) belongs
to one of the classes o, i = 1,2,3. Then there exists a sequence (¢n)en, in V,(QR?),
which forms an orthonormal basis of L*(Q), and an increasing sequence of real numbers
0=po < p1 <+ < pyy < --- L such that p, — o0 as n — oo and each ¢, is a Neumann
eigenfunction of L with corresponding eigenvalue p,,. The number of each eigenvalue is given
by its geometric multiplicity.

Proof. For fi, fo € L*(Q) let us denote uy, = ®o(fi) = ©(fr,0) € V,(QRN*, k = 1,2 the
unique solution of (V+) with Neumann data f = f, and g = 0. Precisely,

E(Dy(fr), v / fe(@)v(z)dz  for all v e V,(QR):. (4.13)

Testing (4.13) against v = ®q(f2) and v = Dg( f1) successively when k& = 1 and k = 2 yields
(f1, (I)o(fz))Lz(Q E(Do(f1), Po(f2)) = E(Po(f2), Po(f1)) = (f2, Po(f1)) 2,

Therefore, the operator Rg o @y : L2(Q) <% V,(QRHL 12 12(Q)L is compact (by
Theorem 3.10) and symmetric hence self-adjoint. It is a fact from the spectral theory
of compact self-adjoint operators that L?*(€2)* has an orthonormal basis (e, ), whose el-
ements are eigenfunctions of Rg o &y and the sequence of the corresponding eigenvalues
are non-negative real numbers (r,), which we assume ordered in the decreasing order,

r >ry > -+ >r, > ---0 such that r, — 0 as n — oo. Precisely, for each n > 1,
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Rq o ®y(e,,) = rpe, or simply write ®qy(e,) = rpe, a.e in Q. Combining the latter relation
with definition of ®¢(e,) we get

E(Po(ey),v) = /Qen(:)s)v(x)d:z = rgl/géo(en)(:ﬂ)v(:v)dx for all v € V,(QR%)*:

Equivalently, setting p, = r,;* and ¢, = ®o(en)/||Po(en) || r2) = ' Po(e,) which is clearly
an element of € V,(QR%)* yields

E (¢, v) ,un/qbn v(z)dr for all v € V,(QRH)*

Hereby, along with gy = 0 and ¢y = ||~ provides the sequences sought for. Now if we
assume p; = 0 then we have ¢; € V,(Q R and £(¢y,v) = 0 for all v € V,(QRH)*L

particular £(¢1, 1) = 0 i.e ¢ is a constant function in V,(Q| R%)* necessarily ¢; = 0 since
uy has zero mean over €2. We have therefore reached a contradiction as ¢, is supposed to be

an eigenfunction i.e ¢y # 0. Thus, gy > 0 and the proof is complete.
O

4.3. Robin boundary condition. In this section we treat a Robin-type problem with
respect to the nonlocal operator L on €. In the classical setting for the Laplace operator,
the Robin boundary problem — also known as Fourier boundary problem or third boundary
problem — is a combination of the Dirichlet and Neumann boundary problem in the form®

—Au=finQ and g—z + fu = g on 1. (4.14)

Here f € L?(2) and the measurable functions 3,g : 9 — R are given. Analogously, in
the nonlocal set up, we assume that 3, g : 2° — R are measurable functions. The Robin
problem consists in finding a measurable function u : R? — R such that

Lu=finQ and Nu+ pfu=gonQ°. (4.15)

Note that, for § = 0 one recovers the inhomogeneous Neumann problem. Informally, for
£ — oo it leads to the homogeneous Dirichlet problem. Define the quadratic form

Qa(u.0) = E(u,0) + | uly)n)aw)y
A function u € V,(QR?) is called a weak solution of the Robin problem (4.15) if

(u,v) / f(z)v(x)dz + /C g(y)v(y)dy for all v € V,(Q|RY). (4.16)

Theorem 4.16. Let v and Q be as in Theorem 4.15. Assume that S : Q¢ — [0, 00) is
essentially bounded and B is non-trivial that is, |Q2°N{B > 0} > 0. Let f € L*(Q) and
g € L2(Q°,77Y). There exists a unique function u € V,(Q R?) solution to (4.16) satisfying

ully, ety < C (Il + 9l 2@e51) (4.17)
where C := C(d,Q, A, v, ) > 0 can be chosen independently of u, f and g.

3According to the over 20 years survey work [GA98], there is no historical evidence why the problem
(4.14) is termed after Robin’s name. The survey [GA98, p.69] also points out that the first mathematical
appearance of the problem (4.14) goes back at least to the works on cooling law by Fourier(1822) and/or
Newton (1701, but mathematical contribution by Newton is uncertain).
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Remark 4.17. The operator ¥ : L?(Q) x L*(Q¢,771) — V,(Q|R?) mapping the data (f, g)
to the unique solution u € V, (QR?) of the variational problem (4.16) is linear, one-to-one,
and continuous. Moreover, with C' as above,

[W(f, Q)HVV(de) < C|(f, g)HL?(Q)xL?(QC,D*l)-

Proof. First of all, we claim that the form Qg(-,-) is coercive on V, (| R%). Assume it is not
true. Then for each n > 1 there exists u, € V,(Q|R?) with [tnlly, rey = 1 such that

&G ta) + [ Jn0)PB)Y = Q) < 51

In virtue of our compactness result, Theorem 3.10, (u,), converges up to a subsequence in
L?() to some u € V,(QR?). We deduce |Ju||z2() = 1, since 5(un,un) 272 0 and for all

n—oo

n > 1, |lunlly,@rey = 1. From E(un, u,) —— 0 and |lu, — ull s (o) %% 0 we obtain that

u,, converges to u in V,(Q|R?) with £(u,u) = 0. Thus u is constant almost everywhere in
R?. On the other hand, since /3 is bounded and the embedding V, (Q|R?) — L?*(Q°,7), see

Lemma 2.17, is continuous, we have

/Cuz(y)ﬁ(y)dy < Q/CUi(y)B(y)dva 2HB5‘1||L°°<QC>/ (un(y) — u(y))*v(y)dy

c

n—o0

< 2Qﬁ(un>un) + CHun - u”%/l,(m[kd) 0.

From this, we conclude u = 0 since we know that u is a constant function and 8 > 0 almost
everywhere on a set of positive measure U C €2 on which w vanishes. This contradicts
|| 20) = 1 and hence our initial assumption was wrong. Therefore there exists a constant

C=0C(d,Q,v, ) > 0 such that
Qs(u,u) > Cllully, g zey forall u e V,(QRY), (4.18)

The remaining requirements for the application of the Lax-Milgram lemma can be checked
easily. Existence of a unique solution to (4.16) follows. The estimate (4.17) is a direct
consequence of (4.18). O

4.4. Dirichlet-to-Neumann map. In this section we define the Dirichlet-to-Neumann map
related to the nonlocal Lévy operator L under consideration. Afterwards we prove that
its spectrum is strongly connected to the Robin eigenvalues of the operator L. This was
originally introduced in [FG20]. We refer the interested reader to the expositions [AM12,
BtE15] where the Dirichlet-to-Neumann map is treated in the local setting for the Laplacian.
We point out that an attempt to define the Dirichlet-to-Neumann map is provided in [Von21].
For the case for the fractional Laplacian a different Dirichlet-to-Neumann map to ours is
derived in [GSU16], see also the variant for fractional regional operators in [Warlh, Warl8].
Let us first review the nonlocal Dirichlet problem. In the spirit of [FKV15] one can easily
prove the following

Theorem 4.18. Let Q C R be open and bounded. Given f € L*(Q) and g € T,(Q°), there
exists a unique function u € V,(QR?) with u = g a.e. on Q° and

E(u,v) / f(z)v(z)dz for all v € V,o(QRY). (4.19)
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In fact, u is the weak solution to the mnonlocal Dirichlet problem Lu = f in  and u = g on
Q. Moreover, there exists C = C(Q,d, A,v) > 0 independent of f and g,

lully, @y < CUIF 2@ + [19llm09)- (4.20)

The result follows from the Lax-Milgram lemma because the linear form v — fQ fu is

continuous on V, o(Q R?) and the bilinear form &(-,-) bounded and coercive on V, (2| R%)
(see Theorem 3.13). It is noteworthy to recall that under the non-integrability condition (I)
and the Lévy integrability condition (L), V,,0(Q R?) is compactly embedded in L?(£2). With
this at hand, analogously to Theorem 4.15 there exist a family (¢,,),, elements of V,o(Q| RY),
orthonormal basis of LQ(Q) and an increasing sequence of real number 0 < \; < --- <\, <

. such that A\, — oo as n — oo and each 1), is a Dirichlet eigenfunction of L whose
corresponding eigenvalue is \,, namely

E(n,v) = Ao /Q Yn(x)v(z)de  for all v € V,o(QRY).

Note that the constants p; > 0 and A; > 0 respectively satisfy the Poincaré inequalities
E(u,u) > ,ulHuH%z(Q), for all u € V,,(Q|R%)*,
E(u,u) > Mullfzq), for all u € V,o(QR?).

Before we formally define the Dirichlet-to-Neumann map, some prerequisites are required.
Let f € L*(Q) and g € T,(Q°). Assume, A < A;, then the bilinear form £ y(u,u) =
E(u,u) — )\HUH%Q(Q) is coercive on V,o(Q|R?). Thus there exists a function u € V, (Q|R?)
unique weak solution to the Dirichlet problem Lu— Au = f in Q and u = g on Q°. Explicitly,
u = g on ¢ and

E(u,v) — A/Qu(:c)v(:c)dx = /Qf(x)v(x)dx for all v € V,,o(QR%). (4.21)

Moreover, the estimate (4.20) (with the estimating constant depending on \) remains true.
More generally, by the mean of Fredholm alternative and the closed graph theorem, the
preceding facts (4.21) and (4.20) respectively remain true for the operator L — A, whenever
AeR\{\,:n>1}

From now on we suppose f =0 and A € R\ {\, : » > 1} and label the solution of (4.21) by
u = u,. Then the mapping g + u, is linear and continuous from 7,,(92°) to V, (2| R?) since
by (4.20) we have

HugHVV(de) < CHQHTV(QC)-
Given v € T,(Q°), put ¥ = ext(v) € V,(QR?) as an extension of v. Let (-,-) be the dual
pairing between T, (€2°) and T, (2°)".

Definition 4.19. Let A € R\ {\, : n > 1}. We call the mapping %, : T,(Q2°) — T, (Q2°)
with g — Z\g = E_x(uy,~) such that (Z\g,v) = E_x(u,, ), the Dirichlet-to-Neumann map
with respect to the operator L — .
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Theorem 4.20. The Dirichlet-to-Neumann operator Py : T,(2¢) — T,(92°) with g —
Drg = E_x(uy,~) is well defined, linearly bounded and self-adjoint. Moreover, if we take
¢ =min(1, —\) then for all g € T,(2°) we have

(Prg,9) > CHUQH%/V(Q‘]Rd)’
In particular if ¢ > 0 it follows that

(Drg,9) > CHQH%}(QC)‘

Proof. Consider v/ € V,(Q|R%) another extension of v then v' — 7 € V,o(QR?) and by
definition of u, we have

Ex(ug, v —0) =0 thatis E_x(ug,v) = E_\(ug,v").
Therefore the mapping v — £_,(u,, v) is well defined, linear and bounded on 7},(€2). Indeed,

[€-x(ug, V)] < (1Al + Dlfuglly, 0y ey 01w, 2y me)-

Since the extension v of v is arbitrarily chosen, upon the estimate (4.21) we obtain

|E-A(ug, V)| < Cllgllz, 00 10]l7,(00)-
This shows that, £_(u,,~) belongs T, (Q2¢)". Subsequently it also follows from this estimate
that the mapping 2, : T,,(Q°) — T,(Q°) with g — Z\g = E_x(u,,~) is linear and bounded.
Now let g,h € T,(€2) specializing the definition of 2, with ¢ = u, and h = w), the self-
adjointness is obtained as follows

(Drg, h) = E_\(ug,up) = E_\(up, uy) = (Zrh, g).

The choice ¢ = min(1, —\) leads to (Z»g, g) = E_x(ug, ugy) > CHugH%/V(dey O

Remark 4.21. The above definition is motivated by the following observation. Assume wu,
is as before and p € C®(R%). The Gauss-Green formula (A.5) gives

(Drg, @) = E-Aug, ) = o Nug(y)e(y)dy. (4.22)

From the second equality we can identify Z\g = Nu, € L*(Q¢,v') C T,(Q°). Hence
D : g — Nug, which agrees with conceptual idea behind the Dirichlet-to-Neumann map in
the classical case.

Theorem 4.22. Let the assumptions of Theorem /.16 be in force. Denote by Lg the operator
L subject to the Robin boundary condition Nu+ fu = 0. Then the point spectrum o,(Lg) =
(Y (B))n of Lg is infinitely countable say 0 < y(8) < 1(B8) < -+ < (B) < -+, with
Yn(B) = 00 as n — oo, and the corresponding eigenfunctions belong to V,(QIR?) and form
an orthonormal basis of L*(Q).

Proof. 1t suffices to proceed as in the proof of Theorem 4.15, see also [FG20, Theorem 4.36].
O

Next, we see the relation between the spectrum of the operator L subject to Robin boundary

condition and that of Dirichlet-to-Neumann operator.
41



Theorem 4.23. Let A € R\ {\, : n > 1} and 5 : Q° — R be measurable. Consider the
Dirichlet-to-Neumann map Dy : T,(Q2°) — T,(Q°), Zhg = Nuy. Then, 0 € 0,(Zx + B) if
and only if X € o,(Lg). In addition, dimker(Lz — \) = dimker(Z, + 3).

Proof. Let u € ker(Lg — \) then for all v € V,,(Q|R?),

Qpu,v) = )\/Qu(:z)v(:z)dx equivalently &_,(u,v) = —/ u(y)v(y)B(y)dy.

C

Set g = Tr(u) = u|qe, with the aid of (4.22) the above relation reduces to

Nuy(y)v(y)dy = —/ g(y)v(y)B(y)dy.
Qc c

Thus g € ker(Z2,+ ). We have shown that the mapping 7" : ker(Lg— \) — ker(Z2, + ) with
u +— Tr(u) is well defined and onto. Both assertions will follow once we show that 7' defines
a bijection, in other words we only have to show that 7' is one- to one. For u € ker(Lg —A)

if Tr(u) = 0 then from the first relation above, we have €(u,v) = X [, u(z)v(z)dz for all
v € V,0(QRY). Necessarily, u = 0 otherwise \ is a Dirichlet eigenvalue Wthh is not the case
by assumption. U

5. TRANSITION FROM NONLOCAL TO LOCAL

The main purpose of this section is to prove the convergence of a sequence of nonlocal
Neumann problems to a local Neumann problem, i.e., the corresponding solutions converge.
The main result of this section is Theorem 5.4. We consider the following set-up: Let
(Va)ac(o2) be a family of Lévy radial functions approximating the Dirac measure at the
origin, i.e., for every a,d > 0

Vo > 0 is radial, / (LA W) ve(h)dh =d, lim vo(h)dh =0. (5.1)
R4 =2 Jin|>6

Note that there is no restriction on the support of v,. The above definition of (V4)o<a<2
generalizes the spectrum of possible approximation sequences in [FKV20,DTZ22]. Note that,
convergence of nonlocal variational structures including finite dimensional Galerkin methods
have already been considered in [MD15] and [BMCP15] for homogeneous nonlocal problems
of vanishing horizon-type.

We denote L, and N, to be the nonlocal operators associated with v,, i.e.,

Lou(z) = 2p.v. / (ule) — u(y))valz — y) dy.

Noulz) = 2 / (ule) — u(y))valz — y) dy.

The associated energy forms are defined by

£8(u,v :// uly) — u(@)) (v(y) — v(x))valz — y)dzdy,

// u(@)) (6(y) — v()valz — y)dw dy.

(QexQe)e
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Let us mention two prototypical examples of interest here. For more concrete examples we
refer the reader to [FKV20, FG20].

da(2—a)

Example 5.1. Define v4(h) = agq|h|™* with a4, = SR

polar coordinates yields

1 00 2d‘Sd_1|
1 h2 h—d—adh: Sd—l / l—ad / —l—ad — —d —1'
[ anmpm s [ s [ etnar) - =

For 0 > 0, a similar computation gives

2 - o a—r
da(2 =) / riTdr = C—Z(Q —a)d “ 22200,
d 5 2

Indeed, passing through

G /(1A|h|2)|h|—d—adhg .

Ih]>6

The choice of vy (h) = agq|h| =97 gives rise to a multiple of fractional Laplace operator, i.e.,

Lo = g2 (=A)*/?, where we recall that Cy, is the normalizing constant of (—A)*/?. Note

however that é‘;“ — 1 as a — 2 see [AAS67,NPV12, FG20).

Example 5.2. Let v € L'(R% 1 A |h|?) be any radial Lévy density that is normalized, i.e.,

/ 1A 2 v(h)dh = d.
Rd

2—a

Let a family (v4)ac(,2) be defined by v, = v*~* where 1° is a rescaled version of v in the

following sense:
e~ 2y (h/e) if |h|<e
vi(h) = S e7¥|h|"2v(h/e) if e<|h| <1
e~ (h/e) if |h| > 1.
Then, as shown in [Fog23b, Proposition 2.2], (V4 )ac(0,2) satisfies (5.1). Note that, as a possible

simple example, one could consider v(h) = clp, (o) (h), so that (v,) would correspond to what
is known as vanishing horizon in peridynamics, see [DY21, DTZ22].

The next result implies the convergence of the nonlocal normal derivative to the local one.
We point out that a similar convergence has been recently established in [HK23].

Lemma 5.3. Assume Q C R? is an open bounded set with Lipschitz boundary. Let ¢ €
C2(RY) and v €V, (Q|RY). The following assertions hold true.

(i) There is a constant C' > 0 independent of a such that
sup | [ Mg)oas] < Cllelcgan ol e
aec(0, ¢
(i1) Assume v € H' (R?) then

i [ Aoy = [ 22 @aot).
Qe o0
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Proof. In view of the estimates (A.1) and (A.4) respectively, we have
Lol < 4d[¢llczesy and  E%(p,¢) < 4dIQ[@llEy gy forall o€ (0,2).

By the continuity of the linear mapping v — £%(¢,v) — [, Lay(x)v(z)dz, the Gauss-Green
formula (A.5) is applicable for ¢ € CZ(R?) and v € V,,_(QR?). Therefore, with the help of
the above estimates we get (7) as follows

| QCNaw(y)v(y)dy‘ — lea(p,0) - /Q Lap(e)u(z)da]

< %, 9)' 2% (0,0)'? + || Lapll L2y 0]l L2
< Cllellez@allvllv,,, @re -

Noting that L,p(z) a2, —Ap(x) for all z € R? (see [Fog23b, Proposition 2.4]) and that
| L] < %HQOHCvg(Rd), the Lebesgue dominated convergence theorem yields

/Q Lop(z)v(z)dz 223 /Q —Ap(z)v(z)dz .

On the other hand, according to [Fog23b] and [FKV20, Theorem 3.4], we have that

[ @) = o)l = wyny = [ vetopaa
" (5.2)
[ 0@ = vwyate - sy o,

QQe

So that, £%(v,v) =% Jo [Vu(z)|*de. Thus we also have
E%p,v) mEN / Vo(z) - Vo(z)de.
Q
Finally from the foregoing and the local Gauss-Green formula we obtain (ii) as follows

lim [ Nye(y)v(y)dy = lir% E¥p,v) — lim [ Lyp(x)v(x)de
a— Q

) - /Q Vo(z) - Volo)de — /Q Ap(@)v(z)de

_ [ %
= m%(:ﬂ)v(:ﬂ)da(z).

O

Theorem 5.4 (Convergence of weak solution). Let Q C R? be an open bounded and
connected domain with Lipschitz boundary. Let (fo)a be functions converging in the weak
sense to another function f in L*(Q) and let g, = Npyp and g = g—i for some p € CZ(R?).
Assume u, €'V, (Q] ]Rd)L is a weak solution to Lou = fo on Q and Nyu = g, on Q° that is,

EX (U, v) = /Qfa(x)v(x) + /QC go(x)v(z)  for all veV, (QRHE.
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Let uw € H'(Q)* be the unique weak solution in to the Neumann problem —Au = f in Q and
g—T“L =g on 0f) i.e.

/ Vu(z) - Vo(z)de = / f(z)v(r)dz + /mg(:)s)v(x)da(:)s) for all uw € H*(Q)*.

a—2

Then (uq)o strongly converges to w in L*(QQ), i.e., |ua — ul|r2q) — 0. Moreover, the

following weak convergence of the energy forms holds true
E (U, v LN / Vu(x) - Vu(x)dx for all v e H'(R?). (5.3)

Remark 5.5.

(i) In case of the homogeneous problem, i.e., for ¢ = 0 and f, = f, the corresponding
result is a direct consequence of the Mosco-convergence of (£%(-,-), V,.(Q|R%)), to
the gradient form [, [Vu(z)|*dz with domain H'(Q), see [FKV20].

(ii) The convergence in result of Theorem 5.4 remains true if one replaces the Neumann
condition with the Dirichlet condition, see [FG20].

(iii) Examples of the type of Example 5.2 have been considered in relation to models in
peridynamics, see [DTZ22, Section 4.2] and [BMCP15] for a natural nonlinear setting.

(iv) The assertion of the theorem remains true under the weaker assumption that (ga, )2

convergences to (g,%) 2.0 for all ¢ € HY(RY).

(v) Tt is desirable to study Theorem 5.4 under more general assumptions, e.g., under
a weaker assumption than ¢ € CZ(R?). A sufficient condition to be expected is
g € H2(0Q).

Proof. A compactness argument as in [Pon04, Corollary 2.1], see [FG20, Chapter 5|, shows
that for certain oy € (0,2) there exists a constant positive C' > 0 depending only on ay, {2
and d such that for all v € L?(2)* and all « € (ayp, 2)

||U||%/VQ(Q|Rd) < Cgo‘('ij). (54)

In view of the weak convergence, we can assume without loss generality that sup,e 2y | fall 220

oo. This together with the definition of u, along with Lemma 5.3 (i) yields

o) = [ fole)ualo)de + [ anlu)ua(uay

< llually,,, @y ([ fallz2@) + llellcz@a))
< CHuaHVVa(Q\Rd)'

Combining this with (5.4), then for a generic constant C' > 0 independent of oz we have the
following uniform boundedness

[uallm,, @) < lltally,, rey < C for all @ € (v, 2) . (5.5)

Recall that, see [Fog23b, FG20], HuHHua(Q LmiN |ul| (o for all w € H'(Q). Whence from
[KS03, Lemma 2.2] there exists v’ € H'(Q) and a subsequence an =% 2 such that,

lim (uan, v)

oo Ho (@ = (43 0) i)
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where, we recall that

(00 0y = [ wlaota)de + ] (wl) = w)(ele) = wlp)rals =~ paady

(w,v)Hl(Q) = /Qw(:c)v(:c)dx + / Vuw(z) - Vo(z)dz .

Q

By virtue of the asymptotic compactness, see [BBMO01,FG20,Pon04]; see also [AAS67, Section
4], there exists a further subsequence that we still denote by (o, ),, and a function u” € H*(Q)

such that ||ua, —u"[|z2(0 —) 0. It is not difficult to show that v’ = «” almost everywhere
in Q, ue H(Q)* Where we let v = v/, and that for all v € H'(2)

// Ug, () = ta, (1) (0(x) — 0(Y))Va, (x — y)dzdy = /QVu(x) - Vo(z)de. (5.6)

It remains to show that u is the weak solution of the corresponding local Neumann problem.
To this end, we fix v € H'(Q)*, given that  has a Lipschitz boundary we let 7 € H'(R?)
be an extension of v. The uniform boundedness in (5.5) and the convergence in (5.2) yield

J] 10000 = v ) 0) =T &~ )ty

QQe

<C // (@(2) — T(y)) e, (x — y)dady 222 0.

QQe

This combined with (5.6) gives
£ (g, , T) / Vu(z) - Vo(z)dz
In particular, since v € H 1(Rd) can be arbitrarily chosen, we have the weak convergence

£ (Ug,, V) =2 /Vu - Vou(x)de for all v € H'(R?).

We know that 7 € V,, (Q| R for all a € (0,2), thus by definition of u,, it follows that,

£ (Ua,, T / o (@)v(2)dz + / o (Y)0(y)dy .

By Lemma 5.3 (i7) and the fact that f,, — f weakly in L*(Q), letting n — oo we obtain

/ Vu(z) - Vo(z)dz — / F@)o(@)ds + /8 oa)ola)do(a).

By virtue of the uniqueness of the limit v € H'(Q)%, the same reasoning can be applied to
any other subsequence (ay,), with a, “——» 2 and hence the claimed convergences hold true

for the whole sequence as desired. O
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APPENDIX A.

In the following appendices we explain basic properties of translation-invariant nonlocal
operators L driven by the density of a Lévy measure v : R*\{0} — [0, co) satisfying condition
(L). Throughout this section we assume k(x,y) = v(x — y) for all z # y. The main goals
include a definition of Lu as a distribution in Proposition A.2 and the Gauss-Green formula
for nonlocal operators in Proposition A.5.

A.1. Basics on the operator L. Given k € N, denote C¥(R?) as the space of bounded
functions of class C* whose derivatives up to order k are bounded. Recall that for a suffi-
ciently smooth function v : R? — R, the operator L is defined by

Lo(z) = p.v. / (v(a) —~ v(u))W(x—y)dy = lim Loo(a)

where

Lo = [ ()= ve)e-pdy (@€ R%e>0)
R?\Be (x)
Here are some basic properties of the operator L.
Proposition A.1. Let u € CZ(R%). Then the following properties are satisfied.
(i) The map x — Lu(x) is bounded and uniformly continuous. Moreover,
1

Lu(z) = ~3 /Rd(u(x + h) +u(z —h) — 2u(x))v(h) dh.

(ii) For each ¢ > 0, the map x — L.u(x) is uniformly continuous.
(#ii) The family (L.u(x)). is uniformly bounded and uniformly converges to Lu, i.e.

| Low — Lul| o gty <= 0.

Proof. Let u € C2(R). A simple change of variables implies

Lou(z) = —% / (u(z + ) + u(x — h) — 2u(z))v(h) dbh.
R4\ B:(0)

An application of the fundamental theorem of calculus yields
1
(u(x + h) +u(x — h) —2u(x)) = / [Vu(z + th) — Vu(z — th)] - hdt
0

11
= / / 2t[D*u(z — th + 2sth) - h] - hdsdt.
o Jo

Since u and its Hessian D?u are bounded functions, we deduce

fulz + h) + u(e — h) = 2u(@)] < 2ullczga(LAIRP),  xhe R (A.1)
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The integrability of the function h — (1 A |h|?)v(h) entails the boundedness of z — Lu(x)
and the uniform boundedness of  — L.u(z). It also allows us to get rid of the principal
value formulation. Furthermore, we can prove the uniform convergence of (L.u). to Lu by

e—0
|Let — Lt g oy < 2y|uy|cg(Rd)/B (@A Eidh = o

€

In order to prove the uniform continuity, we fix z, z € R? close enough, say |x — z| < § with
0 < 8 < 1. Then for every h € R h 0,

20u(z) = u(2)| + |u(z + h) = u(z + h)| + [ulz = h) —u(z = h)| < 40]|ullcz(re)-

This combined with (A.1) yields the uniform continuity via the integrability of h — (1 A
|h|?)v(h) as follows,

6—0

1Lu(@) = L)l ooty < 2llullczey | (O A R )v(h)dh —
b Rd

The uniform continuity of z — L.u(z) follows analogously. O

0.

In order for Lu(z) to be defined, u needs to possess two properties: some regularity in the
neighborhood of the point z and some weighted integrability for |x| — co. As shown above,
being C? in the neighborhood of z is more than sufficient as is boundedness for |z| — oo.
Let us investigate some mild condition on u as |x| — oo that still allows a suitable definition
of Lu. In order to do so, we additionally assume that v is unimodal.

Proposition A.2. Let v be a unimodal Lévy measure. Define a weight U on R? by v(z) =
v(z(1+]z).
(i) Foru € C*(RY) N LY (R, D), the expression Lu(x) exists for every x € RY.
(i) Assume that v has full support. Foru € L'(R?,D) the expression Lu is defined in the
distributional sense via the mapping ¢ — (Lu, p) = (u, L) 12ga)-
(i4i) Assume that v satisfies the scaling condition (2.5). Let Q C R? be open and bounded
and u € V,(QR?). Then Lu is defined in the distributional sense.

Remark A.3. Note that 7 € L'(RY) N L>(R%) and that L'(R% 7) contains L>(R%).
Example A.4. If v(h) = |h|797 for some a € (0,2), then D(h) < (1 + |h])~?

Proof. For the proof of (i) we decompose the integral in the definition of Lu(x) into the two
domains {|y| < 2|z| + 1} and {|y| > 2|x| + 1}. In the first domain we employ the Taylor
formula as in the proof of Proposition A.1. For y in the second domain we observe

lyl |yl lyl +1
—yl >yl =z > Z g > .
|z —y| > |y| — |=| > 5 T |z > 5

Thus, for y from the second domain, by property Definition 2.4 we conclude v(z—y) < cv(y)
and thus

/ |u(z)v(z—y)dy + / lu()|v(z—y)dy < Ky|u(@)] + [Jull 11z 5)-

{lyl>2z|+1} {lyl>2z|+1}
For the proof of (ii), let ¢ € C>®°(R%) be supported in Br(0) for some R > 1. We claim
[Lo(2)| < Cllollce@ayv () for all z € R?. (A.2)
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with some constant C' = C(R, d, v) depending only on R, d and v. Indeed, suppose |z| > 4R,
so that ¢(z) = 0. Since |[x—y| > @%—R > 1(14|z|) for y € Bg(0), the property Definition 2.4
implies v(z—y) < cv(z). Accordingly,

| Lp(x)] < /B o loW)lv(z—y)dy < c|Br(0)[[[¢llc2 @y ().

Whereas, if || < 4R the proof of (A.2) is complete using (A.1) as follows. Since 3(1+|z]) <
4R we have U(x) > ¢y for an appropriate constant ¢; > 0 depending on R and v. Thus we
conclude

|Lo(@)] < 4010l czmay < c1' 400l cz (e V()

with © = [La(L A |h|*)v(h)dh. Note that in case of the fractional Laplace operator the
estimate (A.2) is analogous to [FW12, Lemma 2.1]. Finally, (A.2) yields

(0. L) paen| < Clielgas [ )Pl

This shows that Lu is a distribution when u € L*(R% D). With regard to (iii) let Q ¢ R? be
open and bounded. We show that the embedding V,,(Q R%) < L*(R? D) is continuous under
the additional scaling assumption (2.5). Indeed, for u € V,,(Q R?) we assume Q C Bg(0) for
some R > 1. Then |z —y| < R(1 + |z|) for all z € R? and all y € Q so that by (2.5) and
Definition 2.4 we deduce v(z) < Cv(R(1 + |z])) < cCv(z—y). Here ¢,C > 0 are constants
independent of x and y. Proceeding as in Lemma 2.17, one arrives at the estimate

y u(x)[p(z)de < Cllully, o)re):

Therefore, regarding the preceding arguments Lu is also a distribution whenever u € V,,(Q| R?).
O

A.2. Gauss-Green type formula. Having at hand a nonlocal analog of the normal deriva-
tive as in Definition 4.1, it makes sense to study a formula that resembles the classical Gauss-
Green formula. Such formulas have been established in several contexts. See [DGLZ13]
for numerous identities of a nonlocal vector calculus in the case of bounded kernels and
[DROV17] for the case of the fractional Laplace operator. Recall the classical Gauss-Green
formula (see [Nec67, Chap 3|, [Tri92, Appendix A.3] or [BF13, Theorem III.1.8]) says for all
u e H*(Q) and v € HY(Q),

/Q (—A)u(z)v(z) de = /Q V() - Vo(z) dz — /8 u(@)ou(z) do(z).  (A3)

Q

A reasonable explanation to this terminology is given in the Lemma 5.3. For a function
u € C}HRY) we know

u(z) — uly)] < 2l|ullgp g (LA [z —y)l) (z,y € RY), (A.4)
which implies

I @ =) vy dy < sl e, [ 0 ALz = o) la—phdedy < .
)

(QexQe)e QR4
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Proposition A.5 (Gauss-Green type formula). Let Q0 be open and bounded. For u €
C2(R"Y) and v € CFH(R?)

[ (zu@lota)s = ) - [ Mty (A5)
In particular, by choosing v =1 one deduces
/ Lu(z)de = — | Nu(y)dy. (A.6)
Q Qe

Proof. Let u € C2(R%) and v € C}(R%). With the aid of Proposition A.1 we can write

| ataoteyte =ty [ oo / (u(w) = uy)w(z—y) dy

R\ Be (z

—tiy [ [ (@) - uw)e@v—y) o+ [ [ (@) - uw)e@re—y) dyds,
Q O\Be(x) Q Qe

On one side, by a symmetry argument we have

ty [ [ (o)~ u)e(v—y) dyde =t ] (0) — at)ele)a—y) dyds
Q Q\Bs(gc axn{|z—y|>e}
~ iy // De(e) = oy)o(—y) dyda

QOxON{|z—y|>e}
=5 [ @@ — ) () = o)) dyas

where one gets rid of the principal value using the estimate (A.4) applied to v and v. On
the other side, with the help of Fubini’s theorem we have

[ wle) = uwye@ia—y) dyds

QQe

- // (u(a) — u(y)) (v(z) — v(y))(z—y) dydz + / o(y)dy / (ule) — uly))(z—y) dz

QQe
1 1
=3 //(u(x) — u(y))(v(w) = v(y))v(z—y) dyde + 5 //(u(:c) —u(y)) (@) — v(y))v(z—y) dydz
QQe Q0cQ
- [ Mutwets)ay
Qc
Altogether inserted in the initial relation provide the desired relation. m

As a direct consequence of Proposition A.5 we have the following.

Corollary A.6 (Second Gauss-Green identity). For all u,v € CZ(R?) we have

/Q v(z) Lu(x) — u(z)Lo(z)dz = | u(y)Nv(y) —v(y)Nu(y) dy. (A7)

Qc
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We now look at certain aspect of the dual of the trace space T,(£2¢) in relation with the
nonlocal normal derivative operator N.

Theorem A.7. For any linear continuous form £ : T,(Q°) — R there exists a function
w € V,(QR?) such that for every v € C°(Q)

() = [ Nuw(y)v(y)dy.
Qc
In particular gwen a measurable function g : Q¢ — R if the linear mapping {, : v —
Joe 9@)v(y)dy is continuous on T, (Q°) then, there exists w € V,(QR?) such that g = Nw
almost everywhere on $)°.

Proof. Let ¢ € T,(2°) then because of the continuity of the trace operator Tr, the linear
form £ o Tr is also continuous on V,(Q|R%). By Riesz’s representation theorem there exists
w € V,(QRY) such that £ o Tr(v) = (v, W) v, (| r) for each v € V, (0 R%). In particular, for

v € C®(Q°) identified with its zero extension on € so that Tr(v) = v, we remain with

o) = [ w0 - e - vy dedy

(QexQe)e

= [ vty [ i)~ w@iwe=pds = [ Nty

Qc
Furthermore, if g : Q2 — R is such that ¢, is continuous on 7,(€2°) then by the above
computation, it follows that ¢ = Nw almost everywhere on ¢ since

/cg(y)v(y)dy =/ Nuw(y)o(y)dy — forall ve CX(Q°).
O

Remark A.8. The second statement of Theorem A.7 particularly suggests that the space
of all measurable functions g : Q° — R for which the linear form v — [, g(y)v(y)dy is

continuous on T},(92¢) is contained in N (V,(Q|R?)) (the range of N).

Remark A.9. The nonlocal normal derivative N'u of a function measurable v : R? — R can
be thought of as the restriction of the regional operator on 2 associated with k(x,y) = v(x—
y) on R¥\Q. It might be interesting to know some situations where the pointwise definition
Nu(r) makes sense at least almost everywhere. It is straightforward to verify the following:
(i) if w € L>®(Q) then Nu(z) exists for almost every z € R*\Q, (i) if u € V,(QR?) then
Nu € LlOC(Rd \Q), (iii) more generally, if u € V,(Q|RY) then Nu € L*(R*\Q, w'(z)dx)
where w(z) = [, v(z — y)dy, x € R*\
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