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Abstract—In comparison with individual testing, group testing is more efficient in reducing the number of tests and potentially leading
to tremendous cost reduction. There are two key elements in a group testing technique: (i) the pooling matrix that directs samples to be
pooled into groups, and (ii) the decoding algorithm that uses the group test results to reconstruct the status of each sample. In this
paper, we propose a new family of pooling matrices from packing the pencil of lines (PPoL) in a finite projective plane. We compare
their performance with various pooling matrices proposed in the literature, including 2D-pooling, P-BEST, and Tapestry, using the
two-stage definite defectives (DD) decoding algorithm. By conducting extensive simulations for a range of prevalence rates up to 5%,
our numerical results show that there is no pooling matrix with the lowest relative cost in the whole range of the prevalence rates. To
optimize the performance, one should choose the right pooling matrix, depending on the prevalence rate. The family of PPoL matrices
can dynamically adjust their construction parameters according to the prevalence rates and could be a better alternative than using a
fixed pooling matrix.

Index Terms—group testing, perfect difference sets, finite projective planes.
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1 INTRODUCTION

COVID-19 pandemic has deeply affected the daily life of
many people in the world. The current strategy for dealing

with COVID-19 is to reduce the transmission rate of COVID-19 by
preventive measures, such as contact tracing, wearing masks, and
social distancing. One problematic characteristic of COVID-19 is
that there are asymptomatic infections [1]. As those asymptomatic
infections are unaware of their contagious ability, they can infect
more people if they are not yet been detected [2]. As shown in the
recent paper [3], massive COVID-19 testing in South Korea on
Feb. 24, 2020, can greatly reduce the proportion of undetectable
infected persons and effectively reduce the transmission rate of
COVID-19.

Massive testing for a large population is very costly if it is done
one at a time. For a population with a low prevalence rate, group
testing (or pool testing, pooled testing, batch testing) that tests
a group by mixing several samples together can achieve a great
extent of saving testing resources. As indicated in the recent article
posted on the US FDA website [4], the group testing approach has
received a lot of interest lately. Also, in the US CDC’s guidance for
the use of pooling procedures in SARS-CoV-2 [5], it defines three
types of tests: (i) diagnostic testing that is intended to identify
occurrence at the individual level and is performed when there is a
reason to suspect that an individual may be infected, (ii) screening
testing that is intended to identify occurrence at the individual
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level even if there is no reason to suspect an infection, and
(iii) surveillance testing includes ongoing systematic activities,
including collection, analysis, and interpretation of health-related
data. The general guidance for diagnostic or screening testing
using a pooling strategy in [5] (quoted below) basically follows
the two-stage group testing procedure invented by Dorfman in
1943 [6]:

“If a pooled test result is negative, then all specimens can be
presumed negative with the single test. If the test result is positive
or indeterminate, then all the specimens in the pool need to be
retested individually.”

The Dorfman two-stage algorithm is a very simple group
testing strategy. Recently, there are more sophisticated group
testing algorithms proposed in the literature, see, e.g., [7], [8],
[9], [10]. Instead of pooling a sample into a single group, these
algorithms require diluting a sample and then splitting it into
multiple groups (pooled samples). Such a procedure is specified
by a pooling matrix that directs each diluted sample to be pooled
into a specific group. The test results of pooled samples are then
used for decoding (reconstructing) the status of each sample. In
short, there are two key elements in a group testing strategy: (i)
the pooling matrix, and (ii) the decoding algorithm.

As COVID-19 is a severe contagious disease, one should be
very careful about the decoding algorithm used for reconstructing
the testing results of persons. Though decoding algorithms that use
soft information for group testing, including various compressed
sensing algorithms in [8], [9], [10], [11], [12], might be more
efficient in reducing the number of tests, they are more prone to
have false positives and false negatives. A false positive might
cause a person to be quarantined for 14 days and thus losing 14
days of work. On the other hand, a false negative might have
an infected person wandering around the neighborhood and cause
more people to be infected. In view of this, it is important to have
group testing results that are as “definite” as individual testing
results (in a noiseless setting).
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Following the CDC guidance [5], we use the decoding algo-
rithm, called the definite defectives (DD) algorithm in the literature
(see Algorithm 2.3 of the monograph [13]), that can have definite
testing results. The DD algorithm first identifies negative samples
from a negative testing result of a group (as advised by the
CDC guidance [5]). Such a step is known as the combinatorial
orthogonal matching pursuit (COMP) step in the literature [13].
Then the DD algorithm identifies positive samples if they are in
a group with only one positive sample. Not every sample can
be decoded by the DD algorithm. As the Dorfman two-stage
algorithm, samples that are not decoded by the DD algorithm go
through the second stage, and they are tested individually. We call
such an algorithm the two-stage DD algorithm.

One of the main objectives of this paper is to compare the
performance of various pooling matrices proposed in the literature,
including 2D-pooling [7], P-BEST [8], and Tapestry [9], [10],
using the two-stage DD decoding algorithm. In addition to these
pooling matrices, we also propose a new construction of a family
of pooling matrices from packing the pencil of lines (PPoL) in
a finite projective plane. The family of PPoL pooling matrices
has very nice properties: (i) both the column correlation and the
row correlation are bounded by 1, and (ii) there is a freedom
to choose the construction parameters to optimize performance.
To measure the amount of saving of a group testing method, we
adopt the performance measure, called the expected relative cost
in [6]. The expected relative cost is defined as the ratio of the
expected number of tests required by the group testing technique
to the number of tests required by the individual testing. We then
measure the expected relative costs of these pooling matrices for
a range of prevalence rates up to 5%. Some of the main findings
of our numerical results are as follows:

(i) There is no pooling matrix that has the lowest relative
cost in the whole range of the prevalence rates consid-
ered in our experiments. To optimize the performance,
one should choose the right pooling matrix, depending
on the prevalence rate.

(ii) The expected relative costs of the two pooling matri-
ces used in Tapestry [9], [10] are high compared to the
other pooling matrices considered in our experiments.
Its performance, in terms of the expected relative cost,
is even worse than the (optimized) Dorfman two-stage
algorithm. However, Tapestry is capable of decoding
most of the samples in the first stage. In other words,
the percentages of samples that need to go through the
second stage are the smallest among all the pooling
matrices considered in our experiments.

(iii) P-BEST [8] has a very low expected relative cost
when the prevalence rate is below 1%. However, its
expected relative cost increases dramatically when the
prevalence rate is above 1.3%.

(iv) 2D-pooling [7] has a low expected relative cost when
the prevalence rate is near 5%. Unlike Tapestry, P-
BEST, and PPoL that rely on robots for pipetting, the
implementation of 2D-pooling is relatively easy by
humans.

(v) There is a PPoL pooling matrix with column weight
3 that outperforms the P-BEST pooling matrix for
the whole range of the prevalence rates considered
in our experiments (up to 5%). We suggest using that
PPoL pooling matrix up to the prevalence rate of 2%

and then switch to other PPoL pooling matrices with
respect to the increase of the prevalence rate. The
detailed suggestions are shown in Table 4 of Section
6.

The paper is organized as follows: in Section 2, we briefly
review the group testing problem, including the mathematical
formulation and the DD decoding algorithm. In Section 3, we
introduce the related works that are used in our comparison study.
We then propose the new family of PPoL pooling matrices in
Section 4. In Section 6, we conduct extensive simulations to
compare the performance of various pooling matrices using the
two-stage DD algorithm. The paper is concluded in Section 7,
where we discuss possible extensions for future works.

2 REVIEW OF GROUP TESTING

2.1 The problem statement

Consider the group testing problem with M samples (indexed
from 1, 2, . . . ,M ), and N groups (indexed from 1, 2, . . . , N ).
The M samples are pooled into the N groups (pooled samples)
through an N ×M binary matrix H = (hn,m) so that the mth

sample is pooled into the nth group if hn,m = 1 (see Figure
1). Such a matrix is called the pooling matrix in this paper. Note
that a pooling matrix corresponds to the biadjacency matrix of an
N ×M bipartite graph. Let x = (x1, x2, . . . , xM ) be the binary
state vector of the M samples and y = (y1, y2, . . . , yN ) be the
binary state vector of the N groups. Then

y = Hx, (1)

where the matrix operation is under the Boolean algebra (that
replaces the usual addition by the OR operation and the usual
multiplication by the AND operation). The main objective of
group testing is to decode the vector x given the observation vector
y under certain assumptions. In this paper, we adopt the following
basic assumptions for binary samples:

(i) Every sample is binary, i.e., it is either positive (1) or
negative (0).

(ii) Every group is binary, and a group is positive (1) if
there is at least one sample in that group is positive.
On the other hand, a group is negative (0) if all the
samples pooled into that group are negative.

If we test each sample one at a time, then the number of
tests for M samples is M , and the average number of tests per
sample is 1. The key advantage of using group testing is that the
number of tests per sample can be greatly reduced. One important
performance measure of group testing, called the expected relative
cost in [6], is the ratio of the expected number of tests required by
the group testing technique to the number of tests required by the
individual testing. The main objective of this paper is to compare
the expected relative costs of various group testing methods.

2.2 The definite defectives (DD) decoding algorithm

In this section, we briefly review the definite defectives (DD)
algorithm (see Algorithm 2.3 of [13]). The DD algorithm first
identifies negative samples from a negative testing result of a
group. Such a step is known as the combinatorial orthogonal
matching pursuit (COMP) step. Then the DD algorithm identifies
positive samples if they are in a group with only one positive
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Figure 1: Pooled testing represented by a bipartite graph.

ALGORITHM 1: The definite defectives (DD) algo-
rithm for binary samples

Input An N ×M pooling matrix H and a binary
N -vector y of the group test result.

Output an M -vector for the test results of the M
samples.

0: Initially, every sample is marked “un-decoded.”
1: If there is a negative group, then all the samples pooled
into that group are decoded to be negative.

2: The edges of samples decoded to be negative in the
bipartite graph are removed from the graph.

3: Repeat from Step 1 until there is no negative group.
4: If there is a positive group with exactly one (remaining)
sample in that group, then that sample is decoded to
positive.

5: Repeat from Step 4 until no more samples can be
decoded.

sample. The detailed steps of the DD algorithm are outlined in
Algorithm 1.

In Figure 2, we provide an illustrating example for Algorithm
1. In Figure 2 (a), the test result of G2 is negative, and thus the
three samples S1, S4 and S5, are decoded to be negative. In
Figure 2 (b), the edges that are connected to the samples S1, S4
and S5, are removed from the bipartite graph. In Figure 2 (c), the
test results of the two groups G1 and G3 are positive. As S2 is
the only sample in G3, S2 is decoded to be positive.

Note that one might not be able to decode all the samples by
the above decoding algorithm. For instance, if a particular sample
is pooled into groups that all have at least one positive sample,
then there is no way to know whether that sample is positive or
negative. As shown in Figure 3, the sample S3 cannot be decoded
by the DD algorithm as the test results of the three groups are the
same no matter if S3 is positive or not.

As shown in Lemma 2.2 of [13], one important guarantee of
the DD algorithm is that there is no false positive.

Proposition 1. ( [13], Lemma 2.2) Assume that all the testing
results are correct. Then (i) all the samples that are decoded to be
negative in Step 1 of Algorithm 1 are definite negatives, and (ii) all
the samples that are decoded to be positive in Step 4 of Algorithm
1 are definite positives. As such, there are no false positives in

Algorithm 1.

In order to resolve all the “un-decoded” samples, we add
another stage by individually testing each “un-decoded” sample.
This leads to the following two-stage DD algorithm in Algorithm
2.

ALGORITHM 2: The two-stage definite defectives
(DD2) algorithm for binary samples

Input An N ×M pooling matrix H and a binary
N -vector y of the group test result.

Output an M -vector for the test results of the M
samples.

1: Run the DD algorithm in Algorithm 1.
2: For those “un-decoded” samples, test them one at a
time.

3 RELATED WORKS

In [14], [15], [16], it was shown that a single positive sample
can still be detected even in pools of 5-32 samples for the
standard RT-qPCR test of COVID-19. Such an experimental result
provides supporting evidence for group testing of COVID-19. In
the following, we review four group testing strategies proposed in
the literature for COVID-19.
The Dorfman two-stage algorithm [17]: For the case that
N = 1, i.e., every sample is pooled into a single group, the DD2
algorithm is simply the original Dorfman two-stage algorithm
[6], i.e., if the group of M samples is tested negative, then all
the M samples are ruled out. Otherwise, all the M samples
are tested individually. Suppose that the prevalence rate is r1.
Then the expected number of tests to decode the M samples by
the Dorfman two-stage algorithm is 1 + (1 − (1 − r1)

M )M .
As such, the expected relative cost (defined as the ratio of the
expected number of tests required by the group testing technique
to the number of tests required by the individual testing in [6])
is M+1

M − (1 − r1)M . As shown in Table I of [6], the optimal
group size M is 11 with the expected relative cost of 20% when
the prevalence rate r1 is 1%.
2D-pooling [7]: On a 96-well plate, there are 8 rows and 12
columns. Pool the samples in the same row (column) into a group.
This results in 20 groups for 96 samples. One advantage of this
simple 2D-pooling strategy is to minimize pipetting errors.
P-BEST [8]: P-BEST [8] uses a 48 × 384 pooling matrix con-
structed from the Reed-Solomon code [18] for pooled testing
of COVID-19. For the pooling matrix, each sample is pooled
into 6 groups, and each group contains 48 samples. In [8], the
authors proposed using a compressed sensing algorithm called the
Gradient Projection for Sparse Reconstruction (GPSR) algorithm
for decoding. Though it is claimed in [8] that the GPSR algorithm
can detect up to 1% of positive carriers, there is no guarantee that
every decoded sample (by the GPSR algorithm) is correct.
Tapestry [9], [10]: The Tapestry scheme [9], [10] uses the Kirk-
man triples to construct their pooling matrices. For the pooling
matrix in [9], [10], each sample is pooled into 3 groups (in their
experiments, some samples are only pooled into 2 groups). As
such, it is sparser than that used by P-BEST. However, one of the
restrictions for the pooling matrices constructed from the Kirkman
triples is that the column weights must be 3. Such a restriction
limits its applicability to optimize its performance according to
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(a) Step 1: All the samples pooled into
that negative groups are decoded to be
negative.

(b) Step 2: The edges of negative sam-
ples are removed.

(c) Step 4: Exactly one sample in a
positive group is decoded to be positive.

Figure 2: An illustration for the DD algorithm.

Figure 3: An un-decoded sample.

the prevalence rate. We note that a compressed-sensing-based
decoding algorithm was proposed in [9], [10]. Such a decoding
algorithm further exploits the viral load (Ct value) of each pool
and reconstructs the Ct value of each positive sample. It is claimed
to be viable not just with low (< 4%) prevalence rates but even
with moderate prevalence rates (5%-10%).

4 PPOL CONSTRUCTIONS OF POOLING MATRI-
CES

In this section, we propose a new family of pooling matrices from
packing the pencil of lines (PPoL) in a finite projective plane.
Our idea of constructing PPoL pooling matrices was inspired by
the constructions of channel hopping sequences in the rendezvous
search problem in cognitive radio networks and the constructions
of grant-free uplink transmission schedules in 5G networks (see,
e.g., [19], [20], [21], [22]), in particular, the channel hopping
sequences constructed by the PPoL algorithm in [19].

A pooling matrix is said to be (d1, d2)-regular if there are
exactly d1 (resp. d2) nonzero elements in each column (resp. row).
In other words, the degree of every left-hand (resp. right-hand)
node in the corresponding bipartite graph is d1 (resp. d2). The

total number of edges in the bipartite graph is d1M = d2N for a
(d1, d2)-regular pooling matrix H . Define the (compressing) gain

G =
M

N
=
d2
d1
. (2)

4.1 Perfect difference sets and finite projective planes
As our construction of the pooling matrix is from packing the
pencil of lines in a finite projective plane, we first briefly review
the notions of difference sets and finite projective planes.

Definition 2. (Difference sets) Let Zp = {0, 1, . . . , p−1}. A set
D = {a0, a1, . . . , ak−1} ⊂ Zp is called a (p, k, λ)-difference
set if for every (` mod p) 6= 0, there exist at least λ ordered pairs
(ai, aj) such that ai − aj = (` mod p), where ai, aj ∈ D. A
(p, k, 1)-difference set is said to be perfect if there exists exactly
one ordered pair (ai, aj) such that ai − aj = (` mod p) for
every (` mod p) 6= 0.

Definition 3. (Finite projective planes) A finite projective plane
of order m, denoted by PG(2,m), is a collection of m2 +m+1
lines and m2 +m+ 1 points such that

(P1) every line contains m+ 1 points,
(P2) every point is on m+ 1 lines,
(P3) any two distinct lines intersect at exactly one point,

and
(P4) any two distinct points lie on exactly one line.

When m is a prime power, Singer [23] established the connec-
tion between an (m2 + m + 1,m + 1, 1)-perfect difference set
and a finite projective plane of order m through a collineation that
maps points (resp. lines) to points (resp. lines) in a finite projective
plane. Specifically, suppose that D = {a0, a1, . . . , am} is an
(m2 +m+ 1,m+ 1, 1)-perfect difference set with

a0 = 0 < a1 = 1 < a2 < . . . , < am < m2 +m+ 1. (3)

(i) Let {0, 1, . . . ,m2 +m} be the m2 +m+ 1 points.
(ii) Let p = m2 + m + 1 and D` = {(a0 +

`) mod p, (a1 + `) mod p, . . . , (am + `) mod p},
` = 0, 1, 2, . . . , p− 1 be the m2 +m+ 1 lines.
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Then these m2+m+1 points and m2+m+1 lines form a finite
projective plane of order m.

4.2 The construction algorithm
In this section, we propose the PPoL algorithm for constructing
pooling matrices. For this, one first constructs an (m2 + m +
1,m+ 1, 1)-perfect difference set, D = {a0, a1, . . . , am} with

a0 = 0 < a1 = 1 < a2 < . . . , < am < m2 +m+ 1. (4)

Let p = m2 +m+ 1 and

D` = {(a0+`) mod p, (a1+`) mod p, . . . , (am+`) mod p},
(5)

` = 0, 1, 2, . . . , p − 1 be the p lines in the corresponding finite
projective plane.

It is easy to see that the m + 1 lines in the cor-
responding finite projective plane that contain point 0 are
D0, Dp−a1

, Dp−a2
, . . . , Dp−am

. These m + 1 lines are called
the pencil of lines that contain point 0 (as the pencil point). As the
only intersection of the m+ 1 lines is point 0, these m+ 1 lines,
excluding point 0, are disjoint, and thus can be packed into Zp.
This is formally proved in the following lemma.

Lemma 4. Let D0
p−ai

= Dp−ai\{0}, i = 1, 2, . . . ,m. Then
{D0, D

0
p−a1

, . . . , D0
p−am

} is a partition of Zp.

Proof. First, note that {D0, Dp−a1
, . . . , Dp−am

} are the m + 1
lines that contain point 0. As any two distinct lines intersect at
exactly one point, we know that for i 6= 0,

D0 ∩D0
p−ai

= ∅,

and that for i 6= j,

D0
p−ai

∩D0
p−aj

= ∅.

Thus, they are disjoint.
As there are m + 1 points in D0 and m points in D0

p−ai
,

D0 ∪D0
p−a1

∪ . . .∪D0
p−am

contains m+1+m2 points. These
m + 1 +m2 points are exactly the set of m2 +m + 1 points in
the finite projective plane of order m.

In Algorithm 3, we show how one can construct a pooling
matrix from a finite projective plane. The idea is to first construct
a bipartite graph with the line nodes on the left and the point
nodes on the right. There is an edge between a point node and a
line node if that point is in that line. Then we start trimming this
line-point bipartite graph to achieve the needed compression ratio.
Specifically, we select the subgraph with the m2 line nodes that
do not contain point 0 (on the left) and the d1m point nodes in the
union of d1 pencil of lines (on the right).

Note that in Algorithm 3, the number of samples has to be m2.
However, this restriction may not be met in practice. A simple way
to tackle this problem is by adding additional dummy samples to
ensure that the total number of samples is m2. In the literature,
there are some sophisticated methods (see, e.g., the recent work
[24]) that further consider the “balance” issue, i.e., samples should
be pooled into groups as evenly as possible.

Example 5. (A worked example of the PPoL algorithm in
Algorithm 3) Let m = 2, d1 = 1 be the inputs of Algorithm 3.
In Step 1, let p = m2 + m + 1 = 7 and construct the perfect

ALGORITHM 3: The PPoL algorithm

Input The number of samples M = m2 with m being a
prime power, and the degree of each sample
1 ≤ d1 ≤ m+ 1.

Output An N ×M binary pooling matrix H with
M = m2 and N = d1m.

1: Let p = m2 +m+1 and construct a perfect difference
set D = {a0, a1, . . . , am} in Zp (with a0 = 0 and
a1 = 1).

2: For ` = 0, 1, . . . , p− 1, let

D` = {(a0+`) mod p, (a1+`) mod p, . . . , (am+`) mod p}

be the p lines.
3: Construct a bipartite graph with the p lines on the left
and the p points on the right. Add an edge between a
point node and a line node if that point is in that line.

4: Remove point 0 and line 0 from the bipartite graph
(and the edges attached to these two nodes). Let
G = (gn,`) be the (m2 +m)× (m2 +m) biadjacency
matrix of the trimmed bipartite graph with gn,` = 1 if
point n is in D`.

5: Let D0
p−ai

= Dp−ai
\{0}, i = 0, 1, 2, . . . ,m, be the

m+ 1 pencil of lines that contain point 0.
6: Remove the (p− ai)th column, i = 1, 2, . . . ,m, in G
to form an (m2 +m)×m2 biadjacency matrix G̃. Note
that these m columns correspond to the m lines
containing point 0.

7: Let B = ∪d1−1
i=0 D0

p−ai
(select the first d1 pencil of

lines that contain point 0). Remove rows of G̃ that are
not in B to form a d1m×m2 biadjacency matrix H .

difference set D = {a0, a1, a2} = {0, 1, 3} in Z7. In Step 2,
let D0, D1, . . . , D6 be the 7 lines, where D0 = {0, 1, 3}, D1 =
{1, 2, 4}, D2 = {2, 3, 5}, D3 = {3, 4, 6}, D4 = {4, 5, 0},
D5 = {5, 6, 1}, and D6 = {6, 0, 2}. In Step 3, construct the
bipartite graph with the 7 lines on the left and the 7 points on the
right, and add an edge between a point node and a line node if
that point is in that line. This bipartite graph is shown in Figure
4 (a). In Step 4, first remove point 0 and line 0 along with the
edges attached to these two nodes from the bipartite graph. The
nodes and the edges that need to be removed are marked in red in
Figure 4 (b), and the trimmed bipartite graph is shown in Figure
4 (c). Then, let G = (gn,`) be the 6× 6 biadjacency matrix of the
trimmed bipartite graph with gn,` = 1 if point n is in D`, i.e.,

G =



D1 D2 D3 D4 D5 D6

1 1 0 0 0 1 0
2 1 1 0 0 0 1
3 0 1 1 0 0 0
4 1 0 1 1 0 0
5 0 1 0 1 1 0
6 0 0 1 0 1 1

 (6)

In Step 5, let D0
p−a0

= D0
0 = {1, 3}, D0

p−a1
= D0

6 = {6, 2}
and D0

p−a2
= D0

4 = {4, 5} be the 3 pencil of lines that contain
point 0. In Step 6, remove the (p− a1)th = 6th and the (p− a2)th
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(a) Step 3: The bipartite graph with 7
lines and 7 points.

(b) Step 4: The nodes and the edges that
need to be removed are marked in red.

(c) Step 4: The trimmed bipartite graph.

(d) Step 6: The two lines that need to be
removed are marked in red.

(e) Step 6: The bipartite graph after re-
moving the two lines.

(f) Step 7: The points in set B along
with the edges attached to these nodes
are marked in red.

Figure 4: An example to demonstrate how the PPoL algorithm in Algorithm 3 works.

= 4th columns in G to form a 6× 4 biadjacency matrix G̃, i.e.,

G =


1 0 0 0 1 0
1 1 0 0 0 1
0 1 1 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
0 0 1 0 1 1

⇒


1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 0
0 1 0 1
0 0 1 1

 = G̃

(7)
The two lines that need to be removed are marked in red in Figure
4 (d), and the bipartite graph after removing the two lines are
shown in Figure 4 (e). In Step 7, let B = ∪d1−1

i=0 D0
p−ai

=

D0
p−a0

= D0
0 = {1, 3}. Then, remove rows of G̃ that are not

in B to form a 2× 4 biadjacency matrix H , i.e.,

G̃ =


1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 0
0 1 0 1
0 0 1 1

⇒
(

1 0 0 1
0 1 1 0

)
= H (8)

The points in set B along with the edges attached to these nodes
are marked in red in Figure 4 (f). The output of Algorithm 3 in this
example is the 2× 4 binary pooling matrix H .

Proposition 6. The degree of a line node is d1 and the degree of
a point node is m.

Proof. As the remaining lines are the lines not containing point 0,
each line then intersects with D0

p−ai
at exactly one point. Since

there are d1 pencil of lines that contain point 0, each line then
intersects with B = ∪d1

i=1D
0
p−ai

at exactly d1 points. On the
other hand, each of the points in B is in a line that contains point

0. As the lines that contain point 0 are removed, each point in B
is in m lines of the remaining m2 lines.

Proposition 7. There is at most one common nonzero element in
two rows (resp. columns) in the pooling matrix H from Algorithm
3, i.e., the inner product of two row vectors (resp. column vectors)
is at most 1.

Proof. This is because the bipartite graph with the biadjacency ma-
trixH is a subgraph of the line-point bipartite graph corresponding
to a finite projective plane. From (P3) and (P4) of Definition 3,
any two distinct lines intersect at exactly one point, and any two
distinct points lie on exactly one line. Thus, there is at most one
common nonzero element in two rows (resp. columns) in H from
Algorithm 3.

Corollary 8. The girth (the minimum length of a cycle) of the
bipartite graph with biadjacency matrix H is at least 6.

Proof. As the length of a cycle in a bipartite graph must be an
even number, it suffices to show that there does not exist a cycle
of length 4. We prove this by contradiction. Suppose that there is a
cycle of length 4. Suppose that this cycle contains two line nodes
L1 and L2 and two point nodes P1 and P2. Then the intersection
of the two lines L1 and L2 contains two points P1 and P2. This
contradicts (P3) in Definition 3.

Theorem 9. Consider using the d1m × m2 pooling matrix H
from Algorithm 3 for a binary state vector x in a noiseless setting.
If the number of positive samples in x is not larger than d1 − 1,
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then every sample can be correctly decoded by the DD algorithm
in Algorithm 1.

Proof. Suppose that there are at most d1 − 1 positive samples.
We first show that every negative sample can be correctly decoded
by the DD algorithm in Algorithm 1. Consider a negative sample.
Since there are at most d1− 1 positive samples that can be pooled
into the d1 groups of this negative sample, and two different
samples can be in a common group at most once (Proposition 7),
there must be at least one group without positive samples (among
the d1 groups of this negative sample). Thus, this negative sample
can be correctly decoded. Now consider a positive sample. Since
there are at most d1 − 2 positive samples that can be pooled into
the d1 groups of this positive sample, and two different samples
can be in a common group at most once (Proposition 7), there
must be at least one group in which this positive sample is the
only positive sample. Thus, every positive sample can be correctly
decoded.

4.3 Connection between the PPoL algorithm and the
shifted transversal design

We note that there are other methods that can also generate bipar-
tite graphs that satisfy the property in Proposition 7. For instance,
in the recent paper [25], Täufer used the shifted transversal design
to generate “mutlipools” (in Definition 1 of [25]) that satisfy the
property in Proposition 7 when m is a prime (in Theorem 3 of
[25]). In this section, we establish the connection between the
PPoL design and the shift transversal design when m is restricted
to a prime. We do this by identifying a mapping between these
two designs in the following example.

Example 10. Consider m = 3 in the PPoL algorithm. Then let
p = m2+m+1 = 13, andD0 = {a0, a1, a2, a3} = {0, 1, 4, 6}
be a perfect difference set in Z13. By using the PPoL algorithm
in Algorithm 3, we obtain a bipartite graph with 9 samples (lines)
and 12 groups (points) in Figure 5. In the following, we discuss
the four cases with d1 = 1, 2, 3, 4, respectively.

(i) If d1 = 1, D0
p−a0

= D0
0 = {1, 4, 6}. Then D1, D10, D8 are

in group 1, D4, D3, D11 are in group 4, and D5, D2, D6 are
in group 6. Thus, every sample is contained in d1 = 1 group.
(See the black points and lines in Figure 5.)

(ii) If d1 = 2, D0
p−a0

= D0
0 = {1, 4, 6} and D0

p−a1
= D0

12 =
{12, 3, 5}. Then, in addition to the pooling results in (i),
D1, D4, D5 are in group 5, D10, D3, D2 are in group 3,
and D8, D11, D6 are in group 12. Thus, every sample is
contained in d1 = 2 groups. (See the black and green ones
in Figure 5.)

(iii) If d1 = 3, D0
p−a0

= D0
0 = {1, 4, 6}, D0

p−a1
= D0

12 =
{12, 3, 5}, and D0

p−a2
= D0

9 = {9, 10, 2}. Then, in
addition to the pooling results in (i) and (ii), D8, D3, D5 are
in group 9, D10, D4, D6 are in group 10, and D1, D11, D2

are in group 2. Thus, every sample is contained in d1 = 3
groups. (See the black, green, and red ones in Figure 5.)

(iv) If d1 = 4, D0
p−a0

= D0
0 = {1, 4, 6}, D0

p−a1
= D0

12 =
{12, 3, 5}, D0

p−a2
= D0

9 = {9, 10, 2}, and D0
p−a3

=
D0

7 = {7, 8, 11}. Then, in addition to the pooling results
in (i), (ii) and (iii), D1, D3, D6 are in group 7, D8, D4, D2

are in group 8, and D5, D10, D11 are in group 11. Thus,

every sample is contained in d1 = 4 groups. (See the black,
green, red, and orange ones in Figure 5.)

The above PPoL pooling strategy is the same as (N,n, k) =
(m2,m, d1)-multipool in the shifted transversal design [25] if we
arrange the 9 samples in the 3 × 3-square in Table 1. Specifi-
cally, pooling along rows yields the three groups {D1, D10, D8},
{D4, D3, D11}, and {D5, D2, D6}. This corresponds to the case
with d1 = 1 in the PPoL design. On the other hand, pooling along
columns yields the three groups {D1, D4, D5}, {D10, D3, D2},
and {D8, D11, D6}. This corresponds to the case with d1 = 2
in the PPoL design. Moreover, pooling with slope 1 (resp. 2)
corresponds to the case with d1 = 3 (resp. d1 = 4).

Table 1: Arrangement of the 9 samples in a 3×3 rectangular grid.

D1 D10 D8

D4 D3 D11

D5 D2 D6

In fact, these two constructions are closely related to orthog-
onal Latin squares [26]. For n = 3 (which is a prime power),
there are exactly n − 1 = 2 mutually orthogonal Latin squares:
{C(r) = c

(r)
i,j : r = 1, 2}, where c(r)i,j = (r ∗ i + j) is in GF(3).

With the “vertical” and “horizontal” cases, the maximum number
of multiplicity k in the shifted transversal design is n + 1 = 4.
Similarly, the maximum number of d1 in the PPoL algorithm is
m+ 1 = 4. Moreover, pooling matrices that satisfy the decoding
property in Theorem 9 are known as the superimposed codes in
[27].

Figure 5: The bipartite graph obtained by using Algorithm 3 for
Example10.

4.4 Probabilistic analysis of the PPoL pooling matrices

In this section, we conduct a probabilistic analysis of the PPoL
pooling matrices. We make the following assumption:

(A1) All the samples are i.i.d. Bernoulli random variables.
A sample is positive (resp. negative) with probability
r1 (resp. r0). The probability r1 is known as the
prevalence rate in the literature.

Note that r1 + r0 = 1. Also, let q1 (resp. q0) be the probability
that the group end of a randomly selected edge is positive (resp.
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Figure 6: Computing the conditional probability p0 by the tree
evaluation method.

Figure 7: Computing the conditional probability p1 by the tree
evaluation method.

negative). Excluding the randomly selected edge, there are d2− 1
remaining edges in that group, and thus

q0 = (r0)
d2−1, (9)

q1 = 1− (r0)
d2−1. (10)

Let p0 be the conditional probability that a sample cannot be
decoded, given that the sample is a negative sample. Note that a
negative sample can be decoded if at least one of its edges is in
a negative group, excluding its edge (see Figure 6). Consider a
negative sample, called the tagged sample. Since the girth of the
bipartite graph of the pooling matrix is 6 (as shown in Corollary 8),
the samples in the d1 groups of the subtree of the tagged sample
are distinct (see the tree expansion in Figure 6). Thus,

p0 = (q1)
d1 = (1− (r0)

d2−1)d1 . (11)

Let p̂0 be the conditional probability that the sample end of a
randomly selected edge cannot be decoded, given that the sample
end is a negative sample. Note that the excess degree of a sample
(excluding the randomly selected edge) is d1 − 1. Analogous to
the argument for (11) (see the bottom subtree of the tree expansion
in Figure 7), we have

p̂0 = (q1)
d1−1 = (1− (r0)

d2−1)d1−1. (12)

Let p1 be the conditional probability that a sample cannot be
decoded given that the sample is a positive sample. Note that a
positive sample can be decoded if at least one of its edges is in a
group in which all the edges are removed except the edge of the
positive sample. Since an edge is removed if its sample end is a

negative sample and that sample end is decoded to be negative,
the probability that an edge is removed is (1 − p̂0)r0. If the tree
expansion in Figure 7 is actually a tree, then

p1 = (1− (r0(1− p̂0))d2−1)d1 . (13)

We note that the tree expansion in Figure 7 may not be a
tree for a PPoL pooling matrix generated from Algorithm 3, the
identity in (13) is only an approximation. A sufficient condition
for the tree expansion in Figure 7 to be a tree of depth 4 is that the
girth of the bipartite graph is larger than 8. (If the graph in Figure
7 is not a tree, i.e., there is a loop in that graph, then the girth
of the bipartite graph is less than or equal to 8.) Unfortunately,
the girth of a PPoL pooling matrix can only be proved to be at
least 6. Since a sample cannot be decoded with probability r0p0+
r1p1, the average number of tests needed for the DD2 algorithm
in Algorithm 2 to decode the M samples is N+M(r0p0+r1p1).
The expected relative cost for the DD2 algorithm with an N ×M
pooling matrix is

N +M(r0p0 + r1p1)

M
=

1

G
+ r0p0 + r1p1, (14)

where G =M/N is the (compressing) gain of the pooling matrix
in (2). Note that for a (d1, d2)-regular pooling matrix, we have
from (2) that G = d2/d1. Thus, we can use (11), (13) and (14)
to find the (d1, d2)-regular pooling matrix that has the lowest
expected relative cost (though (13) is only an approximation for
the pooling matrices constructed from the PPoL algorithm). In
Table 2, we use grid search to find the (d1, d2)-regular pooling
matrix with the lowest expected relative cost for various preva-
lence rates r1 up to 10%. The search regions for the grid search
are 2 ≤ d1 ≤ 8 and d1 ≤ d2 ≤ 31. In the last column of this
table, we also show the expected relative cost of the Dorfman two-
stage algorithm (Table I of [6]). As shown in this table, using the
DD2 algorithm (with the optimal pooling matrices) has significant
gains over the Dorfman two-stage algorithm. Unfortunately, not
every optimal (d1, d2)-regular pooling matrix in Table 2 can be
constructed by using the PPoL algorithm in Algorithm 3. In the
next section, we will look for suboptimal pooling matrices that
have small performance degradation.

Table 2: The (d1, d2)-regular pooling matrix with the lowest
expected relative cost from (14).

r1 d1 d2 cost (14) Dorfman [6]
1% 3 31 0.1218 0.20
2% 4 29 0.1881 0.27
3% 4 22 0.2545 0.33
4% 4 17 0.3147 0.38
5% 3 12 0.3678 0.43
6% 3 11 0.4166 0.47
7% 3 10 0.4627 0.50
8% 2 7 0.5035 0.53
9% 2 6 0.5416 0.56
10% 2 6 0.5760 0.59

5 NOISY DECODING

In this section, we consider decoding for noisy binary samples.
For this, we introduce the noisy model in [13].

Definition 11. Define the probability transition function p(1|k, `)
(resp. p(0|k, `)) such that a group containing k samples, ` of
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which are positive, the test result for the group is positive (resp.
negative).

For the noiseless model discussed in the previous section, we
have

p(1|k, `) =

{
1 if ` ≥ 1
0 otherwise , (15)

p(0|k, `) =

{
1 if ` = 0
0 otherwise . (16)

There are several noisy models proposed in the literature
(see, e.g., the monograph [13]). Among them, the dilution noise
model might be a suitable one for the rt-PCR test. In the dilution
noise model, the test result of a group containing ` positive
samples follows a binomial distribution with parameters ` and
1 − ε. Intuitively, a positive sample included in a group can be
“diluted” with probability ε. The parameter ε is called the dilution
probability. The transition probability functions for the dilution
noise model are

p(1|k, `) = 1− ε`, (17)

p(0|k, `) = ε`, (18)

for all k, ` ≥ 0. Another way to view the dilution model is to view
the bipartite graph (of the pooling matrix) as a random weighted
graph, where the edge weights of the edges are independent
Bernoulli random variables with parameter 1− ε. In the following
analysis, we say an edge is diluted (resp. not diluted) if its edge
weight is 0 (resp. 1). When an edge is diluted, the sample end
of that edge does not affect the testing result of the group end of
that edge. On the other hand, when an edge is not diluted and its
sample end is positive, then the group end of that edge is positive.

For the dilution model, there might be false negatives and false
positives if we use the DD algorithm for decoding. This is because
a positive sample might be diluted during the pooling process
and thus mistakenly decoded as a negative sample. On the other
hand, a negative sample might be pooled into a group with a false
negative and thus be mistakenly decoded as a positive sample
by the DD algorithm (that assumes the only remaining sample
in a positive group is positive). In order to ensure that there are
no false positives, we could only run the COMP step in the DD
algorithm and have the un-decoded samples tested one at a time
at the second stage. However, there are still false negatives due to
dilution. To reduce the false negatives, we propose using the K-
combinatorial orthogonal matching pursuit (K-COMP) algorithm
(see Algorithm 4) that only decodes negative samples if there are
in at least K negative groups. When K = 1, this reduces to the
original COMP step in the DD algorithm.

Now we provide a probabilistic analysis of the K-COMP
algorithm. As in Section 4.4, we let q0 be the probability that
the group end of a randomly selected edge is negative. Excluding
the randomly selected edge, there are d2 − 1 remaining edges in
that group. Conditioning on the event that ` edges of these d2 − 1
remaining edges are not diluted, the probability that the group end
of a randomly selected edge is negative is r`0 (as in (9)). Thus, we
have

q0 =
d2−1∑
`=0

r`0

(
d2 − 1
`

)
(1− ε)`εd2−1−`

= (r0 + r1ε)
d2−1. (19)

ALGORITHM 4: The K-combinatorial orthogonal
matching pursuit (K-COMP) algorithm for diluted bi-
nary samples

Input An N ×M pooling matrix H and a binary
N -vector y of the group test result.

Output an M -vector for the test results of the M
samples.

0: Initially, every sample is marked “un-decoded.”
1: If a sample is pooled in at least K negative groups,
then that sample is decoded to be negative.

2: For those “un-decoded” samples, test them one at a
time.

Following the argument in Section 4.4, let p0 be the condi-
tional probability that a sample cannot be decoded, given that the
sample is a negative sample. Note that a negative sample can be
decoded if at leastK of its edges are in negative groups, excluding
its edges. Thus,

p0 = 1−
d1∑

k=K

(
d1
k

)
(q0)

k(1− q0)d1−k

=
K−1∑
k=0

(
d1
k

)
(q0)

k(1− q0)d1−k. (20)

where q0 is in (19). We note that (20) reduced to (11) when K =
1.

Now, we compute the false negative rate, FNR, which is
defined as the conditional probability that a sample is decoded to
be negative, given that the sample is a positive sample. Consider a
positive sample. Conditioning on the event that d̃1 edges of these
d1 edges of this positive sample are diluted, the probability that
this positive sample is decoded to be negative is

d̃1∑
k=K

(
d̃1
k

)
(q0)

k(1− q0)d̃1−k, (21)

as shown in (20). Thus,

FNR =
d1∑

d̃1=K

( d̃1∑
k=K

(
d̃1
k

)
(q0)

k(1− q0)d̃1−k
)

(
d1
d̃1

)
(ε)d̃1(1− ε)d1−d̃1 . (22)

In particular, for K = 1, we have

FNR = 1− (1− q0ε)d1 (23)

Now, we compute the true positive rate, TPR, or sensitivity,
which is defined as the conditional probability that a sample is
decoded to be positive, given that the sample is a positive sample.

TPR = 1− FNR = (1− q0ε)d1 . (24)

The expected number of un-decoded samples after Step 1
of the K-COMP algorithm is M(r0p0 + r1 · TPR). Thus, the
expected relative cost for the K-COMP algorithm is

N +M(r0p0 + r1 · TPR)
M

=
1

G
+ r0p0 + r1 · TPR. (25)
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6 NUMERICAL RESULTS

6.1 Noiseless decoding
In this section, we compare the performance of various pooling
matrices by using the DD2 algorithm in Algorithm 2. The first
four pooling matrices are constructed by using the PPoL algorithm
in Algorithm 3 with the parameters (m, d1) = (31, 3), (23, 4),
(13, 3), and (7, 2), respectively. The fifth pooling matrix is the
pooling matrix used in P-BEST [8]. The sixth matrix is the 15×35
pooling matrix constructed by the Kirkman triples. The next two
pooling matrices are used in Tapestry [9], [10]. The last pooling
matrix is the 2D-pooling matrix in [7]. In Table 3, we show the
basic information of these pooling matrices. The size of anN×M
pooling matrix indicates that the number of groups is N , and
the number of samples is M . The parameter d1 is the number
of groups in which a sample is pooled. On the other hand, d2
is the number of samples in a group. Note that there are some
pooling matrices that are not (d1, d2)-regular. For instance, in the
2D-pooling matrix, there are 8 groups with 12 samples and 12
groups with 8 samples. Also, both the 16 × 40 matrix and the
24 × 60 matrix used in Tapestry are not (d1, d2)-regular. The
column marked with row cor. (resp. col. cor.) is the maximum
of the inner product of two rows (resp. columns) in a pooling
matrix. For a pooling matrix, the column marked with girth is the
minimum length of a cycle in the bipartite graph corresponding
to that pooling matrix. The column marked with (comp.) gain is
the compressing gain G of a pooling matrix, which is the ratio of
the number of columns (samples) to the number of rows (groups),
i.e., G = M/N . As shown in Table 3, both the row correlation
and the column correlation of the pooling matrices constructed
from the PPoL algorithm in Algorithm 3 are 1. So are the 15 ×
35 pooling matrix constructed by the Kirkman triples. Such a
correlation result is expected from Proposition 7. On the other
hand, the row correlation and the column correlation of the pooling
matrix in P-BEST [8] are 6 and 2, respectively. Also, the girth of
the pooling matrix in P-BEST is only 4, which is smaller than the
other four matrices. The girth of the 16 × 40 pooling matrix in
Tapestry is also 4. This shows that the pooling matrices from the
PPoL algorithm are more “spread-out” than the pooling matrix in
P-BEST and the 16× 40 pooling matrix in Tapestry.

Table 3: Basic information of some pooling matrices.

H size d1 d2
row
cor.

col.
cor. girth

(comp.)
gain

PPoL-(31,3) 93 × 961 3 31 1 1 6 10.33
PPoL-(23,4) 92 × 529 4 23 1 1 6 5.75
PPoL-(13,3) 39 × 169 3 13 1 1 6 4.33
PPoL-(7,2) 14 × 49 2 7 1 1 8 3.5

P-BEST Matrix [8] 48 × 384 6 48 6 2 4 8
Kirkman Matrix 15 × 35 15 × 35 3 7 1 1 6 2.33

Tapestry Matrix 16 × 40 [9] 16 × 40 2-3 6-9 3 2 4 2.5
Tapestry Matrix 24 × 60 [9] 24 × 60 2-3 6-7 1 1 6 2.5

2D-pooling Matrix [7] 20 × 96 2 12(8) 1 1 8 4.8

In practical situations, the prevalence rates of COVID-19 are
basically in the range of 0% to 5%. As such, we conduct 10,000
independent experiments for each value of the prevalence rate r1
in this range to compare the performance of pooling matrices in
Table 3. Each numerical result is obtained by averaging over these
10,000 independent experiments. Thus, we believe the simulation
results should be applicable to practical situations.

In Figure 8, we show the (measured) conditional probability
p0 (that a sample cannot be decoded given it is a negative sample)
for these pooling matrices. For the PPoL pooling matrices, the
measured p0’s match extremely well with the theoretical results
from (11). As shown in this figure, the Kirkman matrix and the two
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Figure 8: The conditional probability p0 (that a sample cannot
be decoded given it is a negative sample) as a function of the
prevalence rate r1 for various pooling matrices.
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Figure 9: The conditional probability p1 (that a sample cannot
be decoded given it is a positive sample) as a function of the
prevalence rate r1 for various pooling matrices.

matrices in Tapestry have the best performance. This is because
their d2’s (the number of samples in a group) are small (below 9
for these three matrices). As such, the probability that a group is
tested negative is higher than the other pooling matrices. Note that
these three matrices also have low (compressing) gains, 2.33-2.5.
On the other hand, P-BEST has the worst performance for p0 as
the number of samples in a group for that matrix is 48, which is
the largest among all these pooling matrices.

In Figure 9, we show the (measured) conditional probability
p1 (that a sample cannot be decoded given it is a positive sample)
for these pooling matrices. Once again, the Kirkman matrix and
the two matrices in Tapestry have the best performance. This is
mainly due to the low (compressing) gains of these three matrices.
Though not shown in Figure 9, we note that the measured p1’s
are very close to those from (13), and thus the tree expansion in
Figure 7 is actually tree-like.

As discussed in Section 4.4, the probability that a sample
cannot be decoded is r0p0 + r1p1. Such a probability is also
the probability that a sample needs to go through the second
stage for individual testing. In Figure 10, we show the probability
r0p0 + r1p1 as a function of the prevalence rate r1 for various
pooling matrices. As shown in this figure, the Kirkman matrix
and the two matrices in Tapestry have the best performance. Once
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second stage) as a function of the prevalence rate r1 for various
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again, this is mainly due to the low (compressing) gains of these
three matrices. We note that it takes time to do the second test.
The numerical results in Figure 10 imply that using the Kirkman
matrix (or the two matrices in Tapestry) has the shortest expected
time to obtain a testing result.

A fair comparison of these pooling matrices is to measure their
expected relative costs (defined in [6]). Recall that the expected
relative cost is the ratio of the expected number of tests required by
the group testing technique to the number of tests required by the
individual testing. In Figure 11, we show the (measured) expected
relative costs for these pooling matrices. In this figure, we also plot
the curve for the Dorfman two-stage algorithm (the black curve)
with the optimal group size M chosen from Table 1 of [6] for the
prevalence rates, 1%, 2%, . . . , 5%. To our surprise, the curves for
the Kirkman matrix and the two matrices in Tapestry are above the
black curve. This means that the expected relative costs of these
three matrices are higher than the (optimized) Dorfman two-stage
algorithm. Thus, if the additional amount of time to go through
the second stage is not critical, using other pooling matrices could
lead to more cost reduction than using these three matrices. There
are several pooling matrices that have very low relative costs when
the prevalence rates are below 1%. The P-BEST pooling matrix
is one of them. However, the relative cost of the P-BEST pooling
matrix increases dramatically when the prevalence rates are above
1.3%. Moreover, the P-BEST pooling matrix has a higher relative
cost than the (optimized) Dorfman two-stage algorithm when the
prevalence rate is above 2.5%. On the other hand, 2D-pooling has
a very low relative cost when the prevalence rates are above 2.5%.
To summarize, there does not exist a pooling matrix that has the
lowest relative cost in the whole range of the prevalence rates
considered in our experiments.

To optimize the performance, one should choose the right
pooling matrix, depending on the prevalence rate. However, this
might be difficult as the exact prevalence rate of a new outbreak
of COVID-19 in a region might not be known in advance. Our
suggestion is to use suboptimal PPoL matrices for a range of
prevalence rates, as shown in Table 4. As shown in this table,
the costs computed from the theoretical approximations in (14)
and the costs measured from simulations are very close, and they
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Figure 11: The expected relative cost as a function of the preva-
lence rate r1 for various pooling matrices.

are within 2% of the minimum costs for (d1, d2)-regular pooling
matrices in Table 2. From our numerical results in Figure 11, we
suggest using the PPoL matrix with d1 = 3 and d2 = 31 when
the prevalence rate r1 is below 2%. In this range of prevalence
rates, its expected relative cost is even smaller than that of P-
BEST. Moreover, it can achieve an 8-fold reduction in test costs
when the prevalence rate is near 1% (as shown in Table 4), and
most samples can be decoded in the first stage (as shown in Figure
10). When the prevalence rate r1 is between 2%-4%, we suggest
using the PPoL matrix with d1 = 4 and d2 = 23. In this range of
prevalence rates, using such a pooling matrix can still achieve (at
least) a 3-fold reduction in test costs. Roughly, 17% of samples
need to go through the second stage when the prevalence rate is
near 4% (as shown in Figure 10). When the prevalence rate r1 is
between 4%-7%, we suggest using the PPoL matrix with d1 = 3
and d2 = 13, and it can still achieve (at least) a 2-fold reduction
in test costs. When the prevalence rate r1 is between 7%-10%, we
suggest using the PPoL matrix with d1 = 2 and d2 = 7. Though
its expected relative cost is still lower than that of the Dorfman
two-stage algorithm, the difference is small.

Table 4: Suboptimal PPoL pooling matrices. r1: prevalence rates;
d1 and d2: parameters of PPoL pooling matrices; cost (14):
costs computed from the theoretical approximations in (14); cost
(sim): costs measured from simulations; Dorfman [6]: costs by the
Dorfman two-stage algorithm.

r1 d1 d2 cost (14) cost (sim) Dorfman [6]
1% 3 31 0.1218 0.12 0.20
2% 4 23 0.1973 0.20 0.27
3% 4 23 0.2552 0.25 0.33
4% 3 13 0.3170 0.32 0.38
5% 3 13 0.3685 0.37 0.43
6% 3 13 0.4243 0.42 0.47
7% 2 7 0.4651 0.47 0.50
8% 2 7 0.5035 0.50 0.53
9% 2 7 0.5422 0.54 0.56
10% 2 7 0.5809 0.58 0.59

6.2 Noisy decoding

In this section, we compare the performance of various pooling
matrices in the noisy case. The pooling matrices are the same
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Figure 12: The sensitivity as a function of the prevalence rate r1
for various pooling matrices under the dilution noise ε by using
the 1-COMP decoding algorithm.
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Figure 13: The expected relative cost as a function of the preva-
lence rate r1 for various pooling matrices under the dilution noise
ε by using the 1-COMP decoding algorithm.

as those in Section 6.1. We consider two dilution probabilities
ε = 0.01 and ε = 0.1 in the dilution noise model. For the noisy
decoding, we use the K-COMP algorithm with K = 1 and K =
2 in Algorithm 4.

To compare the performance of these pooling matrices in
the noisy case, we conduct 10,000 independent experiments for
each value of the prevalence rate r1, ranging from 0% to 5%.
Each numerical result is obtained by averaging over these 10,000
independent experiments. In Figure 12, we show the sensitivity
for these pooling matrices using the 1-COMP decoding algorithm.
For ε = 0.01, we observe that the performances of all pooling
matrices are comparable. For ε = 0.1, the PPoL(7,2) matrix and
the 2D-pooling matrix have the best performance, while the P-
BEST pooling matrix has the worst result when the prevalence
rate r1 is less than 1.5%. The results can be explained from the
value of d1, the degree of each sample. Specifically, if one of the
edges of a positive sample is diluted, then such a sample may
be decoded as a negative one. Consequently, the larger d1 results
in the worse performance. In this figure, we also observe that
the sensitivity increases in r1. The reason is that by using the 1-
COMP decoding algorithm, there are more un-decoded samples as
r1 increases. Such un-decoded samples are tested individually at
the second stage. This contributes to more true positive samples.

In Figure 13, we show the expected relative costs for these
pooling matrices using the 1-COMP decoding algorithm. When
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Figure 14: The sensitivity as a function of the prevalence rate r1
for various pooling matrices under the dilution noise ε by using
the 2-COMP decoding algorithm.
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Figure 15: The expected relative cost as a function of the preva-
lence rate r1 for various pooling matrices under the dilution noise
ε by using the 2-COMP decoding algorithm.

r1 is below 1.5%, the value of ε has little effect on the expected
relative costs for all pooling matrices. This is because the number
of positive samples is small under low prevalence rates, and hence
most of the samples can be decoded at the first stage. The same
argument also explains that the higher (compressing) gain of the
pooling matrix leads to a lower expected relative cost when r1 is
below 2%. Moreover, as r1 increases, we observe that the expected
relative costs of the P-BEST matrix and the PPoL(31,3) rise
dramatically. The reason is that they have larger d2’s. Specifically,
if a single group contains more samples, this group is more likely
to be positive and thus cannot be decoded at the first stage.

In Figure 14 and Figure 15, we show the sensitivity and
the expected relative costs, respectively, for the pooling matrices
using the 2-COMP decoding algorithm. Compare with the results
of K = 1, the sensitivity of K = 2 shows a considerable
improvement when ε = 0.1. The reason is that for K = 2,
a sample can be decoded as negative only when this sample is
pooled in at least 2 negative groups. This greatly enhances the
sensitivity, but the expected relative costs increase because more
samples need to be tested at the second stage.

In Figure 13 and Figure 15, we also plot the curve for the
Dorfman two-stage algorithm (the black curve) with its optimal
group size for the prevalence rates, 1%, 2%, . . . , 5%. We can see
that when K = 1, the PPoL(31,3), the P-BEST matrix, the 2D-
pooling matrix, and the PPoL(23,4) have lower expected relative
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costs than that of the Dorfman two-stage algorithm because of
their higher (compressing) gains. When K = 2, none of these
matrices outperforms the Dorfman two-stage algorithm in terms
of the expected relative costs.

To sum up, in the dilution noise model, the sensitivity of the 1-
COMP decoding algorithm in Algorithm 4 decrease significantly
with respect to the increase of the dilution noise. Though using
the 2-COMP decoding algorithm in Algorithm 4 results in a
considerable improvement, the expected relative costs may be
higher than those by the Dorfman two-stage algorithm. Thus, the
simple Dorfman method might be a better strategy for pooled
testing in a noisy setting.

7 CONCLUSION

In this paper, we proposed a new family of PPoL polling matrices
that have maximum column correlation and row correlation of 1
for a wide range of column weights. Using the two-stage definite
defectives (DD2) decoding algorithm, we compare their perfor-
mance with various pooling matrices proposed in the literature,
including 2D-pooling [7], P-BEST [8], and Tapestry [9], [10].
Our numerical results showed no pooling matrix with the lowest
expected relative cost in the whole range of the prevalence rates.
To optimize the performance, one should choose the right pooling
matrix, depending on the prevalence rate. As the family of PPoL
matrices can dynamically adjust their construction parameters
according to the prevalence rates, it seems that using such a family
of pooling matrices might lead to better cost reduction than using
a fixed pooling matrix. We also consider a noisy setting in this
paper. Our numerical results show a trade-off between the high
sensitivity and the low expected relative costs. As such, when the
dilution noise is not negligible, the simple Dorfman method might
be a better strategy for pooled testing.

In this paper, we only considered binary samples. For ternary
samples, there are three test outcomes: negative (0), weakly
positive (1), and strongly positive (2). It seems possible to extend
the DD2 algorithm for binary samples to the setting with ternary
samples by using successive cancellations.
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