
Leber congenital amaurosis (LCA; OMIM 204000) and 
juvenile retinitis pigmentosa (RP) are closely related inher-
ited retinal dystrophies with largely overlapping clinical 
characteristics. LCA is the most severe form of inherited 
retinal degeneration characterized by severe visual loss at or 
shortly after birth and nystagmus [1]. The incidence of LCA 
has been variably described as ranging from 1.2 [2] to 3.0 
[3] per 100,000 live births. Fundus may be normal at diag-
nosis or present various abnormalities, including pigmentary 
retinopathy as seen in patients with retinitis pigmentosa [4]. 
In most cases, the electroretinogram (ERG) responses are 
non-detectable, a fact that accentuates the early loss of rod 
and cone photoreceptor function [5]. Usually, LCA shows 
an autosomal recessive pattern of inheritance. However, a 
small number of autosomal dominant LCA cases have been 

reported [6-8]. In approximately 20% of patients with LCA, 
mental retardation or behavioral disorders are observed [9]. 
Juvenile RP has an overall milder phenotype with disease 
onset occurring in the first years of a child’s life, night blind-
ness, nystagmus, and severely reduced or extinguished ERG 
responses.

LCA was first described as an intrauterine form of RP 
[10]. A later classification by Foxman et al. enabled a clear 
differentiation between LCA and early-onset RP based on the 
age at onset of symptoms, severity of visual loss, and associ-
ated non-ocular abnormalities [11]. The distinction between 
LCA and juvenile or early-onset RP can become challenging, 
as the clinical features overlap. It is therefore also expected 
that the diseases might be caused by mutations in the same 
gene [12].

Previous work showed that, consistent with its clinical 
heterogeneity, LCA may be caused by mutations in at least 
19 different genes: GUCY2D (Gene ID: 3000; OMIM 600179) 
[13], RPE65 (Gene ID: 6121; OMIM 180069) [14], SPATA7 
(Gene ID: 55812; OMIM 609868) [12], AIPL1 (Gene ID: 
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23746; OMIM 604392) [15], LCA5 (Gene ID: 167691; OMIM 
611408) [16], RPGRIP1 (Gene ID: 57096; OMIM 605446) 
[17,18], CRX (Gene ID: 1406; OMIM 602225) [7,19], CRB1 
(Gene ID: 23418; OMIM 604210) [20], NMNAT1 (Gene ID: 
64802; OMIM 608700) [21], CEP290 (Gene ID: 80184; 
OMIM 610142) [22,23], IMPDH1 (Gene ID: 3614; OMIM 
146690) [8], RD3 (Gene ID: 343035; OMIM 180040) [24], 
RDH12 (Gene ID: 145226; OMIM 608830) [25,26], LRAT 
(Gene ID: 9227; OMIM 604863) [27,28], TULP1 (Gene ID: 
7287; OMIM 602280) [29], KCNJ13 (Gene ID: 3769; OMIM 
603208) [30], IQCB1 (Gene ID: 9657; OMIM 609237) (also 
NPHP5) [31,32], MERTK (Gene ID: 10461; OMIM 604705) 
[4,33], and OTX2 [34] (Gene ID: 5015; OMIM 600037). Muta-
tions in some LCA genes, such as RPE65 [35], SPATA7 [12], 
CRB1 [36], RDH12 [26], LRAT [27], and TULP1 [37], are also 
known to cause autosomal recessively inherited juvenile RP. 
By contrast, heterozygous mutations in AIPL1 might cause an 
autosomal dominant form of juvenile RP [38].

Spermatogenesis associated protein 7 (SPATA7) was 
identified in 2003 by cloning and characterization of full-
length cDNA from rat testes, and therefore designated 
as RSD-3; accordingly, the homologous human gene was 
called HSD-3.1 [39]. Human SPATA7 consists of 12 exons 
spanning a 52.9 kb genomic sequence and maps to chromo-
some 14q31.3 (Ensembl Genome Browser, transcript ID 
ENST00000393545, GRCh37  / hg19). SPATA7 encodes a 
protein of 599 amino acids that is conserved from sea urchins 
to humans but is absent in lower eukaryotes, such as insects 
and fungi [12]. In addition to expression in spermatocytes, 
Spata7 has been reported to be expressed in multiple retinal 
layers in the adult mouse retina, including the inner segments 
of photoreceptors as well as the ganglion cell and inner 
nuclear layers [12]. Expression patterns in the developing and 
mature mouse retina suggested that Spata7 is important for 
normal retinal function rather than development [12]. Two 
isoforms resulting from alternative splicing of exon 3 are 
predominantly expressed in the testis (isoform lacking exon 
3) or in the brain and retina, respectively, proposing specific 
functions of the two SPATA7 isoforms in spermatozoa and 
neurons [9]. According to the Human Gene Mutation Database 
(HGMD), four nonsense mutations, three missense mutations, 
three splicing mutations, and seven small indel (insertions/
deletions) mutations have been identified in SPATA7. Thus, 
this minor gene for LCA or juvenile RP accounts for only a 
small percentage of cases.

METHODS

Clinical evaluation and DNA specimens: A two-generation 
family with autosomal recessive juvenile RP was ascertained 
from the Triangle Regional Research and Development 
Center (TRDC), Kfar Qari’, Israel. A detailed patient history 
of the index patient and her affected sister was recorded, 
including disease onset, symptoms, and progression. Visual 
acuity and visual field testing, full-field electroretinogram 
(ERG) recordings, and fundus examination followed by 
fundus photography and optical coherence tomography 
(OCT) imaging were performed in the index patient. 
Peripheral blood was taken from all family members using 
EDTA-containing vials. The blood samples were stored at 
4°C for one week at longest before DNA was extracted using 
the MasterPure DNA Purification Kit for Blood Version II 
(Epicentre, Madison, WI) according to the manufacturer’s 
protocol. The study was conducted in accordance with the 
principles of the Declaration of Helsinki. This study was 
conducted in accordance with the principles of the Decla-
ration of Helsinki and adhered to the ARVO statement on 
human subjects. It was further approved by the TRDC ethic 
committee. Moreover, written informed consent was obtained 
from each study participant or from the parents in the case of 
minor study subjects.

SNP genotyping and homozygosity mapping: Genome-wide 
single nucleotide polymorphism (SNP) genotyping was 
performed for DNA samples of the two affected siblings 
by applying Affymetrix GeneChip Human Mapping 250 K 
NspI SNP arrays (Affymetrix, Inc., Santa Clara, CA). SNP 
chip genotypes were called with the Affymetrix Geno-
typing Console (GTC) Software v. 2.1 and used to assess 
homozygous regions by applying the online version of the 
HomozygosityMapper Software [40]. The threshold for the 
identification of homozygous regions was set at 2 Mb.

PCR analyses: DNA fragments of the SPATA7 gene (reference 
sequence ENST00000393545, Ensembl Genome Browser) 
were amplified from genomic DNA with PCR. Standard 
PCRs were performed with 80 ng of genomic DNA in a 25 µl 
volume containing 0.2 µM of each primer, 200 µM of each 
dNTP, 10 mM Tris pH 8.9, 50 mM KCl, 3 mM MgCl2, and 0.5 
U DNA Taq Polymerase (ATG Biosynthetics, Merzhausen, 
Germany) using the following cycling conditions: 4 min at 
94 °C followed by 35 cycles of 15 s at 94 °C, 15 s at 60 °C, 
30 s at 72 °C, and one final additional elongation for 5 min 
at 72 °C.

Mapping of deletion breakpoints: The absence of PCR prod-
ucts for exons 1–5 of SPATA7 in the index patient pointed to 
the presence of a homozygous deletion with the telomeric 
breakpoint located within intron 5. To refine this breakpoint, 
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we performed sequence tagged site (STS) content mapping 
by applying a fixed reverse primer (SPATA7_Ex6–1_R; 
located in exon 6) and a set of ten forward primers located at 
increasing distance in intron 5. For amplification, we applied 
a long distance (LD) PCR protocol using 80 ng of genomic 
DNA in a total volume of 25 µl containing 0.2 µM of each 
primer, 400 µM of each dNTP, LA Buffer (1X, without 
MgCl2; ATG Biosynthetics), 0.5  mM MgCl2, and 2.5 U 
TaKaRa LA Taq DNA polymerase (Takara Bio Europe, Saint-
Germain-en-Laye, France). Thermal cycling was performed 
with the following conditions: 1 min at 94 °C followed by 14 
cycles of 10 s at 98 °C, 30 s at 55 °C and 12 min at 68 °C, a 
further 16 thermal cycles with an increment of 12 s/cycle for 
the elongation step, and a final add-on elongation for 10 min 
at 68 °C.

Initial attempts to amplify a breakpoint junction frag-
ment with LD-PCR using primer SPATA7_Ex6–1_R and a 
set of forward primers located 1, 5, 10, or 22 kb upstream of 
SPATA7 failed to result in a proper PCR product. We therefore 
refined the centromeric breakpoint with STS content mapping 
of three amplicons located 28, 33, and 38 kb upstream of 
SPATA7. Successful amplification of all three STS prompted 
us to pursue another breakpoint junction LD-PCR using 
SPATA7-up-28kb-F and SPATA7_Ex6–1_R as the forward 
and reverse primers, respectively. A junction fragment of 
approximately 6.5 kb was obtained and further refined with 
restriction fragment analysis. We finally developed a 283 
bp breakpoint junction PCR (primers: SPATA7_Del-F and 
SPATA7_Del-R) that was used for breakpoint sequencing and 
segregation analysis. The primer pairs used in the deletion 
mapping, their sequences, and physical coordinates are given 
in Appendix 1.

Sanger sequencing: PCR fragments were purified with 
ExoSAP-IT treatment (USB, Cleveland, OH), sequenced 
using the BigDye Terminator v. 1.1 Cycle Sequencing Kit 
(Applied Biosystems [ABI], Weiterstadt, Germany), and the 
sequencing products were subsequently separated on a DNA 
capillary sequencer (ABI 3130 Genetic Analyzer; ABI). All 
sequences were processed with the Sequencing Analysis v. 
5.2 Software (Applied Biosystems) and aligned with the refer-
ence sequence using SeqMan (LaserGene Software Package, 
DNAStar, Inc., Madison, WI).

Bioinformatics analysis of junction sequences: For bioinfor-
matics analysis of the breakpoint junctions, we downloaded 
300 bp of reference sequence around both breakpoints (i.e., 
150 bp of upstream and 150 bp of downstream sequences) 
and applied the following online bioinformatics tools: 
BLAST2seq to detect sequence (micro-)homology, Repeat-
Masker open-4.0.5 to search for repetitive elements, non-B 

DB search to identify non-B-DNA structures (which are 
susceptible to DNA breakage), and MEME Suite to search for 
shared sequence motifs. For convenience, all bioinformatics 
tools were applied with the default settings, and if not set by 
default, the cDNA sequences were also analyzed.

RESULTS

In an Israeli Muslim Arab family (TR 11) with four children 
(three female, one male), two children (17- and 4-year-old 
sisters) were clinically diagnosed with autosomal reces-
sive juvenile RP (Figure 1). Their parents were first-degree 
cousins and otherwise healthy. The affected siblings were 
born after normal pregnancies and normal deliveries. When 
the older affected daughter was 1 year old, the parents noticed 
nystagmus and vision abnormalities. Upon clinical examina-
tion, the diagnosis of juvenile RP was made. The younger 
affected daughter showed similar symptoms at about the 
same age, and clinical examination revealed retinal degenera-
tion similar to that in the older sister. The visual deterioration 
showed considerable progression, resulting in reduced visual 
acuity (6/24 and 6/60 in the right and left eyes, respectively), 
severely constricted visual fields, and extinguished full-
field ERGs in the older sister (at the age of 17). Funduscopic 
examination revealed areas of hypopigmentation due to atro-
phic RPE changes with pigmentary alterations from pigment 
migration (“salt and pepper fundus”), attenuated arterioles, 
and optic disc pallor, all characteristic of juvenile RP. OCT 
imaging showed an overall decrease in retinal thickness with 
shortening of the photoreceptor outer segments, reduction in 
the outer nuclear layer, and RPE atrophy. The inner retinal 
layers were less affected. The morphological findings for 
the older sister are presented in Figure 2. The two affected 
siblings were otherwise healthy; neurologic examination 
demonstrated normal findings without dysmorphic features 
or skin lesions.

Homozygosity mapping performed with DNA samples 
of the two affected subjects revealed two larger homozygous 
regions on chromosome 8 (96.8M–116.1M) and chromosome 
14 (84.9M–96.0M) and a few smaller homozygous regions on 
chromosomes 3, 17, and 22. The only known RD gene that 
localizes within these homozygous regions was SPATA7 that 
maps on chromosome 14 (at about 88.8M).

SPATA7 mutations have been reported for various 
forms of retinal dystrophy, including LCA and juvenile RP. 
Therefore, we thought to perform a mutation screening of 
SPATA7 by applying PCR amplification and direct Sanger 
sequencing. During this screening, we consistently failed 
to amplify exons 1–5 in the affected index patient, while 
further downstream amplicons were readily amplified. We 
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thus hypothesized the presence of a homozygous deletion in 
the affected patients with a telomeric breakpoint in intron 
5 of SPATA7. Taking advantage of the homozygous state of 
the affected patients, we further refined the localization of 
the telomeric and centromeric deletion breakpoint with PCR-
based STS content mapping and LD PCR-based breakpoint 
junction amplifications (for details, see Methods), using this 
strategy, we mapped the centromeric deletion breakpoint 
to a 6 kb interval within the intergenic sequence between 
SPATA7 and its upstream gene potassium channel, subfamily 
K, member 10 (KCNK10; Gene ID 54207; OMIM 605873).

With refined breakpoint mapping, an approximately 6.5 
kb deletion junction fragment was successfully amplified. We 
then used restriction site content mapping to further narrow 
the localization of the deletion breakpoint within the junction 
fragment and to design a novel primer pair directly flanking 
the deletion breakpoints. The reduced size of this PCR product 
facilitated subsequent Sanger sequencing to cover and define 

the exact breakpoints (Figure 3). This approach revealed a 
deletion at the SPATA7 locus that encompasses 63,411 bp and 
is accompanied by a small insertion of three extra nucleotides 
between the centromeric and telomeric breakpoints (g.88.828
.457_88.891.867delinsTGG; c.1–23706_372+8679delinsTGG, 
ex. 1–5; GRCh37 / hg19). Since the centromeric breakpoint 
is located 23,417 bp upstream of SPATA7 5′ untranslated 
region (UTR) and the telomeric breakpoint is located 708 bp 
upstream of SPATA7 exon 6, the deletion included exons 1, 2, 
3, 4, and 5 of the SPATA7 gene.

To test segregation of the deletion allele, all family 
members were analyzed with diagnostic PCR amplifications 
with (1) primers directly flanking the deletion breakpoints 
(deletion specific assay) and (2) with primers amplifying 
exon 2 of SPATA7 (wild-type specific assay). In doing so, 
we observed concordant segregation of the deletion in the 
family as expected for autosomal recessive mode of inheri-
tance (Figure 4). The index patient and her affected sister 
were homozygous deletion carriers, whereas the unaffected 
parents and the two unaffected siblings were heterozygous 
mutation carriers.

To obtain clues about the mechanism underlying the 
occurrence of this deletion, bioinformatics analyses of the 
sequences flanking the deletion breakpoints were performed. 
However, except for a few unspecific short motifs distant to 
the actual breakpoints, we did not detect repetitive sequences 
or other segments of sequence homology that may indicate 
a homology-based mechanism underlying the deletion. We 
therefore propose non-homologous end joining (NHEJ), a 
mechanism that accurately rejoins double-strand breaks, as 
the most likely mechanism underlying the occurrence of this 
deletion. In line with this assumption, NHEJ is frequently 
accompanied by the insertion of one to four nucleotide(s) at 
the breakpoint junction site [41] as also seen in our family.

Figure 1. Pedigree of family TR 11. The parents were first-degree 
cousins. Affected members are indicated with filled symbols, and 
unaffected members are represented by open symbols. The arrow 
indicates the index patient.

Figure 2. Retinal imaging find-
ings. A: Funduscopy revealed the 
salt-and-pepper appearance of the 
retina, characteristic of juvenile 
retinitis pigmentosa (RP). B: 
Optical coherence tomography 
(OCT) image of the right eye. C: 
OCT image of the left eye. OCT 
imaging showed an overall decrease 
in retinal thickness with shortening 

of the photoreceptor outer segments, reduction in the outer nuclear layer, and RPE atrophy. The foveal photoreceptor layer was more 
preserved.
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DISCUSSION

Since recessive diseases in consanguineous families are 
usually caused by homozygous mutations due to identity-by-
descent, homozygosity mapping serves as an efficient tool 
for defining candidate chromosomal loci for diseases. After 
homozygosity mapping, we picked the correct candidate gene 
in a consanguineous Israeli Muslim Arab family. Using PCR 
and subsequent Sanger sequencing, we identified a homozy-
gous large deletion in SPATA7 that caused juvenile RP in this 
family. We determined the centromeric and telomeric break-
points of the deletion that is accompanied by a small insertion 
of three extra nucleotides at the site of deletion (g.88.828.4
57_88.891.867delinsTGG; c.1–23706_372+8679delinsTGG). 
The deletion includes exons 1–5 of SPATA7 as well as about 
23.4 kb of upstream sequences that likely contain important 
regulatory sequence elements such as the proximal promoter 
and proximal transcription factor binding sites. We therefore 

argue that the mutation (g.88.828.457_88.891.867delinsTGG; 
c.1–23706_372+8679delinsTGG, ex. 1–5) results in a complete 
lack of SPATA7 gene or protein expression. Analysis of the 
breakpoint junctions did not provide evidence of a homology-
based mechanism or non-B DNA structures underlying the 
occurrence of this deletion. Therefore, NHEJ seems to be the 
most likely mechanism.

SPATA7 is a known LCA gene also reported to cause 
juvenile RP. Nonetheless, SPATA7 is a minor gene for LCA 
and juvenile RP that accounts for only a small percentage 
of cases. We observed concordant segregation of the dele-
tion in the family as expected for the autosomal recessive 
mode of inheritance. The two affected sisters showed similar 
clinical manifestations, and their functional and morpho-
logical findings support the diagnosis of juvenile RP. Both 
affected siblings were otherwise healthy with no non-ocular 
abnormalities. The observed clinical features were in line 

Figure 3. Breakpoint sequence of 
the homozygous deletion at the 
SPATA7 locus. Electropherogram 
of the breakpoint sequence was 
obtained from PCR amplification 
covering the deletion. The deletion 
allele sequence is given in red, and 
the left and right junction sequences 
are indicated by black and gray 
letters. While the centromeric 
junction of the deletion is located 
within the intergenic sequence 
between SPATA7 and its upstream 
gene KCNK10, the telomeric junc-
tion is located within the intronic 
sequence between exons 5 and 6 of 
SPATA7. Sequencing of the deletion 
junction showed that the deletion is 
accompanied by a small insertion of 
three extra nucleotides (TGG) at the 
deletion site.
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with previously reported cases [12,42]; the SPATA7 mutation 
caused an infantile-onset severe rod-cone dystrophy with 
early degeneration of the peripheral retina but comparatively 
preserved foveal structure, as seen on the OCT images.

Until now, no larger deletion as observed in this study 
has been reported for SPATA7. The Human Gene Mutation 
Database (HGMD) lists only seven small indel mutations, 
predominantly resulting in a frameshift and a premature stop 
codon (for instance the c.265_268delCTCA / p.L89KfsX3 
mutation in Mackay et al.’s study [42]). In addition, three 
missense mutations, three splicing mutations, and four 
nonsense mutations (with c.253C>T / p.R85* [42] causing 
the earliest premature transcription termination codon in 
exon 5 and c.1183C>T / p.R395* causing the latest premature 
transcription termination codon in exon 11 [12]), are assumed 

to cause disease. Wang et al. [12] suggested a correlation 
between the severity of mutant alleles and the resulting 
clinical phenotype (i.e., the mutant alleles associated with 
LCA are likely to be more severe loss-of-function alleles 
than those associated with juvenile RP). However, this was 
not confirmed in the family reported here, since the large 
deletion detected at the SPATA7 gene locus was the cause of 
the overall milder clinical phenotype of juvenile RP.

The Database of Genomic Variants (DGV), a catalog of 
human genomic structural variations of clinically unaffected, 
healthy individuals, lists two deletions of 1442 bp and 1486 
bp, respectively, in SPATA7 in a single Yoruban individual 
(NA18507) as reported by McKernan et al. [43]. The smaller 
of these two deletions maps to intron 5 and coincides with 
several smaller deletions in this region observed in several 

Figure 4. Segregation analysis of 
the SPATA7 mutation in family 
TR 11. Affected members are indi-
cated with filled symbols, and unaf-
fected members are represented by 
open symbols. The arrow indicates 
the index patient. Segregation 
analysis was performed with all 
family members as denoted by 
the genotype data (underneath). 
Two distinct PCR amplifications 
were used to analyze deletion and 
wild-type alleles, respectively: 
(1) one PCR with primers directly 
flanking the deletion breakpoints 
(top panel, Del) and (2) one PCR 
with primers amplifying exon 2 of 
SPATA7 located within the dele-
tion (bottom panel, Ex. 2). The 
latter indicates the presence of the 
wild-type allele. All PCR products 
were analyzed on a 2% agarose gel. 
According to autosomal recessive 
inheritance, both parents and both 
unaffected siblings are heterozy-
gous, and the two affected sisters 
are homozygous mutation carriers. 
Del, deletion allele; +, wild-type 
allele; Ex. 2, exon 2 (in place of 
wild-type allele); M, size marker 

(KEB, pcDNA 3.1zeo/TaqI-digested, fragment sizes given in bp); Co, control (DNA of an unaffected, not related person); NC, negative 
control (water control).
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population studies. The telometric breakpoint of the large 
deletion reported in our family is also located in intron 5, 
however >1,000 bp downstream of the cluster of deletions 
annotated in DGV. The larger 1,486 bp deletion encompasses 
the alternatively spliced exon 3 of the SPATA7 gene. The 
consequence of such a loss of exon 3 is unknown; at least 
the reading frame of the coding sequence is maintained and 
results in the shortened SPATA7 isoform. Interestingly, DGV 
also lists a series of small sequence duplications in intron 2 
that overlap with the deduced 5′ breakpoint of the 1,486 bp 
deletion in NA18507. These findings indicate the existence 
of two clusters of small copy number variations (CNVs) in 
SPATA7 that are with the exception of the 1,486 bp deletion 
in NA18507 restricted to intronic sequences and most likely 
without functional consequence.

SPATA7 was first identified in the rat testis. Then, 
researchers showed that Spata7 is also expressed in multiple 
layers of the mature mouse retina [12]. Since two different 
isoforms were shown to be expressed in the testis (tran-
script lacking exon 3) or in the brain and retina (transcript 
containing exon 3), specific functions of the two SPATA7 
isoforms in spermatozoa and neurons were proposed [9]. 
Analyzing the mouse retina, Wang et al. [12] showed that 
Spata7 is present in the ganglion cell layer, the inner nuclear 
layer, and the inner segment of the photoreceptors at P21. 
Concerning the uniform distribution of the protein in the 
cytoplasm of the inner segment, it seems not to be a typical 
cilium protein and might be involved in a novel pathway 
[12]. The relatively late onset of Spata7 expression in the 
retina further suggested that Spata7 is important for normal 
retinal function rather than development [12]. Abulimiti 
et al. [44] showed that homozygous knockout mice exhibit 
impaired rhodopsin transportation to the outer segments 
due to the absence of Spata7 protein function. Nonetheless, 
additional studies are needed for a detailed understanding of 
the SPATA7 function and how different mutant alleles cause 
either LCA or the overall milder phenotype of juvenile RP, 
especially since the mutation reported here most likely results 
in a complete lack of SPATA7 protein function but causes the 
overall milder phenotype of juvenile RP. Thus, our findings 
are contrary to the suggestion of Wang et al. [12] implying 
a correlation between the severity of mutant alleles and the 
resulting clinical phenotype.

In conclusion, a genome-wide screen for homozygosity 
combined with a candidate gene evaluation within one homo-
zygous region on chromosome 14 resulted in the identification 
of a pathogenic mutation in SPATA7. The homozygous large 
deletion encompasses exons 1–5 and is suggested to result 
in a complete lack of SPATA7 gene or protein expression. 

Nonetheless, the mutation was found to cause the overall 
milder clinical phenotype of juvenile RP, in preference to the 
more aggressive progression of LCA.

APPENDIX 1. PRIMER PAIRS, PRIMER 
SEQUENCES AND THEIR GENOMIC 
LOCALIZATION.

To access the data, click or select the words “Appendix 1.”
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