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Abstract:Many important natural phenomenaofwaveprop-
agations are modeled by Eikonal equations and a variety
of new methods are needed to solve them. The differen-
tial quadrature method (DQM) is an effective numerical
method for solving the system of differential equations that
can achieve accurate numerical results using fewer grid
points and therefore requires relatively little computational
effort. In this paper, we focus on the implementation of the
non-smooth Eikonal optimization by using a hybrid of poly-
nomial differential quadrature (PDQ) or Fourier differential
quadrature (FDQ)method and sub-gradients idea. Our goal
is to develop anewEikonal equation systemdesign forwave
propagation equations, as well as the efficiency and accu-
racy of new grid points to reduce errors and compare errors
in various physical equation problems, especially wave
propagation equations, and achieve their convergence. We
explore the accuracy and stability of the Eikonal equation
system by two-dimensional and three-dimensional numer-
ical examples and the use of three types of grid points in a
comprehensive manner. This article aims to create a new
and innovative solution to the non-smooth Eikonal equa-
tion system. This new method is much more efficient and
effective than traditional numerical solutionmethods same
as DQ.
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1 Introduction
Eikonal differential equations are the most important ge-
ometric equations that are widely used in many different
fields of mathematical science and engineering. One of the
most important applications of these equations is seismic
waves. They are studied by geophysicists called seismol-
ogists. Seismic wave fields are recorded by a seismome-
ter, hydrophone (in water). Also, seismic waves are en-
ergy waves that pass through the earth’s layers. The re-
sult is earthquakes, volcanic eruptions, large-scale land-
slides, and large man-made explosions that produce low-
frequency sound energy. All of them are somehow mod-
eled with the equations of this paper. Many phenomena are
caused by low-amplitude waves, which are called ambient
disturbances [1–4] and references therein.

Such as the propagation of a wave in a moving fluid
that has been extensively investigated by 2D and 3D numer-
ical samples in [1] and maximum stability of the solution
of the equation for the geometric equation and their exis-
tence has been investigated in [2]. The method (FSM) for
solving the factored Eikonal equation of three evaluation
criteria to evaluate the accuracy and convergence of inver-
sion velocity in [3] has been discussed. The time-dependent
Eikonal equation used in various sections. So According to
the initial and boundary conditions, it is considered by the
meshless methods in [4].

In this paper, we consider the system of Eikonal equa-
tions in the form below⎧⎪⎪⎨⎪⎪⎩

F1(u, v) = α1|∇(u + v)| + β1|∇v| − f1(x) = 0, x ∈ Ω,
F2(u, v) = α2|∇u| + β2|∇(v − u)| − f2(x) = 0, x ∈ Ω,
u(x) = g1(x), v(x) = g2(x) x ∈ Γ ⊂ Ω

(1)

where Ω is a domain in Rd and Γ is the subset of Ω domain
where the boundary condition is located. In (1), f1(x), f2(x),
g1(x), g2(x), α1, α2, β1, β2 are known and u(x), v(x) ∈
Cn(Ω) are unknown functions. The space Cn(Ω), k ≥ 1,
consists of functions which are n-times continuously differ-
entiable over Γ.
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Let us consider another form of (1) described by the
following minimization problem:

inf
u,v∈Cn(Ω)

J(u, v) (2)

subject to[︃
u(x) = g1(x), x ∈ Γ ,
v(x) = g2(x), x ∈ Γ ,

where J(u, v) := ‖F(u, v)‖22 = F2
1(u, v) + F2

2(u, v) is
the “energy” functional. Here, we consider thatF(u, v) =(︀
F1(u, v),F2(u, v)

)︀T .
When dealing with polynomials, we use multi-index

notation. Let α = (α1, ..., αd) with all αj ≥ 0 being integers;
and let |α| = α1 + + αd. The monomial xα is defined by

xα = xα11 · · · xαdd .

Therefore, we define

Πd
n =

{︀
Σ|α|≤nbαxα|bα ∈ R

}︀
.

These are the polynomials in d variables that are of degree
≤ n.

Moreover, from (2), we consider the following mini-
mization problem:

inf
P1 ,P2∈Πd

n

J(P1, P2) (3)

subject to[︃
P1(x) = g1(x), x ∈ Γ ,
P2(x) = g2(x), x ∈ Γ .

We claim that if ‖u − P1‖∞ −→ 0 and ‖v − P2‖∞ −→ 0
then (2) and (3) are equivalent.

We consider that in (3), the objective function is not
smooth. The problem (3) is called non-smooth Eikonal op-
timization (NSEO) [5, 6]. The subgradient method is one of
the simplest methods for solving partial differential equa-
tions used to minimize a nondifferentiable convex function.
It is well known that the subgradient method is slower,
but it can be more successful than existing methods (nons-
mooth optimization) by solving changes and creating algo-
rithms and combining some other methods to solve differ-
ent problems. It is well known that the subgradient method
is slower, but with useful modifications and algorithms,
and by combining some other methods, it may be more
successful in solving various problems than the existing
methods for (nonsmooth optimization).

In this paperwewant to use a combination of twometh-
ods (subgradient and differential quadrature) to solve the
system of Eikonal equations. Because these methods are
easy to implement and have a relatively low computational

cost. As a result, we can quickly find solutions and develop
methods for nonsmooth problems. Different versions of
the subgradient method for various problems have been
developed and presented by researchers. A new method
for solving (non-smooth convex optimization problem) us-
ing the sub-degree method has been introduced and its
convergence has been proved. Also, The Proximal bundle
method is compared with the proposed algorithm [7]. Sub-
gradient methods are a powerful tool that can quickly find
near-optimal dual solutions. The use of dual subgradient
methods for convex optimization of a nonlinear multicom-
modity flow problem has been investigated by researchers
in [8] and their convergence has been generalized. Algo-
rithms have a direct impact on convergence speed, com-
putational cost and response accuracy, so we need a use-
ful and efficient algorithm for our problem. A new algo-
rithm has been implemented by researchers to minimize
non-convex and nonsmooth functions and has been com-
pared with two versions of the subgradient method [9].
Subgradient methods are mostly used to solve nonsmooth
convex optimization problems, such as bifurcation/ buck-
ling analysis of beams, which is a nonsmooth problem.
Also, the nonsmooth benchmark problems are acceptable
by this method [10]. The combination of the subgradient
method with the sloping method of a nonlinear operator
on a problem similar to fused lasso has been analyzed as
(fixed-point subgradient splitting method) and its conver-
gence has been proved [11]. Researchers have extensively
researched Riemannian subgradient methods to minimize
weak convex functions on the Stiefel manifold [12]. Vari-
ous solution methods for (mixed integer linear optimiza-
tion) such as the subgradient optimization problem, the
use of Lagrangian duals, for mixed-binary optimization,
the recovery of primary solutions and cutting-planes have
been extensively analyzed by researchers in [13]. A non-
smooth Equilibrium Problem is presented with a subgra-
dient method in finite dimensional space so, an inexact
subgradient algorithm and its convergence have been ana-
lyzed [14]. A dual subgradient method has been proposed
using subgradient methods to solve convex optimization
problems, which has been investigated with the average
for (optimal resource allocation) in a multifactorial envi-
ronment [15]. On the other hand, subgradient methods can
be used to generate initial-dual solutions and develop so-
lutions for nonsmooth convex optimization problems [16].
To solve bilevel equilibrium problems, a computational
method using the subgradient method has been investi-
gated and its convergence theorem has been proved, thus
an algorithm with low computational cost has been intro-
duced in [17]. For equilibrium problems and nonexpansive
mappings, the subgradient method is used and an algo-



438 | M.Mehr and D. Rostamy

rithm that uses a projection does not require the Lipschitz
condition for bifunctions [18]. From the combination of sub-
gradientmethods, two strongly convergent algorithms have
beenproposed, their convergence speedhas been compared
and its numerical results have been analyzed [19]. To solve
the nonlinear split feasibility problems, an algorithm has
been investigated by researchers using a combination of
subgradient methods [20]. Recent advances have shown
that the subgradient method is a powerful, useful, and
efficient numerical method in science and other physical
and engineering phenomena that plays a vital role in real
life. Such as estimation in sensor networks, distributed
control of multifactor systems, resource allocation, game
theory, equilibrium problem, cooperative control of multia-
gent systems, equilibrium problem in network systems and
machine learning [21–23]. Which has been used extensively
by researchers. Therefore, a combination of subgradient
methods for different problems is proposed and their algo-
rithms are developed [24]. Different models of mathematics
in science and engineering lead to the system of equations
(1). This type of nonlinear system model can be seen in me-
chanics, materials science, engineering, and other sciences.
Where one type of these models (Eikonal equation system)
with Dirichlet boundary conditions for the 2-D problem
is considered using the FEM in [25]. A numerical method
based on elliptical solvents is presented in [26] and the
type of special systems that arise in optimal control of a
random evolutionary process has been studied in [27]. Con-
sideration (density, velocity, energy), velocity and pressure
disturbance, energy flux, wave equation, Acoustic wave are
among the applications of hyperbolic systems that have
been extensively researched in [28]. In model (1), suppose
we have two u and v wave propagations and are moving in
a fluid environment by fluid, Therefore, f1 and f2 show the
wave propagation velocity, respectively. In many applica-
tions, waves have very high frequencies, are equivalents,
or have very low wavelengths. To describe such waves, we
need a distinction that is significantly smaller than a single
wavelength. So how can the problem of having two waves
propagating simultaneously at different speeds be calcu-
lated? Although there are analytical methods for solving
the system of equations (1), using them is not easy. For ex-
ample, optical phenomena. They are described by a wave
equation. Assume that we use 10 points along the wave to
describe each wave, so in this case, storing data is difficult
[29]. In addition to the complexity of solving system equa-
tions (1), its application is also important, so we want to
develop the Eikonal equation system.

In this paper, we implement the differential quadra-
ture (DQ) method [30] for numerical solution of Equation
System (1). Therefore, we consider the methods of Polyno-

mial differential quadrature (PDQ) and Fourier differential
quadrature (FDQ) on the system of equations (1). It should
be noted that in this method, the effect of grid point on
the accuracy of DQM results and the stability of the issue
plays a very important role, So the choice of grid points
depends on the subject [31]. The DQM has been applied to
various equation problems by researchers. In [32], using
DQ method, the authors have been investigated for devia-
tion, buckling and analysis of free vibration of beams and
plates with different boundary conditions and to obtain the
numerical solution of the nonlinear Schrödinger equation
using the DQ method based on the modified cube B-spline
for the ordinary differential equation system [33]. Based
on modified cube B-spline for solving linear and nonlinear
PDEs in higher dimensions has also been studied in [34].
In [35], the RBF-DQ method is used on a bunch of Lane-
Emden type equations and for solving linear and nonlinear
systems, the second order value problem is considered in
[36] by LRBF-DQmethod. Characteristics of timedomainDQ
method have been studied in [37]. For the two-dimensional
and three-dimensional equation system, B-spline functions
have been used to develop the new DQmethod [38] and the
chaotic Lorenz, Chen, Genesio and Rössler systems have
been studied by the DQ method in [39].

In Section 2, we present the DQ method for the first
and upper order derivatives with respect to x and y respec-
tively to obtain the weight coefficients. Therefore, to solve
the system (3), PDQ and FDQ methods and the use of La-
grange interpolation have been expressed as test functions
to obtain weighting coefficients.

Also, in this section, we propose three types of grid
points that are with uniform and non- uniform for conver-
gence and accuracy of numerical results. We will also show
that the choice of grid points depends on the type of issue.

In Section 3. On the other hand, we seek to solve (3)
by using hybrid of sub-gradient idea and the PDQ or FDQ
methods. Therefore, we give two class of algorithms. So,
we give some numerical examples of (3) in 2-D and 3-D
problems. To solve the numerical solution of the system of
equations, we use the weighted coefficient of the first order
derivatives of the proposed methods.

In Section 5, To measure the accuracy of our errors, we
consider the L1, L∞ norm and the root mean square error
for different problemsusing PDQandFDQmethods. Each of
these issues can be amodel of wave propagation equations,
which is an important physical phenomenon that has been
presented by the true solution of the system of equations
or as a field of velocity. In this section, we have specifically
considered five examples for two-dimensional and three-
dimensional systems, and for each of the problems we have
presented errors and order of convergence in the tables.
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Also, to compare the accuracy of the errors, we have shown
the error plots of the PDQ and FDQ methods in the figures
and in Section 6, the results are summarized.

2 An overview of DQM
DQM is a numerical method suitable for numerical solu-
tion of ordinary and PDE because this method has high
accuracy and little computational cost. One of the special
advantages of the DQ method is its ease of use, so it has
been implemented extensively for a variety of topics. The
main idea of this method started from ordinary integral
quadrature [31, 40]. The method of DQ was introduced by
Bellman in 1972, Quan and Chang in 1989, and then the
general approach was presented by Shu in 1991 [31]. Now
we consider the approximations of the derivatives of the
first order for the 2D problem as follows:

u(1)x

(︁
xi , yj

)︁
=

Nx∑︁
k=1

Q(1)
ik u
(︁
xk , yj

)︁
, i = 1, 2, ..., Nx , (4)

u(1)y

(︁
xi , yj

)︁
=

Ny∑︁
k=1

Q(1)
jk u
(︁
xi , yk

)︁
, j = 1, 2, ..., Ny . (5)

Where u(1)x , u(1)y the first-order derivatives, Q(1)
ik and Q(1)

jk are
the weighting coefficients of the derivatives of the u(x, y)
function with respect to x and y respectively. Also, we con-
sider that Nx and Ny are the number of grid points in the x
and y directions at the domain a = x1, x2, ..., xN = b. Sim-
ilarly, for high-order derivatives, we can write as follows:

u(n)x

(︁
xi , yj

)︁
=

Nx∑︁
k=1

G(n)
ik u
(︁
xk , yj

)︁
, (6)

u(m)y

(︁
xi , yj

)︁
=

Ny∑︁
k=1

G(m)
jk u

(︁
xi , yk

)︁
, (7)

For i = 1, 2, ..., Nx, n = 1, 2, ...N − 1, j = 1, 2, ..., Ny,
m = 1, 2, ...,M − 1 [34, 35, 41].

2.1 Polynomial differential quadrature (PDQ)
method

Now, to calculate the weighting coefficients, we use the
Lagrange interpolated polynomials as basic functions [30,
40], so we can write,

Qk(x) =
Q(x)

(x − xk)Q(1)(xk)
, k = 1, 2, ..., N (8)

Where
Q(x) = (x − x1)(x − x2)...(x − xN) (9)

Q(1)(xi) =
N∏︁
k=1
k≠i

(xi − xk). (10)

Using Equation (8), the weighting coefficients of the first
order derivatives can be obtained as follows:⎧⎪⎨⎪⎩

Q(1)
ij = Q(1)(xi)

(xi−xj)Q(1)(xj)
for i, j = 1, 2, ..., N, j ≠ i,

Q(1)
ii = −

∑︀N
j=1
i≠j

Q(1)
ij , i = 1, 2, ..., N, (11)

And for theweighted coefficients of the second order deriva-
tives, we can write as follows,⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q(2)
ij = 2Q(1)

ij

[︁
Q(1)
ii − 1

xi−xj

]︁
, for i, j = 1, 2, ..., N,

j ≠ i,
Q(2)
ii = −

∑︀N
j=1
i≠j

Q(1)
ij , i = 1, 2, ..., N .

(12)

Here xi are the coordinates of the grid points and for i =
1, 2, ..., N. Similarly, for high-order derivatives, you can
refer to [31] for more information.

2.2 Superior selection from grid points

In the DQ method, grid points are a key element in the
numerical solution of differential equations because grid
points affect the convergence and accuracy of numerical
results. The choice of grid points depends on the type of
problem [31, 41]. It should be noted that the DQ method
has been tested for various partial differential equation
problems that the non-uniform grid points are better than
the uniform grid points, and have a high accuracy answer.
So, we focus on the following three types of grid points:

xi = a + (b − a) (i − 1)N − 1 i = 1, 2, ..., N, (13)

or

xi = a + (b − a)
2

(︂
1 − cos

(︂
2i − 1
N − 1 π

)︂)︂
, (14)

i = 1, 2, ..., N,

or

xi = a + (b − a)
2

(︃
cos[ (i−1)πN−1 ]
cos[ π

2N ]
(15)

+1 −
cos[ (2i−3)π2(N−1) ]
cos[ π

2(N−1) ]
+ 1
)︃
, i = 1, 2, ..., N .
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Grid points (13) grid points are uniform (equally spaced
points), grid points (14) are non-uniform grid points (un-
equally spaced points) that are called Chebyshev-Gauss-
Lobatto points and are usually used in most articles [30, 38,
41, 43]. We are inspired by the difference between the two
Chebyshev-Gauss-Lobatto in [42] and define (15). The grid
points (15) are non-uniform. Here N indicates the number
of grid points in the directions of x, y and z in the domain
[a, b].

Therefore, by putting (11) and (12) in (3) with one class
of grid points (13) or (14) or (15), we have a minimization
problem. Our goal in this article is to solve the optimization
problem by DQ. On the other hand, we consider the follow-
ing the differential quadrature method for combining with
(3).

2.3 Fourier differential quadrature (FDQ)
method

In the FDQ method, we use the Fourier series expansion
to obtain weighting coefficients, which means that the
function is approximated by the Fourier series expansion
[30, 41, 43]. We presented the Fourier series expansion as
follows,

f (x) = b0 +
N/2∑︁
k=1

(︁
ck cosφ + dk sinφ

)︁
. (16)

In (16) we consider the period of φ = kπx
L and L repre-

sents the length of the interval (physical domain). Using La-
grange interpolated trigonometric polynomials, the weight-
ing coefficients of the first and second-order derivatives can
be obtained as follows,⎧⎪⎨⎪⎩

Q(1)
ij =

π
2L g(xi)

g(xi) sin
(xi−xj )
2L π

for j ≠ i, i, j = 1, 2, ..., N,

Q(1)
ii = −

∑︀N
j=1
i≠j

Q(1)
ij .

(17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q(2)
ij = Q(1)

ij

[︁
2Q(1)

ii − π
L cot

(xi−xj)
2L π

]︁
for j ≠ i,

i, j = 1, 2, ..., N,
Q(2)
ii = −

∑︀N
j=1
i≠j

Q(2)
ij ,

(18)

where

g(xi) =
N∏︁
j=0
i≠j

sin
(xi − xj)
2L π. (19)

See [31] for more information. Therefore, by putting (17)
and (18) in (3) with one class of grid points (13) or (14) or
(15), we have a minimization problem with FDQ. Our goal
in this article is to solve the optimization problem by FDQ.

3 Implementation of the methods
based on sub-Gradients [5], [6]

In this section,we implement FDQ andPDQmethods on the
system (3). LetA = |∇u|, B = |∇v|, so, α1β2−α2β1 ≠ 0, ,We
discrete the nonlinear system for (x, y) ∈ Ω ⊂ R2, where
α1(xi , yj), α2(xi , yj), β1(xi , yj), β2(xi , yj) and the functions
f1(xi , yj), f2(xi , yj) are determined from (1). it canbewritten
as follows,⎧⎪⎪⎨⎪⎪⎩

A =
√︂(︁∑︀Nx

k=1 Q
(1)
i,kuk,j

)︁2
+
(︁∑︀Ny

k=1 Q
(1)
j,kui,k

)︁2
,

B =
√︂(︁∑︀Nx

k=1 Q
(1)
i,kvk,j

)︁2
+
(︁∑︀Ny

k=1 Q
(1)
j,kvi,k

)︁2
.

(20)

Similarly, for (x, y, z) ∈ Ω ⊂ R3, where α1(xi , yj , zk),
α2(xi , yj , zk), β1(xi , yj , zk), β2(xi , yj , zk) and the functions
f1(xi , yj , zk), f2(xi , yj, zk). We present the discrete form A
and B as the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
(︃(︁∑︀Nx

k=1 Q
(1)
i,kuk,j,κ

)︁2
+
(︁∑︀Ny

k=1 Q
(1)
j,kui,k,κ

)︁2
+
(︁∑︀Nz

k=1 Q̃
(1)
κ,kui,j,k

)︁2)︃1/2

,

B =
(︃(︁∑︀Nx

k=1 Q
(1)
i,kvk,j,κ

)︁2
+
(︁∑︀Ny

k=1 Q
(1)
j,kvi,k,κ

)︁2
+
(︁∑︀Nz

k=1 Q̃
(1)
κ,kvi,j,k

)︁2)︃1/2

.

(21)

Therefore, in system of (20) and (21), Q(1)
i,k , Q

(1)
j,k , Q̃(1)

κ,k are the
weighting coefficients of the first order derivatives, with
respect to x ,y and z respectively. The weighting coefficients
in the PDQ method are calculated using (11) and in the
FDQ method are obtained from (17) and (19). Where Nx , Ny
andNz are the number of grid points in the x, y and z direc-
tions at the domain [a, b].

3.1 Algorithms of sub-Gradient for PDQ or
FDQ at grid points

The subgradient (related to subderivative and subdiffer-
ential) of a convex functional is a idea of generalizing or
approximating the derivative of a convex functional at non-
differentiable points. The definition of a subgradient is as
follows: g(u, v) is a subgradient of J(u, v) at (u,v) if, for all
(U,V), the following is true:

J(U, V) ≥ J(u, v) + g(U − u, V − v).
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Weknow that forminimizing J the subgradientmethod uses
the following iteration:

u(k+1) = u(k) − αkg(k)1

and
v(k+1) = v(k) − αkg(k)2 .

Where k is the number of iterations, u(k) and u(k) are the kth
iterate, g(k) = (g(k)1 , g(k)2 )T is any subgradient at (u(k), v(k))
and αk(> 0) is the kth step size. Thus, at each iteration of
the subgradient method, we take a step in the direction
of a negative subgradient. As explained above, when f is
differentiable, g(k) simply reduces to∇J(u(k), v(k)). It is also
important to note that the subgradient method is not a
descent method in that the new iterate is not always the
best iterate. Thus we need some way to keep track of the
best solution found so far, i.e. the one with the smallest
function value. We can do this by, after each step, setting

J(k)best = min{J(k−1)best , J(u
(k), v(k))}

and setting i(k)best = k if x(k) is the best (smallest) point found
so far. Thus we have:

J(k)best = min{J(u(1), v(1)), J(u(2), v(2)), ..., J(u(k), v(k))}

which gives the best objective value found in k iterations.
Since this value is decreasing, it has a limit (which can be
−∞).

Two class of algorithms are provided below for the sub-
Gradient method:

Algorithm of PDQ by Sub-gradient
Step 1 – By putting (11) and (12) in (3) with one class of

grid points (13) or (14) or (15), we define J, the step
size of α, sub-Gradient g and initial (u(0), v(0)).

Step 2 – Iterate along u(k+1) = u(k) − αkg(k)1 and v(k+1) =
v(k) − αkg(k)2 ..

Step 3 – Set J(k)best = min{J(k−1)best , J(u
(k), v(k))}.

Step 4 – Check if limk→∞ ‖J(k)best − J
(k−1)‖ < ϵ if not return to

step 2.
Step 5 – If the condition of step 4 is satisfied optimal solu-

tion is found.

Algorithm of FDQ by Sub-gradient
Step 1 – By by putting (17) and (18) in (3) with one class of

grid points (13) or (14) or (15), we define J, the step
size of α, sub-Gradient g and initial (u(0), v(0)).

Step 2 – Iterate along u(k+1) = u(k) − αkg(k)1 and v(k+1) =
v(k) − αkg(k)2 ..

Step 3 – Set J(k)best = min{J(k−1)best , J(u
(k), v(k))}.

Step 4 – Check if limk→∞ ‖J(k)best − J
(k−1)‖ < ϵ if not return to

step 2.
Step 5 – If the condition of step 4 is satisfied optimal solu-

tion is found.

4 Numerical results
In this study, we implement numerical algorithms of FDQ
and PDQ by sub-gradient on the Eikonal equation system
and consider five examples to develop the equation system.
Our goal is to solve the system (1) and obtain its errors,
Therefore, we use the following three criteria to measure
accuracy and convergence:

L2 =

⎯⎸⎸⎷ N∑︁
i=1

⃒⃒⃒
u(exact)i − u(app)i

⃒⃒⃒2
, (22)

L∞ =
N

max
i=1

⃒⃒⃒
u(exact)i − u(app)i

⃒⃒⃒
, (23)

RMS =

⎯⎸⎸⎷ 1
N

N∑︁
i=1

⃒⃒⃒
u(exact)i − u(app)i

⃒⃒⃒2
. (24)

Where N is the number of grid points and u(exact)i and u(app)i
show the exact solution and approximate solution respec-
tively. The order of convergence is calculated by the follow-
ing formula,

Order = 1
log 2 log

E
(︁
1
2N2

)︁
E(N1)

. (25)

Where E is L2, L∞ and (RMS) errors obtained for N1 and
N2 and N1, N2 indicate the number of grid points.

Remark 1. For investigating of stability of methods, we
know that a small perturbation in initial data may generate
a large amount of perturbations in the solution. Therefore,
we apply noisy data to show the stability of the proposed
methods:

Q̃i,j = Qi,j(1 + ε.rand(ij)), i, j = 1, 2, ..., N

where Qi,j is the exact data and (ij) rand is a random num-
ber with uniform distribution of the interval [−1, 1] .The
magnitude ε displays the noise level of the measurement
data.

Example 1. We consider the two-dimensional problem of
the equation system (1) in the domain Ω = [−1, 1] × [−1, 1].
Where α1 = x2y, α2 = xy2, β1 = sin(x, y), β2 = cos(x, y), Γ
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is the point (0, 0) and The true solution of the system is
u(x, y) = ex

2+y2 , v(x, y) = e−(x
2+y2). We use the grid points

(14) in this example. To measure the accuracy of the an-
swers to this problem, the errors L2, L∞ and its convergence

order are presented in Table 1. Error plots of FDQ and PDQ
algorithms are shown in Figure 1.

Table 1: Numerical results and Convergence Order For example 1.

FDQ PDQ
N L2 − error Order L∞ − error Order L2 − error Order L∞ − error Order

u(x, y) 16 3.68E − 4 5.63E − 5 8.27E − 8 1.30E − 8
20 1.40E − 5 4.7 1.68E − 6 5.1 7.32E − 11 10.1 9.08E − 12 10.5
22 2.72E − 6 2.4 2.90E − 7 2.5 1.85E − 12 5.3 2.26E − 13 5.3
28 1.97E − 8 7.1 1.56E − 9 7.5 1.03E − 13 4.2 1.95E − 14 3.5

v(x, y) 16 5.51E − 6 1.03E − 6 1.39E − 8 1.91E − 9
20 2.02E − 7 4.8 3.34E − 8 4.9 1.21E − 11 10.2 1.32E − 12 10.5
22 3.86E − 8 2.9 5.86E − 9 2.5 3.22E − 13 5.2 3.69E − 14 5.2
28 2.75E − 10 7.1 3.65E − 11 7.3 5.03E − 14 2.9 1.50E − 14 1.3

18 20 22 24 26 28
N

10-7

10-6

10-5

10-4

Error

Results for u(x,y)

L2: Dashed Line

L∞

(a) Error plot for FDQ
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Error
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L2: Dashed Line

L∞: Dotted Line

(b) Error plot for FDQ
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Results for u(x,y)

L2: Dashed Line
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(c) Error plot for PDQ
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L2: Dashed Line

L∞

(d) Error plot for PDQ

Figure 1: Comparison of errors(L2 , L∞) and convergence for example 1.
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Example 2. Consider Eq. (1) with Ω = [−1, 1] × [−1, 1]
where α1 = y sin(x), α2 = y cos(x), β1 = x sin(y), β2 =
x cos(y) and the true solution is u(x, y) = esin(x) sin(y),
v(x, y) = ecos(x) cos(y). In this example,weuse the grid points
(3.3) in algorithms of FDQ and PDQ. Also, errors L2, L∞
and convergence of the methods are shown in Table 2, and

for the convergence accuracy, we have also presented the
error plots in Figure 2. In this example, Γ has three sepa-
rate points, Γ is the points Γ =

{︁(︁
1
4 ,

1
4

)︁
,
(︁
1
2 ,

1
2

)︁
,
(︁
2
5 ,

2
5

)︁
and g1

(︁
1
4 ,

1
4

)︁
= g1

(︁
1
2 ,

1
2

)︁
= g1

(︁
2
5 ,

2
5

)︁
= 1, g2

(︁
1
4 ,

1
4

)︁
=

g2
(︁
1
2 ,

1
2

)︁
= g2

(︁
2
5 ,

2
5

)︁
= 2.718.

Table 2: Numerical results and Convergence Order For example 2.

FDQ PDQ
N L2 − error Order L∞ − error Order L2 − error Order L∞ − error Order

u(x, y) 6 6.01E − 2 2.21E − 2 4.42E − 2 2.12E − 2
8 7.08E − 8 19.7 2.03E − 8 20.1 4.65E − 5 9.9 1.34E − 5 10.6
12 2.47E − 10 8.2 2.11E − 10 6.6 1.72E − 10 18.0 1.63E − 13 16.3
18 3.12E − 15 16.3 3.11E − 15 16.1 2.66E − 15 16.0 2.66E − 14 15.9

v(x, y) 6 1.38E − 4 7.55E − 5 1.51E − 4 8.92E − 5
8 2.02E − 8 12.7 1.07E − 8 12.9 1.36E − 5 3.5 7.25E − 6 3.6
12 2.15E − 10 6.6 1.74E − 10 5.9 1.41E − 10 16.6 1.38E − 10 15.7
18 6.22E − 15 15.1 6.22E − 15 14.8 7.33E − 15 14.2 7.33E − 15 14.2

6 8 10 12 14 16 18
N

10-12

10-8

10-4

Error

Results for u(x,y)

L2: Dashed Line

L∞: Dotted Line

(a) Error plot for FDQ
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(b) Error plot for FDQ
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(c) Error plot for PDQ
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(d) Error plot for PDQ

Figure 2: Comparison of errors (L2 , L∞) and convergence for example 2.
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Example 3. Consider (1) at Ω = [−2, 2] × [−2, 2] with con-
stants α1 = 4, α2 = 2, β1 = 2, β2 = 4. Where Γ is
the point (0, 0). We are now implementing FDQ and PDQ
methods on the system (1). For effective convergence accu-

racy, we use grid points (3.1). where the exact solution is
u(x, y) = 0.4x cos

(︁
y
3

)︁
, v(x, y) = 0.9 sin

(︁
x
3

)︁
sin
(︁
y
3

)︁
. Er-

ror plots for u, v functions are shown in Figure 3. Errors
(L∞, RMS) and convergent order are reported in Table 3.

Table 3: Numerical results and Convergence Order For example 3.

FDQ PDQ
N RMS − error Order L∞ − error Order RMS − error Order L∞ − error Order

u(x, y) 8 1.36E − 2 9.22E − 3 1.02E − 6 7.01E − 7
10 8.98E − 3 0.6 5.55E − 3 0.7 9.41E − 8 3.4 4.53E − 8 4.0
12 5.46E − 3 0.7 3.21E − 3 0.8 1.04E − 11 13.1 5.80E − 12 12.9
14 3.51E − 3 0.7 1.86E − 3 0.8 7.67E − 13 3.8 2.83E − 13 4.4

v(x, y) 8 3.07E − 3 2.09E − 3 7.65E − 9 5.21E − 9
10 8.01E − 4 1.9 4.93E − 4 2.1 2.24E − 9 1.8 1.38E − 9 1.9
12 1.99E − 4 2.0 1.12E − 4 2.1 1.34E − 12 10.7 7.76E − 13 10.8
14 5.46E − 5 1.8 2.97E − 5 1.9 1.65E − 14 6.3 1.42E − 14 5.8

8 9 10 11 12 13 14
N
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(a) Error plot for FDQ
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(b) Error plot for FDQ
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(c) Error plot for PDQ
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Figure 3: Comparison of errors (L∞ , RMS) and convergence for example 3.
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Example 4. In this example, let α1 = 1
5 , α2 = 1

4 , β1 =
1
3 , β2 = 1

7 be constant. The computational domain is
Ω = [−1, 1] × [−1, 1] and the exact solution of the equa-
tion system (1) is

u(x, y) =
√︀
(2 − x)2 + (2 − y)2 + sin(x2 + y2),

v(x, y) = sin(2πx) sin(2πy) + cos(x2 + y2).

Where Γ is the point (0, 0). We implement FDQ and PDQ
algorithms on the equation system. For high accuracy, we
use the grid points (14). The convergence of the methods is
compared in Figure 4. The numerical results of the errors
and the convergence order are considered in Table 4. The
two-dimensional and three-dimensional numerical solu-
tions are shown in Figure 6.

Table 4: Numerical results and Convergence Order For example 4.

FDQ PDQ
N L2 − error Order L∞ − error Order L2 − error Order L∞ − error Order

u(x, y) 14 1.11E − 3 2.85E − 4 1.48E − 6 4.34E − 7
16 3.42E − 4 1.7 1.11E − 4 1.4 5.69E − 8 4.7 1.98E − 8 4.5
22 8.42E − 6 5.3 1.65E − 6 6.1 1.11E − 12 15.6 1.91E − 13 16.7
30 3.08E − 7 4.8 4.91E − 8 5.1 1.84E − 13 2.6 3.29E − 14 2.5

v(x, y) 14 4.25E − 3 1.48E − 3 2.03E − 2 6.40E − 3
16 3.99E − 4 3.4 1.23E − 4 3.6 1.79E − 4 6.8 3.80E − 5 7.4
22 3.45E − 4 0.2 9.11E − 5 0.4 8.47E − 9 14.4 2.52E − 9 14.0
30 3.60E − 7 9.9 6.69E − 8 10.4 4.84E − 13 14.1 7.05E − 14 15.1
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(a) Error plot for FDQ
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Figure 4: Comparison of errors (L2 , L∞) and convergence for example 4.
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Example 5. In this example, we consider the three-
dimensional problem of system (1). Where α1 = 6, α2 = 2,
β1 = 2, β2 = 4. Ω = [−1, 1] × [−1, 1] × [−1, 1]. Γ is the
point (0, 0, 0)with the true solution u(x, y, z) = zy cos

(︁
x
3

)︁
,

v(x, y, z) = zx sin
(︁
y
3

)︁
. We use both methods in the system

of equations and using grid points (14). Errors accuracy
(RMS, L∞) and convergence order are given in Table 5. Er-
ror plots are shown in Figure 5.

Table 5: Numerical results and Convergence Order For example 5.

FDQ PDQ
N RMS − error Order L∞ − error Order RMS − error Order L∞ − error Order

u(x, y) 4 1.42E − 1 5.53E − 2 9.51E − 5 4.43E − 5
6 5.56E − 2 1.3 1.71E − 2 1.7 1.67E − 7 9.2 8.26E − 8 9.1
8 8.56E − 3 2.7 2.03E − 3 3.1 7.45E − 10 7.8 1.66E − 10 9.0
10 1.83E − 3 2.3 3.52E − 4 2.5 6.43E − 15 16.8 2.61E − 15 16.0

v(x, y) 4 6.95E − 2 3.15E − 2 1.78E − 5 9.18E − 6
6 1.37E − 2 2.3 4.68E − 3 2.7 1.33E − 8 10.4 6.99E − 9 10.4
8 2.72E − 3 2.3 7.27E − 4 2.7 3.24E − 11 8.7 1.30E − 11 9.1
10 5.35E − 4 2.3 1.22E − 4 2.6 1.59E − 15 14.3 5.76E − 16 14.5
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Figure 5: Comparison of errors (RMS, L∞) and convergence for example 5.
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Figure 6: 2-D and 3-D contour plot numerical solution for example 4.

5 Conclusion
In this paper, we propose the hybrid of sub-gradient ideas
with PDQ and FDQ methods for solving the system (1) and
developing the Eikonal equation system. We have used
three grid points (uniform and non-uniform grid) on differ-
ent issues for the accuracy and convergence of the equa-
tion system (1). In addition, we have shown that the choice
of grid points to reduce errors, accuracy and convergence
depends on the type of problem. As you can see, we imple-
mented the new grid points in the second example.We have
shown that the scheme of new grid points is also effective
and useful for solving the system of nonlinear equations.
In this study, we found that to solve the equation system (1),
the FDQ method requires less computational time than the
PDQmethod, and the PDQmethodhas a high accuracy com-
pared to the FDQ method and reduces errors sufficiently.
As you can see, we have shown the norm of errors, the root
mean square error, order of convergence, and the accuracy
of the methods presented in the tables, and we have also
obtained error plots. As a result, we have achieved the con-
vergence of problems and acceptable numerical results. The
items to be researched in this article are as follows:

1. One of the biggest challenges in sub-gradient opti-
mization is stage size selection. In this article, I state

that our numerical results are a trial and error and
finding the best step size. Because we need to study
convergence theory to describe it accurately, which
will be explored in future articles.

2. This method requires a modified pattern for non-
convex problems. Which we will discuss in future
work.

3. Error analysis of this method and its limits should be
proved using functional analysis.

4. Applied benchmarks in vehicle design and solid me-
chanics can create a new perspective on the useful-
ness of this method.

5. We observe that the results of this method for stiff
systems are not suitable and we need to modified it.
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