
Enhancing Software Testing by Judicious Use of Code Coverage Information

 Stefan Berner Roland Weber, Rudolf K. Keller*
 Swiss National Bank Zühlke Engineering AG
 Zürich, Switzerland Zürich-Schlieren, Switzerland
 stefan.berner@snb.ch {row, ruk}@zuehlke.com

Abstract

Recently, tools for the analysis and visualization of
code coverage have become widely available. At first
glance, their value in assessing and improving the
quality of automated test suites seems to be obvious.
Yet, experimental studies as well as experience from
projects in industry indicate that their use is not with-
out pitfalls.

We found these tools in a number of recent projects
quite beneficial. Therefore, we set out to gather code
coverage information from one of these projects. In
this experience report, first the system under scrutiny
as well as our methodology is described. Then, four
major questions concerning the impact and benefits of
using these tools are discussed. Furthermore, a list of
ten lessons learned is derived. The list may help devel-
opers judiciously use code coverage tools, in order to
reap a maximum of benefits.

1. Introduction

Code coverage analysis and visualization tools –
e.g. [2][4][5][9][12] – have recently become an afford-
able and integrated part of various development envi-
ronments. These tools typically allow for both, the
measurement of various aspects of code coverage as
well as the analysis and visualization of those parts of
the code that have (or have not) been touched after a
specific piece of testing code has been executed. Quite
often, these tools are used to assess and improve the
quality of an automated test suite. At first glance, the
value of code coverage measurement, analysis, and
visualization seems to be obvious. On second thought,
their use is not without pitfalls. The experiments of
Hutchins et al. [3] suggest that a very high level of
coverage is necessary for the correlation ‘higher cov-
erage implies higher defect detection’ to become evi-
dent. Yet in real world projects, coverage levels
beyond 90% are often difficult or simply too expensive

to achieve. On the other hand, the coverage levels re-
quired by an organization’s quality assurance team are
often too low to have any significant effect. Further-
more, Lawrance et al. [7] report that developers using
these tools tend to become overconfident in their test-
ing efforts, thus neutralizing or even negating their
potential benefits. According to the authors’ expe-
rience, these pitfalls can be observed in many projects.

However, in a number of recent projects we found
code coverage analysis and visualization tools quite
beneficial. Provided that they are properly introduced
and judiciously used, we claim that they can contribute
to a more efficient development of automated tests.

In this report, we aim to substantiate this claim with
data from one of our projects, which served as a sort of
catalyst for this work1. In the project, automated (unit)
testing had been well established from the outset, and a
code coverage analysis and visualization tool was in-
troduced in the last quarter of the construction phase2.
This setup allowed for a close (post mortem) examina-
tion of the impact that code coverage analysis and vi-
sualization had exerted on the development process
and especially on automated tests.

Specifically, the following four questions related to
the introduction of code coverage analysis and visuali-
zation tools will be addressed:

(1) What was the impact in terms of code coverage
of the automated tests?

(2) In comparison to the pre-tool-state, which
group of developers – experts, seniors, juniors,
etc. – benefited to which degree from coverage
analysis and visualization?

(3) What were the benefits from a qualitative point
of view?

1 The project was carried out when the first author was affiliated

with Zühlke Engineering AG.
2 The project was organized according to the Rational Unified

Process into the four phases: Inception, Elaboration, Construc-
tion, and Transition.

* The third author carried out part of this work as Adjunct Profes-
sor at Université de Montréal, Canada.

(4) Did the use of coverage visualization increase
the amount of modifications in the source code?

Note that this paper is an experience report and not
a research paper. The data at hand was gathered from
one single project and not from a series of projects. It
is not the result of a controlled experiment, but was
produced in a kind of post mortem project analysis.
Hence, there is no control group. We took great care,
though, in extracting and processing the data, yet can-
not guarantee the complete absence of smear or noise
effects. However, because the data stems from a real
world project, and the purpose of this report was not to
prove or falsify a certain hypothesis, the setup is
scarcely biased by the nature of the hypothesis and the
expected results.

Figure 1. Architectural overview. Business logic is layered atop components to handle master data and persistency. All
components use common utility functionality. For the business logic components, some detail is shown in form of an in-
formal object collaboration diagram.

Below, we first outline the setup of the project un-
der examination. Then, the tool introduction and data
gathering is described. Thereafter, in Sections 4
through 7, the four questions stated above are dis-
cussed. Furthermore, in Section 8, a list of ten lessons

learned is presented. Section 9 concludes the report
and provides an outlook into future work.
2. Project Setup

2.1. Purpose of the System

The project examined in this report was part of a
service outsourcing initiative, where a bank outsourced
its securities trading to another bank specialized in this
kind of trading. The purpose of the system was the
integration of the service provider’s securities trading
system with the bank’s backend systems responsible
for processes like accounting, output management,
reporting, archiving, etc.

Besides the ‘usual’ risks involved in this kind of
projects (for example, numerous and often fragile sys-
tem interfaces), two additional risks required special
attention. First, the service provider implemented a
new securities trading system in parallel. Second, the

integration of the backend system was the
ry) pilot for the messaging infrastructure, a newly
troduced enterprise service bus.

Briefly speaking, we had to build a highly adaptable
system that processes trading and housekeeping mes-
sages (orders, trades, counter trades, cancellations,
corporate actions, etc.) from the service provider’s
securities trading system, and generates and transmits
data (accounting records, vouchers, etc.) for the appro-
priate backend systems, depending on message type
and content. Altogether there were about 250 different
types of incoming messages as well as about 10 back-
end systems and system interfaces to integrate.

2.2. System Architecture

The system was designed as a hub-and-spoke archi-
tecture [10] with a core to control the common
processing and a configurable mechanism to integrate
plug-ins in order to handle message-specific parts. The
plug-ins were intended to separate concerns and iso-
late changes in the input data. As already mentioned,
the service provider’s trading system was subject to an
ongoing implementation. Our process and product had
to cope with this situation.

The message processing was divided into four steps
– incubation, validation, generation, and transmission.
A plug-in was responsible for the handling of the mes-
sage specific parts of each of these processing steps.
Each plug-in could be assembled from prede-
fined/reusable or newly developed parts.

The core was responsible for controlling and or-
chestrating the processing, transaction management,
writing logs and audit trails, making data persistent, as
well as diagnosis and housekeeping, e.g., end-of-day
processing (see Figure 1).

2.3. Test and Testware Architecture

By intention there was no dedicated testing phase,
as testing was considered an integral part of the usual
development activities. The test strategy focused on
two aspects: automation and early end-to-end testing.
Hence, the classical approach towards automated unit
testing [6] was supplemented with tests of the com-
plete system (according to its actual degree of comple-
tion).

Much emphasis and effort was put into the testware
to allow individual developers to do efficient end-to-
end testing. This included:

• A set of sophisticated mocks to simulate the
messaging infrastructure of the underlying en-
terprise service bus. This allowed for an imme-

diate end-to-end test by the developer without
the need to deploy the system after each change.

• A user interface [2] to run all automated tests in-
dependently from the development environment.
This allowed (a) for conveniently running the
same tests after each deployment to the pre-
production environment and (b) for the project
manager and analyst to keep track of the sys-
tem’s current status and capabilities. This ap-
proach was quickly adopted by another, inde-
pendent team within the bank.

• A configurable comparator to compare the gen-
erated (xml) output messages with a reference
message. The configuration of the comparator al-
lowed for a quick and straightforward specifica-
tion of those message parts that ought to be ig-
nored when an actual result is compared to the
expected result. In this way, a message’s ever-
changing sequence number, for instance, could
be ignored.

It was planned to use a coverage analysis and visua-
lization tool right from the beginning, but the tool in-
cluded in the development environment did not work
in our context. Yet, a working coverage analysis tool
[4] became operable in the last quarter of the construc-
tion phase.

2.4. Team Structure and Task Allocation

The core team consisted of eight persons: project

manager, business analyst, architect and chief pro-
grammer (the first author of this report), three senior
developers and two junior developers. It was comple-
mented by experts for the enterprise bus/asynchronous
middleware, who could be called in on demand.

The riskiest parts were clearly the business/domain
logic, which had to be fast, stable and adaptable. Espe-
cially the message types and -format coming from the
trading system were expected to be unstable during a
considerable part of the project. To cope with this
problem, the most experienced resources where as-
signed to the business logic component.

The junior developers – both of them senior host
developers recently transferred to the Java develop-
ment department – were assigned to the components
responsible for the handling of master data and persis-
tence. These components were considered to be of
lesser risk, as requirements were stable and the inter-
faces internal to the system.

It should be noted that the assignment was not
strict, but merely a focal point. In principle, the code
was owned collectively and each team member (and

his or her tasks) did have one other team member who
could serve as a back up.

0
10
20
30
40
50
60
70
80
90

100

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

0
10
20
30
40
50
60
70
80
90
100

kL
oC

avg brnch coverage (c3) avg stmt coverage (c0)
avg method coverage sum loc

Figure 2. Branch - (c3), statement - (c0), method cov-
erage, and lines of code (loc) for the system.

3. Tool Introduction and Data Gathering

Lawrance et al. state that the usage of code cover-
age tools (can) cause developers to overestimate their
test effectiveness [7]. In previous projects, we made
similar experiences, especially when the usage of such
tools was not introduced properly. Bare provisioning
of the coverage analysis and visualization features of-
ten leads developers to compete over the highest poss-
ible coverage rates without using the visualization to
reflect about more effective tests. The coverage rate
may increase, but the tests are not improved in quality.
In order to avoid this pitfall, the team was coached
with the tool, heuristics were given to identify areas
that remain often untested, such as error handling (see
[1]), and it was made clear to the team that the goal
was not higher coverage at all costs. It should also be
noted that the coverage analysis tool was introduced
into a project with an operable test suite of around 240
automated tests.

Gathering of coverage data was done through the
coverage analysis tool. To get coverage numbers of the
pre-tool era, we restored previous baselines/revisions
from the repository (in our setting: cvs) and simply
replayed the complete test suite to reproduce the result
of the testing done to this specific baseline/revision.
This was possible because source code, test code, test
cases, test data, and expected test results were all put
together in the repository and tagged with base-
line/revision information.

Data gathering of the change rates was done
through a cvs history dump and a spreadsheet. For any
addition, modification or deletion of a repository file,
the history dump contained the date/time and the re-
sponsible developer. This data was imported into the
spreadsheet for post-processing, e.g., aggregat-
ing/counting all changes within one week.

4. Impact on Code Coverage

Figure 2 shows various coverage measurements for
the whole system over a period of half a year – three
months before the coverage analysis tool was intro-
duced and three months after. The coverage analysis
and visualization tool was introduced in mid-January
2006. From that time on a clear increase in statement -,
branch -, and method coverage is visible. During the
period observed, all three (statement, branch and me-
thod) coverage measurements always move up or
down in concert. We therefore will not differentiate

them in the context of this report and simply talk of
code coverage.

Before coverage visualization became available to
the development team, the coverage rate increased
very slowly up to around 70%. We often observed this
behavior in systems where the architecture makes it
difficult to do comprehensive testing beyond a certain
level. This typically occurs when not all the conditions
necessary to enter a specific piece of code can easily
(and automatically) be replicated through tests.

As change requests and new test cases impacting
the changed parts could be implemented quite easily,
we assume that the architecture of our system was not
the true limitation. Nevertheless, the coverage rate
stalled at around the level of 70%. We attribute this to
the developers, who were sufficiently confident about
the quality of their tests. They could not think of any-
thing else to test, as long as they did not dispose of any
effective aid for detecting aspects not covered yet.

In terms of absolute numbers of test cases, there
were around 240 before the introduction of the tool.
The number of test cases increased quite quickly to
317, and then to 420. However, this change cannot be
completely credited to the exploitation of coverage
visualization and to the new possibilities for scrutiniz-
ing the tests and the productive code. In fact, new
plug-ins to handle new message types were developed
and tested in parallel. Thus, we estimate that roughly
one third of the additional test cases are due to the im-
plementation of those plug-ins, and that the other two
thirds can be attributed to coverage visualization.

5. Impact on Developers

0

10

20

30

40

50

60

70

80

90

100

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

0

10

20

30

40

50

60

70

80

90

100

kL
oC

Brnch(c3) D Stmt(c0) D Method D LoC D

Figure 3. Statement - (c0), branch - (c3), method cov-
erage, and lines of code (loc) for business/domain logic
components developed by senior developers.

As mentioned in Section 2.4, the most experienced
developers were assigned to the business/domain logic
components, whereas the more junior ones were as-
signed to master data and persistence components.

In retrospection and by pure chance, this setup al-
lows for an analysis of the degree to which developers
with different experience levels benefit from code cov-
erage visualization. The correctness of the analysis is
based on the assumption that the testability (and thus
the effort to create tests) of the different components is
similar. Interviews with the project team – which in-
cludes the first author – support this assumption.

5.1. Senior Developers

For the senior developers the coverage rate stalled
before the tool was introduced. After the introduction,
the coverage rate increased immediately, but only by a
moderate amount. Roughly a month later, the coverage
rate slowed down again (see Figure 3).

0

10

20

30

40

50

60

70

80

90

100

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

0

10

20

30

40

50

60

70

80

90

100

kL
oC

Brnch(c3) M Stmt(c0) M Method M LoC M

Figure 4. Statement - (c0), branch - (c3), method cov-
erage, and lines of code (loc) for master data compo-
nents developed by a junior developer.

According to the developers’ comments, we con-
cluded that coverage visualization helped them to iden-
tify tests that had been missing before (according to
their individual judgments). Usually, this meant new or
extended tests for error handling, synchronization and
robustness. It rarely meant new or improved tests of
special conditions of the blue-sky behavior. After they
internalized this knowledge, it became part of their
mindset to write tests. They still used (and enjoyed)
coverage visualization, but in essence, they had no
further need for the tool. Coverage visualization re-
vealed subsequently fewer new aspects they found
‘test-worthy’. Rarely used and automatically generated
setter or getter methods were for example not consi-
dered to be ‘test-worthy’. As mentioned before, the

goal of coverage analysis and visualization was not to
reach an ultimately high coverage rate, but to improve
the tests by including missing yet important aspects.

5.2. Junior Developers

For the junior developers we made two distinct ob-
servations. In the first place (see Figure 4), similarly to
the senior developers, code coverage visualization
leads to a visible increase of the coverage rate. They
needed around two weeks longer to become comforta-
ble with the coverage visualizations, but in comparison
to the senior developers, the duration of the effect was
longer and the relative increase of the coverage rate
was a lot higher. After a short time, the junior develop-
ers reached the same coverage rate as the senior devel-
opers. In contrast to the senior developers, not only
tests for robustness and error handling were added, but
also a large number of tests for checking special cases
in the blue-sky behavior. A closer inspection reveals
that an experienced developer often adds such special
cases and their tests more or less automatically, in or-
der to make the system behave according to the ‘prin-
ciple of least astonishment’ [1][14]. Another factor
contributing to the steep increase of the coverage rate
was due to a couple of test cases that were not inte-
grated in the embracing test suite. The coverage mea-
surement led the developers to revisit these test cases
and either integrate them in the embracing suite or to
delete them altogether.

As a second observation (see Figure 5), the cover-
age rate increases for a very short time and then drops
significantly. Missing or inconsistent error handling
always plagued the corresponding component a little

0

10

20

30

40

50

60

70

80

90

100

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

0

10

20

30

40

50

60

70

80

90

100

kL
oC

Brnch(c3) P Stmt(c0) P Method P LoC P

Figure 5. Statement (c0), branch - (c3), method cov-
erage, and lines of code (loc) for the persistence logic
components developed by a junior developer.

bit. The coverage visualization caused the developer
(at least he told so) to rethink the internal design. He
decided for radical changes, refactored the structure
massively and introduced a persistence framework. As
a consequence, the coverage rate dropped during the
rework for a certain time, before it rose again as the
component stabilized.

5.3. Collectively owned Component

Besides the components with a clear assignment to
a certain developer resource, there was one component
– the utility component – that was owned and devel-
oped collectively. This component provides common

business-independent functionality like logging and
helpers for exception handling, as well as a couple of
utilities, e.g., string manipulation utilities.

Naturally, these mixed-bag-components and their
tend to be neglected by the time, and indeed, the cov-
erage rate was slowly decreasing (see Figure 6). In
contrast to other components where almost no inter-
vention by the architect or project manager was neces-
sary to motivate developers to improve their automated
tests, this component was left aside, at least at the be-
ginning (not visible in the figure because of a missing
measurement point in mid-February). Thereafter a mix
of the effects described above occurred). The coverage
rate increased, but the increase is right between the
increase of the senior and junior developers, which
supports the analysis.

6. Benefits of Code Coverage

Visualization

Based on experiences from this project and pre-
vious ones, we identified three prominent areas of ben-
efit from code coverage visualization:

• Improvements of code robustness
• Consolidation of the automated test cases
• Detection of new defects, mainly in the error-

handling

6.1. Improvements of Code Robustness

Not everything that is detected through code cover-
age visualization manifests itself as a defect. The ro-
bustness and understandability of the internal contracts
and communication of a component often facilitates or
prevents the introduction of defects. A component or
class that refuses to behave according to ‘the principle
of least astonishment’ and/or with a fragile error han-
dling may be correct when examined in isolation, but
in cooperation with other components, it may well be a
steady source of defects. Tests limited to the blue-sky
behavior as well as the lack of tests of the handling of
special cases and errors both support the perpetuity of
such problems. The testing in an integrated, end-to-end
context (instead of unit testing of single classes) to-
gether with code coverage analysis contributed sub-
stantially to identify these sub-components.

0

10

20

30

40

50

60

70

80

90

100

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

0

10

20

30

40

50

60

70

80

90

100

kL
oC

Brnch(c3) U Stmt(c0) U Method U LoC U

Figure 6. Statement - (c0), branch - (c3), method cov-
erage, and lines of code (loc) for the collectively owned
component containing common utility functionality.

Often a large number of untouched conditions and
disproportionateness and imbalance between statement
and branch coverage rates are signs of such compo-
nents. In our experience, this is an area where especial-
ly the junior developers took great benefit from the
coverage analysis and visualization (see Section 5.2).

6.2. Consolidation of Automated Tests

As the automated test suite grows, it is often inevit-
able that the same aspect is tested by several distinct
test cases, e.g., the error handling for a message with a
corrupt message format is always the same, indepen-
dently of the message type. For the developer this co-
herence is not always obvious, and as a consequence,
some test cases are dispensable. During test execution,
these dispensable test cases do no harm, and there is no
need to care about them. However, when the system
has to be changed or refactored, e.g., due to changing
requirements, not only the productive code but also the
test cases are subject to change. Contrary to the pro-
ductive code, the automated test suite is often not de-
signed to cope with those changes.

Coverage analysis and visualization helped devel-
opers in two ways to recognize dispensable test cases.
First, the visualization showed that eligible code may
already be covered. Second, the tool we used also
showed how often each line was executed. As a conse-
quence, developers are able to reason about and decide
(a) whether the existing coverage is sufficient or (b) if
it is still necessary to add further test cases, or (c) to
initiate a refactoring of the test suite to make it more
robust against changes. All three options were per-
formed and led to a sleek but effective test suite.

Another effect was the assessment of ‘loose’ test
cases. These test cases, being not part of any larger

unit of test cases, were either integrated into an em-
bracing suite or deleted altogether.

6.3. Detection of New Defects

Before the introduction of coverage analysis and vi-

sualization, the existing tests covered a lot of the blue-
sky behavior. The developers preferred to create end-
to-end tests using the given testware (see Section 2.3)
instead of writing fine granular tests of individual
classes. As a consequence, the error handling (includ-
ing error messages) was quite good at this end-to-end
level, and so was the public interface of the busi-
ness/domain logic component, as this interface was
close to the system border.

However, inside the system the error handling be-
tween the business logic, master data, persistence and
utility components was inconsistent. In this context, a
number of defects where detected which (a) would
have stopped the system without need, (b) did not stop
the system despite the need to do so, or (c) reported
inconclusive error messages. Furthermore, defects in
the handling of special cases especially in the persis-
tence component were detected. The continuing pres-
sure to handle these cases properly urged one of the
junior developers to refactor his component (see Sec-
tion 5.2).

Typically, many defects detected using coverage vi-
sualization were related to error handling and to spe-

0

100

200

300

400

500

600

700

800

900

Feb.
2005

Mar.
2005

Apr.
2005

May.
2005

Jun.
2005

Jul.
2005

Aug.
2005

Sep.
2005

Oct.
2005

Nov.
2005

Dec.
2005

Jan.
2006

Feb.
2006

Mar.
2006

time

Removal
Modification
Addition

Figure 7. Accumulated number of weekly removals, modifications and additions of files in the repository during the first
author’s involvement in the project (January 2005 until March 2006).

cial cases in the blue-sky behavior. A couple of defects
related to non-functional requirements were detected
as well. Defects concerning the typical (blue-sky) be-
havior were rarely detected.

An increased defect rate was clearly observable in
the test management tool. Yet, we were not able to
derive a clear and quantifiable relationship to coverage
analysis and visualization, since the defect rate was
also influenced by (a) a more formal handling of de-
fects in the later phases of the project where increa-
singly more defects were tracked, (b) the early use of
the system in a pre-production environment, and (c)
the continuing development of plug-ins by the main-
tenance team.

7. Impact on Code Change

Except for a couple of days to introduce the code
coverage analysis and visualization tool, the original
schedule of the project plan was not affected in any
way by the use of the tool. Above, in Sections 4 and 5,
data about the impact on code coverage rates was
shown. In this section, we will present some data about
the impact in terms of changes to the system.

Figure 7 shows the accumulated weekly change rate
over the time the authors accompanied the project. The
big peaks in March and August 2005 indicate major
refactorings of the core controlling the processing and
accessing the plug-ins (cf. Sections 2 and 3). The
“calm” areas in between indicate phases where mainly
message specific plug-ins were developed. Surprising-
ly, the change rate did not alter noticeably after tool
introduction in mid-January 2006. At the same time,
coverage rates increased and the benefits described in
Section 6 could be observed. Doing the same work, the
developers realized (at least) tests with a higher cover-
age rate. This suggests that the quality of the work of
the developers improved (cf. Section 5).

Over the whole development time the system had to
cope with a high change rate. This was due to chang-
ing requirements and revised message type specifica-
tions originating from the external trading system.

Nagappan et al. [8] correlate a high change rate
(churn) with a high probability of defects. At least in
this project, we found the change rate metric to be less
suited to hint at defects when compared to code cover-
age analysis and visualization or to non-commented
source statements (NCSS). The reason may be a matter
of scale – Nagappan examined a large system – or the
system architecture. Here the architecture and the test
strategy were especially designed to cope with fre-
quent changes in certain, expected areas. The changes
were expected (and occurred) in the plug-ins. Howev-

er, a small change in the core could cause many defects
in the plug-ins, whereas massive changes in a plug-in
resulted in a minor number of defects.

8. Lessons Learned

In this section, we compiled our most prominent
experiences and recommendations for the effective use
of code coverage analysis and visualization tools.
These experiences were not only made in the project
covered in this report, but also in a couple of other
projects in which the authors had been involved.

• Make expectations clear before introducing the
tool. Given a reasonably usable automated test
suite, make sure that the tool will mostly influ-
ence the developers to (in decreasing order) (1)
write more robust code, (2) find bug or anoma-
lies in the error handling, (3) find bugs in the
handling of special cases in the blue-sky beha-
vior, and (4) work on the consolidation of the
test cases.

• Do not introduce coverage analysis and visuali-
zation tools in projects without a reasonably us-
able automated test suite.

• Do not expect to find many new bugs in the
blue-sky behavior of your system. This is a di-
rect consequence from the preceding lesson not
to use these tools in projects without a reasona-
bly usable automated test suite.

• Consider an introduction around mid-
construction. From our experience, it is not ne-
cessary to operate this kind of tool over the
complete development cycle. If introduction is
too early, developers will waste time using a tool
from which they cannot sufficiently benefit yet.
If introduction is too late, though, the usage
might be confined to the detection of bugs,
which is only one of the benefits.

• Keep the feedback cycle between coding, testing
and coverage visualization as short as possible.
Developers will quickly lose the motivation to
exploit coverage visualization if – in their opi-
nion – the cognitive overhead to get the neces-
sary information is too high. Therefore, adopt
tools that integrate tightly with the development
environment through visualization and annota-
tions directly in the code editors.

• Make sure tool usage is well understood, esp. by
junior developers, as they are the group that
most likely takes the highest benefit out of it.

• Emphasize – over and over again – that the pri-
mary goal is not to reach an ultimately high cov-
erage rate, but to exploit coverage visualization

for identifying areas of the code that are not cov-
ered by tests yet, but that are ‘test-worthy‘ from
the (test) developers’ point of view.

• Award the identification of important untested
areas and found bugs, but do not award high
coverage rates. Resist the temptation to officially
compete in the team or against other teams for
high coverage rates.

• If you decide to prescribe a certain coverage rate
or percentage, then prescribe a reasonably high
one and make sure that it cannot be reached sole-
ly by testing the blue-sky behavior. If this cover-
age cannot be reached economically, confine this
rate to certain important components.

• If you prescribe a certain coverage rate, be pre-
pared that your developers will behave according
to the metric, and unimportant parts will be
tested only for the purpose to raise the coverage
rate.

9. Conclusion

Code coverage and visualization tools can be an ef-
fective aid in enhancing software testing and improv-
ing the robustness of a system. In order to reap these
benefits, our experience from a number of projects
suggests that they must be properly introduced and
judiciously used.

In this experience report, code coverage informa-
tion gathered from one specific project was analyzed,
and four specific questions concerning the impact and
benefits of this approach were discussed. Based on this
discussion, a list of ten lessons learned was derived.
Abiding by the items of the list will help developers
focus their use of code coverage tools. Failure to do so
will likely result in an ineffective or in some cases
even counterproductive use of the tools.

From our experience and the data from a couple of
projects [1][13], most of the effort needed for test au-
tomation is strongly related to the testability of the
system. When a system is not specifically designed for
testability and a coverage analysis and visualization
tool is used, the coverage rate often stalls at around 70
to 80%. Getting higher rates is often very expensive
because the system’s architecture makes it almost im-
possible to cover certain parts of the code. Given a
system with a reasonably testable architecture, the
coverage of the tests will stall at a similar level, unless
a code coverage analysis and visualization tool is used.

As future work, we aim to investigate the interrela-
tionship between code coverage tools and both testable
architectures and architectures with severe limitations
in testability. Questions of theoretical and very practic-

al interest alike will include: What is the influence of
the testability of an architecture on code coverage le-
vels? What is the effect on defect detection rates? Is
there synergy between architecture and code coverage
tools? Furthermore, the application of our lessons
learned may have quite an impact on the overall testing
process. Therefore, we plan to investigate the affected
process facets, as well as the impact of the underlying
software development process [11].

References

[1] Berner, S., R. Weber, and R. K. Keller. „Observations

and Lessons Learned from Automated Testing”, Pro-
ceedings of the 27th Intl. Conf. on Software Engineer-
ing, pp. 571-579, St. Louis, MO, USA, May 2005.
ACM Press.

[2] Clover, http://www.cenqua.com/clover
[3] Hutchins, M., H. Foster, T. Goradia, and T. J. Ostrand.

“Experiments of the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria”, Proceed-
ings of the 16th Intl. Conf. on Software Engineering,
pages 191-200, Sorrento, Italy, May 1994. ACM Press.

[4] Hansel & Gretel, http://hansel.sourceforge.net/
[5] JCover,

http://www.codework.com/JCover/product.html
[6] http://www.junitee.org (JUnitEE)
[7] Lawrance, J., S. Clarke, M. Burnett, and G. Rothermel.

“How Well Do Professional Developers Test with
Code Coverage Visualizations? An Empirical Study”,
Proc. of the IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 53-60, Dallas,
TX, USA, Sept. 2005.

[8] Nagappan, N. and T. Ball. “Use of Relative Code
Churn Measures to Predict System Defect Density”,
Proceedings of the 27th Intl. Conf. on Software Engi-
neering, pp. 284-292, St. Louis, MO, USA, May 2005.
ACM Press.

[9] Rational Application Developer for WebSphere Soft-
ware, http://www-
306.ibm.com/software/awdtools/developer/application/
index.html

[10] Shaw, M. and Garlan, D. Software Architecture: Pers-
pectives on an Emerging Discipline, Prentice Hall,
1996.

[11] Talby, D, Keren, A., Hazzan, O., and Dubinsky, Y.
“Agile Software Testing in a Large-Scale Project”,
IEEE Software, 23(4), July/Aug. 2006, pages 30-37.

[12] VisualStudio,
http://msdn.microsoft.com/vstudio/teamsystem/default.
aspx

[13] Weber R., Th. Helfenberger, and R. K. Keller. „Fit for
Change: Steps towards Effective Software Mainten-
ance”, Industrial and Tool Proceedings of the Interna-
tional Conference on Software Maintenance, pp. 26-
33, Budapest, Hungary, 2005. IEEE.

[14] http://en.wikipedia.org/wiki/Principle_of_least_astonis
hment

	1. Introduction
	2. Project Setup
	2.1. Purpose of the System
	2.2. System Architecture
	2.3. Test and Testware Architecture
	2.4. Team Structure and Task Allocation

	3. Tool Introduction and Data Gathering
	4. Impact on Code Coverage
	5. Impact on Developers
	5.1. Senior Developers
	5.2. Junior Developers
	5.3. Collectively owned Component

	6. Benefits of Code Coverage Visualization
	6.1. Improvements of Code Robustness
	6.2. Consolidation of Automated Tests
	6.3. Detection of New Defects

	7. Impact on Code Change
	8. Lessons Learned
	9. Conclusion
	References

