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SCHUR’S EXPONENT CONJECTURE — COUNTEREXAMPLES OF

EXPONENT 5 AND EXPONENT 9

MICHAEL VAUGHAN-LEE

1. Introduction

There is a long-standing conjecture attributed to I. Schur that if G is a finite group with Schur

multiplier M(G) then the exponent of M(G) divides the exponent of G. It is easy to show that this is

true for groups G of exponent 2 or exponent 3, but it has been known since 1974 that the conjecture

fails for exponent 4. Bayes, Kautsky and Wamsley [1] give an example of a group G of order 268 with

exponent 4, where M(G) has exponent 8. (Bayes, Kautsky and Wamsley are heros of the early days

of computing with finite p-groups.) However the truth or otherwise of this conjecture has remained

open up till now for groups of odd exponent, and in particular it has remained open for groups of

exponent 5 and exponent 9. For a survey article on Schur’s conjecture see Thomas [6].

In this note I give an example of a four generator group G of order 54122 with exponent 5, where

the Schur multiplier M(G) has exponent 25, and an example of a four generator group A of order

311983 and exponent 9, where the Schur multiplier M(A) has exponent 27. Very likely the reason that

similar examples have not been found up till now is that computing the Schur multipliers of groups

of this size is right on the edge of what is possible with today’s computers.

We define the group G as follows. First we let H be the four generator group with presentation

⟨a, b, c, d | [b, a] = [d, c]⟩,
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and then we let G be the largest quotient of H with exponent 5 and nilpotency class 9. Let F be the

free group of rank 4, with free generators a, b, c, d, and let M be the normal closure in F of

{g5 | g ∈ F} ∪ {[b, a][c, d]}.

Then G = F/RG where RG = Mγ10(F ). The group F/[RG, F ] is a central extension of G, and the

Schur multiplier M(G) is (RG ∩ F ′)/[RG, F ]. Clearly [b, a][c, d] ∈ RG ∩ F ′, and we show that G is a

counterexample to the Schur exponent conjecture by showing that ([b, a][c, d])5 /∈ [RG, F ].

The group A is defined similarly. It is the largest quotient of

⟨a, b, c, d | a3, b3, c3 , d3, [b, a] = [d, c]⟩

with exponent 9 and nilpotency class 9. So if we let N be the normal closure in F of

{g9 | g ∈ F} ∪ {a3, b3, c3, d3, [b, a][c, d]}

then A = F/RA where RA = Nγ10(F ), and the Schur multiplier M(A) is (RA∩F ′)/[RA, F ]. We show

that A is a counterexample to the Schur exponent conjecture by showing that ([b, a][c, d])9 /∈ [RA, F ].

I was led towards these examples after a fruitful correspondence with Viji Thomas. He wrote to me

saying that he was investigating the groups R(d, 5) for various d. (Here R(d, 5) is the largest finite

quotient of the d generator Burnside group of exponent 5, B(d, 5).) He mentioned that the Schur

exponent conjecture was still open for groups of exponent 5, but that he could prove that the Schur

multipliers of R(2, 5) and R(3, 5) have exponent 5. He wondered if I knew what the nilpotency class

of R(4, 5) is. It is known that the class of R(d, 5) is at most 6d (see [4]), so that the class of R(4, 5)

is at most 24. He said that if in fact the class is less than 24 then he might be able to prove that the

Schur multiplier of R(4, 5) has exponent 5. It seems quite likely that the class of R(4, 5) is less than

24 since the class of R(3, 5) is 17. (The class of R(2, 5) is 12.) But I was unable to help him on this

point since as far as I know the class of R(4, 5) remains undetermined. Out of interest I computed

the Schur multiplier of R(2, 5) — it is elementary abelian of order 531. Detailed information from this

computation led me to conclude that any exponent 5 counterexample to Schur’s exponent conjecture

would need to have class at least 9 and would need at least 4 generators. This detailed information

also showed that the Schur multiplier of R(4, 5)/γ10(R(4, 5)) has exponent 5. So if we want to find

a class 9 quotient G of R(4, 5) with Schur multiplier with exponent greater than 5, then G needs to

satisfy a relation r = 1 where r is a product of commutators of weight at least 2, and where r = 1 is

not a consequence of fifth power relations. This is what led me to consider the relation [b, a] = [d, c].

In the next section I show one way of computing the Schur multiplier of R(2, 5), and then in Section

3 I show how to compute the central extension F/[RG, F ] of G. Success with the group G led me

to investigate the group A of exponent 9, and this calculation is described in Section 4. Finally, in

Section 5 I speculate on possible counterexamples in other exponents.

Magma programs to carry out the computations described in this note are available at MAGMA

Files.

http://dx.doi.org/10.22108/ijgt.2020.123980.1638
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2. The Schur multiplier of R(2, 5)

The group R(2, 5) has order 534 and nilpotency class 12. You can verify this in Magma [2] by

entering

P := pQuotient(FreeGroup(2), 5, 0 : Exponent := 5,Print := 1);

The p-covering group of the class 11 quotient of R(2, 5) has order 565, and so as a class 12 group

R(2, 5) has a presentation with 31 fifth powers as relators. If we take generators a, b for R(2, 5) then

a suitable set of relators is {u5 |u ∈ U} where U consists of the elements

a, b, ab, a2b, ab2, a3b, a2b2, ab3, a4b, a3b2, a2bab, a3bab, a2bab2, a2b2ab, abab3,

a4bab, a3bab2, a2bab3, a2b2ab2, a4bab2, a3ba2b2, a3bab3, a2babab2, a2bab4,

a2b2ab3, a4ba2b2, a4bab3, a3ba2bab, a3babab2, a3bab4, a2ba2bab2.

So if we let F2 be the free group of rank 2 generated by a, b and let K be the normal closure in F2

of {u5 |u ∈ U} then R(2, 5) = F2/R where R = Kγ13(F2). (You can use the pQuotient algorithm

in Magma to verify that F2/R has order 534.) Let S be the central extension F2/[R,F2] of R(2, 5).

Then S is the class 13 quotient of the group with presentation

⟨a, b | {[u5, v] |u ∈ U, v ∈ {a, b}}⟩.

In Magma you can compute a PC-presentation for S using the nilpotent quotient algorithm. If we let

T be the subgroup ⟨u5 |u ∈ U⟩γ13(S) of S, then S/T is isomorphic to R(2, 5) and the Schur multiplier

of R(2, 5) is T ∩ S′. As mentioned above, the Schur multiplier is elementary abelian of order 531.

One important observation is that [b, a]5 ∈ γ10(S). This implies that if P is a finite group of

exponent 5 with class less than 9 then the derived group of any central extension of P has exponent

5. And this implies that the Schur multiplier M(P ) has exponent 5. In fact detailed examination

shows that in S we can express [b, a]5 as a product of commutators [x1, x2, . . . , xk] (k ≥ 10) where

x1, x2, . . . , xk ∈ {a, b} and where a and b both occur at least 5 times in the sequence x1, x2, . . . , xk.

This implies that if H is a central extension of any group of exponent 5, and if c ∈ H is a commutator

of weight k > 1 then c5 ∈ γ5k(H).

3. Computing the group F/[RG, F ]

As stated in the Introduction, we letG be the largest exponent 5, class 9, quotient of ⟨a, b, c, d | [b, a] =
[d, c]⟩. We write G = F/RG where F is the free group of rank 4 with free generators a, b, c, d. We

want to compute F/[RG, F ].

We can use the pQuotient algorithm in Magma with parameter “Exponent:=5” to compute a

PC-presentation for G. This takes about 4 minutes of CPU-time. (All timings are for programs

run in Magma V2.19-10 running on a desktop computer with 16GB of RAM and an Intel Core i7-

4770CPU@3.40GHz×8 processor. This is quite an old version of Magma and John Cannon keeps

telling me that I really ought to upgrade to the latest version.) The calculation shows that G has
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order 54122. As in our computation of the Schur multiplier of R(2, 5) we need to find a finite set of fifth

powers which together with the relation [b, a] = [d, c] define G as a class 9 group. There is a theorem

of Higman [5] which implies that if G is nilpotent of class c then G has exponent dividing n provided

gn = 1 for all words of length at most c in the generators of G. So I generated a list of all words of

length at most 9 in the generators a, b, c, d of G. There are some obvious redundancies in this list. For

example ab is conjugate to ba so that the relation (ab)5 = 1 is equivalent to the relation (ba)5 = 1,

and ba is redundant. More generally, if x1, x2, . . . , xk ∈ {a, b, c, d} then x1x2 . . . xk is conjugate to

x2 . . . xkx1 and so we can discard any word which is lexicographically greater than any of its cyclic

conjugates. We can also discard any word which contains a subword a5, b5, c5 or d5. This left me

with a list of 39564 words in the generators a, b, c, d. In principle you could use this list to compute

F/[RG, F ], but the computation would probably take a month or more of CPU-time. The p-covering

group of the class 8 quotient of G has order 57044 so we need 2921 fifth powers (together with the

relation [b, a] = [d, c]) to define G as a class 9 group. I reduced my long list of fifth powers to a list of

2921 fifth powers

a5, b5, c5, d5, (ab)5, . . . , (ab4cbcd)5

as follows. First I computed the class 5 quotient K of

⟨a, b, c, d | [b, a] = [d, c], a5, b5, c5, d5⟩.

This group K has order 5214, whereas the class 5 quotient of G has order 5162. So |K5| = 552. I

systematically built up the subgroup K5, starting with the trivial subgroup L = {1} and adding in

one fifth power at a time to L from my long list of fifth powers, till L had order 552. By keeping track

of which fifth powers increased the order of L, I was able to obtain a list of 52 fifth powers which

together with the relations [b, a] = [d, c], a5 = 1, b5 = 1, c5 = 1, d5 = 1 define the class 5 quotient of

G. Next I computed the class 6 quotient M of the group satisfying these 52 fifth power relations in

addition to the relations [b, a] = [d, c], a5 = 1, b5 = 1, c5 = 1, d5 = 1. Then I found a minimal set of

fifth powers from the long list of fifth powers which generate M5. And so on, up to class 9. Tedious,

but straightforward enough.

I now had a list U of 2921 words in a, b, c, d with the property that G is the class 9 quotient of the

group with generators a, b, c, d and relations

{u5 = 1 |u ∈ U} ∪ {[b, a] = [d, c]}.

As a check I ran the pQuotient algorithm up to class 9 on these generators and relations. This took

12 minutes of CPU-time. (I can send the list U to any reader who is interested in following this up.)

Now let V = {u5 |u ∈ U} ∪ {[b, a][c, d]}, and let

W = {[v, w] | v ∈ V, w ∈ {a, b, c, d}}.

Then F/[RG, F ] is the class 10 quotient of ⟨a, b, c, d |W ⟩. Call this quotient S.
The natural approach would be to use the nilpotent quotient algorithm to compute a PC-presentation

for S, as I did when computing the Schur multiplier of R(2, 5). But a computation with the nilpotent
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quotient algorithm would have taken months of CPU-time (even if it ever completed). I tried using

the nilpotent quotient algorithm to compute G using the presentation with 2921 fifth powers, and I

had to kill the job when it had still not completed after 24 hours. So I used the pQuotient algorithm

to compute the p-class 10 quotient P of ⟨a, b, c, d |W ⟩. This took 46 hours of CPU-time, and showed

that P has order 513330. Clearly P is a homomorphic image of S (since a5
10

= b5
10

= c5
10

= d5
10

= 1

in P ), but [b, a][c, d] has order 25 in P , and so order at least 25 in S. So the Schur multiplier of G has

exponent at least 25. On the other hand we know from the computation of the Schur multiplier of

R(2, 5) that S′5 ≤ γ10(S), and that γ10(S) has exponent 5. So the Schur multiplier of G has exponent

25.

4. Computing a quotient of F/[RA, F ]

As stated in the Introduction, we let A be the largest exponent 9, class 9, quotient of

⟨a, b, c, d | a3, b3, c3, d3, [b, a] = [d, c]⟩.

We write A = F/RA where F is the free group of rank 4 with free generators a, b, c, d. We want to

compute F/[RA, F ] (or a suitable quotient of this group).

Let B be the group generated by a, b, c, d with relations

{a3 = 1, b3 = 1, c3 = 1, d3 = 1, [b, a][d, c] = 1} ∪ {u9 = 1 |u ∈ U}

where U is the set

{ab, ac, ad, bc, bd, cd, a2b, a2c, a2d, abc, abd, acd, b2c, b2d, bcd,

c2d, a2bc, a2bd, a2cd, ab2c, ab2d, abc2, abcd, abd2, ac2d, acd2, b2cd,

bc2d, bcd2, a2bcd, ab2cd, abc2d, abcd2, a2b2cd, a2bc2d, a2bcd2}.

Then the class 9 quotient of B has exponent 9, and so is isomorphic to A. (You can check this in

Magma by using the pQuotient algorithm to compute the class 9 quotient of B, and then running

the pQuotient algorithm up to class 9 again, with the extra parameter “Exponent:=9”.) So if we let

L be the normal closure of

{u9 |u ∈ U} ∪ {a3, b3, c3, d3, [b, a][c, d]}

in the free group F , then A = F/RA where RA = Lγ10(F )

Now let S be the class 10 quotient of the group with generators a, b, c, d and relators

{a3, b3, c3, d3} ∪
{
[x, y] |x ∈ {u9 |u ∈ U} ∪ {[b, a][c, d]}, y ∈ {a, b, c, d}

}
.

Then S is a central extension of A, and is a proper quotient of the group F/[RA, F ]. It takes the

pQuotient algorithm in Magma two minutes to compute S, which has order 337170. (Presumably this

calculation is so quick compared with the calculation of the p-class 10 quotient of F/[RG, F ] because

A has many fewer relations than G.) Unfortunately Magma crashes immediately after completing
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the calculation of S. It seems to me likely that Magma has a problem converting pQuotient’s in-

ternal representation of S into a standard Magma PC-presentation. However Magma’s C version

of pQuotient is based on George Havas’s original Fortran version [3], and so I recomputed S using

George’s Fortran code. The computation showed that [b, a][c, d] has order 27 in S, and so order at

least 27 in F/[RA, F ].

I notified Eamonn O’Brien, who wrote the pQuotient program in Magma, about my problem with

Magma crashing. He confirmed that there is a bug in Magma, even in the latest version. However,

with Eamonn’s special knowledge of his program he was able to use pQuotientProcess to confirm my

Fortran calculation.

So the Schur multiplier M(A) has exponent at least 27. However if we let T be any central extension

of a class 9 group of exponent 9 then it is easy to see that the derived group T ′ has exponent dividing

27. We proceed as follows. We can use the nilpotent quotient algorithm to compute the class 10

quotient of

⟨a, b | {[u9, v] |u ∈ {a, b, ab, a2b, ab2}, v ∈ {a, b}}⟩.

The commutator [b, a] has order 27 in this quotient, and so any commutator in T has order dividing

27. So T ′ is generated by elements of order at most 27, and has class at most 5. We can use the

nilpotent quotient algorithm to compute the class 5 quotient of

⟨a, b | {[u9, v] |u ∈ {a, b, ab, a2b, ab2}, v ∈ {a, b}} ∪ {a27, b27}⟩,

and ab has order 27 in the quotient. So the product of elements in T ′ with order dividing 27 also has

order dividing 27. So T ′ has exponent dividing 27.

All this shows that the Schur multiplier M(A) has exponent 27.

5. Other exponents?

It seems certain that there are similar examples for all prime powers greater than 3. George Havas

conjectures that for every prime p > 3 the largest exponent p, class 2p− 1 quotient of

⟨a, b, c, d | [b, a] = [d, c]⟩

is a counterexample. Certainly it is easy to show that any exponent 7 counterexample must have class

at least 13. The problem with computing this group, even for p = 7, is not so much that computers

nowadays do not have enough memory or that the calculation would take too long. The problem is

rather that the data structures built into current implementations of the pQuotient algorithm never

anticipated handling groups of this size. For example, in George’s Fortran program a “generator

exponent pair” aji is stored as a single 32 bit integer 216j + i, so some adjustment is needed to the

data structure if the program is to be able to handle more that 65535 PC-generators.
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