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Abstract

With the success of collaborative knowledge-building portals, such as Wikipedia, Stack
Overflow, Quora, and GitHub, a class of researchers is driven towards understanding
the dynamics of knowledge building on these portals. Even though collaborative
knowledge building portals are known to be better than expert-driven knowledge
repositories, limited research has been performed to understand the knowledge
building dynamics in the former. This is mainly due to two reasons; first, unavailability
of the standard data representation format, second, lack of proper tools and libraries to
analyze the knowledge building dynamics.
We describe Knowledge Data Analysis and Processing Platform (KDAP), a programming
toolkit that is easy to use and provides high-level operations for analysis of knowledge
data. We propose Knowledge Markup Language (Knol-ML), a generic representation
format for the data of collaborative knowledge building portals. KDAP can process the
massive data of crowdsourced portals like Wikipedia and Stack Overflow efficiently. As a
part of this toolkit, a data-dump of various collaborative knowledge building portals is
published in Knol-ML format. The combination of Knol-ML and the proposed
open-source library will help the knowledge building community to perform
benchmark analysis.
Link of the repository: Verma et al. (2020)
Video Tutorial: Verma et al. (2020)
Supplementary Material: Verma et al. (2020)

Keywords: Knowledge building, Wikipedia, Stack exchange, Open-source, Python
library

1 Introduction
With progress in computational power, research in various domains is primarily based
on the availability of data and appropriate tools for analysis. Open access to libraries and
data enhances the ease and pace of research [1]. The impact of open-source tools (like
Python, R, and Scilab) can be verified by the expansion in the utility of these tools by the
research community [2]. For example, a simple task likematrix inversion requiresmultiple
lines of code to be written in Python. Whereas, the usage of NumPy library reduces the
complexity of this task to a single line of code. Similar examples can be found in various
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domains, where the usage of analysis tools reduces the complexity of tasks in terms of time
and effort. It is useful to note that in recent years, the scientific community is positively
influenced by a growing number of libraries, such as scikit-learn for machine learning,
NumPy and SciPy for statistical computing, and matplotlib for visualization [3].
The advancement in computational power and storage facilities allows crowdsourced

portals, such as Wikipedia, Stack Overflow, Quora, Reddit, and GitHub, to host their
data on publicly available servers. The popularity and open access to the datasets of these
crowdsourced portals have drawn the attention of researchers from various communities.
Observing the collaboration and contribution of the crowd, researchers have generalized
the knowledge development on these portals to the actual knowledge building process [4].
From predicting box office success of movies to building state-of-the-art software, these
portals have helped the research communities in various aspects [5–7].
The diverse and rich content present on Wikipedia is used to study online collabora-

tion dynamics [8, 9], to examine its impact on other online collaborative portals [10],
and to train state-of-the-art artificial intelligence algorithms [11]. Similarly, the massive
growth of users and posts on crowdsourced QnA portals like Stack Overflow, Yahoo!
Answers1, and Quora, have attracted the attention of researchers to study the dynamics
of knowledge building on these portals [12–16]. Adding to the portal-specific analyses of
knowledge building on wiki-based portals and QnA portals, inter-portal analyses would
stimulate an ecosystem to give a broader perspective of knowledge building dynamics.
Recent literature has shown a rise in demand for understanding the relationships between
these portals [10, 17].
The unique functionalities of wiki-based portals and QnA portals have resulted in dif-

ferent representation formats of their datasets. For research involving the large-scale
analyses of these portals, there is an underlying problem of the unavailability of datasets
in a standard format at one place. Furthermore, the existing tools for data extraction
and analysis are narrowly focused on specific portals. For example, finding the con-
tributors who are common to Wikipedia and Stack Overflow requires multiple steps of
pre-processing and separate analysis of the corresponding datasets.
Goal: Based on the fact that a large fraction of researchers in the scientific community

are dependent on software tools [18, 19], we aim to create an ecosystem by standard-
izing the representation of the datasets of collaborative knowledge-building portals and
providing a toolkit to analyze these datasets.
Although there is an abundance of portal-specific APIs (e.g. Wikipedia API [20], Wiki-

data Query Service [21], Stack Exchange API [22], Reddit API [23]), the bottleneck is
the restriction on API calls. Another downside is the requirement to learn different APIs
for performing analyses on different portals. The structural difference of the extracted
data from crowdsourced portals necessitates intermittent pre-processing for analyses.We
emphasize the absence of a standard representation format for the data of these portals,
albeit the commonality of extensive knowledge development. While there has been sub-
stantial research using the dataset of these portals, none of the existing tools have the
potential to fulfill the requirements mentioned above. Our work will act as a catalyst for
knowledge building research by bridging the gap between the supply of data and demand
for analysis.

1Although we mention Yahoo! Answers as a QnA portal, it will be set to read-only mode on April 20th, 2021, and no
longer be usable in its current form
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This manuscript extends our earlier work [24]. The significant changes are as follows:
1) We evaluate our toolkit based on scalability and generalizability on a new dataset of
JOCWiki; 2) We modify the Wiki-based compression method to store in the revision-
history dataset in Knol-ML format; 3) We discuss the limitations of our toolkit in terms
of Knol-ML representation and generalizability of KDAP methods; 4) We provide more
details on the crowdsourced portals in the Background Section 2.
The key contributions of this paper are as follows:

1 An XML [25]-based Knowledge Markup Language (Knol-ML), a novel approach
for standardizing the representation of dataset of various collaborative knowledge
building portals.

2 Knowledge Data Analysis and Processing Platform (KDAP), a standard
high-performance library that is easy to use and provides high-level operations for
the analysis of knowledge data.

3 Knowledge Analysis and Retrieval (KAR) dataset, a set of data of these portals in
Knol-ML format.

KDAP is developed for single big-memory multiple-core machines and stabilizes the dis-
parity between maximum performance and compact in-memory data representation.
KDAP aims at facilitating the knowledge building community with open access to stan-
dard dataset and efficient data analysis methods. This will increase the ease of inter-portal
analyses and also reduce the overhead for researchers to handle different data formats
and corresponding APIs/libraries for analyses of these portals.
The rest of the paper is organized as follows. First we discuss the functionalities ofWiki-

based portals and QnA-based portals (Section 2). Following the details, we present the
relevant literature, including the various representation formats and tools to analyze the
dataset of knowledge building portals (Section 3). Then we describe the Knol-ML format
and the extension mechanism associated with it (Section 4). The details of the KDAP
library is provided in the next section (Section 5). Finally, we present the evaluation of
KDAP and results of the case studies performed (Section 6).

2 Background
Prior to related work, we provide a high-level context about online collaborative por-
tals and how knowledge matures on these portals. Majority of the online knolwledge
portals are collaborative in nature. However, they do not represent all the knowledge
building portals. For instance a blog article is written and maintained by a single user,
making the article non-collaborative in nature. We first define the online crowdsourced
portals based on the degree of freedom provided to users on each knowledge instance.
We then classify these portals into two categories. The first class of portals is where
people contribute towards the development of comprehensive information on a topic,
based on resources present on the Internet. Wikipedia and Wikia are instances of such
portals. The second category is a set of portals, where structured discussion is the core
feature, opening the ground for asking questions and answering them. Unlike Wikipedia,
knowledge in these portals is built according to the point of view of the users. In
the upcoming subsections we define the online crowdsourced portals and each of its
categories.
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2.1 Defining “Crowdsourced” portals

We define the online crowdsourced portals based on the foundation laid by Anamika
et al. [26]. The authors defined crowdsourced portals as platforms where users have the
freedom of either modifying a knowledge unit or adding a new knowledge unit on top of
the previous one. Moreover, every user is allowed to add the knowledge units in the por-
tal2. This degree of freedom allows the connection among the knowledge units, creating
a well-connected knowledge base. Interestingly, not all online portals provide this degree
of freedom to their users. For instance on Amazon Mechanical Turk, only a specific set
of users are allowed to perform a task (based on the client’s requirement). Based on the
above definition, we could classify the crowdsource portals into two categories; Wiki-
based (Wikipedia, GitHub, Wikia) and QnA-based (Stack Exchange, Quora, Reddit). In
the rest of the paper, we use crowdsourced portals and collaborative knowledge building
portals interchangeably.

2.2 Wikipedia: a portal with revisions

Wikipedia is built on the idea that “Anyone Can Edit”, aided with functions like history and
edit. The rigorous usage of these functions help an article reach a mature state, as history
allows the users to trace the development and edit allows them to add their perspective
to the article. Articles in Wikipedia follow non-point of view style, demanding users to
support their contribution with relevant evidence in the form of references. Crowd col-
laboration, rich knowledge, and open data dump has made Wikipedia a popular hub for
conducting research in various domains. The success of Wikipedia has sowed the seeds
of Wiki technology owing to the prosperity of wiki-based portals (e.g. Wikia).

2.3 QnA portal: portal for structured discussion

Another category of crowd-sourced portals is Question and Answer portals (e.g. Stack
Overflow, Quora), where the crux is the generation of exhaustive structured discussion
on a particular topic. People perform various tasks including asking questions, provid-
ing answers, discussing a topic, upvoting or downvoting a post, etc. These functionalities
facilitate the crowd to generate question specific knowledge. The increasing usage of
QnA portals and the availability of data has led researchers to explore knowledge building
dynamics on these portals.

3 Related work
In this section, we present the relevant literature regarding standard data representation
formats in various domains as well as open-source tools to analyze the data.

3.1 Data representation and analysis

The problem of standard data representation and tools to analyze data exists in other
related domains. In particular, the dynamic nature of graph structures claims for a stan-
dard representation format for visualization and analyses. This claim has been addressed
with the formulation of formats, such as Pajek, Graph Modeling Language (GML), Graph
Markup Language (GraphML), and Graph Exchange XML Format (GEXF) [27]. Fur-
ther, these formats have triggered the development of open-source tools like NetworkX,

2In some portals (like Stack Exchange), users are required to gain some experience before able to add/modify every
knowledge unit.
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iGraph, SNAP, and Gephi for analysis and visualization of graphs [28, 29]. The availabil-
ity of such standard formats and analysis tools promotes open science and helps in the
advancement of scientific research [30].

3.2 Tools and parsers for crowdsourced portals

Though portal-specific tools are developed to present the analyses of questions asked for
particular crowdsourced portals, standard tools, regardless of the portal, are unavailable.
We now discuss a few of these standard tools in the following subsections.

3.2.1 Wikipedia-based APIs

Various tools and libraries have been developed to analyze Wikipedia data. Most of these
tools extract the data in real-time to answer questions. A common example of such a tool
is the web-based Wikipedia API. It has been frequently used to retrieve language links
[31], finding articles related to a word [32], getting details about edits in articles [33], etc.
However, the downside of using a web-based API is that a particular revision has to be
requested from the service, transferred over the Internet, and then stored locally in an
appropriate format. Setting up a local Wikipedia mirror helps circumvent the drawback,
but the constraint that Wikipedia API provides full-text revisions leads to a large amount
of data being transferred. A similar tool is the Wikipedia Query Service [21], which helps
user query against the wikidata [34] dataset. Currently, in the beta mode of its develop-
ment, it contains a list of complex queries (e.g. Metro stations in Paris, places that are
below 10 meters above sea level), which can be asked on the live dataset. Though the tool
is sophisticated, there is a stipulated deadline of 60 seconds, beyond which queries can-
not be asked. Such tools are useful for sampling data from the entire set or asking specific
queries, but the flexibility with data and algorithms is limited.

3.2.2 Wikipedia data parsers

Apart from web-based services, tools to extract and parse the Wikipedia data dump are
available. Ferschke et al. [35] developed the Wikipedia Revision Toolkit, which repre-
sents Wikipedia revisions in compressed form by just storing the edits, hence decreasing
the size of the dump by 98%. Efficient retrieval methods were implemented to retrieve
the data of a particular revision from the compressed data dump. Wikibrain, developed
by Sen et al. [36], is another example of Wikipedia data dump parser, which surmounts
the unavailability of standard Wikipedia-based algorithms. It provides state-of-the-art
algorithms ranging from extracting pageviews to finding semantic relatedness, but the
number of algorithms is limited. The usage of various parsers for wiki markup-based [37]
data dumps (e.g. MediaWiki Utilities [38], mwxml [39]) are restricted to basic data.

3.2.3 QnA-based tools

Few QnA-based portals provide APIs for users to query the database. For instance, Stack
Exchange API [22] developed by Stack Exchange network is employed to obtain vari-
ous analyses results. Similarly, API provided by Reddit (Reddit API [23]) can be used to
acquire information like user details, subedits, etc. Like Wikipedia APIs, these APIs also
have a limit on the number of calls restricting large-scale analyses.

4 Knol-ML: knowledgemarkup language
Analysis of crowdsourced knowledge building portals entails data storage to facilitate easy
retrieval and exchange. Such portals vary in their functionalities, resulting in a distinct
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schema for storing data in the database. Due to the structural difference of the schemata,
data dump provided by these portals have different representation formats. The steps
involved in the process of analyzing the data are; data retrieval, pre-processing, and anal-
ysis. The absence of standard libraries and tools to analyze the data of crowdsourced
portals follows as yet another downside, restricting the knowledge building community
to analyze and study the dynamics of these portals.
Motivated by the goal of having a standard library and access to benchmark datasets

for crowdsourced portals, we propose KnowledgeMarkup Language (Knol-ML), an XML
based data representation format for these portals. We specify the following:

1. Core elements to represent the knowledge data structures.
2. An extension mechanism that allows to independently add portal-specific knowledge

data with the base as core elements.

The extension mechanism provides a feature of adding extra information that can be
combined or ignored without affecting the overall structure. Thus, a portal specific for-
mat can be created, respecting the core structure of Knol-ML. The heterogeneity in the
representation formats of the data of different portals has created a dire need for the fea-
ture mentioned above. There are various data serialization formats like JSON, YAML,
SOAP, and XML, of which we found XML [40] the best fit for developing standard data
representation format for crowdsourced portals. The reason being its descriptive tagging
structure, where each knowledge unit can be defined separately and the support for the
extension.

4.1 Core layer

Sequential knowledge development (Fig. 1) is the fundamental feature of crowdsourced
knowledge building portals, where the crowd develops knowledge sequentially by adding,
deleting, and editing information [26]. Over and top of this fundamental feature, some
portals have customized features like upvoting and downvoting others’ contributions,
accepting answers, and adding comments. In this section, we describe the representa-
tion of the data of crowdsourced portals in Knol-ML format. The core layer constitutes
the foundation of the format, describing the underlying elements to represent sequential

Fig. 1 An illustration of sequential knowledge building in crowdsourced environment. A contribution can be
seen in the form of addition (green) or deletion (red) information
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knowledge development. It can also include additional information (e.g., user’s biog-
raphy), which can be easily identified and optionally ignored, leaving the structural
information of the core layer undisturbed. This extension is by virtue of extensibility
provided by the XML framework. Section 4.2 Extension Mechanism defines additional
information in this context, and its inclusion.
We define instance as a piece of information which is added by a contributor at a par-

ticular timestamp. The idea is to break the knowledge data into a series of instances,
making it the fundamental unit of our format. This fragmentation allows us to represent
the dataset of any knowledge building portal as a set of instances, each having a set of
attributes like contributor, timestamp, and text. The idea is motivated by the GraphML
format, where a set of vertices and edges defines a graph, with each having its own set of
parameters.
We define our format based on the activities performed on the collaborative knowledge

building portals. As explained earlier, users exhibit various activities in the knowledge
development process, as illustrated in Fig. 1. Each document is considered as separate
Knowledge Data, which may contain multiple instances of edits performed by various
contributors. The structure depicted in Fig. 1 constitutes the fundamental structure of
our format. The XML schema of the Knol-ML format has been provided in the Resources
section.
Figure 2 depicts the Knol-ML format for sequential knowledge data. A Knol-ML docu-

ment may contain multiple <KnowledgeData>, each representing different document.
The topic of a document is described using the <Title> tag. The information regarding
a particular edit performed by a contributor is described within the <Instance> tag. It
contains three mandatory tags explained below:

• A <TimeStamp> tag contains a sub-tag <CreationDate>, which stores the
commit date and time of this edit.

• <Contributors> tag stores the details regarding editor of this instance. It has two
further sub-tags, <OwnerUserName>, which stores the name of the editor and
<OwnerUserId>, which stores the unique Id assigned to the editor. The former is
optional, but the latter is mandatory.

• The <Body> tag contains a sub-tag <Text>, which stores the actual edits of this
instance.

Fig. 2 Representation of sequential knowledge data in Knol-ML format
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The sub-tags of <Contributors> and <Body> tags ensure that additional information
can be included within them appropriately.
The knowledge building portals can be divided into two categories, wiki-based and

question and answer (QnA)-based. Although some of the knowledge building portals
(e.g., Github) cannot be classified into either of these two categories, their data can
be represented in Knol-ML format following the sequential knowledge model with the
help of an extension mechanism. For wiki-based portals, each article is considered as
<KnowledgeData> in Knol-ML format whereas, for QnA-based portals, a thread is
considered as <KnowledgeData> which is defined as a question and all the posts
(answers, comments, votes, scores, etc.) related to it [41]. The full description of the
data representation of wiki-based and QnA-based portals is present in the supplimentry
material [57] (AppendixWikipedia revision history compression and Getting started with
KDAP).

4.2 Extension mechanism

The core layer defined previously describes the generalized structure of sequential knowl-
edge in Knol-ML format.We use the extensionmechanism, a feature of XML, to represent
the additional portal specific information (e.g., badges’ details, users’ bio, pageviews, and
editors’ location). Brandes et al. [42] have used a similar approach in GraphML for repre-
senting additional information in graphs. They have defined the location of the additional
data with the help of < key> and < data> tags. New data can be accommodated within
the < data> tag, which requires a < key> providing a name and domain (type and
range of values it can take) of this new data. The domain is defined using for attribute of
the < key> tag.
Analogously, we have defined <Knowl> and <Def> tag to represent the additional

information, as shown in Fig. 3. The <Def> tag can be defined by including attributes
name, domain, and location of this new information. The name, domain, and location
are defined using attr.name, attr.type and for attribute respectively. Each ele-
ment in the Knol-ML core layer can contain multiple <Knowl> tags, representing the
additional information for that element. Using this extension mechanism, any additional
information can be described in the Knol-ML format. Also, a parser need not support

Fig. 3 Representation of extension mechanism in Knol-ML
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the extensions to extract information from the core structure. All the <Def> tags can be
safely ignored as they appear before the <KnowledgeData> tag, which is the root of
every sequential knowledge data.

5 KDAP implementation details
KDAP is a system designed for analyzing knowledge data represented in Knol-ML for-
mat. KDAP design allows the methods of analysis to work on any category of knowledge
data. The foundational classes of KDAP are centered around Knol-ML format. These
classes are categorized into wiki-based containers andQnA-based containers. Wiki-based
containers, WRKnol and WRCKnol, represent the revision based wiki data. WRKnol cor-
responds to the full revision and WRCKnol corresponds to the compressed form. In the
case of QnA-based portals, the data may or may not be available in the form of revisions.
Hence, QKnol corresponds to the knowledge data, which is not in the form of revisions.
QRKnol corresponds to knowledge data with revisions.
The idea is to optimize the execution time and memory usage of these methods by

choosing the appropriate container class. The containers provide different methods for
knowledge data, including revision and non-revision based. The standardized structure
of Knol-ML simplifies the implementation of a new algorithm, as each algorithm has to
be implemented once, which can be executed on any knowledge data. This implementa-
tion helps in comparing different genres of crowdsourced portals under the umbrella of
knowledge building.
Methods implemented on wiki and QnA-based containers can be divided into three

categories; knowledge generation methods, for the generation of new knowledge data
(which is stored in Knol-ML format); knowledge conversion methods, for the conversion
of data into Knol-ML format and knowledge analytic methods, for the computation of
specific knowledge building-related analysis without manipulating the underlying struc-
ture. As future work, we will also include manipulation methods that can be used to
modify knowledge data.

5.1 Containers functionality

KDAP provides a standard interface for both the containers, bypassing the step of pre-
processing the data of multiple knowledge building portals individually. Every method in
KDAP is built on top of KDAP iterators that provides a container-independent traver-
sal of the instances of knowledge data. The KDAP converters can be used to club all the
<KnowledgeData> into a single file, or multiple files can be created, each having the
same number of <KnowledgeData>. The design of creating multiple files allows par-
allel processing without compromising the dependency. Thus, enabling a massive data
dumps to be broken down into multiple chunks which can be loaded efficiently, optimiz-
ing the memory usage. Also, the excessive increase in the number of files can be avoided
by including multiple <KnowledgeData> in a single Knol-ML file.

5.2 Knowledge data representation

KDAP has been designed based on the Knol-ML structure. Hence, it is essential to have
a data structure such that accessing and analyzing methods are computationally efficient.
For example, accessing a particular instance of a Wikipedia article or Stack Overflow
thread should be reasonably fast and not expensive in terms of memory consumption.
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Handling these features is imperative, as the data of these portals will increase many folds
with time. The trade-off between time and space calls for a representation that optimizes
both of these. Furthermore, in collaborative knowledge building portals order of knowl-
edge arrival should be preserved. In general, ordering is achieved by using vector-based
representation, while speed is achieved by using hash table-based representation.
For KDAP, we have chosen a middle ground between all-hash-table and all-vector-

knowledge representations. A hash table has been used to represent the instances of
knowledge data. The idea behind using the hash table is to reduce the time complexity
for retrieving an instance, which plays a crucial role in processing the knowledge data.
Each instance consists of a unique identifier, a single hash table storing the attributes of
the instance, and a vector representing the elements of the instance. Elements of the vec-
tor may further contain a hash table and a vector representing its attributes and elements,
respectively. This cross between the hash table and the vector is designed to store the
hierarchical data structure of Knol-ML in the memory. Figure 4 summarizes knowledge
representations in KDAP.

5.3 Time complexity of key operations

For the analysis of knowledge data, atomic operations must be efficient and less time-
consuming. KDAP allows the algorithms to work on small chunks of data at a time,
reducing the overall memory consumption and time complexity. This is achieved by the
help of the Knol-ML structure, which allows the KDAP parser to process one instance at
a time. Furthermore, it gives an additional advantage of processing the knowledge data
parallelly, providing an extra benefit of time complexity reduction. Since most of the
operations are dependent on the retrieval of information from Knol-ML data like contrib-
utors’ information, and time details, we have focused on optimizing the time and space
complexity of such operations.
To process the Knol-ML files efficiently, its optimal representation in RAM is a pre-

requesite. Wikipedia, being a revision based system, stores all the edits performed by the
editors, resulting in the accumulation of a lot of redundant information. Owing to this, the
size of each article reaches megabytes or even gigabytes. To reduce the overall space com-
plexity of processing revision based Knol-ML files while optimizing the time complexity,
we compress the revision-based Knol-ML by efficiently storing the differences between

Fig. 4 A diagram of knowledge data structures. Instance ids are stored in a hash table, and each instance has
one hash table and one vector associated with it representing the elements of the instance
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Table 1 Time Complexity of Key Operations in KDAP

Operations Time Complexitya

Wiki-Based QnA-Based

Get an instance O(k2m) O(n)

Get all instances O(kmn) O(n)

Retrieve instance attributes O(1) O(1)

Add an instance O(1) O(1)
aThe time complexity ofO(1) is achieved by hashing the instances. Although hashing has worst case time complexity ofO(n),
on an averageO(1) complexity is achieved.

consecutive revisions. A naive algorithm will require to store the edits made in the cur-
rent revision exclusively3, but the revision access time will increase as each revision will
now require reconstructing the text from a list of changes. Thus, to accelerate the recon-
struction process, every kth revision is stored as a full revision, where k << n (n is the
total number of revisions). A similar method is proposed by Ferschke et al. [35], where the
value of each interval (k) is fixed to 1000 irrespective of the article size. We modify Fer-
schke’s algorithm by keeping the interval length k as a function of n for each article. Our
experiment on a sample of Wikipedia full revision history dataset revealed the optimal
value of k as

√
n, optimising both time and space complexity. The details of the experi-

ment is provided in the Appendix (Wikipedia revision history compression). However, in
KDAP, the user has an option of tuning the value of k.
Table 1 shows the time complexity of key operations on knowledge data in KDAP. Here,

k is the number of instances that are stored between two successive full revisions, and n
is the total number of instances present in the knowledge data. As described before, the
size of k << n, which means that the time complexity of an instance retrieval in case of
wiki-based data is very less. This is because the size of the compressed wiki-based data is
considerably small as compared to the actual XML dump, which allows KDAP methods
to store it in RAM. Similarly, the size of a thread in a QnA portal is very less as compared
to the total number of posts in the portal, providing an extra benefit of storing multiple
threads parallelly in memory. As we show in the evaluation section, KDAP can provide
high performance in terms of memory and time complexity while allowing for efficient
execution of algorithms.
Figure 5 is an overview of the KDAP framework, which summarizes the entire process

of Knol-ML conversion and analysis.

6 Evaluation
In KDAP, we have implemented commonly used traditional algorithms as well as new
methods for analyzing and understanding the dynamics of collaborative knowledge build-
ing. All these methods accept Knol-ML files as data input and return the analysis results.
The main disadvantage with collaborative online portals is that the data dump is in raw
format and requires multiple steps of cleaning for analysis purposes. With the design of
Knol-ML and KDAP, we have created a system that reduces the time and effort required
to retrieve and analyze knowledge data. We provide many atomic level methods which
can be used as building blocks for analysis such as language statistics as a measure of
quality of contribution [44–47], global inequality as a measure of participation [48, 49],

3Using the difference of the current revision with the previous one using the diff algorithm [43]
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Fig. 5 Overview of KDAP framework. First, the relevant dataset is extracted from the source based on the
requirement (1.a and 1.b). Depending on the type of the dataset, relevent containers are used to convert the
dataset in Knol-Ml format (2.a and 2.b). The compression manager is called to efficiently store the dataset in
Knol-ML format (3). The Knol-ML file is generated which is stored on the KAR dataset repository (4). The KAR
dataset acts as the main repository for extracting and retrieving the relavent information (5). A user only uses
the KDAP analysis methods to extract, parse, and analyze the relevant dataset stored in the KAR repository (6).
We regularly maintain the KAR repository, containing the current version of the datasets

editing patterns to understand collaboration [50–52], data extraction for various machine
learning and NLP algorithms [11, 53, 54].
To evaluate our tool, we describe two evaluationmethodologies with the following goals

in mind:

• To show that our toolkit performs better than the present analysis toolkits based on
the parameters such as execution time, memory consumed, the complexity of the
code, and the lines of code.

• to show that it is possible to perform complex analyses using our toolkit without
significant effort.

The first evaluation methodology includes six common mining tasks, whereas the
second methodology includes large-scale analysis tasks. The tasks listed in both the
methodology were performed twice, including and excluding KDAP. The authors in [55]
have used a similar approach to evaluate the PyDriller tool with other existing tools. The
tasks in the first evaluation methodology were designed to measure our tool based on
the comparision with present tools, whereas the tasks of the second methodology evaluate
the usefulness of our tool for large-scale analyses. We describe and compare the analysis
of both the evaluation methodologies. There is no such library for the large-scale analy-
sis of collaborative knowledge-building portals to the best of our knowledge. Hence, we
compare the performance of KDAP with existing libraries and APIs commonly used for
extracting and parsing the dataset of these portals. All the analyses were performed on a
computer with a 3.10GHz Intel Xeon E5-1607 processor and 16 GB of RAM. The analy-
ses were performed five times, and the average execution time and memory consumption
are shown.

6.1 Evaluation based on comparision with present tools

We first compare KDAP against existing libraries and APIs for online collaborative por-
tals. We select six commonly known knowledge building tasks that we encountered in
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Table 2 Tasks assigned to the first group

Data Extraction
Task 1 Extracting 5 Wikipedia articles from each quality category namely FA, GA, B, C, Start and Stub.a

Task 2 Extracting 10,000 random questions, its answers and comments from
Stack Exchange site, say, anime.stackexchange.com

Data Parsing
Task 3 Finding the number of words, sentences and Wikilinks added/deleted in each revision

of an article (United States).

Task 4 Extracting all the questions which had an accepted answer from anime.stackexchange.com

Analysis Methods
Task 5 Find the correlation between monthly pageviews and the number of revisions of

an article (United States).

Task 6 Find the correlation between Gini coefficient (a measure of inequality of contribution)
and answer to question ratio for various stack stackexchange portals.

aWikipedia has defined seven quality grades, starting from Stub class to Featured Articles (FA) class, where the least developed
articles are in class Stub and fully developed articles are in FA class

our experience as researchers in the knowledge building field. We divided the tasks into
three groups, as shown in Table 2. The reason behind this segregation is to evaluate
our tool based on a variety of tasks commonly performed by the knowledge building
researchers. We compare the analyses using different metrics: lines of code (LOC), com-
plexity (McCabe complexity [56]), memory consumption, and execution time of both
implementations. Table 3 shows the results. We do not count the number of lines for the
code which do not contribute to the core functionality (like constructor). Instead, we use
a fixed lines of code value of 3 for all such codes.
Regarding execution time, KDAP is 63.32 and 8.33 times faster than the respective tool

for tasks 1 and 2, respectively. This speed is achieved because KDAPmaintains a database
of Wikipedia articles name and corresponding categories (please see Appendix for more
details). For other tasks, the performance of KDAP is similar to that of other tools. In
terms of memory consumption, the tools behave similarly. In most of the cases, memory
consumption was less than 20MB. In the most memory consuming task (task 4), 86MB
of memory was used. Given the massive size of the dataset (e.g. the size of United States
articles is close to 6 GB) and limited main memory size, we had to performed iterative

Table 3 Comparison between KDAP and various libraries

Time (sec) Memory (MB) Complexity LOC

mean std mean std

Task-1 KDAP 7.13 0.51 0.98 0.34 2 7
A 70.45 1.21 4.07 0.97 8 33

Task-2 KDAP 2.91 0.81 15 1.3 6 19
T 11.24 1.17 16.2 1.01 13 88

Task-3 KDAP 521 12.32 2.01 0.46 1 5
T & P 528 13.63 1.9 0.21 2 120

Task-4 KDAP 4.8 0.47 86 1.60 2 9
T 2.7 0.31 83.2 2.14 4 36

Task-5 KDAP 80 1.56 0.42 0.13 1 8
A 81.2 1.70 0.69 0.27 4 45

Task-6 KDAP 86 2.39 2 0.71 2 13
T 82.3 2.59 4.3 0.63 4 70

A, T and P refers to Wikipedia API, cElementTree and mwparserfromhell respectively. The boldface values represent the
parameters on which KDAP outperforms the other listed libraries
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parsing (for tasks 3, 4, 5, and 6) of the files while using Wikipedia API, cElementTree
and mwparserfromhell. More precisely, we iterate over each block of a file and process
it, keeping the overall memory consumption constant. This iterative parsing adds to the
complexity of the code. KDAP by default provides method to iteratively parse the files,
where a user has the freedom to either load a whole file in the memory or process it
chunkwise.
The more significant difference is in terms of the complexity of the implementation and

LOC. For the former, we observe that using KDAP results (on average) in writing 61% less
complex code as compared to respective libraries. This is specially the case in tasks that
have to deal with mining Wikipedia and Stack Exchange (Task1 and 2); indeed, obtaining
this information in KDAP is just a one line code, whileWikipedia API and Stack Exchange
API require many lines of code and exceptions handling.
We also observe that the number of lines of code written using KDAP is significantly

lower than for the respective library. Table 3 shows that, on an average, 84% fewer lines
of code are required using KDAP. The biggest difference is in task 3, where the tool had
to calculate the change in words, sentences and Wikilinks for each revision of an article.
This problem was solved in five LOC using KDAP, while 120 LOC with cElementTree
(95% difference). The details of the experiment are provided in the supplimentry material
[57] (Appendix Getting started with KDAP), and codes for all the implementations are
available in the experiment section of the GitHub repository.

6.2 Evaluation based on usefulness

To further analyze our tool, we choose four peer-reviewed articles in the CSCW domain
to be analyzed using KDAP. We took the help of four undergraduate students working in
the knowledge building domain to re-perform the analysis mentioned in these articles.
Each participant was assigned one paper, as shown in Table 4. They were asked to perform
the analyses twice (including and excluding KDAP) and note the time they took to solve
the problems, as well as their personal opinions on all the tools. All the students had an
experience in developing with Python and on performing knowledge building studies, but
they had never used KDAP before. The setting of the experiment is the following:

• Each participant is assigned one paper, which he/she has to implement first with
KDAP, then with any other library of their choice. Since understanding how to solve
the tasks requires some additional time, we asked the participants to start with
KDAP. This choice clearly penalizes our tool, as participants will have a better
intuition about the tasks during the first round of implementation. However, we
believe that KDAP is simpler to use and that the difference between the two
implementations will still be significant.

• For the sake of simplicity, participants should only implement the core analysis
methods. Methods like machine learning model training and graph plotting were
excluded.

Table 4 Papers Assigned to the Participants

Participant Paper Assigned

P1 Black Lives Matter in Wikipedia: Collaboration and Collective Memory around OSM [58]

P2 Crowd Diversity and Performance in Wikipedia [59]

P3 An Empirical Study on Developer Interactions in StackOverflow [60]

P4 Improving Low Quality Stack Overflow Post Detection [61]
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• Participants note the time taken to implement the tasks. They are also asked to
include the time spent in reading the documentation of the tools, since
understanding how to use the tool is part of the experiment.

• After having implemented all the tasks, we ask the participants to elaborate on the
advantages and disadvantages of the tools.

The result of the experiment is shown in Table 5. All the participants took less time
to solve the problems (26% less in the worst case, 71% less in the best case). Regard-
ing the LOC, three out of four participants wrote significantly less LOC. P4, instead
solved both problems using a similar amount of time and LOC: the participant first
solved the problem using KDAP and applied the same logic to solve the problem using
cElementTree.
All the participants agreed that KDAP was more comfortable to use than other analysis

tools (P1 to P4). For example, P1 affirmed that using KDAP, he was able to achieve the
same result with more straightforward and shorter code, and that he will continue to use
KDAP in his subsequent knowledge building studies. P2 added that Wikipedia and Stack
Exchange APIs are useful when one has to perform limited extraction tasks, but it can
be overcomplicated when the goal is to perform broad-scale analysis on these portals, for
which KDAP is more appropriate because it hides this complexity from the users.

6.3 Evaluation based on scalability and generalizability: a case study of JOCWiki

Although we have established our toolkit’s usefulness, it is essential to show if our toolkit
is scalable enough to analyze a new portal’s dataset. Moreover, it is interesting to evaluate
the generalizability of the analysis methods using cross-portal analysis.
To understand the extent of scalability and generalizability of our toolkit, we describe

the analysis of JOCWiki with KDAP as a case study. JOCWiki is an online crowdsourced
portal that follows a unique integration of aWiki-like portal and a discussion-styled forum
[62]. JOCWiki was deployed as a part of a MOOC named “The Joy of Computing” to
create a rich knowledge repository using the course students as the contributors. The
authors showed that this integration of Wiki and QnA forum (also known as QWiki)
generates more knowledge as opposed to a single disintegrated platform. The integration
of Wiki and discussion-forum like features in a single platform allows us to evaluate our

Table 5 Time and Loc Comparison for Each Participant

Participant With KDAP Without KDAP Total

P1 Time (minutes) mean 70 190 -63%
std 2.12 5.7

LOC 19 401 -95%

P2 Time (minutes) mean 110 390 -71%
std 14.13 19.17

LOC 50 292 -82%

P3 Time (minutes) mean 46 90 -48%
std 3.72 3.42

LOC 34 83 -60%

P4 Time (minutes) mean 52 60 -13%
std 5.30 7.28

LOC 81 91 -10%
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Table 6 Evaluation of KDAP methods based on scalibility and generalizability. Intra-portal analysis
tasks were performed on both Wiki and QnA forum of the JOCWiki, whereas inter-portals analysis
tasks represent the cross portal analysis between Wiki and QnA forum

Task KDAP Without KDAP

LOC Complexity LOC Complexity

Intra-Portal Analysis
Number of Editors 3 1 23 3
Number of edits/posts 3 1 23 3
Edits/posts by Year/Month/Day 3 1 28 4
Words in each edit/post 5 1 120 2
External links in each edit/post 5 1 120 2
Number of posts and its comments 14 2 86 2
Sentiment of each edit/post 8 1 127 2
Extracting Author’s age/country/bio 27 3 76 3
Measure of contribution in Wiki/QnA 3 1 143 3

Inter-Portal Analysis
Intersection of edits and post by month/year 19 2 119 3
Intersection of editors in Wiki and QnA 5 1 146 3
Wiki-articles refereed in QnA forums and vice versa 57 5 186 8
Topics from Wiki refereed in QnA forums and vice versa 74 5 203 8

represents the functions are not generalizable.

toolkit based on scalability and generalizability. We show that our toolkit can handle the
dataset of JOCWiki, and the fundamental analysis can be performed in lesser lines of
code. We also show the generalizability of our toolkit by performing same tasks on Wiki
and QnA forum of JOCWiki.
We extracted the full dataset of JOCWiki, publically available at GitHub [63]. The

dataset contained twelve weeks of Wiki articles (one for each course module) and their
respective discussion forum in a raw XML and text format, respectively. We first con-
verted the dataset of Wiki articles and their respective discussion forum into Knol-ML
format. Although the conversion step is an overhead in terms of time and computa-
tion, it is essential since it enables a user to execute all the KDAP library methods on
the converted Knol-ML dataset. We extended the KDAP library by adding the JOCWiki
conversion methods to it. We perform a set of fundamental analysis on the JOCWiki
Knol-ML dataset using KDAP and without KDAP4. We divide the tasks into two cat-
egories. The first category of tasks requires similar analysis on both the portals (Wiki
articles and their respective QnA forums), and hence we perform them on both the por-
tals (Wikis and QnAs) separately. The second category contains a set of tasks that require
cross-portal analysis between theWiki articles and theQnA forums.We aim to determine
if we can perform the mentioned analysis with less complex codes while using KDAP. We
compare the results based on LOC (Lines of Code) and Complexity (McCabe complexity
[56]). Table 6 represents the result of the experiment.

6.3.1 Results on scalibility

We observed that using KDAP, we could perform the analysis in lesser lines of code
compared to using the conventional libraries. More precisely, we could perform all the
mentioned tasks using average 95% lesser lines of code with KDAP compared to using
conventional libraries. Moreover, with our toolkit, we could write less complex codes.

4We used conventional libraries as mentioned in subsection 6.1
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We observed that the fundamental methods of the KDAP library are useful in per-
forming cross-portal analysis using less complex and fewer lines of code. For instance,
extracting topics from Wiki articles that triggered discussion in QnA forums and vice
versa is comparatively more straightforward with KDAP. This quantification of triggers
was a significant contribution by Simran et al. [62] where they showed that the QWiki
setup generates more knowledge units than conventional collaborative knowledge build-
ing systems. The reason behind writing more complex codes while using the conventional
libraries was the unstrctured formatting of QnA forum dataset. Retireving information
from an unstructured dataset is generally difficult and time consuming. Given the stan-
dardized structure of the Knol-ML format, such information retrieval and analysis tasks
are easy to perform with KDAP.

6.3.2 Results on generalizability

In terms of generalizability, we observed that most of the KDAP methods were generaliz-
able over both the portals while performing intra-portal analysis tasks. More specifically,
for most of the tasks, common KDAP methods were used to analyze both Wiki articles
and QnA forums. We had to use a different set of methods for some tasks as no com-
mon methods were applicable (red colored rows in Table 6 represent those tasks). For
example, to extract the author’s information (such as age, country, and bio) from both
Wiki articles and QnA forums, we had to use the external file of author’s dataset. One
solution for this problem is to include all author’s detailed information in the Knol-ML
dataset. However, including such information will increase the size of a single Knol-ML
KnowledgeData (refer to Fig. 2 for details) by many folds. We discuss this tradeoff in
detail in the Limitations and future work section.

6.4 Comparison of KDAP with other tools

There are various tools like WikiBrain, DBpedia, and Wikipedia API to analyze the
knowledge data. Although these tools provide analysis and retrieval methods, knowl-
edge building analysis methods (like edit statistics, inequality measure, and controversy
detection) are limited in number. Also, these tools are limited to specific portals. KDAP
provides exclusive methods for analyzing the dynamics of collaborative knowledge build-
ing.We define a set of tasks (defined in Table 7) based on which we compare our tool with
other analysis tools. Table 8 shows a comparison of methods implemented in KDAP with
the other analysis tools.

7 Resources
KDAP library is publically available at GitHub [64]. The git repository contains user doc-
umentation, tutorials (with an introductory video) [65], Knol-ML schema, stable releases
of KDAP, and supplementary material [57]. As a part of KDAP, we are also maintaining
the Knowledge Analysis and Retrieval (KAR) dataset, containing the knowledge dataset of
different collaborative portals, including Wikipedia (all Featured articles and Good arti-
cles), Stack Exchange network, and Wikia in Knol-ML format. More datasets are being
collected and will be updated in the future. KDAP source code has been released under
a permissive BSD type open-source license. Being an open-source library, we welcome
the community to contribute to KDAP and KAR dataset. Please refer to the Appendix for
details regarding Getting started with KDAP.
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Table 7 Tasks defined to compare KDAP with other analysis tools

Tasks Alias

Wikipedia article extraction by name Task-1

Wikipedia article extraction by class Task-2

Stack Exchange extraction by portal name Task-3

Pageviews extraction of Wikipedia/Stack Exchange Task-4

Link/Category/Image extraction Task-5

Revision/text extraction Task-6

Contributors’ details extraction Task-7

Question/Answers/Comments extraction Task-8

Semantic Relatedness Task-9

Edit Statistics Task-10

Measure of Inequality Task-11

Controversy detection Task-12

8 Limitations and future work
Although we have focused on creating a standard representation format and analysis
toolkit, there are a few limitations in this approach. First, converting an unstructured
dataset into the Knol-ML format may increase the final Knol-ML dataset size. This
increase in the size is mainly due to the extra tags required to represent the dataset in
Knol-ML format. For instance, converting the JOCWiki QnA dataset into the Knol-ML
format increases the QnA dataset’s size by 17%. However, Knol-ML representation allows
the KDAP methods to extract the data efficiently.
Secondly, while most of the fundamental methods are generalizable over different

datasets, having portal specific methods is inevitable. This specificity of methods some-
times requires the writing of more complex codes to perform portal specific tasks.
Moreover, the generalizability of KDAP methods comes from the Knol-ML represen-
tation format, which sometimes leads to the accumulation of extra information (for

Table 8 Comparison of KDAP methods with other analysis tools

Methods KDAP WikiBrain JWPLa DBpediab Wikipedia API SE API

Extraction Methods

Task-1 Yes Yes Yes No Yes No

Task-2 Yes No No No Yes No

Task-3 Yes No No No No Yes

Task-4 Yes Yes No No Yes Yes

Parsing Methods

Task-5 Yes Yes Yes Yes Yes Yes

Task-6 Yes Yes Yes Yes Yes No

Task-7 Yes No No No Yes Yes

Task-8 Yes No No No No Yes

Knowledge Building Methods

Task-9 No Yes No Yes No No

Task-10 Yes No No No No No

Task-11 Yes No No No No No

Task-12 Yes No No No No No

Yes represents that the number of calls are limited.
ahttps://dkpro.github.io/dkpro-jwpl/
bhttps://wiki.dbpedia.org/

https://dkpro.github.io/dkpro-jwpl/
https://wiki.dbpedia.org/
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example, adding new tags to identify the information uniquely), eventually increasing the
overall size of the dataset. Finally, to use the KDAP methods on a new portal’s dataset,
the data must first be converted into Knol-ML format, an overhead in time and compu-
tation. However, the conversion task is a one time process as we are maintaining a public
repository (KAR dataset) containing all the dataset in Knol-ML format. Users can directly
download a portal’s dataset in Knol-ML format from the KAR repository.
As future work, we aim to develop more functions for the KDAP library. The library

is kept open for the researchers/developers to use and extend. Also, based on the gener-
alized structure, visualization methods can be implemented to visualize the knowledge
data. Moreover, some of the KDAPmethods can be implemented in the C/C++ program-
ming language, optimizing the overall running time and memory usage. We encourage
readers to install KDAP and explore its functionalities; most importantly, we encourage
researchers and developers to improve KDAP and KAR dataset by joining our team on
GitHub.

9 Conclusion
We have developed Knol-ML, an XML-based standard representation format for the data
of crowdsourced knowledge building portals. We also provide KDAP, a standard high-
performance system, to analyze the data of these portals. With Knol-ML and KDAP
methods, complex analysis can be performed using a few lines of code. Apart from Knol-
ML and KDAP, we release the KAR dataset, which contains the data of crowdsourced
knowledge building portals in Knol-ML format. KDAP provides basic as well as advanced
retrieval and analysis methods that have been proven useful in studying collaborative
knowledge building portals. We believe that the combination of Knol-ML, KDAP, and
KAR Dataset as a toolkit will accelerate the research in knowledge building community.

Appendix
Wikipedia revision history compression

We extend the fixed-interval length (k = 1000)method provided by Ferschke et al. [35] and
develop an online algorithm that calculates the interval length (k) based on the input file,
optimizing both the time and space complexity. We experiment on a sample of Wikipedia
articles to find the optimal value of k. We experiment on different values of the interval
lengths ranging from k = 2 to k = n − 1, including the interval length proposed by Fer-
schke et al. [35]. The reason behind choosing these interval lengths is to experimentally
find the optimal compression, minimizing both extraction time and space complexity. We
perform the comparison based on revision’s random access time and compressed to orig-
inal document ratio. Since a single revision’s random access time is minimal, we calculate
the access time of 100 random revisions and take the aggregate. For each article in the
dataset, we calculate all the two parameters and present the mean and standard deviation.

Dataset

The data collection was conducted by using retrieval methods of KDAP (Knowledge Data
Analysis and Processing Platform) toolkit. A stratified sampling was conducted on four
Wikipedia quality classes: Featured Articles (FA), Good Articles (GA), Class B articles,
and Class C articles. We excluded Stub and Start class articles from our sampling as these
articles comparatively have fewer revisions - meaning there is no potential requirement
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Table 9 Number of articles sampled from each class

Class Number of Articles

Featured Articles 32

Good Articles 162

Class B 487

Class C 1202

for compression. A-class contains a few set of articles which we merged with GA-class
while performing the sampling. Since the majority of the Wikipedia articles with a num-
ber of revisions greater than 1000 fall in one of the mentioned categories, these four
classes were chosen to cover the articles withmore considerable lengths. Similar sampling
approaches have been taken to cover articles from various topics [59, 66]. For each article
in the data set, its complete editing history in Knol-ML format was collected between the
article’s creation time to November 2019. The initial sampling resulted in 2000 articles.
Among them, 118 articles had very few revisions (less than 100). These were excluded
from the sampling, leaving the final data set of 1882 articles.
Each Knol-ML document contains an article’s full edit history with additional informa-

tion such as contributor’s id, comments, and time stamp. Each instance (revision) in a
Knol-ML document has an id tag, which always starts from one for the first instance. We
leverage this information to perform random access on the compressed dataset. Table 9
presents the number of articles sampled from each class.

Results

Table 10 shows the aggregate random retrieval time and compression ratio for different
k values. The algorithm using k = √

n outperforms the fixed k method (Ferschke et al.
[35]) by a large margin. We achieve an optimal random revision extraction time with-
out compromising much on the compression ratio for all k values. More precisely, we
achieve an average random retrieval time of 0.080 seconds, which is 16 times faster than
the fixed k method (k = 1000). Moreover, we achieve the average compression ratio of
0.174, a ratio only 1.64 times more than the ratio observed using the fixed k method. We
achieve a comparatively low standard deviation in terms of random revisions extraction
time, indicating our method’s stable performance over all the articles. However, in terms
of compression ratio, we achieve a larger standard deviation. A large standard deviation
is mainly because for smaller articles (revisions less than 500), our method estimates a
comparatively smaller interval length, increasing the compression ratio.

Getting started with KDAP

Table 10 Comparison of compression methods using various interval lengths based on revision
retrieval time and compression ratio

Time (seconds) Memory
Interval Length Random Revision Extraction Original to Compressed Ratio

avg std avg std

k = 2 0.008 0.011 0.566 0.075

k = √
n 0.090 0.271 0.166 0.113

k = 1000 1.290 1.65 0.114 0.096

k = n − 1 2.254 5.163 0.103 0.091
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In this section we provide a brief demonstration about how to use KDAP.

Installation

KDAP is deployed on pip and can be installed using the commandpip install kdap.
The library is present on GitHub and can be installed from there. The GitHub reposi-
tory will be updated after the acceptance. Please refer to the supplementary material [57]
(Section 2) for more information.

Downloading dataset

Using kdap is very simple. You only need to create the knol object which can be further
used to call the kdap methods. For example, the following lines of code will download and
store the full revision history of Wikipedia article Gravity in the desired directory.

1 import kdap
2 knol = kdap.knol()
3 knol.get_wiki_article(‘Gravity’,[output_dir])

Similarly, user can download the stack exchange portals data using the following lines
of code:

1 import kdap
2 knol = kdap.knol()
3 stack_list = [‘3dprinting’, ‘ai’, ‘arduino’, ‘boardgames’, ‘chemistry’, ‘chess’]
4 for portal in stack_list:
5 knol.download_dataset(sitename=‘stackexchange’, portal=portal)

Extraction

Sampeling dataset fromWikipedia or Stack Exchage requires only a few lines of code. For
example, suppose you want random five articles from each category of Wikipedia classes:

1 import kdap
2 knol = kdap.knol()
3 from random import sample
4
5 category_list = [‘FA’, ‘GA’, ‘B’, ‘C’, ‘Start’, ‘Stub’]
6 articles = {}
7 for category in category_list:
8 articles[category] = sample(knol.get_wiki_article_by_class
9 (wiki_class=category), 5)

Frame-Wise analysis

After downloading the relevant Knol-ML dataset, various analysis methods can be used.
To perform more granular level analysis, one can retrieve the instances of a Knol-ML file
as frames and use the frame-based analysis methods. For instance, the following lines
of code extract the Wikipedia article’s revision as frames and find information such as,
contributor, time-stamp, score, etc.:

1 import kdap
2 knol = kdap.knol()
3
4 knol.get_wiki_article(‘Gravity’)
5 frame = knol.frame(file_name=‘Gravity.knolml’)
6
7 for each in frame:
8 print(each.get_editor()) #prints each revision’s editor’s name and unique id
9 print(each.get_timestamp()) #prints the timestamp of each revision’s creation

date
10 print(each.get_score()) #prints the score (upvotes, downvotes) associated with

each revision, if present
11 each.get_text(clean=True) #returns the clean text of each instance
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Complex analysis

KDAP provides high-level complex methods to perform detailed analysis on the knowl-
edge building dataset. For example, a comparison of knowledge building portals based on
Global Gini coefficient which require multiple steps of processing can be easily performed
using KDAP by writing the following lines of code:

1 import kdap
2 knol = kdap.knol()
3 stack_list = [‘english’, ‘superuser’, ‘askubuntu’, ‘gaming’, ‘diy’, ‘tex’]
4 gini_list = []
5 atoq_ratio = []
6 for stackportal in stack_list:
7 knol.download_dataset(sitename=‘stackexchange’, portal=stackportal)
8 gini_list.append(knol.get_global_gini_coefficient(dir_path=‘

directory_path_of_data’))
9 questions = knol.get_num_instances(dir_path=stackportal+‘/Posts’,

instance_type=‘question’)
10 answers = knol.get_num_instances(dir_path=stackportal+‘/Posts’, instance_type

=‘answer’)
11 atoq_ratio.append(questions[‘questions’]/answers[‘answers’])
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