
Towards a HLA-based Hardware-In-the-Loop 

simulation runtime 
 

Eugene Chemeritskiy 

The Faculty of Computational Mathematics and Cybernetics 

Lomonosov Moscow State University 

Moscow, Russia 

tyz@lvk.cs.msu.su 

 
This paper considers the possibility of the Distributed Real-time 

and Embedded (DRE) system simulation with CERTI, a general-

purpose distributed simulation runtime based on the High Level 

Architecture (HLA) standard. Although it does not address DRE 

simulation and a number of issues should be resolved, the paper 

focuses on CERTI performance in the first place and compares it 

with a specialized DRE simulation tool. During the analysis of the 

comparison results, we make proposals on CERTI attuning and 

the design of an efficient HLA-based runtime. 

Hardware-In-the-Loop Simulation; High Level Architecutre; 

CERTI; 

I.  INTRODUCTION 

A. DRE simulation 

Distributed Real-time and Embedded systems (DREs) are 
used in a wide range of electronic devices. Although DREs of 
household appliance usually contain only a few sensors and 
processing units, some complex equipment, e.g. onboard car, 
plane, and ship systems, is often composed of hundreds of 
devices connected to each other by dozens of diversified data 
transmitting channels. 

The wide scope of DREs often imposes various restrictions 
on its components. Some DREs have to provide a certain 
performance, using a limited amount of power, resist an 
aggressive environment conditions, or keep within certain 
limitations on physical sizes and weight. In case the existing 
equipment does not meet these requirements, some devices 
have to be redesigned. 

The missing DRE devices are usually developed by several 
independent workgroups. Their tasks have significantly 
varying complexity and assigned periods of time. As a result, 
devise prototypes constantly have different readiness degrees, 
and their joint trials are often impossible. However, the 
majority of errors are detected at the stage of component 
integration, when the prototypes are nearing its completion and 
the cost of error correction is reaching its maximum. 

DRE simulation provides a common approach for early 
detection of integration errors. It includes the following steps. 
At the stage of DRE blueprinting, developers create its coarse 
component-wise simulation model. It serves for verification of 
the simplest DRE properties and detection of the related design 
errors. The further development goes, the further device 

models are refined. Simulation accuracy gradually grows, and 
verification reveals more and more tricky errors. Finally, as the 
hardware prototypes become available, they join the simulation 
instead of their software counterparts. To sum it up, exploring 
the current model properties at each stage, DRE developers can 
identify and shortly fix device integration errors as soon as it 
possible. 

Considered Hardware-In-the-Loop Simulation (HILS) 
composes the software models with the hardware equipment 
and requires a specialized simulation hardware-software 
environment to interconnect them to each other. The software 
part of this environment, the simulation runtime encapsulates 
the details of communication with the diverse DRE 
components and provides a common API over it. However, the 
runtime cannot hide their difference completely. Hardware 
devices are often unable to work properly without a strict 
binding to astronomical clock. For example, its implementation 
may accept the reply for only a short period of time after the 
request send. These real-time constraints impose additional 
requirements to the simulation runtime. Therefore, HILS 
runtime significantly differs from a general-purpose one [1]. 

B. The HILS STAND simulation environment 

For years the Computer Systems Laboratory (CS Lab) of 
Lomonosov Moscow State University has been developing its 
own hardware-software environment for Hardware-In-the-
Loop simulation called HILS STAND [1]. Actually the roots of 
HILS STAND go to more general discrete-event simulation 
system DYANA [2], developed by CS Lab in early 1990s. 
Since, DYANA has been serving as a basis for a number of 
experiments on applicability of new approaches to simulation 
of the diverse computer systems. Started as one of the proof-of-
concept DYANA branches, HILS STAND has been used to 
accomplish a number of HILS projects and gradually evaluated 
into a powerful simulation suite. 

The core of the HILS STAND suite is formed by the 
specialized discrete-event runtime. This runtime provides 
several independent model execution modes. While in as-fast-
as-possible mode, the HILS STAND runtime provides an 
efficient execution of software-only models and acts similar to 
a general-purpose runtime. The soft, hard and scaled real-time 
modes address the different kinds HILS in the first place. 
Being in any of this mode, the runtime executes device models 

This work was supported in part by the Ministry of education and science 

of the Russian Federation under Grant “Development of an integrated 
environment and complex analysis methods for distributed real-time computer 

systems functioning”. 

mailto:tyz@lvk.cs.msu.su


with the corresponding time constraints and allows their 
interactions with the connected hardware devices. 

Besides the runtime, the suite includes a number of 
subsidiary simulation tools. For example, HILS STAND 
provides an integrated simulation data collector and a dynamic 
visualizer with the ability to modify model parameters during 
its execution and enables a human-controlled simulation. 
Although the runtime provides C++ API and encapsulates the 
details of interactions among the simulation participants, HILS 
STAND does not imply the model to be developed in a pure 
general-purpose language. Instead, it provides a specialized 
high-level model description language, its translator, and the 
corresponding IDE. Actually, these developments have a rich 
history either [3]. 

Because of the large number of DRE devices and a certain 
complexity level of their models, HILS STAND instances 
usually include a number of nodes connected by a private 
LAN. The nodes have a similar configuration, except some 
additional interfaces for external hardware simulation 
participants. The additional hardware channels can also 
interconnect several nodes directly. This configuration is used 
for experiments with the corresponding channel controllers and 
the other switching equipment [1]. 

C. An advanced simulation runtime 

Although the HILS STAND is actively used in a number of 
different HILS projects, CS Lab has never ceased to follow the 
trends and test new simulation approaches. Recently it started 
new project on the rethinking of HILS environment and the 
development a new tool-chain, combining the experience 
gained in over twenty years of simulation experiments with 
latest applicable technology efforts. The research list of this 
large-scale project includes a new language for DRE 
simulation models; integrated trace tracking and visualizing 
tools; new verification engine; and an advanced HILS runtime, 
which is the subject of this paper. 

During the last 60 years, discrete-event simulation runtimes 
made a significant advance [4]. There are several different 
classifications, but it is a common practice to divide them into 
a number of generations associated with some historical trends. 
One of the most noticeable trends now is a standardization of 
the runtime API. Thus, we believe it is giving a birth to the new 
runtime generation. Unfortunately, there is no any off-the-rack 
and well-fitted standard for HILS runtimes. However, 
exploring of adjoining simulation areas revealed some attempts 
to use High Level Architecture (HLA) for real-time simulation 
[5] and it is pretty close to HIL. So the idea of HLA adoption 
for HILS runtime appeared. 

Although there are a lot of different HLA-based simulation 
runtimes, each of them requires a large amount of additional 
work. As it was shown by the analysis [6], CERTI happened to 
be the best initial approximation for the advanced HILS 
runtime we want to make. However, CERTI do not initially 
target real-time and HILS, and a number of related issues have 
to be resolved. Briefly considering their whole scope, the paper 
gives the first priority to performance of a HILS runtime. In 
particular, the paper introduces a couple of benchmarks that 
revealed significant advantage of HILS STAND over the 

CERTI. Due to a lower performance, out-of-the-box CERTI 
version cannot be used for the scope of simulation tasks HILS 
STAND can easily manage. Therefore, the paper contains the 
analysis of its architectural drawbacks and introduces a number 
of proposals on their reduction. 

II. A HLA-BASED HILS RUNTIME 

A. Standardization trends 

Simulation as a method for exploration of diverse object 
properties and regularities among them outruns the advent of 
computers for many years. However, its rapid development 
started after the complex mathematical calculations had been 
assigned to fast and reliable computers. In the beginning of the 
1950s, the term simulation acquired the default meaning of 
digital computer simulation. Subsequently the simulation was 
defined as a combination of designing of the observed system 
model and holding the necessary experiment set on digital 
computers [7]. 

From the very beginning of the simulation history the 
observed systems always tended to be represented in deeper 
detail level. This tension results in the increasing size and 
complexity of developed simulation model. This growth 
required a respective performance increase from computer 
systems, and this fact resulted in emergence of parallel 
simulation systems. These systems share the simulation task 
across multiple computing nodes. Typically such systems were 
implemented locally within the organization that wanted to use 
it. 

The complexity of the models was not the only factor 
leading to computer simulation tool evolution. The scope of 
simulation has been growing either. After new simulation 
problem types appeared, the related requirements were 
imposed to modeling and simulation tools. For instance, 
distributed simulation is often required in case of joint product 
development when different product component are produced 
by a number of workgroups located in different organizations. 
This type of simulation intends encompassing of several 
geographically separated simulation systems, which in turn 
may consist of a single compute node, or be a parallel system. 
Historically, the appearance of this task type led to the creation 
of distributed simulation systems that provide an essential set 
of services to the simulation participants and ensure its 
consistent behavior [8]. 

Currently we believe that the next step in the runtime 
evolution is a standardizing of the distributed system interfaces. 
Uniform interfaces provide possibility to combine among a 
variety of independent simulation systems and create general 
models that can be handled by every distributed system 
corresponding to the standard specifications. One of these 
standards is described in the next section. 

B. The HLA distributed simulation standard 

HLA is a conventional standard in the field of distributed 
simulation. The roots for the HLA stem from distributed virtual 
environments. Such environments are used to connect a 
number of geographically distant users. The HLA standard is a 
conceptual heir of Distributed Interactive Simulation (DIS), 



which is a highly specialized simulation standard in the domain 
of training environments [8]. The primary mission of DIS is to 
enable interoperability among separated simulation systems 
and to allow the joint simulation of their participation. HLA 
standard remains relevant to the DIS principles and even 
extends them. 

HLA appeared in 1993, when the Defense Advanced 
Research Projects Agency (DARPA) designated an award for 
developing of an architecture that could combine all known 
types of simulation systems into a single federation. The HLA 
standard initially addressed all kinds of as-fast-as-possible, soft 
and hard real-time, discrete-event and time-driven, fully-
synthetic, human- and hardware-in-the-loop distributed 
simulations. However, hard real-time constraints were not 
supported until the latest HLA standard version, namely IEEE 
1516-2010 (Evolved) released in the very end of 2010 [9]. The 
majority of HLA-based simulation tools were built on the 
previous HLA standard versions and do not offer a full HLA 
Evolved support yet. 

Thereby, HLA-based HILS became possible quite recently 
and any researches in this area are innovations in some sense. 
However, these researches seem to be prospective because of a 
number of benefits HLA gives. At first, HLA strict support by 
both the runtime and the models provides their guaranteed 
compatibility. It means that HLA model developed with one 
runtime can also be used with other runtimes without any 
modification. In fact, HLA forms an independent market of 
out-of-the-box simulation models which can be used with any 
HLA-compatible simulation runtime. 

Secondly, HLA is used as an external simulation interface 
by some non-distributed runtimes. This peculiarity enables 
joined simulation encompassing diversified runtimes and, 
consequentially, different model types. For example, a single 
simulation can include both time-driven fully-synthetic and 
discrete-event hardware-in-the-loop models simultaneously, 
and their developers do not have to adjust their models for this 
cooperation. 

In addition, there are a lot of subsidiary runtime-
independent HLA-based simulation tools, such as statistic 
collectors, simulation analyzers, high-level model describing 
languages and corresponding IDEs. These tools operate at the 
model level over the HLA API and do not require any 
additional support from the simulation runtime. Therefore, they 
can be reused with any runtime implementation. 

HLA specification introduces its own terminology 
generally used by the developers of HLA-based simulation 
tools, and CERTI is not an exception. Therefore, we include a 
short notion of fundamental HLA terms. The simulation 
runtime specified by HLA is named the Run Time 
Infrastructure (RTI). RTI provides services a number of joined 
federates - simulation participants of any kind. The association 
of all federates forms federation. 

C. CERTI brief description 

CERTI is a HLA-compliant RTI developed by the French 
Aerospace Laboratory (ONERA). The project started in 1996 
and its primary research objective was the distributed 

simulation itself whereas the appeared HLA standard was the 
project experiment field. CERTI implementation started with 
the implementation of the small subset of RTI services, and 
was used to solve the concrete applications of distributed 
simulation theory [10]. 

Since the CERTI project was open sourced in 2002, a large 
distributed simulation developer community has been formed 
around the project. In many ways due to contributions of 
enthusiasts, the CERTI project has grown from basic RTI into 
a toolset including a number of additional software components 
that may be useful to potential HLA users. 

The CERTI project has always served a base for researches 
in the domain of distributed simulation, and a number of 
innovative ideas have been implemented with its use. Thus, the 
problem of confidential data leak was solved in context of 
CERTI RTI architecture, and the considered RTI guarantees 
secure interoperation of simulations belonging to various 
mutually suspicious organizations [11]. The certain interest for 
the considered project is a couple of application devoted to 
high performance and hard real-time simulation. 

In spite of HLA is initially designed to support fully 
distributed simulation applications, it provides a framework for 
composing not necessarily distributed simulations. Thereby 
there was created an optimized version of CERTI devoted to 
simulation deployed on the same shared memory platform and 
composed simulation running on high-performance clusters 
[12]. 

Some experience could also be adopted from ONERA 
project on simulation of satellite spatial system. Each federate 
in this federation is a time-stepped driven one. It imposes an 
additional requirement of hard real-time: the simulation system 
should meet the deadlines of each step and synchronize the 
different steps of the different federates [13]. 

Despite the distribution of commercial products, the project 
development is still continuing in accordance with the HLA 
simulation standard progress. Thus, CERTI supports HLA 
IEEE 1516-2000 version since 2010 in addition to previous 
DMSO 1.3 version. 

D. Designing a CERTI-based Runtime 

There are a lot of difficulties on a way to a CERTI-based 
HILS runtime. First of all, the supported version of HLA 
standard does not currently address real-time simulation and a 
fortiori it does not address HIL. First, IEEE 1516-2000 
specifications do not provide any method to specify end to end 
prediction requirement for federate. Second, CERTI encodes 
reliable and best-effort transportation types with TCP and UDP 
network protocols which are not suitable for real-time 
simulation. Finally, CERTI works over the operating system 
and is unable to control its resources. All the listed paragraphs 
have a significant affection to amount and predictability of the 
runtime overhead crucial for any real-time simulation [5]. 

Second group of issues concerns the hardware integration 
during the HILS. The runtime should have an extendable 
support of the diverse data transmitting channels. This fact 
implies a number of additional restrictions to both hardware 
and software components of the simulation system. For 



example, the hardware devices usually have strict data message 
format specifications. Therefore, RTI cannot use the only 
message to transmit both internal service data and federation 
one. 

The final design challenge is the reuse of legacy tools from 
the HILS STAND software suite. Some of its components, 
such as the dynamic simulation visualizer and the generator of 
fault injections, cannot be efficiently implemented over the 
existing HLA interface and should be integrated into the RTI. 
Actually, their integration leads to additional research and 
development subtasks and requires a number of problems to be 
resolved. 

Although each of the listed problems is important, this 
paper is devoted to the provision of the HILS STAND-
comparable runtime performance level. Currently, HILS 
STAND is used to perform HILSs by a number of different 
DRE development projects and we are curios if the HLA-based 
simulation runtime is able to execute models with the similar 
complexities and real-time constraint sizes. The remainder of 
this paper is devoted to this issue. 

III. CERTI PERFORMANCE EVALUATION AND 

ARCHITECTURAL ANALYSIS 

A. Runtime benchmarking 

During the HILS, each of the hardware participants 
interacts to the other DRE components according to a 
predefined time-related behavior specification. If the runtime 
does not meet requirements of this specification, the device 
may work incorrectly. It is simple to slow down a fast software 
model to correspond the device speed, but it is not possible to 
meet these requirements if the model works slower than the 
hardware expects. Thus, the speed of event handling is a 
crucially important property for any HILS runtime. Actually, 
its value can be used to determine the complexity of simulation 
tasks the runtime can efficiently solve. The smaller event 
handling time of the runtime, the wider range of simulation 
tasks it can solve. Moreover, the faster runtime works, the 
smaller its requirement to the hardware. For example, a slower 
runtime may need more nodes to run the same simulation 
model. 

Making an assessment of CERTI applicability to the range 
of usual HILS STAND tasks, we choose two simple time-
regulated client-server models from the HILS STAND test-suit 
and run them in as-soon-as-possible mode in both runtimes. 
Each of these models consists of a single server and a single 
client. The client sends messages to the server. Each message 
contains one integer parameter, whose value is decremented 
after each send, until it reaches zero. Thereby, the initial value 
of this parameter also sets a number of client messages to be 
transmitted. In the first model the server records the received 
values and works as a simple registrar. In the second model 
server also sends back to the client every message it receives, 
and the client do not send the next message until it gets a reply. 
The remainder of this paper refers these models as 
“Avalanche” and “Ping-Pong” tests respectively. 

Although the described models are pretty simple, the 
similar simulation models are often used for the same purposes 

[14-15]. Federates of the Ping-Pong test are actually executed 
consequently. After the message send, client waits for a server 
reply. In a similar manner, server waits for the message 
instantly replies back to the client. Thereby, the time of 
simulation reflects the speed of message transmission rather 
accurate and can be used as a performance index for a runtime 
response time. Avalanche, in contrary, allows a fully parallel 
and logically unrestrained federate execution. Thus, the whole 
runtime can be considered as a media for data message 
transmission. Therefore, the simulation time can be treated as a 
reflection of a runtime throughput. 

Both systems were tested using a hardware bench 
composed of two identical nodes. Each node ran a single model 
component, either client or server. The simulation time was 
measured by each model component independently of each 
other. The timer started right after the initial synchronization 
and stopped when the component had been ready to resign. 
Final results were formed as an average of two component 
readings for each model configuration. 

As it is clearly shown by the benchmark results (Table I), 
overall CERTI performance is a several times lower than the 
one of HILS STAND. Although these results reduce the range 
of acceptable simulation tasks dramatically, the usual real-time 
requirements still accept CERTI as a HIL runtime. However, 
increase of its performance becomes an important direction of 
further development. The remainder of this segment presents a 
deeper CERTI analysis and introduces some proposals on its 
refinement. 

TABLE I.  THE AFFECTION OF MESSAGE NUMBER TO SIMULATION 

EXECUTION TIME, MS 

Message 

number 

Avelanche Ping-Pong 

CERTI HILS STAND CERTI HILS STAND 

10 4,1 1,6 10,2 2,3 

100 38,1 7,6 94,4 22,8 

1000 399,7 84,8 884,6 228 

10000 6063 1127,6 8770,7 2280 

100000 60601 11722,1 87643,2 22800 

B. CERTI architecture analysis 

Being a distributed simulation middleware, RTI provides a 
number of joined federates with API specified by the HLA 
standard. The main purpose of this API is to encapsulate any 
details of communication among the joined federates, network 
communication included. Thus, RTI includes a number of 
remote components corresponding to a number of federates 
joined. These components are generally known as Local RTI 
Components (LRCs). 

Maintaining the federation consistency, RTI constantly 
synchs a set of joined federates. Therefore, the efficiency of 
their coordination affects the overall RTI performance 
significantly. Fully distributed architecture implies equal and 
self-sufficient LRCs, and its implementation requires 
complicated consensus algorithms. Developers usually avoid 
the excessive complexity by introducing the Central RTI 
Component (CRC) that stores shared data and implements 
some synchronization algorithms locally. Both centralized and 
decentralized RTI architectures have certain weak and strong 
sides, and their reasonable combination is a first cornerstone of 



   

libRTI 

RTIA 1 

Federate 1 

RTIG 

Socket UNIX 

Socket TCP 

libRTI 

RTIA 2 

Federate 2  
libRTI 

RTIA n 

Federate n 

 

the efficient RTI implementation [13]. This segment considers 
the approach implemented by CERTI. 

Figure 1.  CERTI RTI architecture 

Generally speaking, CERTI RTI consists of three 
components: RTI Gate (RTIG), RTI Ambassador (RTIA) and 
libRTI. RTIG is a process that runs on a separate host and 
serves as CERTI CRC. RTIA is a process that runs on the same 
host federate runs. Therefore, the number of RTIAs equals to 
the amount of joined federates. Both RTIG and RTIA are 
single-thread processes. Whereas they form RTI internals, 
libRTI runtime library implements API specified by HLA. 
libRTI links to the joined federate and connects it to the 
corresponding RTIA process by pipe (Unix socket). An 
aggregate of RTIA and libRTI forms CERTI LRC. 
Communication between CRC and LRCs goes through the 
network sockets [10]. Figure 1 presents a visual representation 
of the described architecture. 

RTIA processes never communicate to each other directly. 
All data exchange among them goes through the RTIG. Thus, 
CERTI bases on a fully centralized architecture and its CRC 
component coordinates the joined federates single-handedly. 
Indeed, RTIG implements the most of RTI services whereas 
the sole purpose of RTIA and libRTI is the formation of a 
convenient communication infrastructure between RTIG and a 
number of joined federates. In other words, LRCs of CERTI 
generally serve as connectors between CRC and the end 
simulation participants. 

Summing it up, CERTI RTI uses a fully centralized 
architecture and has a strong CRC. The simplicity of this 
organization gives a number of benefits to the RTI developers. 
First of all, concentration of all the control inside of a single 
process simplifies the implementation of RTI services. The 
absence of any direct links among the LRCs does not require 
network consensus algorithms and reduces the corresponding 
synchronization overhead significantly. Modification of a 
federation state made by RTIG is instantly propagated among 
all the related federates and all data received by LRCs can 
always be used without any additional conformation. 

The second centralization profit is the simplicity and 
deterministic of communication among the distributed RTI 
components. Each data exchange among the joined federates 
always go through RTIG, where all the synchronization issues 
are solved locally and, therefore, do not require any network 
communication at all. Thus, coordination of the joined 

federates with RTIG always requires a certain and relatively 
small number of network messages, and uses network 
bandwidth rather efficiently. In contrast, fully distributed 
architecture, that include a number of equal self-sufficient 
LRCs and does not include any CRC, requires a complex 
synchronization algorithms, that are usually imply an intensive 
network communication to the consensus. 

Third, strong CERTI centralization allows accelerated 
implementation and testing of the innovations. The proof-of-
concept for a new runtime algorithm can be implemented 
locally inside RTIG. The developers get rid of complex 
network interactions and asynchronous changes of federation 
state. Their implementation should run in context of a single 
threaded process only. This peculiarity of CERTI, composed 
with its open source code, has proved this RTI as good 
foundation for the diverse simulation researches. 

Finally, the centralized single-host execution of RTIG 
provides a convenient way to isolate the certain RTI subsystem 
and develop a number of diverse “surgical” benchmarks for 
them. The distributed kind of some RTI services (such as time 
and object management services) makes it really hard to get a 
fair estimation of their in-field implementation efficiency. The 
true results are often shaded and distorted by the network 
communication overhead that is hard to predict and, a fortiori, 
to avoid. 

However, the same centralized architecture causes a 
number of problems. The most crucial of them is an excessive 
load of the RTIG. In case of small federations, composed of a 
few federates, RTIG does its service well. But the more 
federates join, the more RTIG is loaded, and the dependency is 
not linear. Each joined federates results in a new 
communication flow, and an increase in the complexity of its 
processing. For example, a single interaction send often leads 
to a number of notifications to its recipients. There comes a 
moment RTIG is unable to process the incoming data flow fast 
enough and becomes a bottleneck. In this case, it constantly 
makes the joined federates wait, and, as a result, federation is 
executed merely consequently. The next segment presents 
some approaches that can conceptually improve the current 
CERTI architecture and in some ways mitigate its problems. 

IV. CERTI ATTUNING PROPOSALS 

A. Layered architecture 

As it was shown in the previous section, fully centralized 
architecture of CERTI results in an excessive CRC load during 
the execution of large federations, and it is a serious design 
drawback. There are a lot of RTI implementations that 
compose centralized and decentralized approaches in a more 
equitable way and get better performance in return [14]. 
However, architectural mixture requires a revolutionary 
alteration of CERTI internals and eliminates all the benefits of 
its clear and simple component structure. This section presents 
an alternative approach to CRC load reduction based on a 
layered RTI architecture. 

Although each federate represents a certain component of 
real system, the level of their abstraction can be volatile and do 
not reflect logical structure of the system. For example, a 



model of onboard system may include one coarse federate 
corresponding to a number of its secondary subsystems and a 
bunch of fine-grained federates corresponding to components 
of the most important subsystem simultaneously. Fine-grained 
federates are clearly less abstract than the coarse one because 
they correspond to smaller elements of the logical structure. 
Only their aggregate may form the new logical subsystem that 
can interact to the other subsystems on equal footing. Thus, 
federates of the aggregate depend on each other. They are 
logically linked. 

During the simulation federate aggregation can be 
distinguished by the intensity of their interaction. As it is 
shown by the practice, members of a certain aggregate interact 
to the each other far more frequently than to any external 
federate. Federates are clustered into a number of aggregates 
and encapsulate the majority of communication traffic inside of 
them. Only a little part of traffic goes beyond and connects 
members of different aggregates. 

CERTI has a centralized architecture and implements 
federate interaction of any kind using its CRC regardless to the 
model logical structure. In case the number of data exchanges 
is large enough, CRC is overloaded, becomes a bottleneck, and 
slows the simulation down. However, federates do not really 
care about the inner communication of aggregates they do not 
belong. Thus, the simulation traffic can be separated according 
to the model logical structure. The only thing we need is a 
dedicated middle-level CRC for each federate aggregation. 
From one hand, it will control the aggregated federates, 
encapsulate their inner traffic, and take some load of the real 
CRC. From the other hand, the real CRC will see it as a regular 
federate that runs in accordance to the common HLA execution 
rules and generates traffic flow corresponding to the bunch of 
aggregated federates. The middle-level CRC can be 
implemented as a new LRC frontend and does not result into 
significant increase of the RTI complexity. 

There are several natural extensions of the described idea. 
First, federates can be clustered by a number of attributes 
differed from logical structure of the simulated system. For 
example, the non-uniform distribution of the federate 
communication intensity is a sufficient aggregation criterion. 
Second, the same trick can be used several times. In their turn, 
aggregated federates can be separated into a number of smaller 
groups, and form a new simulation control layer. Therefore, the 
described RTI architecture is referenced as a layered 
architecture. 

To sum it up, introduction of the layered architecture results 
into a number of benefits. First of all, it solves the excessive 
CRC load problem and increases scalability of RTI. Indeed, the 
middle-level CRCs process the internal aggregate traffic 
independently and take a part of responsibilities from the real 
CRC. Each middle-level CRC can be executed by a separate 
host, thus, the RTI control is distributed automatically without 
any data replication or sophisticated coherence control 
algorithms. 

Second, aggregation allows reducing of the synchronization 
losses. Internal interaction of aggregated federates goes 
through the middle-level CRC and does not take into account 
the most of external dependencies. Therefore, it is more 

efficient than the regular one. However, their external 
interaction is less efficient and includes two mediators, namely, 
the middle-level CRC and the regular one. If aggregation can 
be chosen sufficiently well, the synchronization losses can be 
reduced respectively. 

Third, aggregation allows accurate RTI attuning. Federates 
can be clustered according to a set of services they use. Unused 
RTI components can be safely removed from the middle-level 
CRC and its complexity will reduce respectively. The 
remaining services can be also attuned to the requirements of 
the joined federates. For example, each middle-level CRC may 
implement its own time management algorithm that is effective 
for the aggregated federates independently of other RTI 
components. In case of HILS, the main CRC should always use 
conservative time management algorithms as a core. However, 
middle-level CRC component may use optimistic algorithms in 
case it is more efficient. 

Finally, aggregation is a way to increase the efficiency of 
interactions within a single node. Centralized architecture does 
not take into account the relative position of federates. Even in 
case they are running on a single node, every data exchange 
goes though the RTIG. Thereby, RTI uses two network 
communications to transmit data between two processes on a 
single host. This wasteful data handling results into a 
significant performance decrease. Aggregation of all federates 
on the node actually allows their direct interaction without any 
network involvement. Thereby, the concept of node 
aggregation brings some advantages of the decentralized peer-
to-peer architecture without any changes in a current CERTI 
logic. 

The weak side of the layered RT architecture is 
indeterminism of RTI structure and its dependence on the 
executed model structure. It also requires some automated 
static and dynamic model analysis tools responsible for the 
criterion selection and the corresponding suboptimal federate 
segregation. However, the benefits it may give seem to worth 
efforts, and this approach appears to be rather prospective. 

B. Thread-based LRC 

CERTI LRC consists of libRTI library and RTIA process 
connected by UNIX pipe. Although libRTI is linked to federate 
process and provides HLA API, the library does not really 
implement RTI logic. The library just redirects the incoming 
method calls to the connected RTIA. In more details, every 
time federate calls RTI service, libRTI sends to RTIA a 
message with the associated method identifier and a set of 
supplied arguments. RTIA handles these queries and replies 
back with results. Thereby, libRTI can be considered as LRC 
frontend whereas RTIA corresponds to LRC backend. Due to 
this modular LRC structure, changes of HLA API will not 
affect the LRC backend directly and the corresponding RTI 
changes will require a minimum of effort. Currently CERTI 
uses this flexibility to maintain both DMSO 1.3 and IEEE 1516 
2000 HLA versions. 

Another advantage of the two-component LRC against the 
single-component one is the increase of simulation security and 
reliability. Both libRTI and RTIA run in their own context and 
verify every incoming message. Therefore, there is no way the 



federate can read or modify any internal RTI data, except the 
calls of the HLA API. For the same reasons, failure of the 
joined federate never leads to a failure of the whole RTI. 

However, the flexibility of the composed LRC decreases an 
overall RTI performance. Every time the federate calls RTI 
method, at least two internal messages are generated, and this 
number may increase in case of RTI callback requests. 
Transmission through the pipe requires message parameters to 
be serialized during the send and deserialized on its reception. 
These data format conversions inevitably result into 
undesirable memory copying and additional CPU load. 

There are several ways to avoid the unnecessary 
communication overhead. The first one is to replace the pipe 
with a set of queues in a shared-memory. This approach does 
not require any data reformatting during the transmission and, 
therefore, decreases CPU load. However, it requires a support 
from operating system and a number of corresponding system 
calls. A more performance emphasized approach is to include 
RTIA right into the federation process as the additional thread. 
Thereby, libRTI and RTIA will automatically share the same 
address space. Thread-level data exchange can be more 
effective than the process-level one. Moreover, modern multi-
core CPUs are able to provide multi-threaded execution with 
the additional performance gain. Unfortunately, integration of 
libRTI and RTIA in a single process breaks the simulation 
security and reliability. Still, this solution fits the purposes of 
HILS development and seems to be a preferable option. 

Although it is not obvious at the first glance, both 
considered approaches require serious modification of RTIA 
process. RTIA is a single-thread process, and it has to wait both 
RTIG and libRTI messages simultaneously. There are two 
well-known paradigms of its implementation, namely, polled 
and related waiting. During the polled waiting, process just 
looks for incoming messages in a cycle. This requires 
additional CPU time. During the related waiting process asks 
the system to notify it when the message comes, and suspends 
until reception of this notification. This approach is more 
complicated and its efficiency is inversely proportioned to the 
frequency of incoming messages. RTIA receives message rare 
enough, thus CERTI uses related waiting. However, there is no 
standard way to implement related waiting of the socket and 
either shared memory or thread using the simple single-
threaded process. Thereby, any of them requires RTIA to use 
polling or implement related waiting using multiple threads. 

V. CONCLUSION 

According to the conducted performance benchmarking, 
out-of-the-box CERTI RTI lags far behind the HILS STAND. 
Although CERTI cannot be used as a runtime for the same 
range of simulations, the absolute values of its latency and 
throughput are acceptable for the average HILS model. 
Therefore, the performance gap between two systems is not a 

critical one and can be further reduced after implementation of 
the stated proposals. 

ACKNOWLEDGMENT 

Special thanks to Dmitry Volkanov for reading the paper 
and giving many helpful remarks. 

REFERENCES 

[1] V. V. Balashov, A. G. Bakhmurov, M. V. Chistolinov, R. L. 
Smeliansky, D. Yu. Volkanov, N. V. Youshchenko, “A hardware-in-the-
loop simulation environment for real-time systems development and 
architecture evaluation,” International Journal of Critical Computer-
Based Systems (IJCCBS), vol. 1 - issue 1/2/3, 2010. 

[2] A. Bakhmurov, A. Kapitonova, R. Smeliansky, “DYANA: An 
Environment for Embedded System Design and Analysis,” in 
Proceedings of 5-th International Conference TACAS'99, Amsterdam, 
The Netherlands, March 22-28, 1999. pp.390-404. 

[3] R.L. Smeliansky, Yu. V. Bakalov, “A Language for Specifying 
Distributed Programm Behavior,” Proceedings of the VII. International 
Workshop on Parallel Processing by Cellular Automata and Arrays, 
Parcella ’96, Berlin, 1996, pp.85-92. 

[4] R.E. Nance, “A history of discrete event simulation programming 
languages,” Blacksburg, USA, 1993. 

[5] M. Adelantado, P. Siron, and Chaudron J.B., "Towards an HLA Run-
time Infrastructure with Hard Real-time Capabilities," in Proceedings of 
International Simulation Multi-Conference, Ottava, Canada, 2010. 

[6] Chemeritskiy E.V., Savenkov K.O. Towards a real-time simulation 
environment on the edge of current trends // In Proceedings of the 5-th 
Spring/Summer Young Researchers' Colloquium on Software 
Engeneering, SYRCoSE-2011, Yekaterinburg, Russia, may 12-13 2011, 
pp. 128-133. 

[7] R.G. Sargent, "Requirements of a Modeling Paradigm,", Winter 
Simulation Conference WSC’92, Arlington, USA, 1992, pp. 780- 782. 

[8] Richard D. Fujimoto, “Parallel and Distributed simulation systems,” 
2000. 

[9] IEEE Std 1516-2010, “IEEE Standard for Modeling and Simulation 
(M&S) High Level Architecture (HLA) - Federate Interface 
Specification,” 2010. 

[10] E. Noulard, J.Y. Rousselot, and P. Siron, “CERTI, an Open Source RTI, 
why and how,” Spring Simulation Interoperability Workshop, San 
Diego, USA, 2009. 

[11] P. Bieber, D. Raujol, and P. Siron, “Security Architecture for Federated 
Cooperative Information Systems,” Annual Computer Security 
Applications Conference, New Orleans, USA, 2000. 

[12] M. Adelantado, J.L. Bussenot, J.Y. Rousselot, P. Siron, M. Betoule, 
“HP-CERTI: Towards a high Performance, high Availability Open 
Source RTI for Composable Simulations,” Fall simulation 
interoperability workshop, Orlando, USA, 2004. 

[13] B. d’Ausbourg, P. Siron, and E. Noulard, “Running Real Time 
Distributed Simulations under Linux and CERTI,” European Simulation 
Interoperability Workshop, Edimburgh, Scotland, 2008. 

[14] L. Malinga and WH. Le Roux, “HLA RTI Performance Evaluation,” 
European Simulation Interoperability Workshop, Istanbul, Turkey, 2009, 
pp. 1-6. 

[15] M. Karlsson, P. Karlsson.,  “An In-Depth Look at RTI Process Models,” 
in Proceedings of 2003 Spring Simulation Interoperability Workshop. 
03S-SIW-055,  2003. 

 


