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Abstract

Since air pollution impacts our health and the environment, air quality forecasts represent
information of primary importance, especially for an area susceptible to episodes of pollution
such as the Po Valley. The Environmental Protection Agency of the Italian region of Veneto
(ARPAV) has implemented a system based on the CAMx photochemical model to predict
concentrations of particulate matter and ozone. Meteorological input is estimated on the basis
of the numerical output from the COSMO limited area model. Emissions are calculated using
the INEMAR software and the concentrations at the boundaries of the computational domain are
provided by the PREV’AIR modelling system. The system generates, on a daily basis, forecasts of
up to three days and produces interactive maps which can be viewed from the agency’s website.
An evaluation of the forecasts of 1hr-ozone daily maximums and PM10 daily means has been
conducted, by means of a statistical comparison with a set of air quality stations. The result is
satisfactory since the forecasts comply with the benchmarks established for the model evaluation.
The forecast skill respect to the persistence method has also been investigated.
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1 Introduction

According to European Air Quality Directive
(2008/50/EC), air quality forecasts provide useful in-
formation about the potential risks of exceedance of alert
thresholds or limit values of pollutants, and can help author-
ities to take temporary control measures to limit the impact
of such events (EEA, 2011). To accomplish this, the most
widespread approach is usage of Eulerian-grid models in
“forecast mode”: coupled with numerical outputs produced
by a meteorological prognostic model. Such systems can
give, in a relatively short time, a prediction of the future
state of atmospheric pollutants over a wide area and high
spatial resolution. Although the model quality objectives
described in the AQ Directive only apply to the assessment
of the current air quality, there is clearly an expectation,
when using forecast models, that they have been verified
and validated in an appropriate way (Denby et al., 2011).
Accordingly, several studies about air quality forecast

verification have emerged in recent years. Honoré et al.
(2008) presented a long-term evaluation of the forecasts of
PM10 and ozone issued by the French national platform
for air quality, PREV’AIR, based on an implementation
of the CHIMERE model. Arasa et al. (2010) presented a
performance evaluation of the MM5/MNEQA/CMAQ air
quality modelling system to forecast ozone concentrations
in Catalonia. D’Allura et al. (2018) presented a performance
evaluation of QualeAria, a forecast system based on the
RAMS meteorological model coupled with the FARM
photochemical model, providing forecasts for the whole of
Italy. A number of forecast maps can be accessed online: at
a continental scale, the Copernicus Atmosphere Monitoring
Service (CAMS) delivers an ensemble forecast based on nine
numerical air quality models developed in Europe, and in
Italy, the previously mentioned QualeAria modelling system,
in addition to forecasts, provides the boundary conditions
for regional/local forecasting systems implemented by some
of the Italian Regional Environmental Agencies.
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Figure 1: Geographic map of Northeast Italy; the domain of the CAMx model is highlighted to the right. Terrain elevation and stations used for model evaluation are shown.

As for the region of Veneto, ARPAV has long since im-
plemented the INEMAR, a “bottom-up” oriented emissions
inventory, at a regional scale, and recently developed a me-
teorological processor that, based on prognostic numerical
outputs from the meteorological prognostic model COSMO,
can provide the required input data to drive the chemical
transport model, CAMx. This led to the implementation
of the forecasting system whose evaluation constitutes
the objective of this research. The study will focus on
forecasts of O3,max (Ozone daily 1-hour peak), issued in
summer, and forecasts of PM10 (daily mean), issued in
winter. In fact, on a regional scale, these are the pollutants
of concern since exceedances of their thresholds foreseen by
the AQ directive are not infrequent. For PM10 in particular,
although noticeable improvements have been seen in recent
years, the maximum allowed number of exceedances of the
daily threshold is surpassed every year for most stations in
the Po Valley.

The paper is subdivided into four sections. Section
2 illustrates the most relevant inputs and aspects of the
modelling system; technical details about steps to translate
“raw” emissions and meteorological fields into final input
files for the CAMx are provided in a separate Appendix.
Section 3 illustrates a verification of the forecasts of O3,max

and PM10 issued in a three-month period, in summer and
winter respectively. A statistical comparison with measure-
ments is presented: performance metrics and categorical
statistics quantifying the capability of the system to forecast
exceedances of a given threshold were elaborated. The
forecast skill respect to the persistence model was also
investigated. Section 4 discusses the results of the evaluation
carried out in the previous section pointing to possible inter-
pretations. Section 5 summarizes the relevant conclusions of
the research.

2 General description of the forecasting system

The air quality forecasting system provides forecasts
of up to three days (starting from the current day: D+0,

D+1, D+2). The core of the modelling system is the CAMx
photochemical model (Comprehensive Air Quality Model
with Extensions). The model, managed and distributed by
Ramboll Environ (http://www.camx.com/), is continuously
developed and has reached version 7 (version 6.5 is
currently implemented in our system). Although the CAMx
incorporates two-way grid nesting capability, in order to
limit the requirements in terms of computing power and disk
space, the model runs on a single grid with a cell size of 4
km, which is a trade off between the necessity to resolve local
features retaining a domain large enough to include the study
area. The domain grid consists of 64 x 59 horizontal cells and
eleven levels, terrain-following, with the height of each layer
interface ranging from 20 m up to 6,000 m above ground
level. The study area is the north-east of Italy; it is a densely
populated area with many industrial and craft activities and
large cultivated areas. Fig. 1 shows the simulation domain of
the CAMx model, bounded to the west and north by the Alps
and to the east by the Adriatic Sea, covering a 256-km x 236-
km area and including the whole region of Veneto. Terrain
altitudes range from sea level to greater than 3,000 m in the
Alps. CAMx inputs are developed using specifically devised
processing tools that characterize meteorology, emissions
and other environmental conditions (Fig. 2).

Emissions are based on the regional scale inventory
INEMAR (Air EMissions INventory, http://www.inemar.eu).
The inventory is adopted by almost all the regions
of Northern Italy and follows a “bottom-up” approach,
beginning with local data and, using this information and
proper emission factors, it assesses emissions at a municipal
level. The INEMAR software is largely based on the
EMEP/EEA methodology for the definition of estimation
methods and emission factors. The macro-pollutants in
the inventory are CH4 (methane), CO (carbon monoxide),
CO2 (carbon dioxide), VOC (volatile organic compounds),
N2O (nitrous oxide), NH3 (ammonia), NOx (nitrogen
oxides), PTS (total suspended dust), PM10 (fine dust with
an aerodynamic diameter of less than 10 µm), PM2.5
(fine dust with an aerodynamic diameter of less than 2.5
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Table 1: Characteristics of stations used for model evaluation. T* is the threshold used to evaluate categorical statistics. Station sites are shown in Fig. 1.

Station code Classification Altitude (m a.s.l.) Measured pollutants T* (O3,max) T* (PM10)
IT1594A Urban 378 PM10,O3 129 33
IT1619A Suburban 356 PM10,O3 143 55
IT1790A Rural 690 PM10,O3 145 18
IT1870A Rural 12 PM10,O3 154 60
IT1791A Rural 1,366 O3 174 n.a.
IT1065A Urban 114 O3 158 n.a.
IT0663A Urban 190 PM10,O3 163 46
IT1848A Rural 814 PM10,O3 169 23
IT1328A Urban 61 PM10,O3 151 42
IT1343A Urban 88 PM10,O3 162 63
IT2071A Rural 24 PM10,O3 147 69
IT2072A Rural 6 PM10,O3 142 73
IT1213A Urban 4 PM10,O3 135 65
IT1596A Rural 8 PM10,O3 140 60
IT1590A Urban 15 PM10,O3 146 75
IT1222A Urban 0 O3 133 n.a.
IT0963A Urban 0 PM10,O3 140 65
IT0448A Urban 0 PM10,O3 139 70
IT1177A Urban 36 PM10,O3 166 69
IT1535A Urban 13 PM10,O3 157 69
IT1453A Urban 9 O3 147 n.a.

Figure 2: Schematic diagram of the modelling system.

µm), SO2 (sulphur dioxide). Currently, the implemented
version provides the yearly 2015 emissions and an update
to 2017 is in progress. Since emissions required by the
CAMx must be in the form of grid and point sources,
“Diffuse” and “biogenic” emissions from the INEMAR
inventory are gridded and assigned to the first model level
whereas for “point” sources (industrial stacks), the level is
assigned at each model time step according to its release
height. Emissions are then speciated and modulated in time
according to a set of emission sector-specific profiles (details
in Appendix A).

Meteorological fields are provided by the COSMO-ITA

model, the Italian version of the model developed by the
Consortium for Small Scale Modelling (http://www.cosmo-
model.org). The COSMO is a non-hydrostatic, limited-area
atmospheric model, to be used both for operational and for
research applications (Baldauf et al., 2011). The current
operational resolution of the model is 5 km. The numerical
outputs of COSMO-ITA, of up to D + 2, are recovered
daily by the national meteorological service. COSMO
fields include basic meteorological variables, available on an
hourly basis on the pressure (isobaric) levels and surface.
The interpolation of the variables to the CAMx grid is
performed using the CALMET model; CALMET (Scire
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Table 2: Definitions of the statistical metrics used for model evaluation.

Statistics Definition Notes

Correlation coefficient r =
∑

i(Mi−M)(Oi−O)√∑
i(Mi−M)2(Oi−O)2

−1 ≤ r ≤ 1; r = 1 : perfect correlation; r = 0 : totally uncorrelated

Normalized Mean Bias (%) NMB =
∑

i(Mi−Oi)∑
i Oi

∗ 100 −∞ < NMB <∞; NMB = 0 : perfect

Normalized Mean Error (%) NME =
∑

i |Mi−Oi|∑
i Oi

∗ 100 0 ≤ NME <∞; NME = 0 : perfect

Probability of detection (POD) POD = H
H+M

0 ≤ POD ≤ 1; POD = 1 : perfect

False Alarm Ratio (FAR) FAR = F
H+F

0 ≤ FAR ≤ 1; FAR = 0 : perfect

Percent Correct (PC) PC = H+C
H+M+F+C

∗ 100 0 ≤ PC ≤ 100; PC = 100 : perfect

Table 3: Benchmarks established for model evaluation.

Statistics O3,max PM10
Criteria Goal Criteria Goal

NMB ±15% ±5% ±30% ±10%
NME 25% 15% 50% 35%

r 0.5 0.75 0.4 0.7

et al., 2000) is a diagnostic meteorological model that
reconstructs the 3D wind and temperature fields starting
with meteorological data of input, orography and land use.
CALMET was implemented in “no observation” mode,
using gridded fields provided by the COSMO, rather than
meteorological observations. The CALMET processor is
needed to interpolate the wind and temperature on the
CAMx grid and to determine the 2D fields of the micro
meteorological variables (mixing height, Obukov length etc.)
required to calculate the vertical diffusivity (Kv) using the
methodology employed in the CMAQ model (Community
Multiscale Air Quality, Byun (1999)). Other variables
required by CAMx, quantifying the vapour and aqueous
content of the atmosphere, are estimated based on the
available variables (details in Appendix A).

Concentrations at the boundaries of the domain are
provided by PREV’AIR (http://www2.prevair.org/), the
French national platform for air quality, based on a
implementation of the CHIMERE model at a European
scale (Honoré et al., 2008). Concentrations of gasses (NO,
NO2, O3, CO, SO2, NH3, VOCs) and PM species are
allocated, by means of conversion tables, to CAMx species.
Since we noticed that “desert dust” episodes simulated by
CHIMERE often led to particulate peaks that were not
actually observed by AQ stations, we resolved to suppress
the crustal particulate fraction.

3 Statistical evaluation

Forecast verification “involves exploring and summaris-
ing the relationship between sets of forecast and observed

data and making comparisons between the performance of
forecasting systems and that of reference forecasts. Verifica-
tion is therefore a statistical problem” (Jolliffe and Stephen-
son, 2012). Accordingly, we present an evaluation based on
different statistical metrics, somewhat complementary, in or-
der to provide enough information about the model’s perfor-
mance. Forecasts were investigated in the following periods:

• December 2018 - February 2019 (three months) for
evaluation of PM10

• June - August 2019 (three months) for evaluation of
O3,max

ARPAV is in charge of the management of an
extended network of air quality stations over the whole
regional territory devoted to constantly measuring the
concentration of major atmospheric pollutants. Among these
substances, PM10 and ozone are of particular relevance
since exceedances of their limit values are observed in many
stations. The Po Valley is notoriously subjected to episodes
of particulate matter pollution occurring in winter, during
periods of dry weather and low wind conditions. On the
other hand, in summer, conditions leading to exceedances of
ozone information threshold are frequent. Accordingly, most
stations are equipped with sensors to measure ozone and
PM10. Ozone sensors transmit measurements in real time to
a centralised server. As for PM10, some stations implement
a beta gauge particulate sampler while others use the classic
gravimetric method consisting of weighing the sampling
filter after removal from the instrument. Air quality stations
are classified based on their location, as “background”
(stations in rural or urban areas), “traffic” or “industrial”
(stations near sources of pollutants) stations. For the purpose
of the present evaluation, a set of “background” stations were
selected, since their representativeness is more comparable to
the resolution of the model. Table 1 summarizes the typology
and altitude of the stations considered for model evaluation.

The dataset amounts to 21 monitoring stations for
O3,max (corresponding to approximately 1,932 observation-
prediction pairs) and 17 stations for PM10 (1,530 pairs).
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Figure 3: “Dot plots” of metrics used for model evaluation. From top to bottom: NMB, NME and r. O3,max is on the left and PM10 on the right. Dots are coloured green, yellow
or red if they met the “Goal”, “Criteria” or neither of the two, respectively. Only the results related to D+0 are shown since no big differences emerged at D+1 and D+2.

There are plenty of indicators that can be used to conduct
a model performance evaluation (see EEA (2011) for a
comprehensive list). We adopted the method proposed by
Emery et al. (2017) which, based on previous research
about the performance of photochemical models (Simon
et al., 2012), proposed to update established benchmarks for
ambient ozone (Doll, 1991) and PM concentrations (Boylan
and Russell, 2006) and recommended the evaluation of
three well-established statistical metrics: normalized mean
bias (NMB), normalized mean error (NME) and correlation
coefficient (r). Formal definition of these metrics is given in
Table 2. For each metric, two benchmarks were developed:
a minimum target (“Criteria”) and a stricter target (“Goal”),
both are reported in Table 3.

In fact, benchmarks had been established for 1-hour
ozone (and MDA8 ozone) and PM2.5, while in the present
study they are associated to O3,max and PM10. However,

since NMB and NME are normalized from the observed
mean, there should be no large variation. As regards the
correlation index, it is possible that the variations of O3,max

are more difficult to capture than MDA8 and in this case, the
benchmark may be considered too strict. Nevertheless, we
resolved to refer to these benchmarks, as a minimum, as a
guidance, and computed the metrics for each station. Fig.
3 illustrates the results: each site is marked with a dot with
a size proportional to the value of the metric. For NMB,
smaller dots indicate a bias that is less than the “Goal” and
larger dots show a bias that is greater than the “Goal”. Dots
are coloured green, yellow or red if they met the “Goal”,
“Criteria” or neither of the two respectively.

The forecasts can be regarded as categorical when
used to predict exceedance of a concentration threshold; in
this case a yes-forecast is defined as an event in which an
exceedance is predicted and a yes-event as an event for which
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Figure 4: “Dot plots” of categorical statistics used for model evaluation. From top to bottom: POD, FAR and PC. O3,max is on the left and PM10 on the right. Only the results
related to D+0 are shown since no big differences emerged at D+1 and D+2.

an exceedance is observed. A 2x2 contingency table can be
defined that shows the frequency of yes and no forecasts and
their corresponding occurrences. The elements of the table
are:

• H (hits): number of yes-events correctly predicted

• M (missing alarms): number of yes-events not correctly
predicted

• F (false alarms): number of yes-forecasts not actually
observed

• C (correct rejections): number of no-events correctly
predicted

A large variety of categorical statistics can be computed
from the elements of the table. The most frequently used are
POD (Probability Of Detection or Hit rate) and FAR (False

Alarms Ratio), as they can be seen as complementary. PC
(Percent Correct or Accuracy) is also a useful score since
it takes into account all the elements of the contingency
table. Definitions of these scores are reported in Table 2;
POD is the fraction of the yes-events correctly predicted,
FAR is the fraction of yes-forecasts not actually observed,
PC is the fraction of total events correctly predicted. Values
of categorical statistics may depend on the selection of the
threshold. Since exceedance of limits/targets foreseen by
the European Directive for O3,max (180 µg/m3) and PM10
(50 µg/m3) is a relatively rare event for some stations,
a threshold based on the 75th percentile of the observed
concentrations was selected (Pay et al., 2014). Thresholds
computed on this basis are reported for each station and
pollutant in Table 1. Fig. 4 summarizes the results obtained
for POD, FAR and PC. For each statistic, a colour scale was
devised with tentative steps.
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Figure 5: “Dot plots” of SI index. For O3,max (left) and PM10 (right). Blue indicates a positive SI (forecast better), red indicates a negative SI (persistence better). Forecast lead
time increases from top (D+0) to bottom (D+2).

Table 4: Categorical statistics obtained from the “multi-site” elaboration at D+0
forecast time.

Statistics O3,max PM10
POD 61% 45%
FAR 49% 34%
PC 76% 80%

A global evaluation of model performance was also
performed building a “multi-site” time series based on all
the prediction-observation pairs. This led to the statistics
reported in Table 4. Categorical statistics were evaluated
assuming a threshold given by the 75th percentile of
observed values.

Finally, a comparison with an alternative low-skill
forecasting method was carried out. This is relevant
information, since it can be argued that a prediction with no
skill is not useful and can be replaced by a trivial prediction.

A commonly used baseline method, in particular for short
range forecasts, is persistence: this method consists of
forecasting the future values as equal to the last available
measurement. Accordingly, predictions at D+0, D+1 and
D+2 are set equal to the concentration measured the previous
day. A time series of persistence forecasts can be obtained
by shifting the measurements by one, two and three days and
a performance statistics is computed. This value represents
the reference to be compared to the actual forecasts. NME
and NMEref can be combined in a Skill Index formulation:

SI = 1–NME/NMEref (1)

A value of 1 is the maximum value for SI and indicates
a perfect forecast (NME = 0); a value of 0 indicates
a model forecast equivalent to the persistence method
(NME = NMEref ), a negative value implies that the
model is, in terms of NME, worse than persistence (NME >
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Figure 6: Scatter plots of prediction-observation pairs of PM10 from air quality stations: IT1790A and IT1328A (top), IT0663A and IT1594A (bottom).

Figure 7: Scatter plots of prediction-observation pairs of PM10 from air quality stations: IT0963A (left) and IT2072A (right).

NMEref ). Fig. 5 shows SI computed for each station and
forecast time, both for O3,max and PM10. A red dot means
negative SI (persistence is better), a blue dot means positive
SI (forecast is better).

4 Discussion

As can be seen in Fig. 3, for most stations NMB, NME
and r meet, as a minimum, the “Criteria” target, both for
O3,max and PM10. In many cases, they meet the “Goal”.
However for PM10, a strong overestimation emerged for
stations IT1790A and IT1328A, for which NMB > 30%
andNME > 50%. Looking at the scatter plots of predicted-
observed values of these two stations (Fig. 6, top) a clear
tendency to overestimation can be noticed in both cases.
These stations also show a relevant FAR (> 60%) and low
PC (< 60%) (Fig. 4). Moreover, although for most stations
the skill was positive, since the persistence method gives
worse results, for these two stations, it is negative up to the
third day of forecast (Fig. 5). As both are located in complex

terrain, IT1328A at the foot of the hills and IT1790A on an
elevated small basin in the initial ranges of the Alps (Fig.
1), this deviation could possibly be traced back to local wind
circulations not well described by the meteorological model.
In particular, this could be the case of nocturnal katabatic
winds, driven by local cooling and occurring in the absence
of synoptic scale winds. In fact, the same tendency can
also be seen, to a lesser extent, for stations IT0663A and
IT1594A (Fig. 6, bottom) which are also close to mountain
slopes. This defect could lead to an enhanced stagnation
of air masses in those areas, increasing concentrations of
particulate matter.

On the other hand, for many stations on the plain,
a good performance for PM10 was found (Fig. 7, left),
especially regarding correlation that meets the “Goal” target,
in most cases. An exception is station IT2072A (Fig. 7,
right), in the south, that is marked by a negative NMB
(< −30%), low POD and quite a low correlation. Also the
neighbouring stations show a negative bias and a low POD.
Indeed, although this part of the plain is relatively free from
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Figure 8: Mean daily evolutions of predicted and measured 1hr-ozone. Top: IT1791A
station (altitude = 1300 m ), bottom: IT2072A station (altitude= 6 m).

pollutant sources and less inhabited with respect to the north,
measured values of PM10 are higher than expected. This
is something that is not well understood and that requires
further investigation.

As for O3,max, NMB, and NME as well, they meet the
“Criteria”, as a minimum, for most stations and are mostly
positive. Correlation meets the “Criteria” target, but never
the “Goal”, and is poor (< 0.5) for three stations located on
the mountain ranges (IT1848A, IT1791A and IT1619A). For
the IT1791 station, the one at the highest altitude (> 1, 300
m), a relevant negative NMB resulted (< −15%) and a very
low POD (10%) indicating that most exceedances are missed.
On the contrary, ozone tends to be overpredicted in some part
of the plain, where a relevant FAR (> 60%) was found in
three stations (IT2071A, IT2072A and IT1213A). For these
sites, skill respect to persistence is also negative up to D+2.
To explain this different behaviour, it is worth inspecting the
hourly data of observed and predicted ozone. Fig. 8 shows
the predicted daily evolution (D+0) of 1-hr ozone for station
IT1791A, located on a high plateau in the western pre-alpine
ranges. Alongside, for comparison, the same diagram is
shown, for station IT2072A, almost at sea level in flat terrain.

Both stations are classified as “rural” sites, that is,
relatively far from anthropogenic sources. Ozone is fairly
constant at the mountain site whereas, for the station in the
plain, it exhibits a pronounced deviation between day and
night, with a steady rise from dawn until afternoon and a
drop in the evening. In the first case, there is an evident
underprediction while in the second case, an overprediction
occurs, especially in the night hours. The behaviour of
the model could be attributed to different factors: on the
mountains, ozone is linked to the transport of air masses

from the free troposphere, so it could be the case that this
contribution is not well predicted by the model. On the other
hand, ozone in the flat terrain site is mainly determined by the
photochemistry of NOx and CO, emitted in urban areas, and
VOCs, so the overprediction could be linked to inaccuracies
in the estimate of emissions of such precursors. Inaccuracies
in predicted temperature and wind fields can also play an
important role; verification studies on the COSMO showed
a tendency to overestimate nocturnal temperatures at low
altitude sites (Tesini and Cacciamani, 2008); this “warming”
can reduce the nocturnal scavenging of ozone by nitrogen
monoxide. Simulated deposition processes are also affected
by uncertainties; the CAMx implementation of the Zhang
model for dry deposition (Zhang et al., 2003) has shown a
tendency to generate lower ozone deposition rates respect to
other methods, leading to higher ozone predictions.

5 Conclusions

This paper describes the model performance evalua-
tion of a system based on the CAMx photochemical model,
used to forecast ozone and particulate matter over the re-
gion of Veneto, in the north-eastern Italy. The COSMO me-
teorological prognostic model, coupled with the CALMET
diagnostic model in “no observation” mode, provides the
main meteorological input. Supplementary inputs describ-
ing atmospheric water vapour and aqueous contents are esti-
mated through a specific processor based on available vari-
ables. Emissions in the form of grid and point sources de-
rive from regional scale INEMAR inventories and bound-
ary conditions are provided by the CHIMERE model at a
European scale. The investigation, consisting of a statisti-
cal comparison with measurements, highlights the periods
of major concerns for these pollutants; ozone daily 1h-peak
(O3,max) predictions were evaluated in summer, from June
to August 2019, and PM10 (daily mean) in winter, from De-
cember 2018 to February 2019. Altogether, the evaluation is
satisfactory since the NMB, NME and r metrics selected for
model evaluation, for most of the air quality stations, meet,
as a minimum, the minimum quality target (“Criteria”) es-
tablished for PM10 and O3,max, and in many cases also a
stricter “Goal” target. The correlation coefficient of PM10 is
the main strength of the forecasting system. However, some
local issues emerged. The forecasts of O3,max on elevated
terrain showed a poor correlation and a relevant underesti-
mation in the site at higher elevation, whereas a tendency to
overestimation was observed for some stations on the plain.
Skill respect to the persistence method increases with fore-
cast times although, for a minority of stations, remains nega-
tive until the third day of the forecast. Inaccuracies in precur-
sor estimates, in deposition processes and in description of
ozone transport through the troposphere could be the reasons
for these deviations. For PM10, a strong overestimation was
obtained in two sites where skill respect to persistence re-
mains negative up to the third day of forecast. This could be
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traced back to limitations in the meteorological model con-
cerning the prediction of local wind circulations, driven by
mountain slopes. This leads to an excess of stability of air
masses in those areas, increasing concentrations of PM10.
Conversely, in some areas in the plain a tendency to underes-
timation was shown, possibly linked to inaccuracies in emis-
sions estimates. Indeed, part of the deviation can be traced
back to the fact that the forecasts are based on the 2015 emis-
sions inventory. In the near future, an update of the emis-
sions inventory is planned to align emissions and replace the
INEMAR biogenic module with an implementation of the
MEGAN (Model of Emissions of Gases and Aerosols from
Nature) model (Guenther et al., 2012) based on current me-
teorological data and high-resolution land cover inventory.
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Appendix A

Technical details are provided below about the principal
steps to translate “raw” input data in the proper format and
about schemes adopted in the CAMx implementation.
Pre-processing of emissions and meteorological fields
are depicted. For a full description of CAMx structure
and mechanisms please refer to the CAMx User’s Guide
(Ramboll Environment and Health, 2018).

Pre-processing of emissions

The INEMAR software includes a series of modules for
estimating emissions from industrial and residential sectors,
traffic, ports, airports and other off-road mobile machinery,
as well as agriculture and livestock. Emissions are grouped
according to SNAP97 categories. A “Diffuse emissions”
module allows estimating anthropogenic emissions that
cannot be localized and a “Punctual emissions” module is
used to estimate emissions by industrial stacks of relevant
importance. A specific “biogenic emissions” module is
used to estimate biogenic VOC emissions: the algorithm
estimates the emissions of isoprene, monoterpenes and other
VOCs on the basis of the methodology and data proposed
by (Karl et al., 2009). The sea salt emissions, expressed in
terms of sodium and chloride, are estimated by SEASALT,
a processor distributed by Ramboll that generates aerosol
emissions of sodium and chloride using meteorological and
land use files. Emissions are projected on the model grid,
by means of an algorithm based on land use elements in
each model grid cell (each land use element is a 250 m x
250 m square). For a given pollutant and emission sector,
emission at municipality level is split into contributions
according to land use-specific factors. Then the emission

of each land use element is computed as the ratio between
that contribution and the number of land use elements.
Finally, the emission of a model grid cell is given by the
sum of emissions of all land use elements included in the
cell. Gridded emissions, and point sources as well, are then
elaborated by means of a processor that makes the chemical
speciation and disaggregation in terms of NOx (partitioned
as 95% NO and 5% NO2, independently from the emissions
sector), VOCs and PM. Speciation tables and time profiles,
available as monthly, daily and hourly factors, derive from
the experience gained in inter-comparison exercises within
the European community (Belis et al., 2018).

The CAMx model formulation

The CAMx simulates the emission, dispersion, chemi-
cal reaction and removal of pollutants by marching the Eu-
lerian continuity equation forward in time for each chemical
species. The model time step is dynamically determined dur-
ing the simulation; time steps typically range from 5-15 min-
utes for grid cell sizes of 10-50 km, to a minute or less for
small cell sizes of 1-2 km. Chemistry is treated by simultane-
ously solving a set of reaction equations defined by specific
chemical mechanisms. The following table summarizes the
most relevant chemical processes implemented in the CAMx
model. For each process, reference to the physical model and
numerical method is given.

Pre-processing of meteorological fields

Beside wind and temperature and vertical diffusivity,
the CAMx model requires 3D water vapour content (WVAP)
and pressure (P) as inputs. Moreover, cloud/rain water con-
tent and cloud optical depth, even if optional, are actually
recommended for photochemistry, aqueous chemistry and
deposition calculations. A processor has been devised to
estimate these fields based on the following outputs from
the COSMO model: wind speed and direction, temperature,
geopotential and relative humidity on constant pressure lev-
els (1,000 hPa, 950 hPa, 925 hPa, 850 hPa, 700 hPa, 500 hPa,
400 hPa, 300 hPa), wind speed and direction at 10 m, tem-
perature and dew-point temperature at 2 m, sea-level pres-
sure, total precipitation at surface and cloud cover fraction
(low, middle, high). The implemented algorithms are out-
lined thereafter, equations referred to in the text are listed
below. WVAP is computed from temperature T and dew-
point temperature Td: vapour pressure e is calculated first
as e = es(Td), where the function of temperature es(T ) is
given as Equation 2 (if relative humidity is available, instead
of dew point temperature, vapour pressure is given as Equa-
tion 3). Water vapour content is then given as Equation 4
in mass units and as Equation 5 in the volumetric units re-
quired by the CAMx. Based on a very simplified scheme,
low cloud cover (LCC) was assigned to 850 hpa level (about
1,500 m above sea level), middle clouds (MCC) to 700 hpa
(about 3,000 m) and high clouds (HCC) to 500 hpa (about
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Table A1: Summary of the processes implemented in CAMx

Process Physical Models Numerical Methods

Vertical diffusion K-theory 1st order closure Implicit backward-Euler (time) centred (space) solver

Gas-phase chemistry Carbon Bond 2005 (Yarwood et al., 2005) EBIa (Hertel et al., 1993)
Advanced photolysis model TUVb (NCAR, 2011)

Aerosol chemistry Coarse/Fine (CF) Static 2-mode
Aqueous inorganic chemistry RADMc AQ (Chang et al., 1987)
Inorganic thermodynamic/partitioning ISORROPIA (Nenes et al., 1998)
Organic thermodynamic/partitioning SOAPd (Strader et al., 1999)

Dry Deposition Resistance model for gases (Zhang et al., 2003) Deposition velocity as surface boundary condition in
and aerosols (Zhang et al., 2001) vertical diffusion solver

Wet deposition Scavenging model for gases Exponential decay as a function of
and aerosols (Seinfeld and Pandis, 2016) scavenging coefficient

aEBI: Euler-Backward Iterative (solver)

bTUV: Tropospheric Ultraviolet and Visible (radiative transfer model)

cRADM: Regional Acid Deposition Model

dSOAP: Secondary Organic Aerosol Partitioning (model)

Table A2: Summary of parameters used to estimate LWC and COD at each level of the COSMOI5 grid. Heights of isobaric levels refer to standard atmosphere.

Level Altitude (m) Cloud fraction (0-1) ∆zb (m) re (µm)
Surface level ha+10 0.01 10 5

1,000 hPa 100 0.01 90 5
950 hPa 500 0.01 400 5
925 hPa 750 0.01 250 5
850 hPa 1,500 LCC 750 5
700 hPa 3,000 MCC 1,500 10
500 hPa 5,500 HCC 2,500 50
400 hPa 7,000 0.01 1,500 50
300 hPa 9,000 0.01 2,000 50

a h is the terrain height

b ∆z is the thickness of the cloud

5,500 m). This approximation allowed a value of cloud frac-
tion to be associated to each level of the COSMO grid (for
levels other than 850, 700 and 500 hPa, a minimum cloud
fraction equal to 0.01 was set). Cloud water content was es-
timated according to an experimental relationship between
cloud fraction and condensed water (Wood and Field, 2000):
assuming cloud water is entirely in liquid form, liquid water
content (LWC) can be computed as Equation 7 as a func-
tion of cloud fraction and temperature. Cloud Optical Depth
(COD) was estimated according to Stephens (1978): liquid
water path (LWP) is calculated first from LWC as Equation
9 in which cloud thickness ∆z for a level is given, from the
bottom to the top, as the difference between the height of
the level and the height of the previous one. Then COD can
be computed as Equation 10. Integration is performed along
the vertical to obtain, for each level, the total COD. Adopted
values of re are based on the dataset used in the software
package OPAC (Hess et al., 1998), in which microphysical
properties of some water and ice cloud models were reported.
According to these models, re is higher for ice clouds so a

level-specific value increasing with height was set, from 5
µm at 850 hPa to 50 µm at 500 hPa, with 10 µm at 700 hPa.
Table A2 summarizes the factors used to estimate LWC and
COD in the COSMO grid.

Rain water content (M ) was estimated from precipita-
tion rate by means of Equation 11 (Marshall et al., 1947).
M was set equal to the surface value for levels up to 1,000
m above the ground, assumed as cloud base, and set to zero
above. Pressure at the surface level was calculated from sea-
level pressure, by the hypsometric equation (Equation 12),
based on temperature and altitude. Finally, all the variables
are interpolated on the CAMx grid: first vertical interpola-
tion is performed by means of a linear function and then hor-
izontal interpolation using a simple “nearest neighbour” rule.
Fig. A1 shows an example of COD, M (g/m3) and WVAP
(ppm), at surface level, resulting from the implementation of
the algorithms.

A list of the equations follows below. Equations 2 to 6
and Equation 12 are from (Stull, 2000). Otherwise the refer-
ence is given.
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Figure A1: Examples of COD, M (g/m3) and WVAP (ppm), from left to right, estimated according to parameterisations described in the text (forecast time +3h, June 5 2020 at
03 UTC).

es = e0e
b
T−T1
T−T2 [Pa] (2)

Where e0 = 611 Pa, b = 17.2694, T1 = 273.16 K,
T2 = 35.86 K.
Vapour pressure as a function of relative humidity and
temperature

e = es
RH

100
[Pa] (3)

where es is the saturation vapour pressure and RH is the
relative humidity.
Water vapour mixing ratio in mass units (WVAP)

WVAP = 622
e

P − e
[g/kg] (4)

where P is the actual pressure and e is vapour pressure.
Water vapour in volumetric units

WVAPvol = WVAP
29

18
1000 [ppm] (5)

where 29 g/mol indicates the molar mass of dry air and 18
g/mol, the molar mass of water.
Specific Humidity q:

q = 622
e

P
[g/kg] (6)

where e is the vapour pressure and P is the actual pressure.
Cloud water content (LWC)

LWC = −ln(1 − C)
qs
K

[g/kg] (7)

where C is the cloud fraction and K = 75 is a constant.
Obtained by the inversion of equation FWII (Wood and Field,
2000) and assuming condensed water is liquid. Saturation
specific humidity qs is given from Equation 7 with e =
es(T ). To avoid undetermined values, a maximum value of
0.99 for C was set.
Volume occupied by 1 kg of dry air (from the ideal gas law)

V OL =
RT

29P
1000 [m3] (8)

where R = 8.31 J/K/mol) is the ideal gas constant and
29 g/mol is the molar mass of dry air. It is used to convert

units of LWC from g/kg to g/m3.
Liquid water path (LWP)

LWP = LWC∆z [g/m2] (9)

where ∆z is the thickness of cloud (Stephens, 1978).
Cloud optical thickness (COD)

COD =
3

2

LWP

re
(10)

where re is the effective radius expressed in micrometres and
LWP is given by Equation 10 (Stephens, 1978).
Rain water content (M)

M = 0.08RR0.83 [g/m3] (11)

where RR is the rain rate in mm/h (Marshall et al., 1947).
Hypsometric equation for the calculation of surface level
pressure:

P = Pseae
− h+10

A∗<Tv> [Pa] (12)

where Psea is the sea-level pressure and h is the height of
terrain. A = 29.3 m/K is a constant and< Tv > is the layer
mean virtual temperature (set equal to temperature < T >
and computed assuming a lapse rate of 0.65 K/100m).
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