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Abstract

Data enabled research with a spatial perspective may help to combat human diseases in an 

informed and cost-effective manner. Understanding the changing patterns of environmental 

degradation is essential to help in determining the health outcomes such as asthma of a 

community. In this research, Mississippi asthma-related prevalence data for 2003–2011 were 

analyzed using spatial statistical techniques in Geographic Information Systems. Geocoding by 

ZIP code, choropleth mapping, and hotspot analysis techniques were applied to map the spatial 

data. Disease rates were calculated for every ZIP code region from 2009 to 2011. The highest rates 

(4–5.5%) were found in Prairie in Monroe County for three consecutive years. Statistically 

significant hotspots were observed in urban regions of Jackson and Gulf port with steady increase 

near urban Jackson and the area between Jackson and meridian metropolis. For 2009–2011, spatial 

signatures of urban risk factors were found in dense population areas, which was confirmed from 

regression analysis of asthma patients with population data (linear increase of R2 = 0.648, as it 

reaches a population size of 3,5000 per ZIP code and the relationship decreased to 59% as the 

population size increased above 3,5000 to a maximum of 4,7000 per ZIP code). The observed 

correlation coefficient (r) between monthly mean O3 and asthma prevalence was moderately 

positive during 2009–2011 (r = 0.57). The regression model also indicated that 2011 annual PM2.5 

has a statistically significant influence on the aggravation of the asthma cases (adjusted R-squared 

0.93) and the 2011 PM2.5 depended on asthma per capita and poverty rate as well. The present 

study indicates that Jackson urban area and coastal Mississippi are to be observed for disease 
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prevalence in future. The current results and GIS disease maps may be used by federal and state 

health authorities to identify at-risk populations and health advisory.
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1. Introduction

Air pollution has become a burden on population health, as more than 2 million premature 

deaths every year can be attributed to the air pollution worldwide [1,2]. Environmental 

health is at an exciting stage. The 21st century has witnessed the increased prevalence of 

respiratory-related health illnesses throughout the world [3], and the poor air quality is 

believed to be a significant cause for illnesses [4,5]. Air pollution is convincingly associated 

with many signs of asthma aggravation. These include pulmonary function decrements, 

increased bronchial hyperresponsiveness, visits to emergency departments, hospital 

admissions, increased medication use and symptom reporting, inflammatory changes, 

interactions between air pollution and allergen challenges, and immune system changes [6]. 

People living near roads with high traffic intensity are more likely to be affected by 

respiratory problems [7]. Many research studies have successfully established the relation 

between air pollution and its associated health effects [8–11]. It is less clear which pollutants 

are most responsible for causing respiratory illnesses, but traffic pollution might be playing a 

key role. Among the air pollutants, particles and O3 have the strongest associations [12]. 

Reports also convey that not only a single pollutant is responsible for causing respiratory-

related health problems, but also a group of them (SO2, NO2, ozone (O3), and particulate 

matter (PM)) [13,14]. Around a quarter of the burden of disease is associated with 

environmental risk factors [15]. Risk factors for asthma may not be constant, and it is 

difficult to predict the exact cause. The risk may vary with time and by geography. The 

geography and subject’s spatial presence may play a major role in determining the 

environmental variables human being is exposed to [16,17]. They may also vary by sex, 

race, and age among individuals.

One in every 12 Americans has asthma, and its management is expensive, costing the U.S. 

$56 billion each year [18]. The access to health care is an important issue in the U.S. and 

other countries [19]. In the case of Mississippi (MS), data showed that the trend is similar to 

the rest of the U.S. [20]. Asthma is a growing epidemic in MS and in the U.S. as a whole 

[18,21]. MS has been affected by 36–44 extreme weather and climate events in the past 30 

years and temperatures across the southeast region are expected to increase in future [22]. 

The consequence of increasing temperatures could be the formation of harmful air pollutants 

and allergens [23]. MS has been ranked at 17 among the 20 toxic industrially polluted states 

in the year 2010 [24]. A 2014 report suspected that outdoor air pollution, high amounts of 

pesticide exposures and energy sector might be serving as causative agents of asthma in 

Mississippians [25]. Dramatic improvements and developments in technology platforms 

may promise the integrated approach of understanding a spatial problem. The present study 
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has laid a path to understanding the spatiotemporal dimensions of asthma in MS. 

Understanding its prevalence and outbreaks may help to make better decisions, save lives, 

and design healthy communities.

It is hypothesized that the spatiotemporal extent of asthma-related health problems is 

associated with the prevailing air pollution and asthma causes are distinctive for urban and 

rural areas. The objectives of this research are to: (1) assess and map the asthma rates in 

urban and rural MS, (2) highlight asthma health as a spatiotemporally significant disease and 

not simply from random events, (3) interpolate and model the air quality data concerning the 

particulate matter (PM2.5) and ground-level ozone (O3), and (4) analyze the statistical 

association of asthma to air pollution and poverty.

2. Materials and methods

Study area

According to the 2010 census, the MS population is about 3 million people and has a density 

of 63 persons per square mile [26]. The primary economic activity of Mississippians is 

agriculture, fishing, mining, and timber. With a land area of 46,923.3 square miles, there are 

82 counties, 5 urbanized areas, 64 urban clusters, 69 urban areas, and 424 ZIP Code 

tabulation areas in MS, see Figure 1 [26].

The following flowchart (Figure 2) explains the methods followed in processing and 

analyzing air quality and asthma health data. Geospatial statistical techniques were applied 

to the data of air quality and asthma patients visits. Asthma-related patient (inpatient, 

outpatient, and emergency visits) data were geocoded to ZIP Code boundaries, and hospital 

network data containing patient bed information were geocoded to street line data, (Figure 

2). Later, the data were mapped using quantitative choropleth techniques in ArcGIS. Asthma 

per capita was calculated using census 2010 population data to understand the differences in 

urban and rural prevalence. Annual levels of PM2.5 and O3 were spatially interpolated by 

ordinary kriging method.

Asthma per capita data were further explored by spatial statistical techniques (hot spot 

analysis) to identify the hot and cold spots in urban and rural areas (Figure 2). Additionally, 

census population, and poverty data are taken as independent variables were statistically 

analyzed to understand their association with asthma. Time series models (or) seasonal 

cycles of asthma-related visits were also generated to reveal the temporal prevalence. The 

viable options for air quality metrics are to rely on the measurements from routine 

regulatory and deposition networks, intensive aircraft and ground-based field studies, 

radiosonde programs, satellite measurements, ground-based remote sensing networks, 

focused, fixed-site, and special purpose networks [27]. Table 1 below explains the data types 

used in the study, their sources and the spatial resolution at which the data were obtained.

These estimates reflect the economic characteristics of a geographic area over the entire five 

year period, and data are available for all geographic areas down to the census block group 

level [28]. The Census Bureau uses a set of dollar value thresholds that vary by family size 

and composition to determine who is in poverty. If a family’s total income is less than the 
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dollar value of the appropriate threshold, then that family and every individual in it are 

considered to be in poverty. Similarly, if an unrelated individual’s total income is less than 

the appropriate threshold, then that individual is considered to be in poverty [29].

2.1. Geocoding of patient data and hospital addresses

Data were preprocessed in Microsoft access software and segregated by yearly format to be 

further analyzed using ArcGIS. The first step in the analysis process is geocoding, which 

assigns patient counts to the corresponding ZIP code. An address locator was created for ZIP 

code polygons. This tells the ArcMap which is reference data [30]. Once the address locator 

was created, patient data were geocoded by ZIP code. On average, 96% of geocoding 

accuracy was achieved for the patient data, the rest of 4% was an error because of the 

absence of ZIP code information. To visualize the patient counts by ZIP code, patients and 

ZIP code layers were spatially joined. Later, quantitative choropleth mapping technique was 

applied to show the number of patients by ZIP code. Data were classified into increasing 

interval classes based on equal interval method and a color scheme was assigned to each 

class. Each interval class had a range of patient numbers that increased with each class. 

Street line geocoding uses a foundation address database to match the addresses of health 

events or healthcare facilities. This method was chosen for hospitals because of the 

completeness of the hospital database for address and the method places points at an 

accurate location on the ground.

An address locator for street lines was created and the hospitals were geocoded to streets, 

and the fields containing latitude and longitude values were added to the database. Output 

contained few errors in the form of unmatched addresses because of errors in hospital 

address database or in street line database. The unmatched addresses were examined and 

fixed case by case by an interactive re-matching process.

2.1.1. Finding asthma rates by spatial aggregation—Once patient data were 

geocoded by ZIP codes, the patient counts were joined to the ZIP code polygon. Disease 

rates were then calculated by dividing the counts with a total population of that ZIP code 

area.

2.1.2. Investigation of asthma patients using hotspot analysis—In the process 

of hot spot analysis, a powerful set of spatial statistical tools were used to look at the 

distribution of values associated with geographic features. The tools used in this part of 

analysis were (1) Data Management tools (Project and Copy Features), (2) Spatial Statistics 

(Collect Events, Hot Spot analysis), and kriging tool in spatial analyst extension. By default, 

patient data were using geographic coordinate system instead of the projected coordinate 

system. Project tool was applied, and the data were projected by the 

NAD_1983_UTM_Zone_15N projected coordinate system to preserve the distance. The 

data that fall within a ZIP code were aggregated by applying “Collect events tool” and the 

resulting feature contained an “ICount” field reflecting the number of patients in that ZIP 

code area. The aggregated feature class was used as input and ICount field was used for hot 

spot analysis.

Kethireddy et al. Page 4

AIMS Environ Sci. Author manuscript; available in PMC 2018 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1.3. Establishing the spatial relationships—Hotspot analysis tool looks for the 

spatial relationships in the data of interest. A feature with a high value surrounded by the 

other features with high values is called statistically significant hot spot (red areas) and the 

feature with a low value surrounded by other features with low values is called statistically 

significant cold spot (blue areas). The default spatial relationship is “Fixed Distance Band” 

means the features neighboring to each other within a critical distance receive a higher 

weight in spatial computation and the features away from the critical distance have no 

influence, and the distance method is “Euclidean Distance”. Distance band was chosen by 

finding the appropriate scale of analysis. It is difficult to predict the optimal distance (the 

distance at which the spatial processes are most active and exhibit clusters) band based on 

what geographical extent these asthma rates are promoting clusters. To estimate an optimal 

distance band, “Incremental Spatial Autocorrelation tool” was used to find a distance band 

that reflects the maximum spatial autocorrelation. This tool runs the spatial autocorrelation 

at increasing distances and assigns a Z-score for the observed spatial autocorrelation and the 

Z-scores were plotted against the increasing distance. The peaks were observed, and the 

distance bands were selected based on the of ZIP code areas. Once the optimal distance 

bands were estimated, the values were used in hot spot analysis. The output of hot spot 

analysis is a feature class where each feature had been assigned a Z-score and a P-value. 

Later, kriging method was applied to hotspot feature class and a continuous raster surface of 

heat map was generated.

2.2. Analysis of air quality

During the period 2007–2011, air quality data were analyzed in relation to asthma rates. The 

two environmental factors that were studied in this research were (1) ground level O3 and (2) 

PM2.5. MS had been observing the air quality since many years with a sparse network of 

stationary ground monitoring stations (Supplementary Figure S1). Mississippi Department 

of Environmental Quality (MDEQ) is the only agency that operates the ambient air quality 

network in the state [31]. O3 monitoring starts in the month of March and continued until the 

end of October for each year. PM2.5 sampling was done every third day and continued 

throughout the year. Lack of monitoring station network at specific spatial and temporal 

intervals was the bottleneck for optimal data size, thus to improve the richness of spatial data 

and the model accuracy, data were collected from the neighboring states of Louisiana, 

Arkansas, Tennessee, and Alabama to be integrated into the geospatial statistical analysis. 

Sampling stations available for each year are varied by a range for each pollutant studied. 

From 2007 to 2011, the yearly numbers of sampling stations for O3 were 141, 89, 89, 95, 

and 97, and the stations for PM2.5 were 124, 119, 135, 138, and 131, respectively.

2.2.1. Spatial interpolation—In this study, a geostatistical method called ordinary 

kriging was applied to estimate the values at unmeasured locations. The principles of 

geostatistics operate on two key tasks: (1) to uncover the dependency rules and (2) to make 

predictions. Kriging is based on semivariogram and covariance functions, and the prediction 

of unknown values [32]. This method not only predicts the values at unmeasured locations 

but also provides the measure of the accuracy of prediction [33,34].

The general formula is:
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Z s0 = ∑
i = 1

N
λiZ(si)

where:

Z(s0) is the value to be predicted for location so;

N is the number of measured values;

λi are the weights assigned to each measured point;

Z (Si) is the observed value at the location Si.

2.2.2. Ordinary Least Squares (OLS) regression analysis—For the period 2009–

2011, data on asthma count by ZIP code and population size for the corresponding zip code 

were applied in regression analysis to understand the statistical dependency on population 

size. Other independent variables taken into the analysis are the data on children, older 

adults, patient counts of adjacent years, and annual PM2.5 interpolated values. An additional 

regression model was constructed on PM2.5 as a dependent variable, and the poverty rate, 

percent of older adults, and asthma per capita as independent variables. ZIP code population 

data from Esri appeared more reliable to apply in regression analysis, data were available for 

2010, 2012, and estimated for 2009 and 2011. The reason for excluding other years (2007–

2008) in regression analysis is that absence of population data at a zip code scale. Economic 

variable (poverty) data for a period of 2007–2011 were downloaded from the U.S. Census 

Bureau, which was integrated as an independent variable in multivariate regression analysis. 

Standard line plots were generated for each independent variable against asthma. Monthly 

values of environmental variables (O3 and PM2.5) were investigated by correlation analysis 

to identify the possible association with asthma.

3. Results

3.1. The geography of asthma prevalence

Spatial analysis indicated that the asthma-related patients have increased geographically 

over a decade. Largest numbers of patients were observed in urban regions, and the highest 

asthma rate was found in rural regions (Supplementary Figure S2). Evidence from 

statistically significant hot spots (northwest, southwest, northeast, and southcentral regions) 

of asthma rates indicated that the disease had taken a major turn between 2009 and 2011. 

Highest rates of asthma (4–5.5%) were observed in Prairie, Monroe County for the three 

consecutive years (Figure S2). Prairie, Monroe County (red spot on the map) appeared to be 

the victim of asthma with highest levels of observed prevalence for three consecutive years, 

2009–2011. The areas of northwest and southcentral MS are also significant for asthma. 

Although a higher asthma prevalence is not seen in the coastal region populations (Figure 

S2), the number of patients is increased every year near Gulfport-Biloxi-Pascagoula because 

of increasing population [38].
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The maps of statistically significant hot spots and cold spots of asthma rates from 2009 to 

2011 are presented in Figure 3. The summary of Z-scores and the distance observed at 

maximum autocorrelation were presented in Table 2. A high Z-score and small P value for a 

feature indicate a significant hotspot, a low negative Z score, and small P value indicates a 

significant cold spot [39]. Asthma health is not random in populations. It shows a significant 

spatial phenomenon indicated by the spatial clustering (Figure 3). The high Z-scores showed 

the Table 2 below indicate that the residuals are statistically significant and reject the null 

hypothesis that the asthma health is spatiotemporally random and spatially not 

autocorrelated.

3.2. Temporal pattern mining on asthma patient data

A steady and decreased trend in asthma-related visits was observed from 2005 to 2009 and 

the trend increased again beginning in 2010 (Figure 5). The highest daily average rates were 

observed in 2005 and the lowest in 2009 (Figure 4). For the remaining years, rates had fallen 

mostly between those two years. Average numbers of visits were lowest (30–51) in the 

months of June and July for all the analyzed data, increased beginning in August and peaked 

between the months of October and November.

From 2003 to 2011, the observed temporal pattern of asthma inpatient, outpatient, and 

emergency visit data is presented in Figure 4. The similarity in patients visits cycle, the 

pattern of timing, and common peaks were constant for all analyzed years, which indicated 

that the factors responsible for asthma exacerbations might be constant. These frequent 

exacerbations may be an indication of the greater severity of disease [42]. Asthma 

exacerbations peaked between September and October in each yearly cycle in MS. A related 

study investigated the similar phenomenon in North America and concluded that the 

increased consultations for childhood asthma every September were uniquely related to 

school return [43]. Children heading back to school had closer personal contact with many 

more children, therefore, increasing their exposure to viral and bacterial infections that could 

trigger an asthma attack [44]. A graph of total asthma-related patient visits is presented in 

Figure 5.

3.3. The geography of air pollution

Ambient concentrations of air pollutants were visualized for five years (from 2007 to 2011). 

Spatiotemporal distribution was modeled by ordinary kriging method, refer the Figures 6 

and 7.

The annual levels of O3 and PM2.5 predicted by ordinary Kriging model are presented in 

Figures 6 and 7 respectively. The highest levels of O3 (0.070–0.085 μg/m3) were observed in 

northwest, south, and southwest regions, and the highest levels of PM2.5 (10–15 μg/m3) 

were observed in the southcentral and eastern regions. While U.S. EPA has revised the 

primary annual PM2.5 standard and tightened it to 12 micrograms per cubic meter (μg/m3) 

[45], the modeled values exceeded 12 μg/m3 during 2007 and 2008. The values remained 

close to the standard during 2010 and 2011 in the southcentral and central MS and posed a 

significant short-term and long-term threat to human health including premature mortality, 
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increased hospital admissions and emergency department visits, and development of chronic 

respiratory diseases.

3.4. Statistical interpretation of asthma and population size

Between 2009 and 2011 (Figure 8), approximately 59% of asthma-related inpatient, 

outpatient, and emergency visits could be explained by the population size (coefficient of 

determination, R2 = 0.588 and correlation coefficient, r = 0.77). The relationship linearly 

increased to a maximum of 65%, R2 = 0.648 until it reached a population size of 3,5000 per 

zip code and the relationship decreased to 59% as the population size increased to a 

maximum of 47000 per ZIP code. This is a statistical signature about the contribution of 

other variables at densely populated (>3,5000/ZIP code) areas. Generally, higher populations 

were seen in urban regions, thus indicating the effects of urban risk factors in the prevalence 

of asthma.

Figure 8 provides an explanation about the dependency of asthma-related visits to 

corresponding population size at ZIP code spatial scale. Although a higher asthma 

prevalence was observed in rural MS, its association was proportionately distributed in the 

areas of ZIP codes with a population range of up to 35,000 indicating that the risk factors 

were constantly simple. As the population range increased above 35,000, the phenomenon 

became complex and was evidenced by the scattered data points in Figure 8, and also 

evident from population regression. It implies that complex risk factors were involved in the 

ZIP codes of urban areas with a larger population, which indicated that geography and urban 

settings are playing important roles. Research studies from many cities have documented 

that the urban heat island effects range from decreases in air quality, increased energy 

consumption, and alteration of the regional climate to direct effects on human health [41].

Based on the results in supplementary Table S1, the adjusted R-squared value was 

significantly improved (R-squared- 0.723, 0.934, and 0.930 for 2009, 2010, and 2011 

respectively) from the model that used only the population data (R-squared- 0.588 in Figure 

8). Within the population, the regression results explain the asthma dependency on children 

and older adults (Figure 9) and the probabilities with asterisk resemble the statistical 

significance. Coefficient [a] with a positive value indicates the positive relationship with 

asthma and a negative value indicates a negative relationship. Figure 9 provides the data for 

understanding the relationship of each variable with asthma count. The statistical 

significance in the Jarque-Bera statistics indicates a significant clustering in the fitted model, 

and the residuals from regression analysis are normally distributed, which means that the 

spatial pattern in the asthma health is not randomly generated. The asthma count of adjacent 

years is well correlated to the studied year, that means the health condition is mostly tied to 

the threshold levels from neighboring years indicating a consistent population that possessed 

the health condition.

Poverty and asthma per capita can be explained by the PM2.5 for 2011, as shown in Figure 

10 and coefficient [a] in supplementary Table S2. The relationship is positive from the 

positive sign on coefficient [a] and is further explained by the probability and robust 

probability columns, where an asterisk shows a statistical significance. Jarque-Bera statistic 

is also statistically significant, which means that the residuals from the fitted model did not 
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show a random behavior, and the spatial pattern explains a significant clustering in the fitted 

variables. There is overwhelming evidence that exacerbations of asthma in terms of casualty 

attendances, hospital admissions, and deaths are related to poverty or to groups that are 

prevalent in poor sectors of the society [46]. Many published articles have discussed the 

poverty problem in the MS Delta [37,47–49].

Correlation analysis revealed an overall correlation coefficient (r) of 0.186 between monthly 

average levels of ozone and asthma count (Figure 11). The trend appeared to be 

synchronized in recent years from the second half of 2009. Since then, r increased to 0.572, 

indicating that there was a moderate positive correlation [35] between both the data.

Correlation analysis did not reveal any significant association between PM2.5 and asthma 

(Figure 12), and there was a negligible negative correlation [35] of −0.125 observed between 

the data.

4. Discussion

The comprehensive geospatial approach undertaken in this research is first of its kind for 

addressing asthma problem in MS. Derivation of statistics of asthma at zip code level is 

unique in this research. The stakeholders, the public, and the administrators can understand 

about dissemination of disease and its affected regions by the help of produced maps and 

data. During 2009–2011, northwest MS has seen a continuous increase in the prevalence of 

asthma (Supplementary Figure S2 and Figure 3). This region is a floodplain of black alluvial 

fertile soils known for its agricultural heritage. Although poverty continues to prevail, 

farming remains the backbone for this region’s economy [36]. Many of the urban living 

patterns were seen in the rural delta region of MS such as the limited access to health care, 

pollution, and other environmental factors [37]. Large-scale interventions to reduce 

morbidity and mortality among rural patients with asthma in the U.S. have not been 

designed or implemented, despite rural Americans representing one of the most highly 

disadvantaged populations in the U.S [40]. Higher prevalence of asthma in rural MS could 

be an indication to support this fact. Asthma exacerbations were increasingly observed in the 

Jackson County region from 2006, urbanization might be an important risk factor in this 

region, which contributes to the accumulation of air pollutants by trapping heat.

Moderately significant associations were observed between monthly levels of O3 to asthma 

exacerbations, and the monthly associations were insignificant with PM2.5. This indicated 

that asthma populations are susceptible more towards seasonally varying environmental 

variables (O3), also for seasonal variability in asthma exacerbations almost similar trend is 

observed in every season for all the years studied. For 2011, there is a positive relationship 

observed and the annual PM2.5 levels depended on asthma per capita and poverty rate, as 

shown on Figure 10 and supplementary Table S2. The lag analysis might be useful to 

understand the health effects during short-term air quality-asthma events, but the current 

study had utilized the data from multiple years. The relationships with O3 were established 

only during the O3 sampling season from March to October in every year because the data 

were available only during this period.
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5. Conclusion

Asthma is a complex health problem in MS, and distinctive spatial and temporal dimensions 

have been observed in asthma data. As hypothesized, its prevalence and risk factors were 

different in rural and urban areas. The risk factors were constantly simple in rural areas and 

more complex in urban areas. The highest rates (4–5.5%) were discovered in Prairie in 

Monroe County for three consecutive years. Statistically significant hotspots were observed 

in urban regions of Jackson and Gulf port, which mean the areas where a high number of 

patients are found in neighboring ZIP codes. It was visualized from hot spot analysis that the 

asthma rates have steadily increased near urban Jackson and the area between Jackson and 

Meridian metropolis. It is recommended that the Jackson urban area is monitored closely for 

disease prevalence in the future. The highest concentration levels of annual O3 (0.070–0.085 

μg/m3) were observed in northwest, south, and southwest regions, and the highest levels of 

PM2.5 (10–15 μg/m3) were observed in the southcentral region. Statistical output indicated 

that 2009–2011 monthly O3 levels and 2011 annual PM2.s levels have a moderate influence 

on the aggravation of the asthma cases, as evidenced on Figures 10 and 11. As the adequate 

air quality data become available for MS, the statistical model performance would be further 

improved in the future studies. Between 2009 and 2011, spatial signatures of urban risk 

factors were found in zip code areas with dense populations. This was confirmed by the 

regression analysis of asthma patients with population size (R2 = 0.59). Resulting spatial 

data and information produced to provide a new insight into the management of 

environmental health data. The visualizations, info-graphics, and pictograms could be useful 

for decision making and asthma-related healthcare delivery in Mississippians. Statistically 

significant hotspots indicated that causative spatial processes are at work. Spatial analysis of 

asthma showed significant clusters in this delta region. Therefore, geographic clusters of 

poverty-asthma associations would be interesting to understand and may better visualize 

through regional scale analysis. Every year, vast amounts of population characteristics data 

are being generated by U.S. Census Bureau and are made available through its publicly 

available portals.

The environmental health GIS research results and disease maps generated from this 

research could potentially be useful to federal and state health authorities in treating the 

population at risk, as well as to develop and implement health advisories. Educational and 

awareness programs could be initiated, and proactive health needs may be delivered in 

targeted regions of MS (Delta, coastal, southcentral, and Prairie regions).

Limitations

A network of sparse spatial observations for air quality is a limiting factor to obtain a 

trustworthy data at specific spatial intervals, and this is a backdrop for MS. Not all sources 

of data are available at a spatial resolution of ZIP codes. Intercensal population estimates for 

all zip codes were limited for this study. Because of this reason, disease rates were 

calculated for 2009, 2010, and 2011 by taking the 2010 population data as being constant for 

three years. Change of support problems (COSP) may result when trying to link the 

exposure data to the health outcome information because the two variables have inherently 

different scales. The disease is specific to an individual, but air quality varies over a 
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continuum. Hence, these two different types of data not be always related in a way that 

permits a valid inference [51].

Recommendations

The contribution of other confounding (agriculture, mobile source pollution, socio-

economic, and racial) variables must be investigated to address the problem from its roots. 

Once these risk factors are identified, the public could be informed, and proactive measures 

can be taken to avoid the triggers and exposure. It may be a good decision to implement 

health education programs and health advisories in the MS Delta population. A street line 

data with information on updated routes and travel speed limits may be required to analyze 

the drive time for patients, which is a technique called network analysis that is used to better 

identify the underserved patients and deliver appropriate health care needs [52]. MDEQ may 

have to review plans for the observational network. A disease rate of around 4 to 6% in some 

zip codes is a significant issue to be addressed. Analysis of recent health data might reveal 

many insights on the potential conditions and geospatial distribution of asthmatics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MS map showing the census 2010 population density, hospitals, and administrative units.
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Figure 2. 
Overview of the research methods.
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Figure 3. 
2009–2011 Hotspot analysis of asthma rates and spatial autocorrelation.
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Figure 4. 
Average daily asthma-related inpatient, outpatient, and emergency visits.
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Figure 5. 
Total asthma-related visits for MS.
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Figure 6. 
Daily 8-hour average 4th max ground-level ozone (O3) pollution over MS.
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Figure 7. 
PM2.5 annual pollution levels over MS.
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Figure 8. 
Association of asthma to population.
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Figure 9. 
OLS Regression variable distributions and relationships for 2009, 2010, and 2011.
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Figure 10. 
OLS Regression variable distributions and relationships 2011.
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Figure 11. 
Correlation analysis of O3 and asthma.
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Figure 12. 
Correlation analysis of PM2.5 and asthma.
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Table 1.

Data types, sources, and spatial resolution.

Data type Source Spatial resolution

Air quality (O3 and PM2.5) U.S. EPAweb resources (http://www.epa.gov/airdata/) Ground-based point locations

2010, 2012 population data Esri ArcGIS online resources ZIP code

Road network feature class Esri street map premium Street line

2003–2011 Asthma health data, hospitals, 
and beds

Mississippi State Department of Health (MSDH) ZIP code

2007–2011 American Community Survey 
Poverty

Census Bureau’s American FactFinder (AFF) website (http://
factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml)

Zip code
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Table 2.

Global Moran’s I summary of asthma rates.

Year First peak Distance in Kilometers Z-score Max peak Distance in Kilometers Z-score

2009 40.00 11.45 40.00 11.45

2010 44.48 6.09 44.48 6.09

2011 44.47 7.17 106.79 9.38
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