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Abstract

Screening for left ventricular systolic dysfunction (LVSD), defined as reduced left ventricular ejection fraction (LVEF),
deserves renewed interest as the medical treatment for the prevention and progression of heart failure improves. We aimed to
review the updated literature to outline the potential and caveats of using artificial intelligence—enabled electrocardiography
(AIeECG) as an opportunistic screening tool for LVSD.

We searched PubMed and Cochrane for variations of the terms “ECG,” “Heart Failure,” “systolic dysfunction,” and “Artificial
Intelligence” from January 2010 to April 2022 and selected studies that reported the diagnostic accuracy and confounders
of using AIeECG to detect LVSD.

Out of 40 articles, we identified 15 relevant studies; eleven retrospective cohorts, three prospective cohorts, and one case
series. Although various LVEF thresholds were used, AIeECG detected LVSD with a median AUC of 0.90 (IQR from 0.85
to 0.95), a sensitivity of 83.3% (IQR from 73 to 86.9%) and a specificity of 87% (IQR from 84.5 to 90.9%). AIeECG algo-
rithms succeeded across a wide range of sex, age, and comorbidity and seemed especially useful in non-cardiology settings
and when combined with natriuretic peptide testing. Furthermore, a false-positive AIeECG indicated a future development
of LVSD. No studies investigated the effect on treatment or patient outcomes.

This systematic review corroborates the arrival of a new generic biomarker, AIeECG, to improve the detection of LVSD.
AIeECG, in addition to natriuretic peptides and echocardiograms, will improve screening for LVSD, but prospective rand-
omized implementation trials with added therapy are needed to show cost-effectiveness and clinical significance.

Keywords Artificial intelligence - Electrocardiogram - Left ventricular systolic dysfunction - Reduced left ventricular
ejection fraction - Screening

Introduction

54 Laura Vindelgv Bjerkén The first randomized controlled trial recently demonstrated

laura.bjerken @ gmail.com how an Al-enabled electrocardiogram (AIeECG) could
increase the number of patients detected with reduced left
ventricular ejection fraction (LVEF) in a broad clinical setting
[1]. Heart Failure (HF) occurs in about 37.7 million people
worldwide, and a similar number of people have undetected
or asymptomatic left ventricular systolic dysfunction [2].

Department of Clinical Medicine, University of Copenhagen,
Blegdamsvej 3B, 2200 Copenhagen, Denmark

Department of Cardiology, Copenhagen University Hospital
Bispebjerg, Copenhagen, Denmark

Department of Cardiology, Copenhagen University Hospital Treating systolic HF with reduced LVEEF is strongly recom-
y Amager and Hyidovre, Hvidovre, Denmark . . mended, even in some patients with LVEF below 50% [3, 4].

Present Address: Faculty of Health and Medical Sciences, The reference method for detecting reduced LVEF, echocardi-

University of Copenhagen, Copenhagen, Denmark ography, is time-consuming, expert-dependent, and costly [5].
*  William Harvey Research Institute, Queen Mary University Therefore, other more widely applicable methods are needed

Hospital, London, UK to enable detection, treatment and prevent the onset of HF,
5 Department of Computer Science, University of Copenhagen, which is why screening deserves a renewed interest.

Copenhagen, Denmark

@ Springer


http://orcid.org/0000-0003-0767-0798
http://orcid.org/0000-0003-0675-3479
http://orcid.org/0000-0002-0544-5215
http://orcid.org/0000-0003-3532-9431
http://crossmark.crossref.org/dialog/?doi=10.1007/s10741-022-10283-1&domain=pdf

420

Heart Failure Reviews (2023) 28:419-430

Screening community patients with brain natriuretic
peptide (BNP) followed by clinical intervention reduces
subsequent HF events compared with the standard of care
[6]. We have previously shown that natriuretic peptides, his-
tory of hypertension, myocardial infarction and the ECG are
useful biomarkers to detect reduced LVEF in a community
cohort [7, 8].

The readily available and cheap ECG could be a perfect
tool to identify patients who should have an echocardiogram
examination. But the primary concern that ECG-reading
skills are inadequate among general practitioners [9] must
be addressed. Therefore, an Al algorithm that can make gen-
eral physicians experts in reading ECGs could offer a per-
fect screening option in general practice and non-cardiology
departments [10].

However, it is unknown whether AIeECG is a generally
applicable generic biomarker, or whether it only works in
specific populations and for dedicated research groups. To
our knowledge, no one has made a comprehensive review of
the studies that used AIeECG to screen for reduced LVEF or
left ventricular systolic dysfunction (LVSD).

Our aim is to review the existing literature with AIleECG
to detect LVSD and explore the following sub-questions:
What are the similarities and differences between the
research groups’ algorithms for accuracy in detecting LVSD
in relation to LVEF thresholds, study populations, and is
AIeECG better than natriuretic peptides.

Method

A systematic search on Pubmed and Cochrane focused on
studies using AIeECG in a clinical context, but not a tech-
nical. The literature review and reporting adhered to the
Prisma guidelines [11].

Pubmed search

The search contained variations of three main aspects
regarding the use of AIeECG to screen for LVSD: “ECG,”
“Heart Failure” and “Artificial Intelligence” (Supplementary
Appendix 1). The search consisted of both a MeSH term for
each of the main aspects as well as variations of that main
aspect. The MeSH term searches and variations hereof were
combined using “AND” and the search was restricted to the
last 10 years (Supplementary Appendix 2).

Cochrane search
A supplementary search was also performed in Cochrane
using the search words: machine learning, deep learning,

neural network, and artificial intelligence. This search did
not contribute any new articles.

@ Springer

Study selection

Study selection was performed by two separate review-
ers (LB and SR), and in case of agreement articles were
included. If the two reviewers disagreed, a third-party
reviewer (OW) was consulted, and each article was dis-
cussed until consensus was reached. The risk of bias was
reduced by excluding studies with a poor definition of the
outcome variable (LVEF threshold or HF event).

A total of 147 articles were found. 107 articles were
discarded based on title and abstract because they did not
address ECG, LVSD, or artificial intelligence. The remain-
ing 40 articles were assessed for full-text eligibility (Fig. 1)
and a further 25 articles were excluded for the following
reasons: no focus on LVSD screening (n=12), a technical
rather than clinical scope (n=1), not original study but a
meta-analysis or review (n=4), or not an original study but
a comment, protocol or editorial (n=35). Exclusion due to
poor quality related to studies that did not focus on using
AIeECG (n=3) (Fig. 1). The remaining 15 articles were
included in the present investigation. Certainty in evidence
was assessed by noting whether algorithms had been tested
externally or in prospective randomized trials.

Data collection from articles

Numerical values in this review are reported as stated in
the original articles, but we estimated data from figures or
Forest plots when numbers were missing. We categorized
studies after the first author. We report diagnostic accuracy
data from the external validation rather than from training
and internal validation. A formal statistical testing was inap-
propriate because of too few studies, therefore we report the
median values and interquartile range for AUC, sensitivity,
and specificity across all algorithms instead.

Results
Overview

We identified fifteen studies (Fig. 1 and Table 1) investigat-
ing algorithms from seven different research groups. Attia
et al. [12] from the Mayo Clinic created an algorithm that
was tested in eight studies [12—17], one group from Seoul
(the republic of Korea) developed and tested their algorithms
in two studies [18, 19]. Five research groups (Sbrollini et al.)
developed in-house algorithms and tested them in separate
studies [20-24]. A detailed overview of each study popula-
tion and outcome can be found in “Supplementary results”
(Supplementary Appendix 3), where details are provided for
AUC, type of outcome, model adjustments and comparison
to other test (e.g., BNP/NT-proBNP).
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Fig. 1 PRISMA flowchart of
study selection

Records identified through
primary database search
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A retrospective design was used in eleven studies [12—-14,
17-24], one was a case series [15] and three were prospec-
tive cohort studies [16, 25, 26]. Apart from those 15 studies
that fulfilled eligibility criteria for development and testing
of algorithms, we identified one randomized controlled trial
[1] and one cost-effectiveness study [27]. No studies exam-
ined the effects of using Al-enabled screening in relation to
treatment changes, patient outcomes or quality of life.

The diversity of study cohorts reflected a broad clinical
spectrum, spanning from unselected digital ECG databases
[12, 15, 16, 20, 22-24], emergency department patients [13],
cardiac intensive care unit patients [17], unspecified hospi-
talized patients [18, 19, 21], general populations [14, 25] and
patients diagnosed with Chagas disease [26].

The reference standard for AIeECG in fourteen of fifteen
studies was an echocardiogram performed within a prespeci-
fied period of 1 week to 1 year apart from the examined
ECG. The studies used different LVEF cutoffs to define their
outcome LVSD (e.g., EF <35%, EF <40% and EF <50%)
(Table 1). One study used the outcome, “altered clinical sta-
tus,” instead of a reduced LVEF, and that study examined
serial ECGs instead of a single baseline ECG [20].

The algorithms appear to perform better in the hospital
populations and when the outcome (LVSD) was defined by
a lower EF cut-off (e.g., EF <35/40% instead of EF < 50%)
(Table 1).

Some of the included studies investigated whether
the algorithms performed better or worse in selected

(AN y
Ién Records screened Records excluded by title
5 (n=147) > and abstract
2 (n=107)
)
—
Y Full-text articles excluded with reasons
Z Full-text articles assessed for (n=25)
= eligibility .| Not focused on LVSD screening (n=12)
) (n = 40) Editorial (n=2)
w Protocol (n=2)
Comment (n=1)
J Meta-analysis/review (n=4)
4 Not clinical scope (n=1)
o Studies included in qualitative Not AI-ECG specific (n = 3)
IS synthesis (meta-analysis)
E (n=15)
—

subgroups (age, sex, and comorbidities). Algorithm per-
formance seems to be lower in populations with comor-
bidity (acute coronary syndrome, PCI intervention per-
formed, diabetes mellitus, renal disease, hypertension,
hypercholesterolemia, and previous myocardial infarc-
tion), with the exception of obesity which did not affect
performance. Age and sex did not affect the algorithms
performance significantly. Overall, algorithm performance
was strong and stable across all investigated subgroups
with AUCs > 0.765 (Table 2).

Furthermore, five studies compared their AIeECG with
BNP or NT-proBNP (Table 1 and Supplementary Appendix
3). The few studies that made this comparison found that
AIeECG performed better with a numerical higher AUC
[12, 22]. Two studies also combined the two methods and
found that this combination outperformed both methods
individually [13, 26].

The external validation of all fifteen algorithms resulted
in a median AUC of 0.90 (IQR from 0.85 to 0.95), a sensi-
tivity 83.3% (IQR from 73-86.9%) and a specificity 87%
(IQR from 84.5 to 90.9%) (Table 1).

Discussion
We identified 7 different AIeECG algorithms (Table 1)

in this first comprehensive review of studies using
AIeECG algorithms to screen for LVSD. Despite
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Table2 AUC in subgroups

AUC

Reported significant
difference between
groups

0.93 (CI not reported)
0.98 (CI not reported)
0.800 (0.780-0.820)
0.860 (0.840-0.880)
0.810 (0.780-0.830)
0.840 (0.830-0.850)

0.962 (0.955-0.967)
0.963 (0.938-0.981)

Yes, p-value not reported
Yes, p-value not reported
Yes, p-value not reported

No, p=0.902

0.840 (0.830-0.860)
0.790 (0.770-0.810)
0.869 (0.830-0.907)
0.904 (0.863-0.944)
0.834 (0.800-0.869)
0.875 (0.834-0.915)
0.960 (0.951-0.967)
0.964 (0.9550.972)
0.852 (0.762-0.942)
0.761 (0.620-0.901)
87,5% 1 85,5%

82% 1 90%

0.962 (CI not reported)
0.980 (CI not reported)

Yes, p-value not reported
No, p-value not reported
No, p-value not reported
No, p=0.700
Not reported
No, p-value not reported

Not reported

QOutcome Study Clinical subgroup
Comorbidity
EF<35% Attia et al. [12] + Comorbidity
% Comorbidity
EF<40% Jentzer et al. [17] + Acute coronar syndrome
% Acute coronar syndrome
EF <40% Jentzer et al. [17] + PCI during hospitalization
% PCI during hospitalization
EF<40% Cho et al. [18] BMI<30
BMI >30
Sex
EF<40% Jentzer et al. [17] Male
Female
EF<35% Adedinsewo et al. [13] Male
Female
EF<50% Adedinsewo et al. [13] Male
Female
EF<40% Cho et al. [18] Male
Female
EF<50% Attia et al. [14] Male
Female
EF<35% Attia et al. [12] * Male
Female
EF <40% Kashou et al. [25] Male
Female
Age
EF <40% Jentzer et al. [17] <70 years
>70 years
EF<40% Cho et al. [18] <65 years
> 65 years
EF<35% Adedinsewo et al. [13] 18-59 years
59-69 years
69-89 years
EF<50% Adedinsewo et al. [13] 18-59 years
59-69 years
69-89 years
EF<50% Attia et al. [14] 30-55 years
55-75 years
EF<35% Attia et al. [12] * <60 years
> 60 years

0.850 (0.830-0.860)
0.800 (0.790-0.820)

0.974 (0.968-0.980)
0.932 (0.917-0.945)

0.909 (0.864-0.955
0.875 (0.819-0.932)
0.871 (0.827-0.916)
0.893 (0.854-0.931)
0.842 (0.787-0.896)
0.832 (0.792-0.873)
0.905 (0.829-0.981)
0.765 (0.652-0.877)

77%/91.5%
89%/82.5%

Yes, p-value not reported
Yes, p<0.001

No, p-value not reported

No, p-value not reported

Not reported

No, p-value not reported

*Sensitivity/Specificity as AUC was not reported

investigating various study populations and using dif-
ferent LVEF thresholds to define LVSD, the majority of
studies obtained a high diagnostic accuracy on external
validation. Overall, AIeECG seems to be a robust and
potentially universal tool to screen for LVSD, which
could improve when combined with clinical charac-
teristics such as gender and comorbidities as well as
NTpro-BNP.

@ Springer

AleECG screening for LVSD

Overall, AIeECG had a high diagnostic value when screen-
ing for LVSD and resulted in median AUC of 0.90 (IQR
from 0.85 to 0.95). The median sensitivity of 83.3% ensures
a low number of false negative screen failures while a high
specificity of 87% leads to a low number of false positive
screen subjects if used for screening.



Heart Failure Reviews (2023) 28:419-430

427

The studies examined different populations with differ-
ent prevalences and outcome definitions (Table 1), making
direct comparison difficult. Most consistently, there appears
to be higher AUC, sensitivity, and specificity in the stud-
ies examining hospital populations. A higher AUC may be
explained by populations with a few severe cases of LVSD
and a large number of patients admitted with non-cardiac
conditions.

Risk of bias and certainty of evidence

Retrospective designs were dominant as these are obviously
easier to complete. Furthermore, most algorithms were
tested in selected populations which is a drawback since
results cannot directly translate to future value in clinical
practice with consecutive patients. Accordingly, the preva-
lence of LVSD in the tested populations was higher than in
the general population. Selection bias occurs when includ-
ing patients who already had an ECG and echocardiogram
performed, as it selects higher-risk patients who already had
an indication for an echocardiogram. This could result in a
better performance than may be observed in a prospective
study.

Truly external validation was only applied to one algo-
rithm by Attia et al. [12] as this was the only algorithm to be
tested in other studies with separate populations [13-17, 25,
26]. More than half of the algorithms were not validated in a
truly external dataset as the same dataset was used for both
development and validation (the same dataset was split into
a training, internal validation, and external validation group)
[20-22, 24]. The remaining studies used different datasets
for training/validation and external validation, respectively,
but the majority of algorithms were not truly externally vali-
dated [18, 19, 23].

Despite all the differences between the populations used
for the development of algorithms, a consistent high AUC
was shown by several groups, not just by one dedicated
group in a selected population. Therefore, AIeECG has the
potential to become a widespread and useful technique in
clinical practice in the future.

Clinical characteristics

Six of the included studies [12-14, 17, 18, 25] performed
sub-analyses according to comorbidity, age, and sex
(Table 2). Al diagnostic performance seemed lower in
populations with comorbidity (Table 2), but data lacked
power for a formal statistical analysis. Populations with-
out comorbidities were associated with a higher AUC
in two out of three studies [12, 17]. Overall gender did
not affect the algorithms, although a single study found
that the algorithm was significantly better in men [17].
The algorithms seemed to perform better in the younger

populations, maybe due to less comorbidity, but this was
only reported significant in two of the five studies [17,
18]. It is a major limitation that the impact of ethnicity on
the performance of the algorithms was not investigated,
because several studies have shown that different ethnici-
ties display different ECG characteristics. Therefore, eth-
nicity specific ECG reference ranges/cut-offs are pertinent
to investigate [28-30].

It is a strength regarding screening that the performance
of AIeECG was not strongly associated with gender and age
as the overall performance was strong in these subgroups.
Only few studies investigated this, therefore it needs to be
further investigated in future studies.

Potential forimprovement

In clinical practice, more useful information beyond the
ECQG is available for the clinician and for an Al algorithm.
Therefore, the diagnostic value of AIeECG combined with
demographics and clinical information should be further
tested.

Very few studies compared their AIeECG algorithm
with the performance of BNP or NT-proBNP measure-
ments as a screening method for HF [12, 13, 16, 22, 26].
Two studies found that their AIeECG algorithm outper-
formed natriuretic peptide measurement when identifying
reduced LVEF [12, 22]. The addition of NT-proBNP to
the AIeECG marginally improved detection of LVSD [13,
26] and resulted in a higher specificity and fewer false-
positive screen cases, without increasing the number of
false-negative screenings [16].

We cannot yet conclude that AIeECG outperforms BNP
and NT-proBNP measurement as a screening method, but
it seems that AIeECG may be more stable across age and
gender than BNP [12, 18, 31], and a combination might
therefore be the optimal way of screening.

Detection vs. prediction

Besides detecting LVSD with a high diagnostic accuracy
some of algorithms also predicts future LVSD or HF events.

In three studies [12, 23, 25], patients with a false posi-
tive AIeECG at the time of screening had a significantly
increased risk of subsequently developing LVSD com-
pared to patients with a true negative AIeECG screening.
Another study found that patients with a false positive
AIeECG were more susceptible to major adverse cardio-
vascular events (HR 1.5) compared to patients with a true
negative AIeECG [24].

In one of the studies, the algorithm was able to pre-
dict newly emerging HF pathology, as well as aggravating
cardiac pathology by detecting subtle changes in a newly
recorded ECG compared to a previously recorded ECG [20].
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These findings support the notion that Al algorithms
detect subtle or subclinical ECG changes that are associ-
ated with risk of future LVSD. This notion was corroborated
in a study screening for HF with preserved ejection fraction
(HFpEF) where a significant proportion of false positives
remarkably developed HFpEF during follow-up [32]. The
AIeECG has the ability to predict a wide range of patholo-
gies, even simultaneously, such as HFpEF, right ventricular
dysfunction and more [20, 23, 24, 32, 33]. Hence, the gain
of AIeECG is most likely greater than we demonstrated in
this review.

Clinical implications of AleECG

With the emerging AIeECG technology, the idea of screen-
ing for LVSD is worth revisiting, especially in combina-
tion with BNP/NTproBNP and basic clinical information.
The health expenditures for patients diagnosed with HF are
expected to rise in the coming years [34]. Lifesaving treat-
ment to prevent the development of HF, hospitalization and
death are evident if early identification is possible [12].

Clinical implication in regard to early diagnosis of low EF
has been investigated in the recently published EAGLE trial
[1] which substantiates that the concept of screening in the
primary sector is viable. The study found that the use of an
AlIeECG algorithm increased the diagnosis of low EF in the
overall cohort (1.6% in the control arm versus 2.1% in the
intervention arm), suggesting a modest but significant gain
from using AIeECG. Importantly, the use of AIeECG was
not associated with an overall increased use of echocardiog-
raphy, but instead an increased use of echocardiography on
more relevant patients.

Notably, AIeECG had the highest value for primary care
physicians and the lowest value when applied in hospital
wards. These findings suggest that AleECG may be most
useful for clinicians who are not routinely interpreting
ECGs, and less useful in settings where echocardiograms
are performed routinely. A clear distinction does not exist as
Katsushika et al. [21] showed how AIeECG proved to help
even cardiologist with> 7 years’ experience.

ECG screening for LVSD is potentially feasible but cost-
effectiveness and clinical implication are yet to be fully
investigated [35]. So far, only two studies have investigated
cost-effectiveness of screening for LVSD [25, 27]. Under
most clinical scenarios, screening was cost-effective with
a cost of < $50,000 per QALY [27]. It was estimated that
numbers needed to screen to identify one case of LVSD
corresponds to 90.7 AIeECGs’ and 8.8 echocardiograms
when screening the total population. But it could be
reduced to 67.4 AIeECGs’ and 5.6 echocardiograms when
screening a “high risk” population [25]. Cost-effectiveness
increased with higher disease prevalence and better sen-
sitivity of the AIeECG method. Thus, cost-effectiveness
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can possibly be improved if screening is applied to sub-
jects with preexisting cardiovascular risk factors, abnormal
natriuretic peptide, diabetes mellitus, hypertension, and
ischemic heart disease [27].

Future use of AleECG

AIeECG algorithms will most likely be implemented in
ECG machines in a few years. A new study has even shown
that it can be built into a stethoscope to detect low EF during
cardiac auscultation [36], the possibilities are plenty. One
attribute of AIeECG is the high specificity which may guide
physicians to refer patients with abnormal AIeECG findings
and increase the likelihood of identifying the patients at the
highest risk.

In the future, multiple groups can and will be able to pro-
duce effective algorithms, but standardization is required to
compare effectiveness of algorithms. One solution could be
external validation of algorithms in a multinational common
dataset of paired ECG’s and outcome measures.

We anticipate that a breakthrough for these algorithms
will occur when they are combined with other risk mark-
ers, possibly natriuretic peptides, and tested prospectively
including management actions based on the screening
results. Success may be defined when a 15-20% reduction of
HF hospitalization or all-cause mortality is demonstrated in
comparison with standard of care. But less ambitious goals
such as demonstrating a reduction in the cost per identified
patient with LVSD are also valid as it leads to more rational
use of resources.

Strengths and limitations

The strengths of this literature study are the simple, well-
defined research questions and the clinically focused lit-
erature search, consisting of both Mesh terms and free-text
words. The study followed PRISMA guidelines for reporting
results, but some limitations of this work must be acknowl-
edged when considering the findings. We searched Pubmed
and Cochrane databases and only included peer-reviewed
studies of high quality to focus on clinical aspects rather than
technical differences between the algorithms. We focused
solely on LVSD and a 12-lead ECG which could have led
to exclusion of otherwise relevant studies that examined
AIeECG based on one or three lead electrocardiograms.
Furthermore, although it is a limitation that we did not use
a formal “risk-of-bias assessment tool,” we aimed to mini-
mize the risk of bias by using strict study selection criteria.

Due to few studies and lack of statistical power, we sum-
marized data instead of making formal statistical tests. Many
more studies and algorithms will without doubt evolve over
the next years, allowing for more accurate estimates of
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accuracy. We suspect such result will most likely lie within
the range reported here. Still, the main objective of our
review was to examine whether AIeECG works generically
and to point at strengths and possibilities for improvement.

Conclusion

This systematic review corroborates the arrival of a new
generic biomarker, AIeECG, to screen for LVSD. Overall,
the algorithms identified LVSD with a high diagnostic value
and predict LVSD in addition to natriuretic peptides and
echocardiograms. AIeECG has the potential to increase gen-
eral physicians’ proficiency to use ECG and choose to refer
the right patients for a diagnostic echocardiogram. Further
randomized implementation studies are needed, especially
in the primary sector, to show cost-effectiveness and clinical
significance, preferably in combination with other biomark-
ers such as the natriuretic peptides.
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