
BiRD: Race Detection in Sotware Binaries under Relaxed Memory

Models

RIDHI JAIN, Indraprastha Institute of Information Technology Delhi, India

RAHUL PURANDARE, Indraprastha Institute of Information Technology Delhi, India

SUBODH SHARMA, Indian Institute of Technology Delhi, India

Instruction reordering and interleavings in program execution under relaxed memory semantics result in non-intuitive
behaviors, making it diicult to provide assurances about program correctness. Studies have shown that up to 90% of the
concurrency bugs reported by state-of-the-art static analyzers are false alarms. As a result, iltering false alarms and detecting
real concurrency bugs is a challenging problem. Unsurprisingly, this problem has attracted the interest of the research
community over the past few decades. Nonetheless, many of the existing techniques rely on analyzing source code, rarely
consider the efects introduced by compilers, and assume a sequentially consistent memory model. In a practical setting,
however, developers often do not have access to the source code, and even commodity architectures such as x86 and ARM are
not sequentially consistent.

In this work, we present Bird, a prototype tool, to dynamically detect harmful data races in x86 binaries under relaxed
memory models, TSO and PSO. Bird employs source-DPOR to explore all distinct feasible interleavings for a multithreaded
application. Our evaluation of Bird on 42 publicly available benchmarks and its comparison with the state-of-the-art tools
indicate Bird’s potential in efectively detecting data races in software binaries.

CCS Concepts: · Software and its engineering→ Software veriication and validation.

Additional Key Words and Phrases: Relaxed memory models, TSO and PSO, Dynamic race detection, Software binaries

1 INTRODUCTION

Concurrent model of computation has gained popularity since the introduction of shared-memorymultiprocessors.
It can improve system performance by manifold. However, a glaring caveat to the above is that concurrency bugs
hamper developers’ productivity. According to a survey conducted at Microsoft, over 60% of the developers had
to deal with concurrency related bugs [29], which are often hard to reproduce.

Memory models weaker than sequentially consistent are often employed in practice to achieve higher perfor-
mance. However, as a downside, discovering bugs becomes only harder – weak (aka relaxed) memory models
allow many more program behaviors. In some models, such as release-acquire consistency, the behaviors cannot
even be explained by the intuitive operational semantics. As a matter of fact, most commodity architectures such
as x86, Power, and ARM subscribe to memory models weaker than sequential consistency.

Unlike sequentially consistent or strong memory models, weak memory models allow read and write instruc-
tions in a program (also referred to as loads and stores, respectively) to be reordered. The set of instructions that
are allowed to be reordered in a program execution depends on the strength of the memory model. For example,

Authors’ addresses: Ridhi Jain, Indraprastha Institute of Information Technology Delhi , , New Delhi, 110020, India, ridhij@iiitd.ac.in; Rahul
Purandare, Indraprastha Institute of Information Technology Delhi, , New Delhi, 110020, India, purandare@iiitd.ac.in; Subodh Sharma, Indian
Institute of Technology Delhi, New Delhi, India, svs@iitd.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1049-331X/2022/1-ART $15.00
https://doi.org/10.1145/3498538

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3498538

2 • Jain, et al.

under total store order (TSO), a write operation followed by a read operation in the same thread, on two diferent
memory locations that are not separated by explicit memory barrier, can be reordered, whereas, under partial
store order (PSO), in addition to TSO reorderings, a write operation followed by another write operation in the
same thread, on a distinct memory location that not ordered by explicit memory barrier, can also be reordered.
Clearly, PSO is weaker than TSO. There are even weaker memory models that allow more reorderings, but TSO
and PSO are widely implemented.

Concurrency bugs are oftentimes a by-product of the performance gains ofered by shared-memory multipro-
cessor programming when done without proper synchronization. Such bugs make the program behavior unpre-
dictable, making it imperative to report and ix them. Data races are the most prevalent amongst these concurrency
bugs. The problem of minimizing data race bugs while exploiting the capabilities of shared-memory multiproces-
sors has attracted the interest of the research community for over three decades [14, 16, 23, 61, 79, 88, 90, 93].

Prior research has proposed techniques to locate data races statically [18, 41, 42, 60, 80, 86] to achieve scalability.
However, in order to achieve scalability, static analyses often compromise precision by over-approximating their
intermediate results. As a consequence, many false positives are reported. Various lockset based approaches [24,
36, 74] have also been proposed to detect inconsistent usage of locks on the same shared variable by diferent
threads. However, they produce too many false alarms. These false alarms afect developers’ productivity. A
survey conducted at Google shows that a lower false positive rate encourages developers to be proactive – they
may even ix extra bugs [72].
Considering the importance of low false positive rates, dynamic analyses [4, 28, 62, 91] that leverage some

variant of dynamic partial order reduction (DPOR) to guarantee complete coverage for given inputs have been
proposed. They explore only representative interleavings for those inputs which form a subset of total interleavings,
thereby leading to substantial savings during the exploration. Several optimizations have been proposed to the
DPOR technique [3, 5, 96].

Recent approaches [4, 47, 62, 96] have been proposed to detect concurrency bugs in relaxed memory models,
but their analysis is limited to source code. It is worth observing that source codes may not always be available
for real-world applications for non-disclosure of intellectual property. Not only decompiling a binary is generally
illegal in such cases, but the decompiled code also cannot be guaranteed to work equivalent to the original code.
Even if the source code is available, it may contain calls to third-party library APIs for which the source code
may not be available. This phenomenon holds even for open-source software, making recompiling the software a
challenge, especially with the dynamic dependencies. For example, ChromeOS uses two stripped and obfuscated
third-party libraries that are not a part of the open-source Chromium project. Therefore, the authors of VTV [82]
had to manually replace the default failure function from these libraries with a white-list failure function for
their analysis and evaluation. Another interesting aspect to this problem is that compilers are not bug-free and
the proven property for the source code may not hold for the compiled code [78]. In spite of the fact that there
are scenarios in which analyzing binaries is the only alternative, a solution for detecting data races in software
binaries under relaxed memory models remains elusive.
Our work focuses on detecting harmful data races in software binaries in the context of relaxed memory

models, in particular, TSO and PSO. In general, data races are hard to detect due to the following reasons: a) the
actual error may occur much later in the program after a concurrency bug is detected, b) not all concurrency
bugs lead to an error, 76%-90% data races detected by state-of-the-art tools are harmless [43, 61], c) these bugs are
hard to reproduce as they might get activated in a particular interleaving, d) scheduling is mostly architecture-
dependent, for example, Intel x86/64 architecture supports TSO while IA-64 supports PSO as well, and e) source
code, particularly for third-party libraries, is not always available, and sometimes the binaries available are
devoid of the debug information. Analyzing software binaries is challenging for various reasons, including the
lack of type and symbol information. It requires variables to be tracked using their addresses, and detecting
synchronization operations is non-trivial. We describe challenges in detail in Section 3. Nevertheless, analyzing

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 3

libraries is extremely important to ensure the overall fault-free operation of the software application that depends
on them.

This paper presents Bird, a prototype tool that dynamically detects potentially harmful data races in relaxed
memory models. We classify harmful data races as those which lead to an assertion failure. For our evaluation,
we have categorized interleavings reaching assertion failures as buggy. We have built Bird using Intel PIN [54]
that can dynamically analyze and instrument a software binary.

We have tested Bird on 42 openly available benchmarks from litmus tests [10], SV-COMP [1], SCTBench [58],
DataRaceBenchmark [33], and DPthread [95]. We were able to uncover bugs that would not manifest under
sequentially consistent memory model. To the best of our knowledge, Bird is the irst extensible tool that can
detect data races in binaries under TSO and PSO.

The key contributions and articulations that this paper makes are:

(1) A prototype tool, Bird, which can detect real data race bugs in software binaries under relaxed memory
models (TSO and PSO). Bird also reproduces all feasible relaxed memory reorderings for TSO and PSO on
binaries by explicitly mimicking the cache lush operations and identifying lock and unlock regions, and

(2) Evaluation of Bird on widely accepted litmus tests for relaxed memory models and its comparison with
state-of-the-art tools, Nidhugg [4] and CDSChecker [62]. The paper also presents results of Bird’s evaluation
on standard pthread benchmarks and a case study to assess Bird’s potential to scale to real-world libraries.

The source code of Bird and the evaluation results along with the benchmarks are available at https://github.
com/pag-iiitd/BiRD and https://doi.org/10.5281/zenodo.5709789.

The rest of the paper is organized as follows. Section 2 provides motivating examples. In Section 3, we discuss
challenges inherent to binaries and dynamic analysis for locating concurrency bugs in TSO and PSO models. In
Sections 4 and 5, we describe the design and implementation of the tool. In Section 6, we present the details of
experiments performed along with the results. We review the related work in Section 8 and inally conclude our
work with future directions in Section 9.

2 BACKGROUND AND MOTIVATION

In this section, we lay the background of important terminologies and techniques used in this paper. We discuss
and compare the prior arts in the area of detecting data races. We also describe the relevant memory models for
this work along with the scheduling algorithms used to explore distinct program behaviors.

2.1 Data Races

A data race is a typical case of unintended non-determinism, which occurs when two or more processes concur-
rently access the same memory location, with at least one of the accesses being a write access [19]. Even though
this non-determinism is often desirable for overall improved performance it may introduce unexpected outcomes.

1 int a = b = 0;

2 void Thread1 (){

3 b=a; //r(a), w(b)

4 }

5 void Thread2 (){

6 a++; //w(a)

7 }

Listing 1. A data race example.

Listing 1 illustrates a data race example. An unsynchronized access
to shared variable a on lines 3 and 6 by methods Thread1 and Thread2

from threads t1 and t2, respectively, is the data race pointed in this
example. Due to the data race on a, b at line 3 can either read 0 or 1
from a depending on the execution trace. If the increment operation
on a at line 6 is performed before the assignment operation at line 3,
b reads 1 from a. b is assigned 0 otherwise.

2.2 Data race detection approaches

ACM Trans. Softw. Eng. Methodol.

https://github.com/pag-iiitd/BiRD
https://github.com/pag-iiitd/BiRD
https://doi.org/10.5281/zenodo.5709789

4 • Jain, et al.

Thread1

Thread2fork

join

R x

R x

R x

W x

Fig. 1. False positives detected by lockset-

based approaches.

2.2.1 Lockset-based race detection. Lockset-based approaches rely on
the inconsistent usage of locks for the detection of a data race. These
approaches rely on critical sections as their primary synchronization
model to validate if the program adheres to a speciic programming
policy, called locking-discipline. The locking-discipline ensures that locks
protect the access to a shared memory address by diferent threads.
Lockset-based data race detection is sound. Nonetheless, this technique
considers only locks as order-preserving events and ignores that two
accesses to a shared memory location by diferent threads that are not
synchronized by locks may be ordered by other means of synchroniza-
tion. Therefore, it may detect many false positives and spurious data
races.
Figure 1 illustrates a data race between events R2x of Thread1 and

W1x of Thread2. However, since lockset-based approaches consider only
locks as synchronization events, they also report events R1x and R3x

to be racing withW1x , even though these events are ordered via thread
fork and join events.

2.2.2 Happens-Before. Happens-before relation was originally intro-
duced by Lamport [51] in the context of distributed systems. Since then,
it has been extended to determine the dependencies amongst events
in a program. For example, all instructions in the same thread are related by a total order under sequential
consistency. Similarly, two synchronization events such as lock-unlock, on the same variable in diferent threads,
are also ordered by a happens-before edge. It is denoted by the→ symbol. Happens-before relation is transitive
by nature such that, if A→ B and B → C , then A→ C .

Thread1 Thread2

1. Wy
2. Lock l
3. Unlock l

4. Lock l
5. Unlock l
6. Ry

Fig. 2. Missed data race by the happens-

before relation.

Happens-before relation captures all synchronization events and not
just the lock-unlock events, and therefore, does not capture the spurious
data races. For example, in Figure 1, the happens-before relation does
not report R1x-W1x and R3x-W1x as racing pairs. The synchronization
edges captured by the happens-before relation often over approximate
the real ordering edges, thus, misses some data races. For brevity and
uniformity, we refer to happens-before as HB.

2.2.3 Causally Precedes. Causally-precedes generalizes happens-
before relation such that it observes more data races without com-
promising the soundness. Happens-before relation often adds unnecessary dependency edges between two
events that may occur simultaneously, thus missing some races. Whereas causally-precedes edges are a subset of
happens-before edges, and therefore, may detect more data races. A causally-precedes edge between two locked
regions is only recorded if they contain conlicting events. Consider the example in Figure 2, the happens-before
relation misses the race on eventsWy in Thread1 and Ry in Thread2 as it captures an ordering edge between
Unlock l in Thread1 and Lock l in Thread2. Nonetheless, since the two locked regions do not contain conlicting
events, the causally-precedes relation does not record an ordering edge between them, and therefore, correctly
identifying the data race. Figure 3 shows a causally-precedes edge between two locked regions containing
conlicting events and missing a data race. We refer to causally-precedes as CP in the rest of the paper.

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 5

Thread1 Thread2

1. Wy
2. Lock l
3. Wx
4. Unlock l

5. Lock l
6. Wx
7. Unlock l
8. Ry

Fig. 3. Missed data race by the causally-

precedes relation.

2.2.4 Maximal Causality Reduction (MCR). The aforementioned
techniques consider locks as either sole or one of the deciding en-
tities to restrict the ordering of two events. While that holds true
for certain cases, falsely capturing a dependency edge may lead
to missed data races. For example, even though causally-precedes
captures more races than the happens-before relation, it may still
miss data races. Maximal causality reduction (MCR) [37] optimally
solves this problem correctly encoding the minimal and required
set of constraints on the ordering of the events. For reference, see
Figure 3. The causally-precedes relation fails to capture the data
race betweenWy in Thread1 and Ry in Thread2 as it incorrectly
captures a dependency edge between Unlock l in Thread1 and Lock

l in Thread2; whereas the only constraints captured by MCR for the
same example are (O4 < O5)

∨
(O5 < O4). O4 and O5 represent the

events at line numbers 4 and 5.

2.3 Thread Schedules and Partial Order Reduction (POR)

Concurrency bugs, including data races, do not always result in an
unexpected output. Most of the detected data races are false alarms
and may never lead to failure. On the other hand, harmful data
races may result in a failure in a speciic sequence of events. There-
fore, most of the concurrency bugs go undetected during testing.
Although these bugs are hard to reproduce during testing, they might get invoked in the production environment.

The state space for a program tends to grow exponentially in the number of threads and shared variables [84],
resulting in a large number of interleavings. These interleavings are distinguished based on the order of execution
of the events; therefore, many interleavings are redundant. The redundant interleavings are not the same sequences
of events but the ones that produce the same result. POR techniques have been extensively used in the past to
verify concurrent programs [3, 4, 6, 96]. Such techniques are generally employed to reduce the space and time
required to verify concurrent asynchronous systems based on commutativity between concurrently executed
transitions [66]. The partial order semantics introduces constraints about commuting the order of events [66, 67],
referred to as partial order. POR exploits the fact that reordering two non-conlicting (independent events) from
two diferent threads do not produce a diferent output and hence, prunes redundant interleavings. POR techniques
also ensure soundness and complete coverage over a ixed set of inputs for the checked property by exploring at
least one representative interleaving from each equivalence class.

2.3.1 Source-DPOR. Source-DPOR [6] is a special case of DPOR developed by Abdulla et al. that explores all
distinct program behaviors in an almost minimal set of interleavings. The traditional DPOR uses persistent sets
to store the backtrack information of a state. The persistent set is a selected subset of transitions enabled from a
state such that the non-selected set does not interfere with the execution of selected ones [27]. Source-DPOR
replaces persistent sets with source-sets. Similar to the persistent sets, source-sets also guarantee that at least one
interleaving from each equivalence class (aka Mazurkiewicz trace [56]) is explored. Source-sets are often smaller
than persistent sets, and therefore, explore lesser or equal interleavings compared to the persistent sets. Source-sets
satisfy the necessary and suicient condition for the correctness of any DPOR algorithm while assuring complete
coverage.

ACM Trans. Softw. Eng. Methodol.

6 • Jain, et al.

2.4 Weak Memory Models

Memory consistency models deine the guarantees governing the ordering and visibility of accesses to shared
memory [83]. As relaxed memory models allow reordering of load and store instructions, new bugs may originate,
not possible in a sequentially consistent memory model. This subsection discusses the weak memory models
later referred in this paper.

1 int a = b = x = y = 0;

2 void Thread1 (){

3 x = 1; //w(x)

4 p = y; //r(y)

5 if(p == 0)

6 a = 1;

7 }

8 void Thread2 (){

9 y = 1; //w(y)

10 q = x; //r(x)

11 if(q == 0)

12 b = 1;

13 } // assert(a==0||b==0)

Listing 2. TSO Example.

2.4.1 Total Store Order (TSO). Under the TSO memory consistency
model, each processor maintains its own store bufer queue. A write
performed by a processor is enqueued to its store bufer before the
updates are written to the memory. These pending updates are only
relected in the memory when the store bufer is lushed. Even with
the pending writes in the store bufer, a load executes without waiting.
As a result, the load instruction may appear to execute before the store
instruction. The order is preserved if the store and the load instructions
access the same memory location. TSO guarantees that the order of
execution of the store-store, load-store and load-load instructions is
equivalent to the sequence in which the processor issued them.
Listing 2 taken from litmus tests [10], illustrates a TSO example in

which two methods Thread1 and Thread2 are executed by threads T1
and T2, respectively. The assertion at the end will always hold for a
sequentially consistent memory model. It will only fail when after the

completion of threads T1 and T2 both a and b will hold the value 1. This can only happen when p at line 4 reads
value 0 from y, and q at line 10 reads value 0 from x . To observe these values, read(x) in Thread2 is executed
before write(x) in Thread1 and read(y) in Thread1 is executed before write(y) in Thread2. Such interleaving is
unattainable in a sequentially consistent memory model as it restricts intra-thread reordering. The example has
only three observable behaviors under sequential consistency, where the possible values for a and b can either
be (0, 0), (0, 1) or (1, 0), respectively. However, the assertion may fail in TSO. Under the relaxed semantics of
TSO, write(x) can execute after read(y) in Thread1 and write(y) can execute after read(x) in Thread2, which may
produce an added behavior, where both a and b are 1 that can reach the assertion failure.

2.4.2 Partial Store Order (PSO). PSO provides fewer guarantees than TSO, and therefore, is weaker than TSO.
Under PSO, the store instructions can be reordered such that the sequence in which two store instructions access
two diferent shared memory locations may difer from the order of their issuance from the processor. PSO
restricts load-store and load-load reorderings.

1 int x = y = 0;

2 void Thread1 (){

3 x = 2; //w(x)

4 y = 1; //w(y)

5 }

6 void Thread2 (){

7 y = 2; //w(y)

8 x = 1; //w(x)

9 }// assert(x==1||y==1)

Listing 3. PSO Example.

Consider the PSO example in Listing 3 from litmus tests [10] in a
sequentially consistent memory model. Under no interleaving, both x

andy can have value 2 and the assertion will always hold, since the only
possible values for x and y are either (1, 1), (1, 2), or (2, 1), respectively,
at the end of the program. The assertion can only fail when write(y)

is executed before write(x) in Thread1 and write(x) is executed before
write(y) in Thread2. Such interleaving can neither be produced under a
sequentially consistent memory model nor under TSO as they preserve
store-store order. But PSO allows store-store reordering, such that, a
store operation followed by another store operation on two diferent
memory locations in a same thread can be reordered. For the given
example, under PSO, write(x) in Thread1 can be held and lushed in the

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 7

memory after write(y) has executed, and write(y) in Thread2 can be held and written in the memory after write(x)
has executed which can result in assertion failure where both x and y hold value 2.

2.4.3 Weak memory model in C/C++11 memory model. The weak memory behaviors introduced by the C11
standard have been a subject of intense study in the past few years [7, 15, 49, 55, 76, 81]. The semantics are largely
axiomatic and the correctness is described via acyclicity axioms. For instance, a subset of C11 with the exclusion
of out-of-thin-air behaviors will require the acyclicity of hb ∪ r f ∪ sc , where hb stands for happens-before, r f
refers to reads-from, and sc stands for sequential consistency. The central idea in many of the above-mentioned
techniques is to compute r f andmo (modiication order) relations precisely. This can be a challenge sincemo and
r f may not be directly observable from program executions. Recently proposed techniques such as in [52, 55]
are some of the few contributions that perform data race detection in C11 programs with low-level atomic
operations. These techniques, like many others for simpler and stricter memory models, rely on per-thread
happens-before clock vectors and thread schedulers based on record-replay. However, as testing techniques, they
trade-of coverage for scalability. Notwithstanding the design choices, C11 memory model is complex and weaker
than hardware memory models such as TSO and PSO. The set of behaviors in a C11 program, as a result, could
be signiicantly larger even for small programs with modest coniguration such as number of threads, number of
shared memory variables, size of the iteration space of loops, etc.

2.5 Sotware Binary Analysis

Software binaries (aka binaries) are executable iles that contain machine code that computers can understand.
Binaries can be analyzed statically or dynamically, like the source code. However, analyzing a binary can be much
more challenging than analyzing a source code as it might not have symbol or type information. In addition,
binaries do not provide a high-level abstraction, and therefore, are complex to understand. Further, since binaries
are not supposed to be modiied, even simple instrumentations can crash the code [12]. Despite the challenges
in analyzing a binary, software binary analysis has been used by several researchers for various solutions such
as malware detection [32, 68, 73], extracting semantics of the code [11], and code reconstruction [89]. The
execution of a binary can also be modiied and controlled by inserting instructions at particular program points.
This technique is referred to as software binary instrumentation. In this work, we use Intel PIN to analyze and
instrument the binaries dynamically.

3 CHALLENGES

This section lists the challenges pertaining to the detection of data races in software binaries and in the relaxed
memory models, which demand solutions speciic to this problem. The low-level details along with our proposed
solutions are discussed in Sections 4 and 5. The challenges can be conveniently grouped into two categories:

3.1 Challenges inherent to binary analysis

(C1) Detection of locks: Detecting locks in binaries is non-trivial since there is no unique way of identifying
them. In a binary, the locking mechanism may be implemented using POSIX thread locks or an atomic
cmpxchд instruction.

(C2) Mapping thread create to join: Mapping a thread create to its corresponding join in binaries is a challenge
since the associated thread IDs cannot be directly tracked. Consequently, it requires an alternate solution
to map the thread create-join calls.

(C3) Missing thread-joins: A pthread_create call may not be always accompanied by corresponding pthread_join

call. Such cases may lead to an execution trace where the main thread inishes before the forked thread.

ACM Trans. Softw. Eng. Methodol.

8 • Jain, et al.

3.2 Challenges in detecting data races

(C4) Reproducing unique interleavings: Concurrency bugs are hard to detect as they get triggered in a speciic
sequence of events. While exploring all possible execution orders of a program, many of them may be
redundant. The redundant interleavings are not the same sequences of instructions but the ones that
produce the same result. Hence, it is desirable to reproduce all unique interleavings in minimal runs.

(C5) Building dependency relation dynamically: While building a dependency relation dynamically, the events
may appear in an order diferent from the source code. For example, creation of two threads, t1 and t2,
followed by joining them may execute in a way where t2 starts executing after t1 has inished. Incorrectly
capturing this thread join to create edge may miss data races between threads t1 and t2. While ignoring this
edge may add false data races when thread t1 is created and joined before thread t2 is created.

(C6) Scalability: The number of interleavings to be explored can grow exponentially with the number of threads
and shared variables. Therefore, scaling such tools, particularly in the presence of a large number of shared
variables, is always a challenge.

3.3 Challenges inherent to relaxed memory models

(C7) Reordering loads and stores: Bird supports relaxed memory models TSO and PSO, which allow intra-thread
reordering of load and store operations. Since the memory models are machine-dependent, such reorderings
cannot be reproduced with thread controlling function calls such as wait-post or sleep.

(C8) Insuiciency of interleaving semantics: Some of the weaker memory models, such as in C11, may not even
be modeled via interleaving semantics. For such memory models, the execution semantics require a change.
The work in [45] ofers a promising direction by modeling executions as execution graphs as opposed to a
linearized sequence of events. This challenge is left for future work.

4 ARCHITECTURE

In this section, we present the overall structure and design of Bird, as depicted in Figure 4. Bird has two phases
that work in synchronization to detect harmful data races.

4.1 Detecting Races and Reorderable Instructions

In this phase, we collect all potential data races and reorderable instructions in a single pass with the help of the
components handling the following functionalities:

Record memory access events. Bird prunes variables local to a thread and collects events such as reads and
writes on only shared memory locations, in phase I.

Record synchronization events. Bird records the synchronization events such as lock-unlock, thread create-join

and memory barriers in order to capture the dependency relation across diferent shared memory access events.

Detecting locks. In a binary using POSIX thread locks to lock and unlock a region, direct function calls
pthread_mutex_lock and pthread_mutex_unlock may be observed; alternatively, it may use an atomic cmpxchд

instruction for a low-level implementation of a spinlock. Moreover, it does not directly map the lock to unlock
instructions from source code to binary. For a single locked region, there can be multiple lock instructions in
the binary. In our analysis, we capture pthread locks as well as the low-level implementation of spinlocks, as
explained in Algorithm 1 in Section 5.

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 9

Binary File

Record Memory
Access Events

Record
Synchronization

Events Maximal Causality
Reduction

Potenti)l R)ces)nd
Reorder)ble Events

Program
Execution Trace

Buggy Interleavings
Interle)ving Scheduler

Source-DPOR

Fig. 4. An overview of Bird.

Capturing the thread create-join mapping. To record thread create-join calls in order of their appearance in the
source code, routine calls pthread_create and pthread_join can be tracked such that the current thread is created
by an application thread and not by PIN to analyze and instrument the client program. Collecting these routine
calls does not suice as we need thread IDs to map a thread join to its corresponding create. However, the thread
ID is not passed as an argument to these pthread routine calls. We discuss the lower-level challenges in mapping
a thread create to its corresponding join and our proposed solution for it in 5.1.
In addition, at times, the threads created are not joined using explicit pthread_join calls in the program.

Consequently, there may exist a trace for such programs where the main thread inishes, thus, forcing the forked
threads to also terminate without them (possibly) having completed their executions. Since dynamic approaches
detect the data races based on the trace explored, they may miss data races under such circumstances. We discuss
our approach for handling such cases in 5.1.

Maximal causality reduction. Bird employs maximal causality reduction (MCR) for TSO and PSO [37] to identify
the racing and reorderable pairs of instructions. It relies on must happens-before (MHB) [35] and lock consistency
requirements to capture the control dependency. MHB deines ordering between events such as a thread must
begin after it is forked from another thread and the begin instruction must be the irst instruction of the forked
thread, and a thread must end (where end is the last instruction in the thread) before it is joined. The lock
consistency assures that two sequences of events protected by the same lock are not interleaved. Unlike CP and
HB that are conservative in their ordering edge calculation,MCR uses the control-low information, and therefore,
achieves a higher race detection capability. MCR for TSO and PSO relaxes the MHB edge for events that satisfy
the TSO and PSO reordering semantics enabling it to explore more interleavings and capture more data races.
The MHB semantics in MCR correctly captures the thread create-join ordering as discussed in Section 5. The
control dependency information generated by MCR for TSO and PSO dynamically with a ixed set of inputs is
used by the scheduler to explore unique interleavings.

Detecting potential data races. Racing instructions can be captured as two events in two diferent threads on
the same shared variable x such that there is no causal order between them, and at least one of them is writing to
x . Bird iterates over all events of an execution trace of the program to record the pairs of racing instructions. If it

ACM Trans. Softw. Eng. Methodol.

10 • Jain, et al.

inds a conlicting event that can produce another unique interleaving, it adds the event to the backtrack [57] of
that state. Backtrack for a state stores a set of enabled transitions that are to be explored from that speciic program
point. The process of reverting the execution from a state by selecting an enabled transition is backtracking.

Detecting reorderable instructions. Bird targets TSO and PSO reorderable instructions that are located close to
each other. We use a window size of up to four instructions to record these reorderable instructions.

4.2 Relaxed Memory Scheduler

In phase II, we explore alternate interleavings using a source-DPOR scheduler for relaxed memory. It explores a
subset of interleavings with complete coverage.
Detecting the racing instructions is not suicient, as not all the data races are necessarily data race bugs.

According to studies, only 10% of data races detected by state-of-the-art tools are harmful [61]. These bugs
are triggered in a speciic interleaving with a set of preconditions satisied and remain inert in others. Only
identifying the racing instructions does not suice. Moreover, even the triggered data race bug may result in a
crash way later in a program after the race was detected. Therefore, all unique interleavings must be replayed in
order to capture the harmful data races and ilter the benign races. However, reproducing all interleavings can be
exhaustive and hence can be an expensive process. Further, it may be possible that a signiicant number of these
interleavings is redundant, thus, it is desirable to explore all unique interleavings in minimal runs. Therefore, we
adopt a relaxed source-DPOR [4] to optimize the number of runs, but there remains scope for optimizations as
discussed in Section 9. We leave more advanced optimizations as future work. Nevertheless, Bird can be extended
by its users to incorporate their customized optimization techniques. We use the information about racing and
reorderable pairs generated in phase I to reproduce the interleavings. The scheduler smartly eliminates redundant
interleavings and minimizes the number of runs to optimize the process.

We allow the scheduler to freely execute the program for the irst time with a ixed set of inputs to record the
reorderable and racing instructions. Every read or write event recorded is a state, and at every state, we record
the enabled threads that need to be explored from that point in backtrack of the state with the set of threads that
provably need not be explored in the sleep-set of the state. Initially, all threads are enabled. The scheduler picks
one thread from the enabled set and executes its active state. Since all events in a thread execute sequentially,
unless in a relaxed memory model, the active state of a thread is the next unexecuted event of the thread.
On executing every state, it checks if the current instruction races with any of the previously executed

instructions. If found so, it adds the current instruction and the enabled thread to the backtrack set of the racing
instruction executed before. Each active entry in the backtrack set is explored in a diferent run of the binary. A
thread that has explored all interleavings or will not be executed soon is appended to the sleep-set [30] of that
state. A sleep-set is a set of transitions associated with each state during the search. A transition enabled in the
sleep-set of a state will not be explored from that state.

Bird is developed and evaluated on an Intel x86/64 TSO machine that can hold a write operation on a shared
variable to be updated after a read operation in the same thread on a diferent memory location. Nevertheless,
to deterministically explore all interleavings holding stores and lushing later needs to be controlled. We use
PIN’s native API call PIN_SafeCopy to implement an intra-thread scheduler, which reorders the read and write
operations in the thread. PIN_SafeCopy allows copying a ixed number of bytes from source to destination. We
use it to replicate a cache lush mechanism where a write to a memory location is not relected until the value is
lushed in the memory. We describe the details of it in Section 5.

5 IMPLEMENTATION

In this section, we explain the design and implementation details of Bird and how it addresses the challenges
mentioned in Section 3.

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 11

1 <spinLock >:

2 push %ebp

3 mov %esp ,%ebp

4 mov $0x1 ,%edx

5 <spin >:

6 mov [lock_var],%eax #fetch the value of lock_var

7 test %eax ,%eax

8 jne c4 <spin > #jump if eax is non Zero

9 lock cmpxchg %edx ,[lock_var] #check if still locked

10 test %eax ,%eax

11 jne c4 <spin >

12 pop %ebp

13 ret

14 <spinUnlock >:

15 push %ebp

16 mov %esp ,%ebp

17 mov $0x0 ,%eax

18 xchg %eax ,[lock_var] #lock released

19 pop %ebp

20 ret

Listing 4. Implementation of spinlock and unlock in x86 assembly.

As discussed in Section 4, we carry out the harmful race detection in two phases. In phase I, we record the
execution trace along with the information required to schedule these instructions. While in phase II, we exploit
the information collected in the irst phase to generate alternate schedules. Both phases work in sync to update
the scheduling information and to explore a new interleaving. The two phases are described in the following
subsections:

5.1 Detecting Racing and Reorderable Events

In this phase, we collect the execution trace of a sequence of events and the scheduling information. Each event is
represented by its thread ID, index of the instruction in the thread, index of the operand in the instruction on which
the event is performed and type of access on the operand such as read or write. Since we have a pre-compiled
binary, we do not have to worry about the compile-time reordering. A total order relates all instructions in a
thread, and the index of an instruction in the thread remains unchanged irrespective of the number of runs for
the same input values. The execution trace that is passed to the scheduler consists of a series of read and write
events on shared memory locations with the backtrack and sleep-set information. We perform the following
analysis to generate this information:

Filter shared addresses. Since all local variables are stored on stackwe use PIN’s native API calls INS_IsStackRead()
and INS_IsStackWrite() to discard variables on stack. Out of these, the shared variables are retrieved; we only
store memory addresses written to by at least one thread.

Recording events. The read and write events are recorded in the order of their occurrence. We adopt MCR for

TSO and PSO relation to register the order between these events. We identify the locked regions by keeping track
of a lock operation followed by an unlock operation on the same lock variable in the same thread. This handles

ACM Trans. Softw. Eng. Methodol.

12 • Jain, et al.

Algorithm 1: Detecting spinlock.

1 locked ← f alse

2 if INS_IsAtomicUpdate (ins) then ▷ If ins updates memory atomically
3 for 1 ≤ i ≤ num_operands do

4 if opi is written then

5 if opi = eax then

6 val_eax ← eax$valbef _write ▷ Get eax register’s value before it is written

7 else if opi ∈mem then

8 val_be f ←mem$valbef _write ▷ Get memory operand’s value before it is written

9 val_af t ←mem$valaf t_write ▷ Get memory operand’s value after it is written

10 if val_eax = 0 ∧ val_be f = 0 then
11 if val_af t ! = 0 then
12 locked ← true

13 allLocks .push(mem) ▷ Append memory operand to the lock variables’ list

Algorithm 2: Detecting unlock.

1 unlocked ← f alse

2 f ound ← f alse

3 if INS_IsAtomicUpdate (ins) then ▷ If ins updates memory atomically
4 for 1 ≤ i ≤ num_operands do

5 if opi is written then

6 if opi ∈mem then

7 if mem ∈ allLocks then ▷ If the memory operand is in the lock variables’ list
8 f ound ← true

9 val_be f ←mem$valbef _write ▷ Get locked variable’s value before it was written

10 val_af t ←mem$valaf t_write ▷ Get locked variable’s value after it was written

11 if val_be f ! = 0 then
12 if val_af t = 0 ∧ f ound then ▷ Verify if the lock was successfully held
13 unlocked ← true

the lock consistency requirements for an execution. Since the locked region might not always appear wrapped in
the pthread locks, we also track the atomic update instructions.
For example, Listing 4 implements a spinlock in x86 assembly. Line 4 sets the value to be assigned to lock

variable, lock_var, if the lock is obtained, in edx. Line 8 sends the control back to line 5 if the lock variable is
non-zero. Otherwise, we may obtain the lock. Next, line 9 atomically compares the value of lock_var with eax

and if the lock_var is still zero, value stored in edx is moved to lock_var and lock is obtained, else, eax is set to 1
and the zero lag is set to 0 transferring control back to line 5. For releasing the lock, the lock_var is reset to 0.
Algorithms 1 and 2 demonstrate our technique to detect the atomic lock and unlock, respectively, in an x86

binary. We analyze an instruction only if it is an atomic update. An instruction may have multiple operands
that are read or written. Bird iterates over all operands in the instructions and checks if one of the operands

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 13

End
(Last instruction)

pthread_create pthread_join

Begin
(First instruction)

Parent hread

Child hread

pthread_create_CallBefore pthread_join_CallBefore

ThreadFinishThreadStart

Fig. 5. Chronology of thread create-join events with the instrumentation.

written is the eax register and the other is a memory address, to verify if the lock was successfully held. We
further monitor their values to ensure if the lock was obtained. The lock is only held if before the execution of the
instruction, both eax as well as the lock variable, mem, has value 0 and after execution mem contains a non-zero
value. After the lock is held, we add the lock variable’s address to allLocks to correctly identify the unlock events.
We record an instruction as a successful unlock operation if the memory operand it is writing to is present in
allLocks, previously had a non-zero value , and is reset to zero. Bird ofers a modular implementation and could
be extended with lock/unlock detection algorithms for architectures diferent than x86.

Analysis of Algorithms 1 and 2. Bird ignores all but atomic update instructions for recording the lock and
unlock events. The number of atomic update instructions is generally negligible compared to the execution trace.
Nevertheless, under a worst-case, all instructions in an execution trace may be of interest, and hence, the time
complexity for Algorithms 1 and 2 is O (n). The algorithms loop over the number of operands. An atomic update
instruction can have up to three operands, thus, not afecting the time complexity.

These algorithms were successfully able to capture all spinlocks and their corresponding unlocks linear time. n
here is the total number of instructions in the execution trace.

Bird also maintains the thread create-join information. Collecting the thread create-join details associated with
a thread ID poses several challenges, as briely discussed in 4.1. It is diicult to determine the ID of the created
or joined thread as pthread_t object is passed to these routine calls, and none of the passed arguments can be
resolved to thread ID. Although PIN provides thread start and inish instrumentation callbacks that record the
thread IDs, pthread_create routine call is encountered before the thread start callback API, and pthread_join is
observed after the thread inish callback API. Therefore, recording the thread ID where the routine call was made
always returns the current thread’s ID, which is the parent thread, and in most cases, the main thread.
The analysis of routines is done before the API is actually called. Hence, the pthread_t object is not assigned

the value while we analyze the function, which makes it hard to map the thread create and join even if we capture
the arguments passed to the pthread_create and pthread_join calls. Additionally, in case of two threads t1 and t2,
such that t1 created and joined followed by t2 created and joined, t1 and t2 might have the same pthread_t object
address which may even complicate mapping by address.
Figure 5 illustrates the thread create-join events in order of their appearance with the instrumentations

injected. The grey boxes represent the events in the application thread, whereas the blue ones correspond to
the injected instrumentations. The blue arrows indicate the program points where the instrumentation is added.

ACM Trans. Softw. Eng. Methodol.

14 • Jain, et al.

Algorithm 3:Mapping thread create to corresponding join.
Input: start_info_queue← {}
Input: thread_info_queue← {}

1 Function Trace (trace) ▷ The main instrumentation routine
2 if r tn = pthread_create then
3 pthread_create_CallBef ore (r tn$arд3) ▷ Instrument before pthread_create API call

4 r tn = TRACE_Rtn (trace) ▷ get routine of the trace

5 if r tn = pthread_join then
6 pthread_join_CallBef ore (r tn$arд1) ▷ Instrument before pthread_join API call

7 imд = дet Imaдe (trace) ▷ get Image of the trace

8 if imд ∈ sharedLibrary ∧ imд < l ibOf Interest then
9 r eturn

10 foreach Instruction ins ∈ trace do
11 Increment InsBef ore (ins)

12 Function pthread_create_CallBefore (init_addr) ▷ Analysis routine
13 t ld ← threadLocalData (threadid)

14 star t_inf o$addr ← init_addr
15 star t_inf o$count ← t ld$insCount ▷ Get parentś instruction index
16 star t_inf o_queue .add (star t_inf o)

17 Function pthread_join_CallBefore (obj_addr) ▷ Analysis routine
18 t ld ← threadLocalData (threadid)

19 for thread_inf o ∈ thread_inf o_queue do
20 if thread_inf o$r eд_addr = ob j_addr ∧ thread_inf o$end = 0 then
21 thread_inf o$end ← t ld$insCount ▷ Get parentínstruction index

22 Function IncrementInsBefore (ins) ▷ Analysis routine
23 threadid ← дetT ID (ins)

24 t ld ← threadLocalData (threadid)

25 t ld$insCount ← t ld$insCount + 1
26 if t ld$insCount = 1 then
27 for star t_inf o ∈ star t_inf o_queue do
28 if star t_inf o = ins_addr then
29 star t_inf o$t id = threadid
30 for thread_inf o ∈ thread_inf o_queue do
31 if thread_inf o$t id = star t_inf o$t id then
32 thread_inf o$init_addr = star t_inf o$star t_addr
33 thread_inf o$star t_count = star t_inf o$star t_count
34 star t_inf o_queue .r emove (star t_inf o)
35 break

36 break

37 Function ThreadStart (threadid, context) ▷ Callback routine
38 thread_inf o$t id ← threadid

39 thread_inf o$r eд_addr ← context$rbx
40 thread_inf o_queue .add (thread_inf o)

Algorithm 3 describes our solution to map the pthread_create call to its corresponding pthread_join call using these
instrumentations. For brevity, the algorithm focuses only on instructions and routines of interest for capturing the
thread create-join speciics. We initialize two empty queues, start_info_queue and thread_info_queue for storing
these details. Bird instruments analysis routine calls pthread_create_CallBefore and pthread_join_CallBefore before
API calls pthread_create and pthread_join respectively, in the instrumentation routine Trace deined at line 1. In
the same routine, it instruments another analysis routine IncrementInsBefore before every instruction in a trace
that does not belong to a shared library excluding any library of interest. Bird allows selective iltering of library
instructions. A routine call pthread_create is observed before a thread is created, therefore, the call is devoid of

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 15

pthread_t object information. Therefore, in the analysis routine pthread_create_CallBefore, we record the initial
address of the created thread, passed as the third argument to the pthread_create routine. The initial address is
then pushed to the the start_info_queue along with the instruction count of the parent thread.
The ThreadStart callback routine is observed after the pthread_create routine and before the execution of

the irst instruction of that thread. The rbx register in the context passed to this routine contains the pthread_t
object’s address, which connects to the pthread_join routine call. We collect the ID of the thread started and
the value contained in the rbx register in this routine, and append it to the thread_info_queue. After the thread
has started, analysis routine IncrementInsBefore is called before every instruction of that thread. However,
only the irst instruction of a thread is required to associate the pthread_create routine call to its thread create
information. The ID of the thread created by pthread_create routine call can be extracted by matching the init_addr
stored in start_info_queue with the initial instruction’s address. The thread ID is then used to copy details from
start_info_queue to thread_info_queue before removing the entry from start_info_queue. We require two separate
queues to collect these details because otherwise, a single queue would have multiple entries corresponding to
the same thread. Finally, we look for rbx register’s address in thread_info_queue that matches pthread_t object’s
address that is passed as an argument to pthread_join_CallBefore.

If found, we update the thread end with the parent thread’s current instruction count. We update the end value
only if it is zero, which resolves the cases when two threads have the same object address.
A pthread_create call may not always be accompanied by a subsequent pthread_join call leading to missing

of data races as explained in Section 3. To handle such cases, Bird waits for all forked threads to successfully
complete before inishing the main thread. We place a check before the last routine called every time before
terminating the program, _ini, to count the number of active threads other than the main thread. If one or more
threads is active, the main thread is put to wait. The counter is rechecked after every thread inishes to prevent
the main thread from waiting ininitely. We update the end instruction to the last instruction of the parent thread.
Since the instructions that can be reordered in a thread do not follow a strict order, memory fences imply this
order. Two instructions separated by a memory barrier cannot be reordered.

Analysis of Algorithm 3. In order to map thread creates to their corresponding joins, Bird only analyzes pthread
create and join instructions. The number of thread create instructions in an application is equal to the number of
threads forked, whereas, the number of join instructions can be up to the number of threads created. The number
of threads created is often much lesser than the execution trace length. Although the algorithm iterates over data
structures start_info_queue and thread_info_queue, their sizes are constrained to the number of threads in the
target application, and thus, does not add much overhead. However, in a worst-case scenario all instructions in
an execution trace may correspond to either a thread create or a join event making the worst-case complexity as
O (n2) where n is the total number of instructions in the execution trace.

Generating reorderable pairs of events. On the iltered addresses of interest, we generate the MCR for TSO

and PSO to capture the racing and reorderable instructions. Events such as lock-unlock, thread create-join, and
memory barriers are treated as synchronizing events. Additionally, MCR for TSO and PSO captures the reordering
semantics permitted under TSO and PSO. In a combination, the above generated constrains capture all valid pairs
of data races. We implement a per-thread store bufer to collect the pairs of instructions that can be reordered.

The collected racing pairs are then passed to a systematic DPOR scheduler to optimally schedule all the races
and reorder the load and store operations to produce all unique possible interleavings.

ACM Trans. Softw. Eng. Methodol.

16 • Jain, et al.

Algorithm 4: Reordering instructions.

1 for Instruction ins ∈ trace do

2 if ins = stackRead ∨ ins = stackW rite then ▷ Return if a local variable is read or written
3 r eturn

4 for Operand opi ∈ ins do

5 if I sMemW ritten (opi) ∨ I sMemRead (opi) then

6 for r eorder_pair ∈ r eorder_pair_l ist do

7 if ins = r eorder_pair → f ir st ∧ I sMemW ritten (opi) then

8 r eorder_pair$addr_x ← opi

9 Execute_Bef ore : r eorder_pair$prev_val_x ← r eorder_pair$addr_x

10 Execute_Af ter : r eorder_pair$new_val_x ← r eorder_pair$addr_x

11 Execute_Af ter : r eorder_pair$addr_x ← r eorder_pair$prev_val_x

12 if curr_ins = r eorder_pair$second then

13 Execute_Af ter : r eorder_pair$addr_x ← new_val_x

1 x = 1; // w(x)

2 y = 2; // w(y)

Listing 5. Events reorderable under PSO.

1 movl $0x1 ,0 x20084c (%rip)

2 # 601194 <x>

3 movl $0x2 ,0 x200846 (%rip)

4 # 601198 <y>

Listing 6. Equivalent binary for Listing 5. Fig. 6. Instrumentation added to the binary in Listing 6 to reorder

store instructions.

5.2 Source-DPOR scheduler

The scheduler reproduces a subset of possible interleavings in a particular memory model. We use source-DPOR
to schedule and explore the traces, often in an optimal manner. We implement a thread scheduler using wait and
post functions provided by the standard C library to interleave the inter-thread racing instructions.

TSO and PSO memory models, supported by Bird, allow intra-thread reordering of load and store operations.
These memory models are machine-dependent. Therefore, they cannot be rearranged using naive techniques,
like for inter-thread reordering. Function calls such as wait-post or sleep that can control thread execution fail to
modify or control the sequence of instructions within the thread.

We maintain store bufers for reorderable instructions. Every time a store operation is encountered in a thread,
it is pushed back in the bufer of that thread. Depending on the window size of how many instructions these stores
can surpass, it collects the pairs of instructions such that a store is followed by a load or a store on two diferent
memory locations in the same thread within the window size. For our evaluation, we have kept the window
size of 4, which can be modiied, if required. Apart from maintaining these store bufers, we also keep track of
reorderable instructions. When the current instruction can be reordered with any of its preceding instructions,

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 17

the instruction is pushed to diferent backtrack set. We maintain a separate set as the reorderable instructions are
handled diferently than the races.

To replay all unique interleavings, Bird recursively checks the last state with unresolved race. To control the
program execution and reverse a race, we use wait and post calls. Once the race is reversed and alternate schedule
is explored, we add the racing thread with the event to the sleep-set of that state.
We use API call PIN_SafeCopy provided by PIN to mimic a memory lush mechanism. Figure 6 is a pictorial

representation of Algorithm 4 that shows how we inject the instrumentation to implement it. Initially, we identify
instructions that read or write to shared memory locations and are to be reordered in the current execution.
Any read or write operation to a stack variable is ignored. The reorder_pair_list contains all pairs of instructions
that are reorderable under either TSO or PSO. Consider the code snippet in Listing 5. Statements 1 and 2 can be
reordered under PSO given they do not have any explicit ordering imposed between them. Listing 6 represents
a binary equivalent of the snippet. For the given example, reorder_pair_list will contain details of the pair of
instructions 1 and 3 from Listing 6. In order to preserve the old value of variable x prior to it is written in
instruction 1 we instrument a PIN_SafeCopy call before the instruction to save its value at memory address
601194 in prev_val_x. Similarly, we store value of variable x after it is written in instruction 1 in new_val_x by
instrumenting a PIN_SafeCopy call after the instruction. To discard any updates made to x by the irst instruction,
we overwrite the value stored in x with prev_val_x. And inally, when y at memory address 601198 is written
value 2 by the second instruction we update the value of x to new_val_x.

Since TSO and PSO allow only store-load and store-store reorderings, the irst instruction in the reorderable
pair is a store operation. Once reordered, the write operation is added to a diferent sleep-set to ensure the same
interleaving is not explored again. While exploring the interleavings, if any particular sequence of events leads to
a bug, the trace is recorded.

Analysis of Algorithm 4. Time taken by Algorithm 4 to reorder the candidate instructions is proportional to the
number of instruction pair candidates for reordering. Each of these reorderings further calls PIN_SafeCopy four
times. The number of instructions to be reordered is often very few compared to the entire execution trace. In
addition, minimal information such as the old and new value of the irst instruction in the pair of reorderable
instructions is retained for each reorderable pair. We also keep a lag that indicates whether a pair of instructions
was reordered. MCR for TSO and PSO precomputes these reorderable instruction pairs. Since the number of
reorderable pairs does not exceed the trace length for a single execution, in a worst-case scenario where each
instruction is a part of a reorderable pair, this algorithm’s time complexity can be O (n).

6 EVALUATION

6.1 Development and Execution Environments

We implemented Bird on an Intel x86/64 Linux machine with 8GB RAM, Core Intel i7-4510U up to 3.10GHz CPU
with Ubuntu 14.04 and kernel 3.19.0-80-generic.We used PIN 2.14 for dynamic binary analysis and instrumentation.
We conducted our experiments in the same environment.

6.2 Benchmarks

We selected binaries of 24 publicly available litmus tests [9] widely used by other researchers in the past [25, 70, 96].
Litmus tests contain multiple examples covering all possible communication and synchronization up to a certain
size, for ARM and POWER relaxed memory models. Out of these tests, we are only interested in the ones designed
for TSO and PSO. We picked tests that would reach the assertion failure in a TSO/PSO reordered interleaving
while at the same time, restrict the reordering in the case of explicit barriers.

In addition, we evaluated Bird on concurrency benchmarks that have been extensively used in the past by data
race detection tools. We used 10 out of 57 tests from SV-COMP’s C pthread and pthread-atomic benchmarks. These

ACM Trans. Softw. Eng. Methodol.

18 • Jain, et al.

Table 1. Results of Running Bird on Litmus Tests Compared with Nidhugg and CDSChecker.

Test Details Bird Nidhugg CDSChecker

Name
Execution
Trace/
LoC

#Thds/
#Shd
Vars

Analyzed
Trace/
#Events

Inter-
leav-
ings

Buggy
Traces

First
Bug
Trace

Time
(ms)

Trace
Count
/ Error

Time
(ms)

Bug
Free
Trace

Buggy
Traces

Time
(ms)

CoRR1 104k / 36 2 / 2 208 / 16 3 0 - 818 3/N 45 3 0 13
CoRR2 104k / 64 4 / 3 268 / 22 89 0 - 28187 72/N 69 47 0 9
CoRW 104k / 36 2 / 2 205 / 16 3 0 - 888 3/N 43 3 0 14
CoWR 104k / 36 2 / 2 205 / 16 3 0 - 831 3/N 47 3 0 13
R 104k / 38 2 / 2 209 / 18 4 1 3 1248 3/Y 42 3 1 5
R+dmb+po 104k / 42 2 / 3 211 / 18 5 1 5 1512 4/Y 82 6 2 10
R+dmbs 104k / 41 2 / 3 213 / 18 3 0 - 902 3/N 50 10 0 5
R+po+dmb 104k / 40 2 / 3 211 / 18 4 1 3 1525 3/Y 43 6 2 13
2+2W 104k / 34 2 / 2 203 / 17 4 1 3 1438 3/Y 43 3 1 13
2+2W+reads 112k / 60 4 / 4 293 / 25 181 2 58 59851 48/Y 51 48 1 15
2+2W+dmbs 104k / 36 2 / 2 207 / 17 3 0 - 891 3/N 44 10 0 8
2+2W+dmb+po 104k / 36 2 / 2 205 / 17 5 1 5 1837 4/Y 44 6 2 14
2+2W+dmbs+reads 104k / 60 4 / 4 265 / 25 111 0 - 34140 108/N 47 294 0 22
RWC 104k / 48 4 / 4 239 / 22 10 1 10 3027 8/Y 45 7 1 10
RWC+dmb+po 104k / 49 3 / 4 241 / 22 10 1 10 3310 8/Y 47 7 1 16
S 110k / 38 3 / 3 207 / 18 5 1 3 1586 3/Y 43 3 1 18
S+dmbs 104k / 40 2 / 3 211 / 18 3 0 - 869 3/N 44 10 0 11
S+po+dmb 104k / 39 2 / 3 209 / 18 5 1 3 1523 3/Y 43 3 1 13
SB 110k / 42 4 / 2 213 / 19 5 1 3 1534 3/Y 43 3 1 12
SB+dmb+po 104k / 42 2 / 4 215 / 19 5 1 5 1566 4/Y 47 3 1 11
SB+dmbs 104k / 44 2 / 4 213 / 19 3 0 - 865 3/N 43 4 0 10
WRW+2W 104k / 45 2 / 4 225 / 21 11 1 11 3350 11/Y 46 11 1 10
WRW+2W+dmb+po 104k / 46 2 / 4 227 / 21 12 1 11 3223 11/Y 48 11 1 16
WRW+2W+dmbs 104k / 48 2 / 4 234 / 21 9 0 - 2699 9/N 44 38 0 12

benchmarks consist of POSIX threads-based program taken from Software Veriication Competition (2019) that
may contain a bug. We selected 4 tests from SCTBench such that 3 are from 7 tests inmaple/examples and 1 is from
54 tests in concurrent-software-benchmark. These tests also included an extracted buggy snippet from a real-world
application, MySQL. In addition, we picked 3 out of 69 tests from DataRaceBenchmark’s simplebuild benchmark
and 1 out of 12 tests from Deterministic Pthread benchmarks. These benchmarks are not mutually exclusive.
For example, stateful01 was a part of both SV-COMP and SCTBench benchmarks. Each of these benchmarks
contained information about the reachability of the assertion failure. Some of these benchmarks were used to
evaluate data race detection tools, Maple [93] and Actul [34]. We compiled these tests using GCC1 with no debug
information. Since the number of interleavings to explore directly depends on the number of shared variables,
we selected the tests based on them. Due to the general scalability issue posed by a dynamic analysis approach,
we randomly shortlisted these tests based on the number of threads created, the number of shared variables, the
absence of loops, and an assertion failure that might be reachable from a probable data race. We picked tests with
up to 6 shared variables and 16 threads.

6.3 Methodology

To evaluate the efectiveness of Bird, we conducted our experiments on the collected micro-benchmarks. We
intentionally did not preserve the debug information while compiling the selected tests as the proprietary software
is often devoid of this information. We used GCCś compiler optimization level zero throughout the experiment
since optimizations are not expected to play a role in the outcome of the analysis.

Bird dynamically instruments software binaries to monitor and control them. We use a PIN speciied callback,
PIN_AddThreadStartFunction, to record the number of threads created by the application. While executing a binary,
we use -ilter_no_shared_libs option provided by PIN to ilter the instructions from shared libraries. Selective

1https://gcc.gnu.org/

ACM Trans. Softw. Eng. Methodol.

https://gcc.gnu.org/

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 19

Table 2. Results of Running Bird on other Benchmarks.

Test Details Bird Nidhugg

Test Benchmark
#Thds/
#Shd
Vars

Execution
Trace/
LoC

Analyzed
Trace/
#Events

#Inter-
leavings

#First
Bug

Time
(ms)

Trace
Count
/ Error

Time
(ms)

bigshot_p SV-COMP 2 / 1 208k / 48 352 / 19 2 1 736 1/Y 40
bigshot_s2 SV-COMP 2 / 1 203k / 48 158 / 20 1 - 308 2/N 32
bigshot_s SV-COMP 2 / 1 203k / 48 161 / 21 1 - 293 2/N 33
lazy01 SV-COMP 3 / 2 203k / 64 206 / 29 6 1 2376 1/Y 27
sync01 SV-COMP 2 / 4 205k / 78 220 / 34 2 2 1232 2/N 32
stateful01_1 SV-COMP 2 / 4 207k / 69 213 / 35 6 1 2554 1/Y 28
stateful01_2 SV-COMP 2 / 4 202k / 69 201 / 34 6 - 2214 6/N 28
singleton SV-COMP 6 / 1 211k / 79 265 / 33 22 4 12184 4/Y 28
time_var_mutex SV-COMP 2 / 3 203k / 62 212 / 34 2 - 338 2/N 27
sigma SV-COMP 16 / 2 231k / 63 1010 / 171 - 1 TO 1/Y 39
mysql_169_extracted SCTBench 2 / 2 1515k / 120 3816 / 178 3 2 3151 1/Y 301
stringbufer SCTBench 1 / 2 1506k / 180 609 / 88 3 2 1713 1/Y 78
bluetooth_driver_bad SCTBench 1 / 2 201k / 90 235 / 34 9 5 2470 7/Y 38
bank_account SCTBench 2 / 1 1496k / 95 360 / 48 9 1 4326 1/Y 46
account_bad DataRaceBenchmark 3 / 6 204k / 50 192 / 34 6 4 2133 4/Y 54
account_ok DataRaceBenchmark 3 / 6 203k / 50 192 / 34 6 - 1234 6/N 34
actul_half_variable DataRaceBenchmark 1 / 2 199k / 41 170 / 16 7 4 2570 4/Y 66
bankacct DPthread 1 / 1 204k / 115 203 / 31 9 1 1913 1/Y 40

iltering can also be done to keep instructions that belong to the images of a speciied library. The execution trace

length in Tables 1 and 2 is the total number of instructions observed by PIN for a particular test. For example, PIN
observed 1541 instructions for the test CoRR1, out of which only 177 were from the main executable.
We use MCR for TSO and PSO [37] to report races and reorderable pairs of instructions that may be missed

by the HB and CP relation. We have adopted the source-DPOR algorithm to schedule all runs which guarantee
completeness as well as the (input-speciic) soundness of Bird. Source-DPOR explores at least one trace per
equivalence class (also known as Mazurkiewicz trace [56]) to ensure complete coverage. Time overhead is
computed using function call clock deined in header ile ctime. We inally report all interleavings that resulted in
the assertion failure speciied in the code as buggy.

6.4 Results

We compare the results of running Bird on selected litmus tests with Nidhugg [4] and CDSChecker [62] in
Table 1.

Since Nidhugg works with LLVM IR to explore TSO and PSO interleavings and CDSChecker needs subtle
alterations in source code, such as replacing main(int, char**) with user_main(int, char**) and assert with their
custom MODEL_ASSERT, we tailored the source code according to their requirements. CDSChecker explores
the behavior of concurrent code under the C/C++ memory model. It enumerates the behavior of only atomic
operations and the tests need to be compiled against CDSChecker’s libraries. None of these tools work directly
on binaries. Both of them require either source code or LLVM IR.
In Table 1, columns 1 to 4 represent details of the tests, such as name, length of the execution trace, lines of

code, number of threads created by the application excluding the main thread, the number of shared variables,
the length of execution trace analyzed and the number of memory access events in a single execution. Columns 5
to 8 present the details of running Bird on the speciied tests. We report the number of interleavings explored,
the number of buggy interleavings discovered, the irst interleaving to reach an assertion failure and the time
overhead for Bird. The time overhead recorded for all experiments is in milliseconds. Columns 9 and 10 highlight
the results produced by Nidhugg, where column 9 shows the total interleavings explored and whether or not a bug
was encountered and column 10 features the cumulative time overhead to convert a test to LLVM IR and analyze

ACM Trans. Softw. Eng. Methodol.

20 • Jain, et al.

it. Nidhugg terminates its exploration as soon as it detects a bug; therefore, to make a fair comparison, we also
recorded the occurrence of the irst bug on Bird. Finally, in columns 11 to 13 we report the results of CDSChecker.
Nidhugg, as well as Bird, explore the program behavior under TSO and PSO, whereas CDSChecker explores the
program behavior under C++11 memory model. We observed that Bird is equally efective in comparison with
Nidhugg and CDSChecker in its ability to detect races.

Litmus tests provide information about ordering edges whether an interleaving to reach the assertion failure is
allowed or forbidden. In our experiments conducted on litmus tests, we are able to capture all speciied edges.
Based on the captured edges, we explored all unique feasible interleavings using relaxed source-DPOR. Bird was
able to correctly identify the buggy interleavings under TSO and PSO memory models. It did not falsely report
any buggy interleaving that was forbidden by the memory model.
We present the results of evaluating Bird on the tests selected from other benchmarks and its comparison

with Nidhugg in Table 2. Bird was able to capture the reorderable and racing pairs of instructions for all the
selected tests. It successfully produced the buggy traces that lead to assertion failures. All tests, except sigma,
were able to inish their exploration within the time-out of 15 minutes. Despite the fact that Bird could not inish
the analysis of sigma within the time-out, it could successfully detect the buggy trace leading to the assertion
failure. We manually veriied that the buggy traces produced by Bird were indeed feasible traces that led to an
assertion failure. Bird did not explore any infeasible interleaving or report a false bug that cannot be reproduced.

6.5 Performance Analysis of Bird

Since Bird incurred higher runtime overhead compared to CDSChecker and Nidhugg, we investigated further
to understand the root causes. We selected a program, 2+2W, from litmus tests, which took two millisecond to
run uninstrumented and executed it with a PIN tool inscount0, which is a part of PIN. This program counts the
total number of instructions executed with the help of a counter variable. We observed that 2+2W with inscount0

took approximately 320 milliseconds to complete an execution for this instrumentation. This can be accounted to
the fact that 32 lines of C code for 2+2W transforms into execution trace of length ∼104k instructions. Filtering
an instruction or even a trace that is not of interest introduces an insigniicant overhead of ∼0.001 millisecond,
which can cumulate to an elevated cost for the entire execution trace.

Bird explores four interleavings for the same test 2+2W, which took a total of 1438 milliseconds. The time
recorded by Bird for the test is comparable with the time recorded by inscount0 when ran four times with the
same test.

We further recorded the time taken by the major instrumentation performed by Bird. To minimize the overhead,
Bird only instruments and analyzes the read/write events on shared memory locations and synchronization
events to control the program executions. The time taken by Bird to analyze and control each read/write access
to a shared memory location is approximately 0.042 milliseconds. Bird also uniquely associates each instruction
with its thread ID and index, where it occurs in the thread. Recording such information like instruction ID and
details of events such as synchronization events takes approximately 0.006 milliseconds each. Bird analyzed 203
of total 104k instructions for the test 2+2W after iltering instructions from the shared libraries. Out of these
203 instructions, there were 17 read/write accesses to shared memory locations. Therefore, the total runtime
overhead added by these instruments is 1.93 milliseconds for a single execution and 7.72 milliseconds for four
executions of 2+2W, which is comparable with the runtime overhead of CDSChecker and Nidhugg, and is only
0.53% of the total time taken by Bird on same test. PIN introduced a similar overhead for all other tests. Although
PIN ofers high control over the execution of a binary, our experiments indicated that the runtime overhead that
Bird incurs is mainly attributed to the instrumentation framework provided by PIN and the surged execution
trace length compared to the source code. Limiting this overhead would require a more eicient instrumentation
framework in the future, which will be an interesting future research direction.

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 21

6.6 Case Study to Understand Scalability

Bird, unlike most data race detection tools, does not require access to the source code for the analysis or
exploration of interleavings. Although we iltered shared library instructions in our experiments, Bird can reach
and analyze shared library instructions, and record data races and reorderable instructions. However, a library
instruction trace is enormous compared to the application’s instruction trace. Considering an application may
use several API constructs making the entire execution trace too large to analyze, Bird provides an option to
selectively analyze instructions from one or more desired libraries and ilter others.
To understand the challenges posed by dynamic binary analysis of real-world libraries, we ran Bird on

a standard libboost multithreaded example2 using boost::thread. The entire execution trace consisted ∼1.84M
instructions, whereas, after iltering all shared library instructions, Bird analyzed only ∼5.8K instructions with
no data race; therefore, only one interleaving was explored. On the same binary, when all shared libraries but
libboost’s instructions iltered, Bird detected 7 data races in the irst pass and explored 136 interleavings on
execution trace of length ∼9.5K instructions with no errors. A single execution of the selected example takes
∼5.0 seconds uninstrumented and ∼7.8 seconds with Bird. Bird took ∼19 minutes to exhaustively explore all
interleavings and terminate for this libboost example.

This study indicates the potential of Bird to be able to scale to real-world libraries without compromising its
efectiveness. We acknowledge that exploration techniques based on a depth-irst search can be computationally
intensive. Moreover, to limit the number of explorations we plan to selectively replay the interleavings and
restrict the number of context switches as the future work.

7 DISCUSSION

7.1 Soundness of the approach

Bird uses MCR for TSO and PSO to build a dependency relation amongst events in an execution trace. It is the
state-of-the-art technique in reducing the number of false negatives. MCR generates the racing and reorderable
instruction pairs for each execution. If an execution reports a new race or a reorderable pair of instructions, we
check for two conditions before appending it to the backtrack of the relevant state: a) if the backtrack of the
corresponding state does not already contain a state which explores an equivalent interleaving and b) the sleep-set
of that state does not block this reordering. The backtrack sets are updated as per the source-DPOR algorithm. It
ensures the exploration of all equivalence classes.
Since Bird uses DPOR to uncover the concurrency bugs, the tool inherits the strengths and limitations of

dynamic analysis. For example, coverage of dynamic analysis techniques [63, 74, 94] is dependent on inputs
provided, path taken by the program, and the thread interleavings explored at runtime, and hence is limited.
Additionally, the number of interleavings to be explored overgrows with the number of shared variables and
processes. However,DPOR techniques also provide soundness and completeness assurances for a program over the
property checked for a predeined set of inputs. We use source-DPOR to optimally explore a subset of interleavings
while ofering a complete coverage on the given input [6]. We use MCR for TSO and PSO for the sound discovery
of data races [37].
The litmus tests we selected are specially designed to reach assertion failures only under rare cases of TSO

and PSO reorderings, which are unattainable under the sequentially consistent memory model. These tests also
include cases where reordering is prohibited and reaching assertion failures is infeasible. As described in Section 6,
all of these tests successfully passed on Bird.

2 https://theboostcpplibraries.com/boost.thread-management#ex.thread_01

ACM Trans. Softw. Eng. Methodol.

https://theboostcpplibraries.com/boost.thread-management##ex.thread_01

22 • Jain, et al.

7.2 Strengths and weaknesses

Bird does not rely on a symbol table to perform its analysis. We conducted our experiments on binaries that did
not contain the debug information. Bird collects the commuting order of the events and reordering information
dynamically during the execution.

Bird is limited to TSO and PSO relaxed memory models. However, these models are also the ones most widely
studied [4, 17, 96]. Bird can be extended to other relaxed memory models such as C++11, POWER, and ARM.
PIN used by Bird provides a high control over binaries; however, any internal bug in PIN may afect Birdś

results. Additionally, since the execution trace length is much larger than the lines of code in the original program,
performance overhead is a bottleneck. We have implemented our algorithms optimally to reduce this overhead.

8 RELATED WORK

Veriication of multithreaded applications for locating concurrency related defects is a well-explored area [14,
26, 31, 59, 77, 90]. Locating and ixing these bugs has been an active area of research since the introduction of
shared-memory multiprocessor programming.

8.1 Approaches for building a dependency relation

Data races are the most common amongst concurrency bugs. Researchers have proposed static [2, 21, 41, 42,
80, 86, 94] as well as dynamic [13, 14, 22, 64, 65, 91] approaches to report data races. Most of the modern data
race detection tools use either a Lockset-based approach or HB relation to report data races. Lockset-based race
detectors [20, 38, 74, 75] can detect data races that are rare in execution paths. The main disadvantage of using
lockset-based approaches is that they are unsound and therefore, may produce a lot of false alarms. HB relation,
on the other hand, is sound but can miss some data races. FastTrack [26] proposes an adaptive lightweight
representation for HB for faster detection of data races. Due to over conservative HB edges its data race detection
ability is limited. As an improvement, CP relation [35], relaxes some HB edges to detect data races that HB relation
can miss. Even though CP relation reports more races than HB it may still miss some data races, as discussed
in Section 2. Resettable Encoded Vector Clock [69] provide a scalable solution to implementing vector clocks;
however, its practical implementation cannot be applied to any programming language that does not run on the
JVM.

8.2 Data race detection under sequentially consistent memory model

Static analysis [18, 21, 41, 42, 60, 80, 86] is often employed to scale the data race detection tools; however, it
escalates the number of false positives by over-approximating the results. About 76% to 90% data races reported
by data race detection tools are benign and never lead to unexpected output. False alarms hamper developers’
productivity. According to a survey conducted at Google, a lower false positive rate encourages developers to be
proactive – they may even ix extra bugs [72]. DPOR techniques [8, 27, 40, 71, 87, 92, 96] ofer a solution to this
by providing complete coverage and soundness on a predeined set of inputs. Dynamic race detection tools, such
as Intel Thread Checker [14] and Linecheck [48], do not employ a systematic scheduler and randomly explore
program interleavings, and therefore, miss out on possible program behaviors. BARRACUDA [23] provides a
binary-level analysis based solution for detecting data races. Since it works on PTX code, it can only detect races
in CUDA programs. In addition, it does not diferentiate harmful from benign data races. Recent dynamic binary
analysis based tools ProRace [97] and Razzer [39] that use sampling and fuzzing, respectively, provide a solution
for detecting data races. Similarly, Frost [85] explores complementary schedules to detect data races dynamically.
Nonetheless, these solutions are neither sound nor do they provide support for relaxed memory models.

ACM Trans. Softw. Eng. Methodol.

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 23

8.3 Data race detection under relaxed memory models

Most race detectors are designed to work for a sequentially consistent memory model, and consequently, fail to
capture bugs triggered in relaxed memory models. Recently, there has been an escalation in tools for detecting
data races in relaxed memory models [4, 44, 53, 62]. Nidhugg [4], an eicient stateless model checker, uses
chronological traces [4], which induces partial order relation between relaxed memory executions. It helps DPOR
to explore minimal interleavings assuring complete coverage. CDSChecker [62] exhaustively explores a program
under C/C++ memory model. Rocker [50] is a prototype tool that checks the robustness of a concurrent program
under C/C++11 release/acquire semantics. An extension to JPF leverages stateless model checking to detect
concurrency bugs in Java byte code [44]. Similarly, GenMC [46], a model checking algorithm for verifying weakly
consistent libraries.

8.4 How Bird difers from existing tools and techniques?

Considering the limitations of techniques discussed in 8.1, Bird employs MCR for TSO and PSO [37], that
incorporates the control low information for a much higher race detection capability compared to the existing
techniques. In addition, It can detect data races under relaxed memory models TSO and PSO.
Unlike Bird, all of the above-mentioned tools work on either source code or its intermediate representation.

Nonetheless, source for of-the-shelf software might not always be available. Binary analysis poses challenges,
some of which are much bigger than source code analysis.

9 CONCLUSION AND FUTURE WORK

In this paper, we present a dynamic binary analysis tool, Bird, which can efectively detect data race bugs. We
have tested Bird on 24 openly available litmus tests [10] for relaxed memory models and 18 other standard POSIX
thread benchmarks under TSO and PSO memory models. For all the mentioned tests, we are successfully able
to uncover the faulty interleavings and discard the false alarms. We use dynamic analysis to record and replay
all unique interleavings in a sound and complete way. To the best of our knowledge, Bird is the irst tool that
locates harmful data races in a x86 binary under relaxed memory models, in particular, TSO and PSO.

Our future work will focus primarily on improving the scalability of Bird without sacriicing its efectiveness.
Though we use source-DPOR to reproduce minimal interleavings, it does not remove all redundant interleavings.
As the number of interleavings may grow exponentially with the number of threads and shared variables, Bird
will beneit from more advanced optimizations to limit the number of interleavings. We also plan to employ
smart heuristics that will prioritize the interleavings to analyze. Another promising research direction would be
to combine our approach with static analysis to detect and prune interleavings, which involve racing instructions
that perform observably equivalent writes. We also plan to extend this work to other relaxed memory models
such as C11/C11++, under which the program executions may not be modeled via interleaving semantics but
rather as partially ordered graphs.

REFERENCES

[1] 2019. COMP 2019 - 8th International Competition on Software Veriication. https://sv-comp.sosy-lab.org/2019/
[2] Martin Abadi, Cormac Flanagan, and Stephen N Freund. 2006. Types for safe locking: Static race detection for Java. ACM Transactions

on Programming Languages and Systems (TOPLAS) 28, 2 (2006), 207–255.
[3] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order reduction. ACM

SIGPLAN Notices 49, 1 (2014), 373–384.
[4] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2017. Stateless

model checking for TSO and PSO. Acta Informatica 54, 8 (2017), 789–818.
[5] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2017. Source Sets: A Foundation for Optimal Dynamic

Partial Order Reduction. J. ACM 64, 4, Article 25 (Aug. 2017), 49 pages. https://doi.org/10.1145/3073408

ACM Trans. Softw. Eng. Methodol.

https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/3073408

24 • Jain, et al.

[6] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2017. Source sets: a foundation for optimal dynamic
partial order reduction. Journal of the ACM (JACM) 64, 4 (2017), 25.

[7] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankaranarayanan Krishna. 2019. Veriication of Programs under the
Release-Acquire Semantics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 1117–1132. https://doi.org/10.1145/
3314221.3314649

[8] Elvira Albert, Puri Arenas, María García de la Banda, Miguel Gómez-Zamalloa, and Peter J. Stuckey. 2017. Context-Sensitive Dynamic
Partial Order Reduction. In Computer Aided Veriication, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing,
Cham, 526–543.

[9] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013. Software veriication for weak memory via program
transformation. In European Symposium on Programming. Springer, 512–532.

[10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus: Running tests against hardware. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 41–44.
[11] Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. 2016. BinGold: Towards robust binary analysis by extracting the semantics of binary

code as semantic low graphs (SFGs). Digital Investigation 18 (2016), S11–S22.
[12] Dennis Andriesse. 2018. Practical Binary Analysis: Build Your Own Linux Tools for Binary Instrumentation, Analysis, and Disassembly. no

starch press.
[13] Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H Ahn, Ignacio Laguna, Martin Schulz, Gregory L Lee, Joachim

Protze, and Matthias S Müller. 2016. ARCHER: efectively spotting data races in large OpenMP applications. In 2016 IEEE international

parallel and distributed processing symposium (IPDPS). IEEE, 53–62.
[14] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. 2006. Unraveling data race detection in the Intel thread checker. In In

Proceedings of STMCS ’06.
[15] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11). Association
for Computing Machinery, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

[16] Ben Blum and Garth Gibson. 2016. Stateless Model Checking with Data-race Preemption Points. SIGPLAN Not. 51, 10 (Oct. 2016),
477–493. https://doi.org/10.1145/3022671.2984036

[17] Jabob Burnim, Koushik Sen, and Christos Stergiou. 2011. Sound and Complete Monitoring of Sequential Consistency for Relaxed
Memory Models. In Tools and Algorithms for the Construction and Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 11–25.

[18] Michael Burrows and K Rustan M Leino. 2004. Finding stale-value errors in concurrent programs. Concurrency and Computation:

Practice and Experience 16, 12 (2004), 1161–1172.
[19] Jong-Deok Choi and Sang Lyul Min. 1991. Race frontier: Reproducing data races in parallel-program debugging. ACM SIGPLAN Notices

26, 7 (1991), 145–154.
[20] Ravi Chugh, Jan W. Voung, Ranjit Jhala, and Sorin Lerner. 2008. Datalow Analysis for Concurrent Programs Using Datarace Detection.

In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08).
ACM, New York, NY, USA, 316–326. https://doi.org/10.1145/1375581.1375620

[21] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur. 2003. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice and Experience 15, 3-5 (2003), 485–499.

[22] Laura Einger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J Boehm. 2012. IFRit: interference-free regions for dynamic
data-race detection. In Acm Sigplan Notices, Vol. 47. ACM, 467–484.

[23] Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, WilliamMansky, and Joseph Devietti. 2017. BARRACUDA: Binary-level Analysis of Runtime
RAces in CUDA Programs. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 126–140. https://doi.org/10.1145/3062341.3062342
[24] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a race and transaction-aware Java runtime. In ACM SIGPLAN Notices,

Vol. 42. ACM, 245–255.
[25] M. Elver and V. Nagarajan. 2014. TSO-CC: Consistency directed cache coherence for TSO. In 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA). 165–176. https://doi.org/10.1109/HPCA.2014.6835927
[26] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: eicient and precise dynamic race detection. In ACM Sigplan Notices, Vol. 44.

ACM, 121–133.
[27] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-order Reduction for Model Checking Software. SIGPLAN Not. 40, 1 (Jan.

2005), 110–121. https://doi.org/10.1145/1047659.1040315
[28] Patrice Godefroid. 1990. Using partial orders to improve automatic veriication methods. In International Conference on Computer Aided

Veriication. Springer, 176–185.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3022671.2984036
https://doi.org/10.1145/1375581.1375620
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1145/1047659.1040315

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 25

[29] Patrice Godefroid and Nachiappan Nagappan. 2008. Concurrency at Microsoft: An exploratory survey. In CAV Workshop on Exploiting

Concurrency Eiciently and Correctly.
[30] Patrice Godefroid, Jan van Leeuwen, Juris Hartmanis, Gerhard Goos, and Pierre Wolper. 1996. Partial-order methods for the veriication

of concurrent systems: an approach to the state-explosion problem. Vol. 1032. Springer Heidelberg.
[31] Dan Grossman. 2003. Type-safe multithreading in Cyclone. In ACM Sigplan Notices, Vol. 38. ACM, 13–25.
[32] Kyoung Soo Han, Boojoong Kang, and Eul Gyu Im. 2011. Malware classiication using instruction frequencies. In Proceedings of the 2011

ACM Symposium on Research in Applied Computation. 298–300.
[33] Marc Hartung. [n.d.]. DataRaceBenchmark: Concurrency Benchmarks, https://github.com/marchartung/DataRaceBenchmark/. https:

//github.com/marchartung/DataRaceBenchmark/ind/master
[34] Marc Hartung, Florian Schintke, and Thorsten Schütt. 2019. Pinpoint Data Races via Testing and Classiication. In 2019 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 386–393.
[35] Jef Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow Abstraction.

In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/2594291.2594315

[36] Jef Huang and Charles Zhang. 2011. Persuasive prediction of concurrency access anomalies. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis. ACM, 144–154.
[37] Shiyou Huang and Jef Huang. 2016. Maximal causality reduction for TSO and PSO. ACM SIGPLAN Notices 51, 10 (2016), 447–461.
[38] Jasmin Jahić, Varun Kumar, Matthias Jung, Gerhard Wirrer, Norbert Wehn, and Thomas Kuhn. 2019. Rapid Identiication of Shared

Memory in Multithreaded Embedded Systems with Static Scheduling. In Proceedings of the 48th International Conference on Parallel

Processing: Workshops (Kyoto, Japan) (ICPP 2019). ACM, New York, NY, USA, Article 15, 8 pages. https://doi.org/10.1145/3339186.3339195
[39] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding kernel race bugs through

fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 754–768.
[40] Vineet Kahlon, Aarti Gupta, and Nishant Sinha. 2006. Symbolic Model Checking of Concurrent Programs Using Partial Orders and

On-the-Fly Transactions. In Computer Aided Veriication, Thomas Ball and Robert B. Jones (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 286–299.

[41] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. 2009. Static Data Race Detection for Concurrent Programs with Asynchronous
Calls. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). ACM, New York, NY, USA, 13–22. https:
//doi.org/10.1145/1595696.1595701

[42] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. 2007. Fast and accurate static data-race detection for concurrent
programs. In International Conference on Computer Aided Veriication. Springer, 226–239.

[43] Baris Kasikci, Cristian Zamir, and George Candea. 2012. Data races vs. data race bugs: telling the diference with portend. ACM
SIGPLAN Notices 47, 4 (2012), 185–198.

[44] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders. 2009. Precise Data Race Detection in a Relaxed Memory Model Using Heuristic-Based
Model Checking. In 2009 IEEE/ACM International Conference on Automated Software Engineering. 495–499.

[45] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Efective stateless model checking for C/C++
concurrency. Proc. ACM Program. Lang. 2, POPL (2018), 17:1–17:32. https://doi.org/10.1145/3158105

[46] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association
for Computing Machinery, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.3314609

[47] Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for Hardware Memory Models. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 1157–1171. https://doi.org/10.1145/3373376.3378480

[48] Nikita Koval, Maria Sokolova, Alexander Fedorov, Dan Alistarh, and Dmitry Tsitelov. 2020. Testing Concurrency on the JVM with
Lincheck. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego, California)
(PPoPP ’20). Association for Computing Machinery, New York, NY, USA, 423–424. https://doi.org/10.1145/3332466.3374503

[49] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. SIGPLAN Not. 51, 1 (Jan. 2016), 649–662.
https://doi.org/10.1145/2914770.2837643

[50] Ori Lahav and Roy Margalit. 2019. Robustness against Release/Acquire Semantics. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 126–141. https://doi.org/10.1145/3314221.3314604

[51] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed system. In Concurrency: the Works of Leslie Lamport.
179–196.

[52] Christopher Lidbury and Alastair F Donaldson. 2017. Dynamic race detection for C++ 11. ACM SIGPLAN Notices 52, 1 (2017), 443–457.

ACM Trans. Softw. Eng. Methodol.

https://github.com/marchartung/DataRaceBenchmark/find/master
https://github.com/marchartung/DataRaceBenchmark/find/master
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/3339186.3339195
https://doi.org/10.1145/1595696.1595701
https://doi.org/10.1145/1595696.1595701
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3332466.3374503
https://doi.org/10.1145/2914770.2837643
https://doi.org/10.1145/3314221.3314604

26 • Jain, et al.

[53] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic Race Detection for C++11. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery, New York, NY,
USA, 443–457. https://doi.org/10.1145/3009837.3009857

[54] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geof Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. 2005. Pin: building customized program analysis tools with dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM,
190–200.

[55] Weiyu Luo and Brian Demsky. 2021. C11Tester: a race detector for C/C++ atomics. In Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems. 630–646.
[56] Antoni W. Mazurkiewicz. 1987. Trace Theory. In Proceedings of an Advanced Course on Petri Nets: Central Models and Their Properties,

Advances in Petri Nets 1986-Part II. Springer-Verlag, Berlin, Heidelberg, 279–324. http://dl.acm.org/citation.cfm?id=647422.725772
[57] David A McAllester. 1993. Partial order backtracking. Journal of Artiicial Intelligence Research 1 (1993), 17–24.
[58] Imperial College London Multicore Group. [n.d.]. SCTBench: C/C++ pthread benchmarks, https://github.com/mc-imperial/sctbench.

https://github.com/mc-imperial/sctbench
[59] Abdullah Muzahid, Norimasa Otsuki, and Josep Torrellas. 2010. Atomtracker: A comprehensive approach to atomic region inference

and violation detection. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 287–297.

[60] Mayur Naik, Alex Aiken, and John Whaley. 2006. Efective Static Race Detection for Java. In Proceedings of the 27th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Ottawa, Ontario, Canada) (PLDI ’06). ACM, New York, NY, USA,
308–319. https://doi.org/10.1145/1133981.1134018

[61] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder. 2007. Automatically classifying benign and
harmful data races using replay analysis. In ACM SIGPLAN Notices, Vol. 42. ACM, 22–31.

[62] Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concurrent Data Structures Written with C/C++ Atomics. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications (Indianapolis,
Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 131–150. https://doi.org/10.1145/2509136.2509514

[63] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data Race Detection. In Proceedings of the Ninth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (San Diego, California, USA) (PPoPP ’03). ACM, New York, NY, USA,
167–178. https://doi.org/10.1145/781498.781528

[64] Sangmin Park, Richard W Vuduc, and Mary Jean Harrold. 2010. Falcon: fault localization in concurrent programs. In Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 245–254.
[65] Andreas Pavlogiannis. 2019. Fast, sound, and efectively complete dynamic race prediction. Proceedings of the ACM on Programming

Languages 4, POPL (2019), 1–29.
[66] Doron Peled. 2018. Partial-Order Reduction. Springer International Publishing, Cham, 173–190. https://doi.org/10.1007/978-3-319-

10575-8_6
[67] Doron Peled, Antti Valmari, and Ilkka Kokkarinen. 2001. Relaxed visibility enhances partial order reduction. Formal Methods in System

Design 19, 3 (2001), 275–289.
[68] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. 2008. Mcboost: Boosting scalability in malware collection and analysis using statistical

classiication of executables. In 2008 Annual Computer Security Applications Conference (ACSAC). IEEE, 301–310.
[69] Tommaso Pozzetti and Ajay D Kshemkalyani. 2020. Resettable encoded vector clock for causality analysis with an application to

dynamic race detection. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 772–785.
[70] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2017. Simplifying ARM Concurrency:

Multicopy-atomic Axiomatic and Operational Models for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19 (Dec. 2017), 29 pages.
https://doi.org/10.1145/3158107

[71] Jake Roemer, Kaan Genç, and Michael D. Bond. 2020. SmartTrack: Eicient Predictive Race Detection. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 747–762. https://doi.org/10.1145/3385412.3385993

[72] Caitlin Sadowski and Jaeheon Yi. 2014. How developers use data race detection tools. In Proceedings of the 5th Workshop on Evaluation

and Usability of Programming Languages and Tools. 43–51.
[73] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz, Carlos Laorden, and Pablo G Bringas. 2010. Idea: Opcode-sequence-

based malware detection. In International Symposium on Engineering Secure Software and Systems. Springer, 35–43.
[74] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Data Race Detector

for Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391–411. https://doi.org/10.1145/265924.265927
[75] Ohad Shacham, Mooly Sagiv, and Assaf Schuster. 2005. Scaling Model Checking of Dataraces Using Dynamic Information. In Proceedings

of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Chicago, IL, USA) (PPoPP ’05). ACM, New
York, NY, USA, 107–118. https://doi.org/10.1145/1065944.1065958

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3009837.3009857
http://dl.acm.org/citation.cfm?id=647422.725772
https://github.com/mc-imperial/sctbench
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/781498.781528
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3385412.3385993
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1065944.1065958

BiRD: Race Detection in Sotware Binaries under Relaxed Memory Models • 27

[76] Divyanjali Sharma and Subodh Sharma. [n.d.]. Thread-modular Analysis of Release-Acquire Concurrency. arXiv preprint arXiv:2107.02346
[accepted in SAS 2021] ([n. d.]).

[77] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen, and Weimin Zheng. 2011. RACEZ: a lightweight
and non-invasive race detection tool for production applications. In Software Engineering (ICSE), 2011 33rd International Conference on.
IEEE, 401–410.

[78] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. 2016. Sok:(state of) the art of war: Ofensive techniques in binary analysis. In 2016 IEEE Symposium

on Security and Privacy (SP). IEEE, 138–157.
[79] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound predictive race detection in

polynomial time. In ACM SIGPLAN Notices, Vol. 47. ACM, 387–400.
[80] Nicholas Sterling. 1993. WARLOCK-A Static Data Race Analysis Tool.. In USENIx Winter. 97–106.
[81] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying read-copy-update in a logic for weak memory. ACM SIGPLAN

Notices 50, 6 (2015), 110–120.
[82] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geof Pike. 2014. Enforcing

forward-edge control-low integrity in {GCC} & {LLVM}. In 23rd {USENIX} Security Symposium ({USENIX} Security 14). 941–955.
[83] Caroline Trippel, Yatin A.Manerkar, Daniel Lustig, Michael Pellauer, andMargaretMartonosi. 2017. TriCheck:MemoryModel Veriication

at the Trisection of Software, Hardware, and ISA. SIGPLAN Not. 52, 4 (April 2017), 119–133. https://doi.org/10.1145/3093336.3037719
[84] Antti Valmari. 1996. The state explosion problem. In Advanced Course on Petri Nets. Springer, 429–528.
[85] Kaushik Veeraraghavan, Peter M Chen, Jason Flinn, and Satish Narayanasamy. 2011. Detecting and surviving data races using

complementary schedules. In Proceedings of the twenty-third ACM symposium on operating systems principles. 369–384.
[86] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static Race Detection on Millions of Lines of Code. In Proceedings of the the

6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07). ACM, New York, NY, USA, 205–214. https://doi.org/10.1145/1287624.1287654
[87] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. 2008. Peephole Partial Order Reduction. In Tools and Algorithms for the

Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
382–396.

[88] Benjamin Wester, David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2013. Parallelizing Data Race Detection.
SIGPLAN Not. 48, 4 (March 2013), 27–38. https://doi.org/10.1145/2499368.2451120

[89] Arne Wichmann. 2012. Binary Analysis for Code Reconstruction of Control Software. (2012).
[90] James R Wilcox, Cormac Flanagan, and Stephen N Freund. 2018. VeriiedFT: A Veriied, High-Performance Precise Dynamic Race

Detector. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 354–367.
[91] Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. 2008. Inspect: A Runtime Model Checker for Multithreaded C Programs. Technical

Report UUCS-08-004, University of Utah, 2008.
[92] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Eicient Stateful Dynamic Partial Order Reduction. In

Model Checking Software, Klaus Havelund, Rupak Majumdar, and Jens Palsberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg.
[93] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple: a coverage-driven testing tool for multithreaded

programs. In Acm Sigplan Notices, Vol. 47. ACM, 485–502.
[94] Yuan Yu, Tom Rodehefer, and Wei Chen. 2005. RaceTrack: Eicient Detection of Data Race Conditions via Adaptive Tracking. In

Proceedings of the Twentieth ACM Symposium on Operating Systems Principles (Brighton, United Kingdom) (SOSP ’05). ACM, New York,
NY, USA, 221–234. https://doi.org/10.1145/1095810.1095832

[95] Heecul Yun. [n.d.]. DPthread - Deterministic Pthread benchmarks, https://github.com/heechul/dpthread. https://github.com/heechul/
dpthread

[96] Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic partial order reduction for relaxed memory models. In ACM SIGPLAN

Notices, Vol. 50. ACM, 250–259.
[97] Tong Zhang, Changhee Jung, and Dongyoon Lee. 2017. Prorace: Practical data race detection for production use. ACM SIGPLAN Notices

52, 4 (2017), 149–162.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3093336.3037719
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/2499368.2451120
https://doi.org/10.1145/1095810.1095832
https://github.com/heechul/dpthread
https://github.com/heechul/dpthread

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Races
	2.2 Data race detection approaches
	2.3 Thread Schedules and Partial Order Reduction (POR)
	2.4 Weak Memory Models
	2.5 Software Binary Analysis

	3 Challenges
	3.1 Challenges inherent to binary analysis
	3.2 Challenges in detecting data races
	3.3 Challenges inherent to relaxed memory models

	4 Architecture
	4.1 Detecting Races and Reorderable Instructions
	4.2 Relaxed Memory Scheduler

	5 Implementation
	5.1 Detecting Racing and Reorderable Events
	5.2 Source-DPOR scheduler

	6 Evaluation
	6.1 Development and Execution Environments
	6.2 Benchmarks
	6.3 Methodology
	6.4 Results
	6.5 Performance Analysis of Bird
	6.6 Case Study to Understand Scalability

	7 Discussion
	7.1 Soundness of the approach
	7.2 Strengths and weaknesses

	8 Related Work
	8.1 Approaches for building a dependency relation
	8.2 Data race detection under sequentially consistent memory model
	8.3 Data race detection under relaxed memory models
	8.4 How Bird differs from existing tools and techniques?

	9 Conclusion and Future Work
	References

