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We focus on modelling of cancer hyperthermia driven by the application of the magnetic field to
iron oxide nanoparticles. We assume that the particles are interacting with the tumour environment by
extravasating from the vessels into the interstitial space. We start from Darcy’s and Stokes’ problems
in the interstitial and fluid vessels compartments. Advection—diffusion of nanoparticles takes place in
both compartments (as well as uptake in the tumour interstitium), and a heat source proportional to the
concentration of nanoparticles drives heat diffusion and convection in the system. The system under
consideration is intrinsically multi-scale. The distance between adjacent vessels (the micro-scale) is much
smaller than the average tumour size (the macro-scale). We then apply the asymptotic homogenisation
technique to retain the influence of the micro-structure on the tissue scale distribution of heat and particles.
We derive a new system of homogenised partial differential equations (PDEs) describing blood transport,
delivery of nanoparticles and heat transport. The new model comprises a double Darcy’s law, coupled with
two double advection—diffusion—reaction systems of PDEs describing fluid, particles and heat transport
and mass, drug and heat exchange. The role of the micro-structure is encoded in the coefficients of
the model, which are to be computed solving appropriate periodic problems. We show that the heat
distribution is impaired by increasing vessels’ tortuosity and that regularization of the micro-vessels can
produce a significant increase (1-2 degrees) in the maximum temperature. We quantify the impact of
modifying the properties of the magnetic field depending on the vessels’ tortuosity.

Keywords: hyperthermia cancer treatment; nanoparticle delivery; homogenisation; heat convection;
Vessels’ tortuosity.

1. Introduction

Tumours are cancerous tissues consisting of different cells that interact with each other by heterotypic
interaction i.e. involving both cancerous and non-cancerous cells and constituents. They are character-
ized by different hallmarks that enable them to develop and growth in the body. The cancer cells preserve
the chronic proliferative signals and avoid the suppressor genes, which regulate cell duplication. While
normal cells replication is limited, cancer cells can grow in an uncontrolled way thus producing the
tumour mass. In addition, tumours are capable of obtaining nutrients and oxygen from the angiogenic
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microvasculature. Subsequently, the malignant cells spread in different parts of the body, as reported by
Hanahan & Weinberg (2011).

Healthy vessels greatly differ from the malignant ones. In fact, these latter are well known to be
less organized, more tortuous and dilated, with highly permeable walls characterized by openings and
geometrical defects, as reported e.g. by Hashizume et al. (2000). Enhancing drug transport in tumours
plays a prominent role in improving anti-cancer therapies. The disorganized vascular network increases
the interstitial fluid pressure (IFP), which leads to a reduced fluid convection, and, in turn, impaired drug
transport within the tumour mass, see, e.g. the work by Jain ez al. (2007). Higher levels of IFP are due to
the leaky tumour vessels that are unable to preserve the oncotic and hydrostatic pressure gradients across
the vessel walls. In the manuscript by Jain et al. (2007), the authors have studied the effect of antiangio-
genic therapy to increase the fluid convection inside the tumour and decrease the convection outside the
tumour by reducing the IFP. This can for instance be achieved by decreasing tumour size and perme-
ability of the vessels’” wall, surface area of the tumour vessels, and increasing the hydraulic conductivity.
More recently, Penta & Ambrosi (2015) have shown that geometrical regularization of the microvessels
can likewise play a key role in improving fluid and drug convection within the tumours mass.

Hyperthermia treatment and thermal ablation are emerging strategies for treating cancer. Hyperther-
mia is typically used to indicate treatments where the malignant cell is exposed to an heat source until
the temperature exceeds a given target (this is typically around 42 °C). It typically takes a long time
to reach the target temperature, so this strategy is normally supplemented by other treatments such as
chemotherapy and radiation in order to have a significant decline in the tumour size. The extreme case
of hyperthermia treatment is usually referred to as thermal ablation. In this latter case, the temperature
can reach up to approximately 50 °C in a shorter period of time. However, this strategy has limitations
in reaching a complete eradication of the tumour cells, which is likely to cause the cancer recurrence, as
reported by Cervadoro et al. (2013).

In the past few decades, the use of nanoparticles has been increasingly embraced to develop drug
delivery (see, e.g., the work by Singh ef al. (2011)), because of their chemical and physical properties.
Nanoparticles possess peculiar characteristics related to their sizes and surfaces, which enable them to
remain in the blood without causing any toxicity. The so called iron oxide nanoparticles (IONP) and gold
nanoparticles (AuNP) are examples of drug delivery vectors which are used to carry out hyperthermia
treatments. On the one hand, AuNPs generate heat after absorbing the near-infra red (nIR), but this
wavelength has limitation on the tumour depth that can be reached. Therefore, this strategy might not be
efficient to kill malignant cells uniformly. On the other hand, the temperature increase obtained by using
IONP is related to the application of an external magnetic field. IONP are transported to the tumour via
two distinct mechanisms: passive and active. Passive means that the particles are transported to the
tumour through the capillaries by diffusion or convection. In the active case, the particles bind with
the tumour receptors and are metabolized, as illustrated e.g. by Martinkova et al. (2018). The magnetic
field is applied when the particles reach the tumour. The magnetic energy is then converted into thermal
energy as described by the Brownian Neel relaxation equation, see e.g. the work by Kaddi ef al. (2013).

In this work we aim to describe the temperature maps related to hyperthermia cancer treatment
performed via IONPs transported by means of the passive mechanisms (i.e. the formulation is applicable
to particles that are sufficiently small to extravasate from the vessels to the tumour). We account
for the three-dimensional character of both the tumour and the vessels, which are considered as two
interacting domains as done by Mascheroni & Penta (2017); Penta & Ambrosi (2015). In the latter
papers, the authors found that the vessels’ tortuosity impaired the fluid and macromolecules drug flow
in vascularised tumours. In this work we extend their results to cover the influence of geometrical
tortuosity on heat transport in the context of cancer hyperthermia. The vessels’ fluid flow is governed
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by the Stokes’ problem, while we assume that interstitial transport is described by Darcy’s law. The
governing equations describing drug transport are of advection—diffusion type in the vessels and of
advection—diffusion—reaction type in the tumour interstitium. Diffusive and advective heat transport in
both compartments is likewise formally represented by a double advection—diffusion-reaction model.
The vessel’s wall is modeled as a porous semi-permeable membrane, so as to allow the interplay of
fluid, mass, and heat between compartments.

In this work we address the sharp length scale that exists between the typical intercapillary distance
and the average tumour size by means of the asymptotic homogenisation technique, as summarized
e.g. in the works by Bakhvalov & Panasenko (1989); Cioranescu & Donato (1999); Davit et al.
(2013); Taffetani et al. (2014); Penta & Gerisch (2017). This strategy provides the upscaled parameters
at the macro-scale on the basis of the micro-scale geometry and structural properties. In particular,
the resulting macro-scale governing equations encode the crucial role of the micro-scale structure
in the coefficient of the model. This approach is motivated by the fact that real-world problems
typically involve interactions between a variety of physical three-dimensional systems characterized
by different properties. In general, it is practically impossible to resolve all the micro-scale details in
three dimensions. Furthermore, experiment measurements are typically performed at the macro-scale.
This method has been successfully applied to several scenarios, including heterogeneous porous media,
as shown by Penta ef al. (2021), vascularised tumours, as in the manuscript by Shipley & Chapman
(2010); Penta et al. (2015), and biofilms, e.g. as illustrated by Dalwadi & King (2020).

Our macro-scale results comprise a double Darcy’s system of partial differential equations (PDEs)
describing fluid transport within and between compartments, and double advection—diffusion-reaction
equations for both drug and heat transport. The influence of the micro-structure appears in the hydraulic
conductivities, particle diffusion coefficients and thermal conductivities, which can be determined by
solving appropriate periodic cell problems. The macro-scale system of PDEs is solved by finite elements
in a spherical coordinate setting. The results elucidate the role of tortuosity and absorption rate, as well
as their mutual interplay, on heat transport generated by nanoparticles in vascularised tumours.

Nabil & Zunino (2016) discussed the hyperthermia cancer treatment using IONP by primarily
focussing on the adhesion mechanisms (so that excited particles do not extravasate from the vessels to
the tumour). However, this work is different from the one by Nabil & Zunino (2016) as here the tumour
is modeled as a three-dimensional domain, which comprises the interstitial spaces and the vessels. The
two domains are separated by an interface that represents the vessels’ walls. Moreover, there are some
differences between the two works related to the macro-scale geometry, computational technique and
other concepts such as external boundary conditions. For instance, Nabil & Zunino (2016) represent the
tumour at the macro-scale as a cube for the sake of simplifying the numerical computations. In contrast,
we modelled the vascularised tumour as a sphere as an analogy with the works by Penta ef al. (2015);
Penta & Ambrosi (2015); Shipley & Chapman (2010). This geometry has significant implications on the
fluid and drug transport profile and also this particular shape is very convenient when comparing results
against experiments, as shown by Jain & Baxter (1988). In addition, the homogenisation technique
adopted by Nabil & Zunino (2016) relies on the immersed boundary method, as illustrated by Cattaneo
& Zunino (2014a,b). The vessels are dealt with as though they were one-dimensional lines, nevertheless
carrying relevant three-dimensional information via appropriate singularities on the boundaries. Our
new model retained the three-dimensional character of both the vessels and the interstitial spaces, and
asymptotic homogenisation is being used to perform the upscaling and achieve computational feasibility.
In this way, the geometrical differences between the vessels and tumour are smoothed out on the macro-
scale. Moreover, in the present work, we encode information related to the fine-scale structure of the
individual compartments, as well as the transport that is occurring across the vessels’ walls. The latter
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is reflected into appropriate sources at the macroscopic scale. In the work by Nabil & Zunino (2016),
the interface is not resolved as the vessels are immersed in the three dimensional tumour. However, in
their case, information concerning fluid, drug and heat transport across the interface is retained and it
appears likewise as a source in the resulting macro-scale model. Furthermore, the vessels temperature is
constant in their work, but it varies in our work, as the vessels are represented by a separate compartment
in three dimensions, which is described by its own governing equations. In addition, Nabil & Zunino
(2016) consider different time steps that depend on the size of nanoparticles. A 40 minutes time interval
appropriate for very small nanoparticles and 12 h, 24 h and 48 h for large ones that are called vascular
magnetic nanoparticles. In our case, we do not focus on the size of nanoparticles and we focus on a 4
days time interval (and highlight the dynamics which takes place during day 1 by means of 4 different
time points at 6, 12, 18, and 24h). Finally, we have assumed micro-scale periodicity, which is a limitation
of the present model. It allows us to deal with complicated and potentially tortuous microvessels that
are often encountered when dealing with vascularised cancer, as shown by Penta er al. (2015); Jain
et al. (2007).

This paper is structured into different sections that are organized as follows. In Section 2 we describe
the mathematical model by emphasizing the main assumptions and underlying physical phenomena.
These include the differential equations for fluid flow, particle transport and heat convection in both the
tumour vessels and the interstitial compartment. We also address the fluid, drug, and heat exchange
taking place across the interface via setting up appropriate interface conditions. In Section 3, the
differential equations are formulated in non-dimensional form. In Section 4, we apply the asymptotic
homogenisation technique and derive the macro-scale results, which are then summarized in Section
5. In Section 6, we briefly discuss how the homogenised coefficients are determined on the basis
of a microstructure. In Section 7, the differential equations describing particle and heat transport are
written in spherical coordinates and supplemented by corresponding macro-scale initial and boundary
conditions. In Section 8, the results obtained via numerical simulations are illustrated and discussed. In
Section 9, concluding remarks are presented.

2. Mathematical modeling

In this work, we address mathematical modelling of cancer hyperthermia therapy carried out via
nanoparticles delivery. We represent the vascularised tumor as a three-dimensional domain £2 € R3.
The tumour tissue comprises two regions. The interstitium is denoted here by £2, and the blood vessels’
network by £2,, such that 2, N 2, = 2.

The tumour system under consideration is multi-scale in nature and the typical distance between
adjacent blood vessels d ~ (50 — 100) wm is much smaller than the average size L ~ (0.5 cm of the
cancerous region, as reported by Penta & Ambrosi (2015). Therefore, we define the small parameter

4«1 @.1)
E = — . .
L

We are interested in describing heat transport and the subsequent temperature distribution, which is
driven by nanoparticles that are considered as being transported as passive scalars. Therefore, we
can assume that delivery of nanoparticles is occurring via diffusion through both the vessels and the
interstitium, advection due to the fluid flow in both compartments and extravasation across the vessels’
walls. In the next section, we illustrate the governing equations for fluid, drug and heat transport in both
the vessels and the interstitial space.
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FIG. 1. A schematic comparing the domain at the micro-scale (comprising the interstitial space and the vessels) on the right, and
the macro-scale domain, where the difference between the tumour constituents are homogenised, on the left.

All the variables in this model such as the pressure P, the concentration c, the velocity u and the
temperature 7 are functions of both x and z.

2.1 Interstitial fluid transport

The tumour interstitial region is represented as an isotropic porous medium governed by Darcy’s law:
u,=—«VP, in £, (2.2)
together with the incompressibility constraint
Vou, =0 in £, (2.3)
where u,, ¥ and P, are the interstitial fluid velocity, conductivity and pressure, respectively.

2.2 Microvascular flow

The blood flowing in small capillaries is considered an incompressible viscous fluid and it is transported
in the body through the vessels. Although non-Newtonian effects may become relevant in small
capillaries, we assume that the blood is a Newtonian fluid as a first approximation, as done e.g. by
Shipley & Chapman (2010). Therefore, the blood flow in the vessels can be described by the Stokes’
problem, which, in absence of body forces, reads

uViu, =VP, in £ (2.4)

v v 14
2.5
where u,, i and P,, are the fluid velocity, viscosity and pressure in the blood vessels, respectively.

2.3 Transport of particles

The concentration dynamics of the particles in the vessels ¢, can be described by the advection—
diffusion equation in §2,. Absorption of particles in the interstitial compartment is represented by a
linear uptake term. Therefore, the governing equations for the interstitial and vessels concentrations c,
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and c,, respectively, read

dc

B_IV +V-(cu,—D,Vec,)=0 in £, (2.6)
dc, .
o +V.(cu,—DV¢,)=—Ac, in £, 2.7

where D, D,, and A are the particles’ diffusivities in the vessels and in the interstitium and the uptake
rate, respectively.

2.4 Heat convection in the tumour

The heat generated in the tumour is driven by application of a magnetic field that affects the
nanoparticles injected into the bloodstream. When the magnetic field is removed, the magnetization
of the particles returns to zero. The relaxation can take place either via the particle’s rotation around the
fluid (Brownian relaxation), or rotation of the magnetic moment around each particle (Neel relaxation),
as explained e.g. by Pankhurst ez al. (2003). These rotations generate the heat that provides an increase
in temperature.

The temperatures in the vessel 7, and in the interstitium 7, are determined by a system of advection—
diffusion equations. The heat generated by the magnetic field is represented by the heat source af(c, )
and, for the sake of simplicity, here we assume

f(ct,v) = Crye (2.8)

The efficacy of the heat produced by the IONP depends on the absorption rate v (Nabil & Zunino, 2016).
The latter parameter is in turn related to magnetic field properties (such as intensity and frequency) and
particles’ shape, although such features are not explicitly taken into account in the present work. The
coupled system of PDEs then reads

v - Ky = 2, in g 2.9)
ot YiPr Y10y
M v qu, - Bvry = e i o, (2.10)
ot YvPy Yoy

Here, K, and K, are the thermal conductivities in the interstitium and in the vessels, respectively. The
parameters p, and y, are the tissue density and specific heat capacity, while p,, y, are the blood density
and the blood specific heat capacity.

2.5 Interface conditions

The interface between the two domains is denoted by I = 9£2, N d£2,. The fluid flow across the vessel
is assumed to be continuous and depending on the pressures’ difference between the two domains. We
assume that the blood flux across the vessel wall is determined by Starling’s law, i.e.

w-n=u,-n=L,0P,~P) on I. @2.11)
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The vector n represents the unit outward vector normal to the vessels” wall. The parameter L, represents
the permeability of the blood vessels, which reflects the leakage of the vessels’ wall. In order to close
the problem we need to specify a condition for the tangent component of the fluid velocity to account
for slip over the porous interface. We assume a Beavers and Joseph condition as done by Shipley &
Chapman (2010); Penta et al. (2015), i.e.

Vi

u -t=—7[(n-V)uv]-r on T, (2.12)

v

where ¢ is a non-dimensional parameter and t denotes both of the unit vectors tangent to the vessels’
walls. The parameter £ is the tissue permeability, which is related to the hydraulic conductivity « by the
following relationship

K= —. (2.13)

The particles’ flux is assumed to be continuous and proportional to the particles’ concentration
difference between the vessels and tumour:

(c,u,—D,Vc) -n=(cu,—DVc) -n=p(,—c) on T, (2.14)

where p is the diffusive membrane permeability. In this work, transvascular advection across the
vessels’ membrane, as investigated for instance by Mascheroni & Penta (2017), is neglected for the
sake of simplicity, although the theoretical derivation that follows could be readily extended to such
contributions.

The heat flux is likewise expressed in terms of the temperature difference between the two domains
£2, and £2, as follows

T, K, _F
u, — VT,) -n= (T,—T) on T, (2.15)
)/VIOV yvpv
K, I
Tu,— —-VT,) -n=—(T,—-T,) on T, (2.16)
Y10y YiPr

where B is the heat transfer coefficient.

3. Non-dimensional form of the model

In this section we perform a non-dimensional analysis of the system of PDEs (2.2)—(2.10) supplemented
with interface conditions (2.11)—(2.12) and (2.14-2.16) as follows:

Cd? 1 Li
u, = 711;, PZ = CLPQ, V = ZV’, t= @l‘/, c, = CrCQ, TZ = TTZ/ 3.1
The index z = v,t denotes either the vessels or the tumour, while C,, T, C, d and L are the

reference concentration, temperature, pressure gradient, inter-capillary distance and average tumour
size, respectively.
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By dropping the primes for the sake of simplicity of notation, the dimensionless PDEs can be written
as:

e’Vlu, =VP, in £, (3.2)
Vou, =0 in £, (3.3)
u, =—kVP, in £ (3.4)
Vou, =0 in £ (3.5)
dc, = .
m +V.(cu,—DVec)=0 in £, (3.6)
ac, = .
m +V.-(cu,—DV¢c,)=~-T¢c, in £, 3.7
aT, - _ .
57 +V. (Tvuv - KVVTV) =a,c, in £, (3.8)
aT, = _ .
o +V. (Ttut - KIVT,) =ac, in $2, (3.9
with boundary conditions:
u, - -1=—¢p[m-Viul-t on I' (3.10)
u,-n=¢L(P,—P) on I (3.11)
u,-n=¢L(P,—P) on I (3.12)
(c,u,—D,Vec)) -n=¢p(c,—c) on I (3.13)
(cu,—D,Ve,) -n=¢p(c,—c) on I (3.14)
(Tyu,— K, VT,) - n=¢B,(T,—T,) on I (3.15)
(T, — K VT,) n=¢B,(T,—T,) on T, (3.16)
where the primes have been dropped for the sake of simplicity.
The non-dimensional numbers are defined as:
_ LI K L A
L=-2 , ,;:ﬂ, (Z,:ﬁ’i,:lﬂ’ :_“, (3.17)
&3 d? 10 Cd3 LCd?
C.L C.L - L - L
aC.Lp __aClLp BLu _ BLp (3.18)

o, = >, o, = —— 5 = > ﬂ - .
Y py, TCd? " py, TCd> " oy Cd? " p,y,Cd3

Here, « is the non-dimensional hydraulic conductivity. The coefficients 7~ and & are non-dimensional
uptake rate and absorption rate. The numbers L, p, 8 and ¢ are the non-dimensional vessels’ hydraulic
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and diffusive permeabilities, heat transfer and Beavers and Joseph coefficients, respectively. The non-
dimensional diffusivities of the particles in the vessels and the tumour are the reciprocal of their
corresponding Peclet’s numbers, i.e.

- 1
D, . = , (3.19)
P €t
where
LCd? LCd?
Pe, = , Pe, = . (3.20)
D, u D,
The non-dimensional thermal conductivities are given by
- K
K vl (3.21)

M Py LCd

The ¢ scaling appearing on the right hand side of interface conditions equations (3.11-3.16) is the
appropriate one to ensure that blood, drug and heat fluxes inside the tumour stays finite in the limit
& — 0, as observed by Penta et al. (2015). Furthermore, we assume that the parameters appearing in
equations (3.17-3.21) are finite in the limit as ¢ approaches zero. This is done consistently with the
approach carried out by Penta ef al. (2015) and ensures that both drug and thermal diffusivities, which
are well known to play a crucial role in the nanoparticles’ dynamics, are captured at leading order. There
exist different scaling choices in the literature, see, e.g. the work by Shipley & Chapman (2010), where
the authors perform the upscaling of the equations describing fluid and drug transport in vascularised
tumours and their choice concerning distinguished limits of the Peclet’s numbers results in a suite of
reaction—advection models.

4. The asymptotic homogenisation method

The asymptotic homogenisation method is an upscaling strategy that provides a macro-scale description
of a given physical system informed by the microstructure. It has been successfully applied to a large
variety of real-world scenarios including previous investigations related to fluid and drug transport in
biological tissues and vascularised tumours, as done, e.g. by Shipley & Chapman (2010); Penta et al.
(2014, 2015); Penta & Ambrosi (2015); O’Dea et al. (2015); Mascheroni & Penta (2017); Penta &
Merodio (2017); Dalwadi & King (2020).

In our model, the application of the multi-scale method is motivated by large difference in sizes
between the inter-vessels distance and the tumour radius, as assumed by Shipley & Chapman (2010);
Penta et al. (2015). In particular, we assume that these two scales are well separated, so that the small
parameter ¢ defined in equation (2.1) is much smaller than 1. Therefore, we can define two formally
independent variables y (the micro-scale) and x (the macro-scale) related by:

X
y=-
I3
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Following the above-mentioned previous works, we enforce periodicity with respect to the micro-
scale variable y, and we assume that every unknown field can be represented in power series of ¢ as:

oo
v ) =09y ) =D v0xy. e =00y +evVxy. )+ VP xy. D+ L @D
=0

where v collectively represents any variable described in our model namely P, c,, u, or T,, (with
z=,1).
The differential operators transform according to the chain rule:

1 . 2 1 2 2
V —> Vx+gvy, Ve — €—2Vy+gvyvx+vx (42)

We equate the same power of &/, (I = 0, 1,2,...) to find suitable differential equations in order to close
the problem for the leading order variables P,(,O), Pt(o), u&‘”, u§°>, cl(,o), c§°), Tﬁo) and Tt0 . As we would
like to obtain a system defined on the macro-scale only, for fields that retain a dependence on the
micro-scale variable y, we can integrate over the periodic cell. From now on, since we are assuming
micro-scale periodicity, £2, and §2, represent the vessels and interstitium cell portions, respectively, and
the micro-scale cell average is defined by:

1
|2

(v), =

/ v(x,y,)dy, z=t,v, 4.3)
e,

where |§2 | and |£2,| are the vessels and interstitial cell volumes’ portions. In particular, we assume that
all the fields v, [ = 0, 1, ... are y-periodic.
The cell volume fraction |£2,[(x), |£2,|(x), and the surface area of the interface S(x) are defined by,

S(x) = ds.,
x) /F '

192,,1(x) = / av,.
-Qv,t

In our case we enforce macroscopic uniformity such that S, [£2,],|£2,| are constant. Analyses of non-
macroscopically uniform structures are beyond the scope of this work; however, they could be relevant
in several contexts and alternative approaches to deal with such heterogeneities can be found in the
works by Penta et al. (2014, 2015); Dalwadi & King (2020), and the references therein.

5. The macro-scale model obtained via asymptotic homogenisation

By applying the asymptotic homogenisation steps described in the previous section to the system of
equations 3.23.9 with boundary condition (3.11)—(3.16) we obtain the macro-scale differential equations
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for the zero-th order pressures, velocities, concentrations and temperatures P(O) P(O) (u (O)) (u (0))V,
(0) cio), T(O) and T(O) These can be summarized as follows, while for the full derivation of the model,
Wthh is carried out by generalizing the methodology carried by Penta er al. (2015) to heat transport

equations with a concentration-dependent source, the reader can refer to Appendices A and B.

0 0
@), = -Y,v.P” 51
Oy _ _zy v pO D
(u "), = —kY,V,.P;
L(P" P
v .(vago))zg
X voXx |-Qv| (5 2)
7 (pO) _p(0) .
oy v p© L(p" )
Ve (RY, 9 P0) = s
acv + v, ( )(u(°)> Fv Cg))) + S5 (630) _ CZ(O)) 0
vV 12,1 (5.3)
3 o ©),..(0 0 _( (0 0 0 :
4V, (), ~Fve®) 4 35 (60— o) =~
() 0 0 0 3 0 0 0
54

BT(O) 0),..(0 0 = 0 0 0
+V, (Tt( )<u§ )>r - NthTt( )) + %ﬁr (Tt( ) — T\g )) atct( ),

where Y, (x), kY,(x), F,(x), F,(x), N,(x), N,(x) are effective hydraulic, diffusion and thermal
conductivity tensors in the vessels’ and interstitial compartments, respectively. Here, |§2 | denotes the
vessel volume, |£2,] is the interstitial volume and S is the vessels” wall surface.

The system of equations (5.2) describes transport in a porous medium with mass transfer between
compartments. The leakage of the blood across the vessels is reflected in the mass exchange between
the two compartments, which is proportional to the difference between the leading order pressures.

The particles’ transport in the vessels’ and interstitial compartments depends on the fluid flow and
it is represented by the system of coupled advection—diffusion-reaction equations (5.3).

Similarly, the system of coupled advection—diffusion—reaction equations in (5.4) describes the heat
transport at the macro-scale and the temperatures’ profiles depend on both fluid and particles’ transport.

Moreover, the macro-scale coefficients, namely hydraulic conductivity tensors, diffusion tensors and
thermal conductivity tensors, can be determined by solving the cell problems.

The hydraulic conductivities Y, and the auxiliary tensor Y, are defined as

1
Y =W = Wdy, 5.5
, = (W), Iﬂvl/szv y (5.5)
Y, =1 : (v,r)'d (5.6)
e e — r .
’ 120 S,
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where the tensor W and vector r are satisfied the cell problems:
VWi =vm-1 in

v
Vv, W=0 in g,
Wi-n=0 on I
W'z = —g[(V,Whn]t on T,
and,
Vf,r =0 in £
(Vyr) ‘n,=n, on I,

where

and
F, =D,d — ((V,b)),),
while the auxiliary variables a and b satisfy the cell problems:
Via=0 in Q
y v
(Vya)n =n on I
2 .
Vyb =0 in £
(Vyb)n =n on TI.
The thermal conductivities N, and N, are defined as:
N, =K,d - (V"))

N, =K, - ((V, ")),

343

(5.7)

(5.8)

(5.9)

(5.10)

(5.1

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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with
Vig=0 in £, (5.22)
(Vyg)n =n on I (5.23)
Vie=0 in £ (5.24)
(Vien=mn on TI. (5.25)

For instance, the cell problems related to interstitial fluid flow, drug transport and heat transport are
to be closed by a further condition for uniqueness to be achieved (e.g. by assuming the null cell average
of the auxiliary variables in the cell), as illustrated by Cioranescu & Donato (1999); Penta et al. (2015).

6. The effective coefficients and micro-scale cell problems

In order to close the system of PDEs at the macro-scale, we need to compute the effective coefficients
by solving appropriate cell problems at the micro-scale. The differential problems that are related
to the hydraulic conductivity tensors are discussed by Penta & Ambrosi (2015). The authors solved
the differential problems numerically and investigated the influence of the vessels’ tortuosity on the
hydraulic conductivity tensors. Mascheroni & Penta (2017) extended the analysis carried out by Penta
& Ambrosi (2015) to compute the effective diffusion coefficients by solving the cell problems related
to drug transport, i.e. finding the solution for the auxiliary variables that are called a, and b in the
present manuscript, cf. (5.16)—(5.17), and (5.18)—(5.19). They also varied the geometrical tortuosity and
found its impact on the tensors F,, and F,. Changing the vessels’ shape or tortuosity implies changes in
the interstitial and vessels’ volumes. Both the vessels’ hydraulic conductivity and particles’ diffusivity
are affected by the vessels’ tortuosity. In particular, Penta & Ambrosi (2015) show that the hydraulic
conductivity exhibits a nonlinear decreasing profile at increasing tortuosity, while Mascheroni & Penta
(2017) show that also diffusion decreases as tortuosity increases, although to a lesser extent. In contrast,
the interstitial coefficients are not significantly affected by micro-scale changes in the geometry under
consideration. Penta & Ambrosi (2015) solved the problem that corresponds to those related to the
interstitial fluid, drug and thermal auxiliary variables r, b and e in our work, i.e. (5.12), (5.18)—(5.19)
and (5.24)—(5.25), respectively. In particular, these latter problems (5.11)—(5.12), (5.18)—(5.19) and
(5.24)—(5.25) are equivalent, so the auxiliary variables r, b and e solve the same problem and

V,r=Vyb = Ve 6.1)

Penta & Ambrosi (2015) concluded that as long as the vessels’ volume fraction is much smaller than
the interstitial one, the influence of the micro-scale on the interstitial coefficients is negligible, i.e. they
observed that

(98], = (V,b], = (%,¢], ~ 0. ©2)
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As such, from now on we focus on the micro-scale cell problems in the vessels’ compartments and
account for (6.2), so that, by recalling the definitions (5.6), (5.15) and (5.21), we can assume

Y,=1; F,=Dl; N,=K,|L (6.3)
By following Penta & Ambrosi (2015); Mascheroni & Penta (2017), we enforce invariance with
respect to the three orthogonal axes so that the auxiliary tensors in the vessels W, F , N, are proportional

to the identity tensor.
In particular, for the diffusivity F, and thermal conductivity N,,, we have:

F,=D,J, N, =N,

v v

D,=D (1— day )—D (1— day )—D (1— day )
v Fvy (ayl>v - v <8y2)v - vy (ay3>v >

~ - Bgl = 3g2 = 8g3
No=k (1= Y=k (1-22y )=k (1- (283 ).
v v ( <3y1 )V) v ( <8y2)v v (ay3 v

where we can further notice that a and g are actually the solution to the exact same cell problem (5.16—
5.17) or equivalently (5.22-5.23). This leads to the solution of a standard Laplace problem, which reads,
e.g. for the component g;:

such that:

Vg, =0 in 2 (6.4)

v
Vg, -n=n; on I (6.5)
supplemented by a further condition to ensure uniqueness, e.g.

(1), =0 in £,
The analysis that follows is carried out by varying the tortuosity of the microvessels according to Penta
& Ambrosi (2015). In particular, the center line of every vessel is defined as:

f(s) = AsinQrws/l),

where A is the amplitude, w is the frequency, s is the local parametrization along the branch and / is
branch length and we have 0 < s < . The tumour interstitium is the domain that is complementary to
vessels’ compartment in the cubic cell.

We exploit the solutions of the cell problem 6.4-6.5, which is solved by Mascheroni & Penta (2017),
to investigate the role of tortuosity on the homogenised thermal conductivity ]VV by varying the amplitude
and spatial frequency w. The profile of the relative thermal conductivity (and diffusivity)

- .- da,
D,/D,=N,/K,=1—(—

a0y

o8

—1- ,
h (3)’1 Y

(6.6)

which is based on the results reported by Mascheroni & Penta (2017), is shown in Fig. 2.
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Fi1G. 2. Ratio between the homogenised and base vessels’ diffusive conductivities values.

7. The mathematical model for a spherical tumour

‘We assume that the vascularised tumour can be represented in spherical coordinates with radius R. Also,
we presume that the symmetric tumour is isolated and it interacts with surrounding environment through
the vessels. Assuming radial symmetry, the model reads as follows:

e 0, © = 9cl 0 0 .
r +ri2§—r(r2(c£)(u5))v—Dvg ))+|Ql‘p(cé) cﬁ))zo in $2,

(7.1)
i 10 (2 (70,0 AT 2 (7O _ 7O _ 5 0
PP +,—zm(” (Tv (uy"), Nv e )) ( —T, )=avcv in £,
ac® 0), (0 —a“’) _( (© 0 0 .
£k (2 (000 -05)) + i (@ - 0) =7 in g
(7.2)

1”1 (210, 0 1" © (0 o .
St |7\ ) — K, ar +|.Q|/3t(T - Ty ) ae,” in $2,

where 0 < r < Rand 0 < ¢ < 7, where .7 is the time interval under investigation.

The macro-scale system describing the fluid transport (5.1-5.2) was solved analytically when
accounting for spherical symmetry by Penta & Ambrosi (2015). In this case, the system to be solved
reads (neglecting from now on the labelling indicating the leading order character of every field () for
the sake of simplicity of notation):

d? .
—ﬁ(er) =M,(P,—P,) in £ (7.3)

d? ,
—d?(rPt) =-M/(P,—P) in £ (7.4)
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dpP, .
u,(ry =—H, o in £, (7.5)
- dP,
u,(r) = _HIW in £, (7.6)
dp dp
d_rv|r=0 = d_rt|r=0 =0 (7.7)
Pl,_g=P>0, P|_p=0. (7.8)

The above system of equation was solved by Penta & Ambrosi (2015) by accounting for boundary
conditions that are consistent with Jain et al. (2007) and the references therein, i.e. those for an isolated
tumour with fluid flow driven by the difference between the vascular and the interstitial pressures (the
vascular pressure is actually considered constant in Jain e al. (2007) and the references therein). In
the above, H, is the vessels’ hydraulic conductivity parameter, which, according to Penta & Ambrosi
(2015), ranges from 2.20 - 10~ for a regular microvasculature to 4.89 - 10~ for the most tortuous
scenario, and satisfies:

Y,=H,I, H,= W), =Wy, =(Ws),, (7.9)

v v

where Y, = (W), as derived in Appendix A.
The parameter IEIt = KH,, where

Y, =HlI, H =), =Y = Yizzh (7.10)

and H, = 1 in our case by means of (6.2).
The solutions of the system (7.3)—(7.8) derived by Penta & Ambrosi (2015) are summarized below.

1 M, sinh(ar)
Po=— M, + ), (7.11)
M, + M, 7sinh(a)
p_ M, 1 sinh(ar) (7.12)
M, + M, #sinh(@) /)’ '

where 7 = r/R (Relative radius position), and

& = RJ/(M, + M), (7.13)

v

with
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7.1 Initial and boundary conditions

We assume that no particle is present in the whole system at ¢+ = 0. Also, both the drug and the heat
fluxes must vanish in the tumour centre as a consequence of the radial symmetry assumption. We assume
a vessels’ bolus injection with clearance time ¢ at the boundary of the macro-scale domain, which
means that the concentration of the particles declines exponentially due to body elimination effects in
the plasma, as shown by Chou ez al. (2013). We also assume the continuity of particles’ concentration
at the boundary of the interstitial region. The initial temperatures are set to be the standard vessels’
temperature 310.15K. Following the approach by Nabil & Zunino (2016), we impose Robin condition
on the boundary of the tumour interstitium to account for the heat transfer between the tumour and the
vessels’ mediated by intermediate layers of tissue (Nabil & Zunino, 2016; Cervadoro et al., 2013; Saeedi
et al., 2017; Kaddi et al., 2013). The initial and boundary conditions can be summarized as follows

Cili=o = Cyli=o =0

r 0cy N Jc
(e, =D, 54)|, o = (e, = D,52) |, =0 (7.14)
Cv r=R = e—t/g’ Ct|r=R = Cv’
and,
Tli—o =Tili=o =1
AL o 0T,
v T, =8| = (T, - k5| =o. (7.15)
g T _
Tl—g =1, (u, T, — K, %7) =BT =T

The finite element software Comsol Multiphysics is used to solve the model and the values of the
parameters are provided in Table 1.

We have used the finite element commercial software COMSOL Multiphysics, version 4.3a,
and both the drug and the heat transport systems (7.1)—(7.2) have been implemented by means of
the convection—diffusion module in coefficient form equipped with boundary and initial conditions
(7.14)—(7.15) and parameters taken from Table 1. The spatial discretization is carried out by means
of P2 elements, while for the discretization in time an implicit backward differentiation formula method
is embraced, similarly to Mascheroni & Penta (2017). Although the system is solved in non-dimensional
form, the temperatures and the absorption rate are shown in dimensional form in the plots to foster the
Reader’s clarity in terms of comparison against the previous literature.

8. Results and discussion

Mascheroni & Penta (2017) studied the macromolecules distribution in both the vessels and the
interstitial compartment using the advection—diffusion-reaction equations derived by Penta et al. (2015).
The reaction terms are related to the uptake of anti-cancer agents, as well as additional contributions due
to the upscaling of transvascular diffusion of particles. The authors presented the result for a spherical
tumour, and they discussed the impact of tortuosity on drug transport.

In the present work, we extend the works by Penta er al. (2015); Mascheroni & Penta (2017) to
heat transport and solve the resulting systems of PDEs to obtain the temperature maps that are driven
by nanoparticles’ transport in the context of cancer hyperthermia. Although also the drug transport
analysis carried out here differs from the one by Mascheroni & Penta (2017) in terms of the choice of
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TABLE 1  List of parameters and their values
Symbols Parameter Value Unite Reference
w Blood viscosity 4x1073 Pa-s Nabil & Zunino (2016)
L, Vessels’ permeability 1.78x 107" m/(Pa-s)  Mascheroni & Penta
(2017)
K Tumour hydraulic conductivity ~ 2.1 x 10713 m?/(Pa-s) Mascheroni & Penta
(2017)
D, Diffusivity of the nanoparticles 33 x 10710 m?/s Mascheroni & Penta
in the capillaries (2017)
D, Diffusivity of the nanoparticles 1.0x 1071 m?/s Mascheroni & Penta
in the interstitium (2017)
K, Thermal conductivity of the 0.52 W/(m-K) Tang et al (2018)
tumour
K, Thermal conductivity of the 0.51 W/(m-K) Tangetal (2018)
vessels
B Heat transfer coefficient 20 w/ (m?-K) Nabil & Zunino (2016)
A Uptake rate in the tumour 1.07x 10711 51 Mascheroni & Penta
(2017)
p Diffusive permeability of the 1.7 x 1077 m/s Mascheroni & Penta
membrane (2017)
d Reference micro-scale 40 x 107 m Mascheroni & Penta
(2017)
L Reference macro-scale 1.0x1072 m Mascheroni & Penta
(2017)
C Reference pressure gradient 5 x 102 Pa/m Mascheroni & Penta
(2017)
S Reference plasma clearance time 432 s Mascheroni & Penta
(2017)
o Absorption rate 6 x 10° W/Kg Cervadoro et al. (2013)
7 Tissue’s specific heat 3470 J/(Kg-K) Nabil & Zunino (2016)
o Tissue’s density 1060 Kg/m? Nabil & Zunino (2016)
Yy Vessels’ specific heat 3617 J/(Kg-K) Miaskowski & Sawicki
(2013)
o, Vessels’ density 1050 Kg/m? Miaskowski & Sawicki
(2013)
C, Reference concentration 100 mg/ml De la Presa et al. (2012)
T Reference blood temperature 310.15 K

parameters (which are related to nanoparticles and macromolecules, respectively), as well as macro-
scale boundary conditions (we assume continuity of concentrations at the tumour boundary as done
by Penta & Ambrosi (2015) here, while zero diffusive interstitial drug flux is assumed by Mascheroni
& Penta (2017)), a qualitative comparison concerning the drug transport problem is still possible, and
provides a benchmark supporting the reliability of the results presented here.

We commence by first presenting our results concerning the solution of the drug transport problem
and then show the results concerning temperatures maps against the relative radial position at varying
microvessels’ tortuosity and absorption rate.
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FiG. 4. Vessels (a) and interstitial (b) particles distribution vs tumour radius—Ilow uptake rate case.

The main results show that geometrical tortuosity can significantly impair heat transport within the
tumour and that a higher magnetic field can be required to reach a temperature that is sufficiently high
to kill tumour cells by cancer hyperthermia. We provide a detailed and more quantitative description of
the results below.

8.1 Particle transport

The results displayed in Fig. 3 and Fig. 4 are presented in terms of the leading order concentrations in
the tumour and the vessels against the non-dimensional radius within a chosen period of time of 24
hours and 96 hours, respectively.

The solution clearly shows that the nanoparticles manage to reach the tumour center and both
concentration profiles are very similar at leading order. This is due to the particles’ exchange between the
two compartments through the vessels’ wall combined with continuity of concentrations on the tumour
boundary. Due to the assumption of drug delivered intravascularly via a bolus injection on the boundary,
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FIG. 5. Vessels (a) and interstitial (b) particles distribution vs tumour radius—high uptake rate case.

the particles’ concentration decreases steadily after 64 (432) at r = R and reaches zero after two days
which cause the over all decline on the concentration. However, a fraction of the initial concentration is
still able to reach the tumour centre by the end of the time interval under investigation. In the period of
time (24h — 72h), the particles’ concentration in the center increases from 1% to approximately 7% of
the initial concentration. After that, the concentration in the center starts to decrease slightly, i.e. in the
period (72h — 96h). In addition, the concentration in the past two days reaches a plateau when moving
towards the center.

Nabil & Zunino (2016) presented their result in a cubic symmetric setting and they found that the
particles’ concentration decreases with time. Moreover, the concentration of nanoparticles in the vessels
becomes almost uniform at the end of the circulation time they investigate, which is 48 hours.

Nanoparticles and in general drugs are eventually metabolized by tissue. This is done at a specific
rate, also referred to as the uptake rate, which depends on the properties of the tissue and drugs at hand, as
discussed by Tchoryk et al. (2019). Mascheroni & Penta (2017) compared two specific macromolecules
characterized by different uptake rates, with order of magnitudes varying from 10~!! s=! to 107> 571,
as also mentioned by Weinberg ez al. (2007). In Fig. 5 we show the influence of high tissue uptake rate
on the particle distribution in vascularised tumours, and we then increase the value of the uptake rate
from 1.07 - 107! s~ (see Table 1) to 107> s~ .

The concentrations in both compartments are decreasing and approximately approaching zero at the
center in all periods of time. High uptake rate leads to fast washing out the particles and few of them can
reach the center of the tumour. The particles in this case are metabolized very fast by the tumour before
they are transported into the tumor center.

The concentrations profiles are qualitatively in agreement with Mascheroni & Penta (2017) and this
is shown for the case of the most tortuous vessels’ network considered by Penta & Ambrosi (2015) and
Mascheroni & Penta (2017),i.e. @ = 3 and A = r,, see also Table 2 and Fig. 8.

8.2 Heat transport

We now present the major results obtained by solving the full system of macro-scale coupled
PDEs (7.1)—(7.2) by finite elements. The tortuosity of the microstructure is varied according to the
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TABLE 2 The computational result for the non-dimensional vessels’ thermal conductivity with different

T. AL SARIRI AND R. PENTA

vessels tortuosity from the analysis by Penta & Ambrosi (2015) and Mascheroni & Penta (2017)

a ad

w A 192, 122, S H, I— (58, =1-(5"),

0 0 8.1-1072 6.149 2.30 2.20- 1074 3.6-107!

1 r, 7.6-1072 6.154 2.32 1.69- 1074 3.19- 107!

2 r, 6.9 1072 6.162 2.57 6.24- 1073 2.13-107!

3 0.75r. 6.8-1072 6.162 2.82 2.02- 1073 1.59 - 107!

3 r, 6.5-1072 6.165 3.25 4.89-107° 0.9-107!
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FiG. 6. Temperature maps for the first 24 h in both the vessels (a) and the interstitium (b) vs radius—low uptake rate.

values reported by Penta & Ambrosi (2015) and Mascheroni & Penta (2017) corresponding to five
representative geometries, and the two extreme cases are shown in Fig. 8. We have observed that the
temperature increases and reaches its maximum after one day, then starts to decline and the maximum
temperature varies with vessels tortuosity. As we have also remarked in the Introduction, increasing the
tortuosity reduces fluid and particles convection within the tumour, as shown by Penta & Ambrosi (2015)
and Mascheroni & Penta (2017). As such, this leads in turn to impaired heat convection driving a decline
in temperatures. Therefore, the more regular the vessels, the lower magnetic field intensity (which is here
encoded in the absorption rate coefficient) is needed to reach the desired target temperature.

The plots showing the vessels’ and interstitial temperature maps are shown in Figs 6 and 7 at
different times, for the first 24h and from day 1 (24h) to day 4 (96h), respectively. These results are
related to the most tortuous (i.e. corresponding to the case w = 3, A = r, reported in Table 2) vessels’
microvasculature considered by Penta & Ambrosi (2015), see Fig. 8.

Figure 6 clearly shows that the temperature increases with time as it reaches its maximum after 24 h.
It then starts to decline steadily with time, because the concentration in the blood decreases exponentially
according to the bolus injection, cf. initial condition (7.14).

Also, for all period of times under investigation, the temperature in the center is higher than the
boundary, as the particles are transported towards the center. This can be explained by the fact that heat
trasport is driven by a significant diffusive component as opposed to drug transport, which is mostly
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The role of the microvascular tortuosity in tumor transport phenomena, Journal of Theoretical Biology, 364, page 86, Fig. 4 (a)
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driven by convection instead (cf. thermal conductivities K, or K, vs the particles diffusion coefficients
D, or D, in Table 1. In fact, the non-dimensional diffusion coefficients as defined in (3.19) are of order
~ 10™* to 10 as opposed to the non-dimensional thermal conductivities that are of the order of ~ 10~
to unity). This explains the difference between the drug concentration and temperature profiles, despite
both phenomena being governed by formally a similar set of advection—diffusion—reaction equations. In
fact, the role of advection is more prominent in driving drug transport rather than heat transport, as it
can also be observed by the more localized concentration peaks (cf. Fig. 4), as opposed to the smoother
and more uniform heat transport process, which is reflected in the temperature profiles as per Figs 6
and 7. At 24 h the temperature in the center is approximately 313K (39.8 °C) where in the boundary it
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reaches the blood temperature (310.15K), which is prescribed via the boundary condition. This is also in
agreement with temperature profile previously reported in other works that address this problem using
different modelling frameworks such as those by Bagaria & Johnson (2005); Golneshan & Lahonian
(2011); Dutz & Hergt (2014).

The distribution of heat in the tumour is in agreement with Nabil & Zunino (2016) as they reported
that the temperature in the center of the cube is higher than in the edges. However, Nabil & Zunino
(2016) found that the temperature increases with time (48 h). This discrepancy is related to our different
set of boundary conditions. In our case we have an exponential decrease in the particles’ concentration,
which is directly proportional to the heat source related to the magnetic absorption rate, thus eventually
causing a temperature decline over time.

8.3 The influence of absorption rate and vessels’ tortuosity on the heat distribution

The previous analyses in section 8.2 are related to tumour microvessels, which are most tortuous and
leaking vessels with (w = 3,A = r) as opposed to the healthy ones (w = 0), see e.g. the works by Penta
& Ambrosi (2015); Shipley & Chapman (2010) and Carmeliet & Jain (2000).

The structure of the vessels and their tortuosities are not uniform and they vary from one point to
another in the tumour mass, as described by Penta ef al. (2015). Penta & Ambrosi (2015); Mascheroni
& Penta (2017) discussed the impact of the vessels’ geometry on fluid and drug transport, respectively.
They deduced that the vessels’ tortuosity leads to a relevant decrease in both hydraulic and diffusivity
properties of the vessels thus impairing fluid and drug convection within the tumour. Here, we perform a
parametric analysis by varying the tortuosity of the vessels’ micro-structure and capture its effect on the
temperature maps. We make use of the setting that has been exploited by Penta et al. (2015). The data
associated with the various parameters involved are reported by Penta & Ambrosi (2015); Mascheroni &
Penta (2017). The results show that heat transport is impaired at increasing vessels’ tortuosity from the
most regular vessels characterized by w = 0 (representing healthy vessels) to the most tortuous vessels
(representing tumour vessels at an advanced stage) with w = 3,A = r. The temperature varies between
approximately 39.8 °C and 40.9 °C as we improve the regularity of the vessels. Also, we have observed
(see Fig. 9) that the temperature decreases more remarkably from the vasculature corresponding to @ =
3,A = 0.75r and the most tortuous one (w = 3,A = r). This is ultimately related to impaired drug and
fluid transport, and the latter (especially fluid convection) decreases sharply when the micro-scale fluid
profile is no longer parabolic, as shown in Fig. 8 and discussed by Penta & Ambrosi (2015).

As the particles are transported smoothly in the healthy vessels and the concentration is high even in
the second day, the temperature reaches its maximum 41.5 °C after two days, see Fig. 10. The difference
in maximum temperatures between the regular vessels and most tortuous ones is approximately 1.5
degrees.

The temperatures achieved with different tortuosities are very close to the medical and experimental
results that show that 42 °C is the appropriate temperature for hyperthermia treatment and 43 °C-44 °C
for magnetic hyperthermia treatment, see also the works by Laurent ef al. (2011); Silva et al. (2011);
Ling-Yun et al. (2013).

Furthermore, the absorption rate (which is proportional to the magnetic field intensity) plays
important role on the heat distribution as it mediates the temperature increase that is caused by the
nanoparticles’ concentration. Therefore, we have varied the value of absorption rate « at increasing
tortuosity to detect the impact of these variations on temperature maps. The absorption rate of magnetic
nanoparticles is proportional to the square of the magnetic field intensity, as well as its frequency. It
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also varies with respect to the nanoparticles size and material, and a range of variation of four orders of
magnitude, i.e. from 10° W/Kg to 107 W/Kg, has been reported by Cervadoro et al. (2013).

We have observed a linear relationship between the absorption rate and the heat distribution for each
geometry under investigation, see Fig. 11.

Compared to the values of hydraulic conductivity, diffusivity and thermal conductivities for different
vessels tortuosity, we observed that the temperature increases by 6% in the most regular vessels when the
absorption rate increases by one order of magnitude. However, the temperature increases by 4.6% for the
most tortuous vessels when the same change of absorption rate is applied. Moreover, when the value of
the absorption rate is 6 - 10°W/Kg, the temperature difference between the tortuous and regular vessels
is almost one degree, while the difference is approximately two degrees when the value of absorption
rate is 107 W /kg.

The absorption rate of nanoparticles can be varied in practice during experiments in order to have
the suitable temperature that is required to kill the cancer cells.
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9. Conclusion

‘We have derived a new mathematical model which describes the heat transport occurring in vascularised
tumours due to IONPs delivered intravascularly, as per current cancer hyperthermia protocols.

We have obtained the results by means of the asymptotic homogenisation technique in terms of a
tissue-scale macroscopic description of the coupling between fluid, particles and heat transport, as well
as their exchange across the vessels’ membranes.

The new coupled system comprises six PDEs describing both interstitial and vascular pressures,
concentrations of nanoparticles, and temperatures.

A double Darcy’s system describes fluid flow, while the concentration of nanoparticles and heat
transport are both governed by double advection—diffusion—reaction system of PDEs.

The impact of the micro-structure is reflected in the effective tensors of coefficients representing the
hydraulic and thermal conductivities, as well as particles’ diffusion. These effective coefficients can be
computed by solving periodic cell problems where the geometry of the micro-vessels is clearly resolved.
The role of transvascular mass, heat and particles transport and uptake appears in suitable macro-scale
exchange terms that provide the coupling between the governing equations in the vessels and the tumour.
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We have solved the full model by means of finite elements, and we have observed that vessels’
tortuosity can impair heat transport within the tumour mass, so that regularization of the micro-vessels
can produce a significant (1-2 degrees) increase in the maximum temperature that is reached in the
tumour center under the same therapeutic conditions (which are here reflected in the tumour absorption
rate, which is in turn related to the magnetic field and nanoparticles’ properties). Furthermore, we have
investigated the impact of a change in the absorption rate for different micro-vessels’ geometries, and
this analysis can pave the way for informed cancer hyperthermia parameters depending on the geometry
of the microvessels, which is ultimately related to the tumour stage. For example, the heat distribution
with absorption rate 107 fluctuates between approximately 43.5°C and 41.5 °C, which is aligned with
the required temperature to destroy cancer cells, as mentioned in section 8.2.

This analysis is open for improvement and further developments. We have chosen to present
the results by means of a spherical coordinate setting as this has enabled us to deduce the semi-
analytical results that can be readily compared against the current literature. However, our finite element
computational platform can be generalized to generic macro-scale geometries depending on the actual
tumour shape at hand. This work could also be generalized to include nonlinear heat sources and
nonlinear drug uptake, as, given the current scaling assumptions, relevant modifications would only
appear at leading order. Different boundary and initial conditions could also be taken into account
depending on the interplay between the tumour mass and the surrounding and on the clinical injections
conditions at hand. In addition, we have derived our model by considering the same distinguished
limit as in Penta er al. (2015); Mascheroni & Penta (2017) in terms of Peclet numbers and non-
dimensional thermal hydraulic conductivities. Alternative distinguished limits, which would result in
purely convective heat and drug transport contributions at leading order could be considered (see, e.g.
Shipley & Chapman (2010) when these are investigated for macromolecules transport). An interesting
further development of this work also resides in a comprehensive analysis of admissible distinguished
limits that exist for this system, with particular reference to particles’ uptake, and diffusion phenomena
occurring in different regions of the domain under consideration, see, e.g. Dalwadi et al. (2018);
Ptashnyk & Roose (2010), respectively. Furthermore, we did not consider the adhesion between the
particles and the vessels’ wall, and also inter-particle cohesion, which are e.g. discussed by Decuzzi &
Ferrari (2006); Nabil & Zunino (2016). Whenever the adhesion mechanism is primarily driving heat
transport (i.e. when the nanoparticles’ dimensions prevent them from extravasating into the tumour),
the dynamics of the problem changes, but can be as well investigated by means of upscaling techniques
such as the asymptotic homogenisation. As such, our results can indeed also provide a basis for future
research concerning different transport mechanisms, which will be investigated in future works.

Moreover, in this work, we have defined the transformation of the magnetic field to heat mediated
by the absorption rate. The latter is actually related to the properties of the magnetic field, such as its
intensity and frequency, as well as the shape and dimensions of the injected nanoparticles, as per the
Brownian—Neel relaxation formula (Kaddi et al., 2013; Pankhurst ez al., 2003).

Finally, a natural generalization of this work resides in considering the role of tumour growth and
deformations (see, e.g. the theoretical works by Penta er al. (2014); Penta & Merodio (2017)), and the
corresponding stresses that are due to this interplay, on nanoparticle delivery.
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A. Appendix: the upscaled governing equations for the vessels

The multi-scale differential equations governing vessels fluid flow, particle and heat transport in the
vessels can be obtained from equations 3.23.3, (3.6) and (3.8) with interface conditions (3.11), (3.10),
(3.13) and (3.15). We have, by enforcing equation (4.2) and multiplying each equation by a suitable
power of ¢:

eViul 4262V Vol + Vi = eV PY + VPO in 2, (A.1)
eVeoul? +V o ul? =0 in R, (A.2)
8c58) _ _
2 P +V,- (achf)u‘(f) - 82DVVXC\(}8) - avaycS)) +
v, (8cff)u‘(f) — D,V c® — l_)nyc‘(f)) =0, in @ (A3)
aTe® _ B}

&=+, (270 — 2KV, T — K, V, 7)) +

v, (sT§°>u§8> — ek, VT — i(VVyTv@)) =a,c® in R, (A4)
The interface conditions are:
u® n=el (PSS) _ Pig)) on T (A.5)
u® .t =—¢ [(n- (evx + Vy) ug€>] .t on T (A.6)
(e —eD, V.l — DV, ey - m=e%p(cl — ) on T (A7)
(eTv@)ugS) — eK,V.T® — f(nyTv(S)) ‘n=&, (TV<8> . T,‘”) on T. (A.8)
We now equate the same coefficients for ascending powers of . For ¥ we obtain:

v,PP =0 in £, (A9)
Vooul? =0 in R, (A.10)
u.n=0 on I (A.11)
uw’ . r=—¢gn Vu™l-t on I (A.12)
Vi =0 in @, (A.13)
(vycg‘”) n=0 on I (A.14)
Vit =0 in £, (A.15)

(vyT§°>) n=0 on TI. (A.16)
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(10 + 7Ou® - K, 9,10 - k,V,7) -0 = B, (TV“’) - T,(O)) on

r.
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(A.17)
(A.18)
(A.19)
(A.20)
(A21)
(A.22)
(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

Now, we determine the macro-scale relationships for the leading order velocity and pressure <u§°’ ), and
0) . . S
P, . Equation (A.9) implies:

PO = pPO(x, 7).

(A.29)

This means that the leading order pressure in the vessels is y-constant. Equation (A.17) from the &'
conditions, together with (A.10), (A.11) and (A.12) from the £° conditions, we obtain a Stokes’ type
problem for uﬁo) and Pgl), ie.

v =v, P + v P in @
V,ou) =0 in 2
uf,o) -n=0 on I

u‘(,o) ST=—9 [(n . Vy)uﬁo)] -7 on I.

v
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362 T. AL SARIRI AND R. PENTA

Exploiting linearity, the solutions for uf,o) and Psl) can be formulated in terms of the following ansatz

0 0
u? = —W(x,y)v PY (A.30)
0 =
PV = —m(x,y)V,P? + P(x,1). (A31)
The auxiliary variables W and m are the solution of the Stokes’ cell problem:
VWi =vm-1 in &, (A.32)
Vv, Wh=0 in @, (A.33)
Win=0 on I (A34)
Wiz = —g[(V,Whnlt on T. (A.35)
Integrating (A.30) over £2, leads to the average leading order velocity in the vessels:
W =-Yv PO, (A.36)
Here,
Y, = (W), = Wdy. (A37)
12,1 J,

Equation (A.36) shows that the vessels’ fluid flow obeys the Darcy’s law with hydraulic conductivity
given by relationship (A.37).

In order to find the equation for the leading order pressure leading term Pgo), we take the average of
(A.18) and make use of interface condition (A.19), as well as the divergence theorem with respect to y,
as follows:

(V, - u\(}0)>v + <Vy _u‘(}l)>v =0
1

(V,-ul?), = “12 /Fugl) -ndSs,
v

[
- / LY — P”)ds,.
r

[$2,]
Therefore,
1 _
V. ) =—— / LPO — Py ds,. (A.38)
12,1 Jr
Thus by means of (A.36),
1 _
V. (Y PO)= — / LPO — P”)ds,. (A.39)
12,1 Jr

Equation (A.39) is the macro-scale governing equation for the leading order pressure Pi‘”.

The leading order concentration c§°) can be found by using first equations (A.13) and (A.14), from

which we deduce that the zero-th order concentration in the vessels depends on the macro-scale only,
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HEAT TRANSPORT IN VASCULARISED TUMOUR 363

ie.
0 — O (x, ),

We can formulate an ansatz for the solution cgl) of problem (A.21)—(A.22) by exploiting linearity as
follows

¢V=-a.vc9 420, (A.40)

where a(x,y) is an auxiliary vector and c is an arbitrary y-constant function. The solution (A.40) holds
for true provided that:

Via=0 in R (A.41)

v

(Viam=n on TI. (A.42)

Integrating (A.25) and using the divergence theorem with respect to y, and subsequently making use of
interface condition (A.26) from equating the same power of &2 yields:

ey
at

- - 1 _ 0
+ Vx ’ (C\(10) <u\(10)>v - vaxc\()O) - Dv<vyc\(}l)>v) + ﬁ /FP(C‘()O) - Ct( )) dSy =0,
v

where the additional contribution over the boundary 02, \ I" vanishes due to y-periodicity.
Using the ansatz (A.40), we obtain:

o g (c”@®) —F,v,e?) + L[5 (¢ = c?) as=0 (A43)
8[ X v v v X7V |Qv| rp v t - > .
where
F,=D,d - ((V,"),) (A.44)

is the effective diffusivity tensor in the vessels. Equation (A.43) is an advection—diffusion—reaction
equation for c§°) and it describes the macro-scale drug dynamics in the vessels.

A macro-scale equation for the heat transport in the vessels can be obtained by following the same
steps described above for particle transport. The solution of (A.15) and (A.16) is:

7O = 7O (x,1).

Therefore, TSO) is y-constant.
The solution of the problem obtained by collecting (A.23) and (A.24) from the &! conditions can be
formulated in terms of the following ansatz for Tv(l):

TV = —g. v, TOx, 1 + T(x,1),
where the auxiliary vector g is the solution of the following cell problem

) .
Vig=0 in £, (A.45)

(Vyg)nzn on TI. (A.46)
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364 T. AL SARIRI AND R. PENTA

Integrating (A.27) and exploiting (A.28), and performing the same steps as equations (A.25) and (A.26)
we reach the following macro-scale result

©)
JT 1
(Oya(V)] ) 0 _ 7O — )
- (10 @®) =N, T?) + oih /F (11 =1) ds = &,e?, (A47)
where
N, =K,0—(V,2"),) (A.48)

The differential equation (A.47) is an advection—diffusion—reaction type equation describing the
behavior of the leading order temperature TV(O) at the macro-scale.

B. Appendix: the upscaled governing equations in the tumour interstitium

In order to provide the macro-scale differential equations for fluid flow, particle transport and heat
distribution related to the tumour interstitial compartment, we follow the same steps as in the vessels’
case. The multi-scale equations (3.4), (3.5), (3.7), (3.9), with interface conditions (3.12), (3.14) and
(3.16) can be expressed as:

euf) = —ek VP —kV,PY in £, (B.1)
eV, u” + v, u =0 in £ (B.2)
ut(g) n, = eL (Pﬁs) — Pff)) on T. (B.3)
80(8)
=4V, (82c,(8) © _2p v c® — D,V c@)) +
V- (ect?u = D, V,el? = D9,el) = =21 in @, (B.4)
<€c(8)u§8) D,V —D,vyc,(@)) n=¢ p( ) _ (6)) on T. (B.5)
22 o1,” 27Oy _ 2k v 7O _ kv 7

Y, (2! PRV, — RV, 1) +
( TOu® — ek VT — K,V T(”) =%a,c® in 2, (B.6)
eTOu® — ek, V, 1 — KV, 1) -n, = 625, (Tt(g) - Tv@) on T. (B.7)
Here, n, = —n is the unit vector normal to the interface pointing from the interstitial compartment into

the vessels’ one. Equating the same coefficient of €? we obtain

v, =0 in 2 (B.8)

V,ou’ =0 in £ (B.9)
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ufo)-ntzo on I’

V20 =0 in g
(Vycgo)) n, =0 on I

VTO =0 in R

t

(vny‘)))-n,:o on T
While for &!

u” = kv, P —kv,P) in 2
Veu” +v,u) =0 in £
w n =L(PY - PO) on T
Vzct(()):O in £,
(cht(o)) ‘n, = (Vyct(l)) ‘n, on I’
VIV =0 in R

(VXT,(O))-ntz(VyT,(l))-nt on T

Finally, for €2, we have

©
dc -

TR (%0 = D,v,e” - B,v,e") +
Y, (0 +¢Ouf’ - B,V = B V,el?) = -1 in g2,

( o (0) + C(O) @ D,chfl) - Dlvyc@) -, :[)(cfo) — C\()O)) on I’

o1

040 _ kv 10 _ gy 10
=V, (T — KV, 1" — KV, T )+

v, (10" + 10 — RV - RV, 1) =ac” in 2

y

(10u” + 100 - RV, 1"~ K9, 1) m = 1" = 1) on T

Firstly, we find the macro-scale equation of (u,(O) ), in terms of P,(O). Equation (B.8) leads to:

P = PO x,1).

365

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)
(B.16)
(B.17)
(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)
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Therefore P;O) is y-constant. Substituting (B.15) from the ¢! conditions into (B.9) and (B.10) obtained
from the ¢° conditions yields:

viPD =0 in 2 (B.26)
v,P" n,=-v.P”.n, on T. (B.27)
The solution Pfl) is given by:
Pgl) = —r(x,y) - Vngo) + I:—’,(x, 1), (B.28)
where the auxiliary vector r solves the cell problem
Vir=0 in £, (B.29)
(Vyr) ‘m,=n, on I. (B.30)
Applying the average integral over £2, to (B.15) and substituting (B.28), leads to
o, ___k ©) 0) __ K T\ g p©
(w,7), = _m 2, (prt -V (r-Vth ))dy_ _@/Q’ (I_(Vyr) )prt dy
= —kY,v.PY, (B.31)
where
Y,=1—— [ (v,nTdy (B.32)
' 12,1 Jo,

Equation (B.31) shows that the macro-scale fluid flow in the tumor interstitium is also governed by
Darcy’s law.

The macro-scale equation governing the tumour interstitial pressure leading term P? can be found
by taking the average over £2, and applying the divergence theorem to (B.16). Then using (B.17), we
obtain:

L(r— p0)

_ 0
v, (7Y, 9,P0) = o
t

S, (B.33)

where we exploited the fact that both Pt(o) and Pgo) depend on the macro-scale only and S is the micro-
scale surface of the capillaries defined by

S = / ds,. (B.34)
r

Secondly, we find the multi-scale differential equation for particle concentration in the interstitium.
Equations (B.4) and (B.5) are formally identical to (A.3) and (A.7), when the following analogies are
made:

- - ac c
v t _
w—uw, c¢—>¢ D —-D, ——>—+7c¢ I2,]—12] and n—n =-n

dt dt
(B.35)

2202 Jaquieoa G0 uo Jasn Aselqr Alsiaaiun mobsels Aq 26//199/2SE/v/6E/8101e/quiLiewl/Wod dno olwapeoe)/:sdpy WwoJ) papeojumoq



HEAT TRANSPORT IN VASCULARISED TUMOUR 367

The asymptotic homogenization procedures provides tumour interstitial macro-scale differential equa-
tion, which is similar to (A.43);
Bc,(O)
ot

S _
+ 9, (), - Fv,e®) + B (¢ = @) = -1, (B.36)
t

where we have observed that both c$°) and ct(o) depend only on the macro-scale x. Equation (B.36)

represents the macro-scale advection—diffusion—reaction describing interstitial particles’ transport with
effective diffusivity

F,= D,(I - ((Vyb)T)t). (B.37)

The vector b solves the cell problem (A.41) and (A.42) in tumour interstitial domain, which is
Vib=0 in £ (B.38)
(Vyb)n,=n, on TI. (B.39)

Finally, the differential equation for the leading order temperature in the interstitial compartment can be
computed by following the above steps together with the following identifications:

_ oT, oT, _
u—>u, T,—>T, — K — " —af(c), 192, —152,/, and n— n,=—n

v 1A v I ot
(B.40)

Therefore, the multi-scale advection—diffusion-reaction for the leading order temperature in the
interstitial compartment 79 reads

(0)
T, 0,0 0 S = (40 0
Y, (77 @™, =NV, ) + oif (10 = 10) = a,¢”, (B.A1)
t
with
N, =K, —{((V,©)")). (B.42)
The vector e solves the cell problem given by (A.45) and (A.46), but in the interstitial cell portion, i.e.
Vie=0 in £, (B.43)
(Vien, =n, on T. (B.44)
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