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Abstract

We prove that the set of subgroups of the automorphism group of

a two-sided full shift is closed under graph products. We introduce the

notion of an Aithful group action, and show that when A is a finite abelian

group and G is a group of cellular automata whose action is Aithful, the

wreath product A ≀ G embeds in the automorphism group of a full shift.

We show that all free abelian groups and free groups admit Aithful cellular

automata actions. In the one-sided case, we prove variants of these result

with reasonable alphabet blow-ups.

1 Introduction

Groups generated by reversible (two-sided) cellular automata, i.e. subgroups of
automorphism groups of (Z-)full shifts, are an interesting and not very well-
understood class of groups G. It is known [14] that automorphism groups of full
shifts embed in each other, so G does not depend on the alphabet of the full
shift.

For this paper, the most relevant facts known about G are the following:

1. G is closed under countable direct sums and free products, [19]

2. G contains all graph groups, [14]

3. G contains the lamplighter group Z2 ≀ Z, [21]

Some other known facts are that G is commensurability invariant [14, Propo-
sition 3.1], groups in G are residually finite (RF) [5], finitely generated (f.g.)
groups in G have word problem in co-NP and this problem is co-NP-complete
for some f.g. G ∈ G [20], the locally finite (LF) groups in G are exactly the RF
countable ones [14], G has an f.g. subgroup with no free subgroups which is not
virtually solvable (i.e. the Tits alternative fails) [22, 21], f.g. groups in G may
have undecidable torsion problem [21],1, and there is an f.g.-universal f.g. group
in G (an f.g. group which contains a copy of every f.g. group in G) [21].

From these facts, many additional results follow, for instance the closure
properties imply that G contains all finite groups (first proved in [13]), thus the
free product of all finite groups (first proved in [1]), thus Z2 ∗Z2, thus Z, thus all
countable free groups (first proved in [5]) and finitely-generated abelian groups.

1Another proof, obtained earlier, is planned for the journal version of [3].
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Graph groups and commensurability invariance imply that fundamental groups
of 2-manifolds are in G [14]. It also follows that G is not quasi-isometry invariant
since F2 × F2 is quasi-isometric to a non-RF group [7] and is a graph group.

To our knowledge, residual finiteness and the complexity restriction of the
word problem are the only known restrictions for f.g. groups to be in G.

Our aim in this paper is to clarify the situation in the “tame end”2 of the
complexity spectrum of G, by clarifying the three items listed above. First, we
combine the first two items, graph groups and closure under direct and free
products, into a single closure property:

Theorem. The class G is closed under countable graph products.

The finite case of the construction is similar to [19], mixing what was done
in the direct and free product cases. Kim and Roush proved in [14] the cases of
finite graph products where the node groups are finite or infinite cyclic. Some
new technical difficulties arise here, mainly since the individual generators can-
not understand the global picture.

We also generalize the third item, the lamplighter group.

Theorem. If A is a finite abelian group and G ∈ G acts Aithfully on a full shift
by automorphisms, then A ≀G ∈ G.

Here, “Aithfulness” means roughly that the trace subshift (what you can see
at the origin along G-orbits) has no cancellation w.r.t. the group A, although we
allow a bit more freedom than this (see Definition 1). We complement this result
with many examples of groups that act Aithfully by automorphisms, obtaining
for example that the groups A ≀ Zd and A ≀ Fd are in G for any abelian A and
d ∈ N.

While Aithfulness is the precisely the notion needed for wreath products,
in all our concrete examples we deduce Aithfulness from the stronger property
of “strong faithfulness”. This property is implied by having a sunny-side-up
subquotient, and if G is finitely-generated it implies that some point visits some
clopen set just once in a horoball (see Definition 2).

Similar constructions work in the more restricted setting of one-sided auto-
morphism groups, though (at least without modification) we obtain somewhat
weaker statements. See [4] for basic information about these groups. Let G′

n

be the class of subgroups of Aut(ΣN) where |Σ| = n, and let G′
∞ =

⋃
n G

′
n. We

obtain the following results:

Theorem. Any finite graph product of groups in G′
n is in G′

n+1.

Theorem. If A is finite abelian and G ∈ G′
∞ is Aithful, then A ≀G ∈ G′

∞.

Theorem. If A is finite abelian and n ∈ N, then A ≀ Fn, A ≀ Zn ∈ G′
∞.

2“Dynamically”, already f.g. subgroups of F2×F2 can be very wild. For example, they can
have an undecidable conjugacy problem [17, 15] and can have arbitrarily badly distorted sub-
groups [18, 23]. However, both finite graph products and wreath products preserve polynomial-
time decidability of the word problem (for the former, this is clear from the normal form [11]),
which is atypical for groups of cellular automata if P 6= NP. Also, the Tits alternative is
preserved by a large class of graph products [2].
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2 Definitions and conventions

We take 0 ∈ N, Z+ = N \ {0}. Every finite set and group has the discrete
topology, and the function space AB has the compact-open topology, which is
always also the product topology.

Words are 0-indexed and for a word u ∈ Σ∗ write uR for its reverse ui =
u|u|−1−i, write concatenation of words u, v as u ·v or simply uv, write u0 for the
empty word and un+1 = uun. For sets of words, AB = {uv | u ∈ A, v ∈ B} and
An+1 = AAn. Write w∗ for {wn | n ∈ N} and A∗ =

⋃
n∈N

An. A set of words
W ⊂ Σ∗ is mutually unbordered if ∀u, v ∈ W : uw = w′v =⇒ w = w′∨|w| ≥ u.
Write uZ for the configuration x with xi = uj where j ≡ i mod n. For u, v ∈ Σ∗

write

u < v ⇐⇒ ∃j ∈ {0, . . . , |v| − |u|} : ∀i ∈ {0, . . . , |u| − 1} : vj+i = ui.

A (zero-dimensional discrete topological dynamical) G-system is a pair (G,X)
where G is a discrete group, X is a zero-dimensional compact metrizable space,
and G acts on X by continuous maps. We denote the action of g ∈ G on x ∈ X
by just gx. The elements x ∈ X are called points. A factor of a system is
another system (G, Y ) such that there is a continuous surjection f : X → Y
which intertwines the actions as f(gx) = gf(x) for all x ∈ X, g ∈ G, and an iso-
morphism of dynamical systems is a factor map that has a factor map inverse.
A subsystem is a closed G-invariant subset.

A subshift is a subsystem of the full G-shift AG where G acts by gxh =
xhg. Points of subshifts are also called configurations. Subshifts are, up to
isomorphism, the systems where the action is expansive, meaning there exists
ε > 0 such that x 6= y =⇒ ∃g ∈ X : d(gx, gy) > ε. We use these meanings of
“subshift” rather interchangeably. A system is faithful if (∀x ∈ x : gx = x) =⇒
g = e. A subshift X ⊂ ΣG is an SFT if there exists a clopen set C ⊂ ΣG such
that X =

⋂
g∈G gC, and sofic shifts are subshifts which are factors of SFTs. Of

course full shifts are sofic.
The (one-dimensional) full shift is the Z-full shift ΣZ, and for clarity we

write its action as σ(x)i = xi+1. Its shift-commuting continuous self-maps are
known as endomorphisms or cellular automata (CA), and the ones that are
injective (equivalently, have a left and right inverse) are called automorphisms
or reversible cellular automata (RCA).

Reversible cellular automata form a group denoted Aut(ΣZ), and we de-
note by G the set of isomorphism classes of subgroups Aut(ΣZ) (which does
not depend on Σ [14]). We also call groups in G groups of cellular automata.
Sometimes we talk about the natural action of a group G ∈ G, this means we
assume G is represented in some way as a concrete group consisting of cellular
automata on some full shift AZ and the natural action is its defining action on
AZ.

By the Curtis-Hedlund-Lyndon theorem, a cellular automaton f : ΣZ → ΣZ

has a local rule F : Σ2r+1 → Σ such that f(x)i = F (x|{i−r,...,i+r}) for all x ∈ ΣZ.
The minimal radius is the minimal possible r, and for this r there obviously
exist u ∈ Σ2r and a, b ∈ Σ such that either F (au) 6= F (bu) or F (ua) 6= F (ub).

A cellular automaton is one-sided if we can pick F : Σr+1 → Σ such that
f(x)i = F (x|{i,i+1,...,i+r}) for all x ∈ ΣZ. The shift-commuting endomorphisms

of ΣN under the N-action by σ(x)i = xi+1 are in an obvious one-to-one corre-
spondence with one-sided cellular automata on ΣZ, and Aut(ΣN) can be seen as
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the subgroup of Aut(ΣZ) consisting of reversible cellular automata f such that
both f and f−1 are one-sided.

Usually, we define a cellular automaton by explaining what its action is on
a dense set of configurations. This is easier than giving a local rule, because in
the local rule we only see what happens in individual cells, while the behavior
of the group of cells is usually highly coordinated and is really just a coding
(application through a suitable conjugating map) of some natural action. On the
other hand, when the rule is given by describing the action, it is not automatic
that it is shift-commuting (but it is if we only discuss coordinates relatively).
It is also not automatic that it extends to a continuous map, and for this one
should check that it is uniformly continuous. This is discussed in more detail in
[19]. On the third hand, when the rule is given by describing a natural action
directly, reversibity is trivial.

The identity element of an abstract group G is e = eG. Groups act from the
left. Conjugation in a group is gh = h−1gh. Write A ⋐ B for A ⊂ B ∧ |A| <
∞. The free group on n free generators is Fn = 〈g1, g2, · · · , gn〉. The cyclic
group with n elements is Zn, usually written additively. Group elements are
sometimes called cells, especially when i ∈ Z and working with Z-subshifts.
The groups G and H are commensurable if they share a finite index subgroup
(up to isomorphism).

The (restricted) wreath product of groups A and G, which we may assume
disjoint apart from the identity, is the group A ≀G with the presentation

〈A,G | ∀g, h ∈ G : ∀a, b ∈ A : (g 6= h =⇒ [ag, bh] = e)〉

where it is understood that the relations of G and A also hold.
Graph products are defined as follows: Let Γ = (V,E) be a graph, i.e. E ⊂

{{u, v} | u, v ∈ V, u 6= v}, V = {1, 2, ..., n} or V = N, and let G = (G1, ..., Gn)
or G = (Gi)i∈N be groups, which we assume disjoint apart from sharing the

identity element. Then we write G
Γ
for the corresponding graph product

G
Γ
= 〈Gi | ∀{i, j} ∈ E : [Gi, Gj ]〉,

where [Gi, Gj ] = {[a, b] | a ∈ Gi, b ∈ Gj}, where it is understood that the
relations of the groups Gi also hold. We call the groups Gi the node groups.

3 Closure under graph products

Theorem 1. The class G is closed under countable graph products.

Proof. Consider first the case of a finite graph product (G1, G2, . . . , Gn)
Γ. We

may assume each group Gi acts faithfully by cellular automata on {0, 1}Z, and
that the groups Gi are disjoint apart from sharing the identity.3 Let B =
{0, 1}2, S = BB, i.e. the set of functions from B to B, and pick the alphabet
Σ = (B × {1, ..., n}) ∪ S. On B we pick some abelian group structure, for
example through the natural identification B ∼= Z2

2.
We can see a word over the alphabet B×{1, . . . , n} as a triple (u, v, w) where

u, v ∈ {0, 1}∗ and w ∈ {1, . . . , n}∗ in an obvious way. If g ∈ Gi, then define a

3Alternatively, one can use self-embeddings of Aut({0, 1}Z) to literally obtain disjoint
groups Gi ≤ Aut({0, 1}Z).
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map ĝ ∈ Aut(ΣZ) as follows: On a dense set, a configuration in ΣZ splits into
maximal finite subwords of the form (u, v, in) (called segments), with u, v ∈
{0, 1}n, and into symbols in S. We define the action on these words in such a
way that this extends to an automorphism, and for this we use the conveyor belt
construction: words of the form (u, v, in) are mapped to (y[0,n−1], y[n,2n−1], i

n)

where y = g((uvR)Z). Symbols in S are never modified, and the {1, ..., n}-
components of states in B × {1, ..., n} are also never modified.

If i 6= j, then ĝ acts on maximal words (ua, vb, jn) as follows, for a, b ∈ {0, 1}:
The words u and v are not modified. If there is an edge between i and j in Γ, ĝ
acts as identity. Suppose then there is no edge. If the symbols immediately to
the right of the segment of the tape containing (ua, vb, jn) are cd, then nothing
is done unless s ∈ S and d ∈ B × {i}. Finally, if s ∈ S and (d, i) ∈ B × {i},
and if the symbol (d, i) is changed to (d′, i) when ĝ is applied in the segment on
the right, then we change (a, b, j) to ((a, b) + s(d′) − s(d), j) (using the group
structure of B).

It is seen as in [19, 14] that this gives a well-defined automorphism. Briefly,
the action on the segments over the subalphabet B × {i} mimic the periodic
point action, and the modifications to the rightmost symbols of segments of the
form B × {j} telescope to zero when the leftmost symbol of the neighboring
B × {i} segment returns to its original value.

We can extend the action of ĝ for g ∈
⋃

i Gi in a natural way to finite
words over Σ, by the same description above (so that this agrees with the
action on configurations for example if we think of the finite word as being
surrounded by tails entirely over S). The maximal words of the form (u, v, in)
which such a word splits into are again called its segments, and i is the type
of the segment. As is standard, we write elements of (G1, . . . , Gn)

Γ as words
over the alphabet

⋃
i Gi \ {e}, and such a word is reduced if it cannot be made

shorter by permuting commuting elements, joining subwords of the form GiGi

and removing occurrences of e. For a particular reduced word w we call the
individual symbols in Gi its syllables, and we can associate to a reduced word
w ∈ (

⋃
i Gi \ {e})∗ a word τ(w) ∈ {1, 2, . . . , n}∗ by only recording the types of

syllables.
It is easy to check that if g ∈ Gi, h ∈ Gj , and {i, j} ∈ E(Γ), then ĝ and ĥ

commute, so g 7→ ĝ extends in a well-defined way to the graph product by the
universal property (or the definition of the graph product). We now consider
an arbitrary reduced word w and show that the corresponding automorphism
is nontrivial, which proves that the action is faithful.

More precisely, we will prove the following. Let w ∈ (
⋃

i Gi \ {e})∗ be any
nonempty reduced word representing an element g ∈ (G1, . . . , Gn)

Γ. Suppose
either τ(w) = ui, i ∈ {1, . . . , n} where {{k, i} | k ∈ v} ⊂ E(Γ), or we have
τ(w) = vjui where {i, j} /∈ E(Γ) and {{k, i} | k < v} ⊂ E(Γ). Then there is a
word t ∈ Σ∗ whose rightmost segment is of type i, such that some perturbation
of the rightmost symbol effects some change in the leftmost symbol of ĝ(t). In
formulas, there exists t′ ∈ Σ∗ whose rightmost segment is also of type i, with
|t| = |t′| and t[0,|t|−2] = t′[0,|t|−2], such that ĝ(t)0 6= ĝ(t′)0.

The base case τ(w) = ui is obvious by the definition of the minimal radius r
of a cellular automaton, by taking a word with just one suitably chosen segment
of type i whose length is r + 1. The other case is proved by induction. Write
w = w′w′′ with τ(w′) = vj, τ(w′′) = ui, with the assumptions above, and let
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g′, g′′ be the group elements corresponding to w′, w′′. Since vj is reduced, we
can find a word t where the rightmost segment is of type i such that a suitable
change in the rightmost symbol effects a change in the leftmost symbol of ĝ′(t).
Suppose the change in the first symbol happens when the rightmost symbol
(a, j) of t is changed to (b, j).

As in the base case, we can find a word t′ containing just one segment which
is of type i, such that some change in the rightmost symbol of t′ effects a change
in the leftmost symbol of ĝ′′(t′) from (d, i) to (d′, i), for some d, d′ ∈ B2. Now
recall that if we put an element s ∈ S between the words t and t′, then as d
changes to d′, we change (a, j) to (a + s(d′) − s(d), j). Picking any s ∈ S such
that s(d′)− s(d) = b− a, we have (a+ s(d′)− s(d), j) = (b, j).

Now let t′′ be equal to t in all but the last coordinate. Suppose t′0 = (c, i)
and assume that ĝ′′(t′)0 = (d, i) (as above). For the last symbol pick t′′|t′′|−1 =

t|t|−1 + s(c) − s(d). Now, the word (ĝ′′)−1(t′′) · c · t′ has the desired property:
we have

ĝ′′((ĝ′′)−1(t′′) · c · t′) = t · c · ĝ′′(t′)

since the application of ĝ′′ does not touch or read the last symbol of (ĝ′′)−1(t′′),
and when t′ changes to ĝ′′(t′) we undo the modification in the last symbol of t
we made in t′′. Now, since the application of ĝ′′ does not modify the segment of
type j at the right end of (ĝ′′)−1(t′′) in other ways, a change in the rightmost
symbol of (ĝ′′)−1(t′′) · c · t′ changes the ĝ′′-image t · c · ĝ′′(t′) by changing the
last symbol of t from (a, j) to (a+ s(d′)− s(d), j) = (b, j). Then, an additional
application of ĝ′ effects a change in the first symbol of ĝ′(t), concluding the
induction step, and thus the case of finite graph products.

Consider now the case of an infinite locally cofinite Γ, i.e. every node is
neighbors with all but finitely many nodes. Pick any nontrivial alphabet Σ
and for each i pick a set of words Wi ⊂ Σi with |Wi| = 4, such that

⋃
iWi is

mutually unbordered. Replace the use of B × {i} with Wi, i.e. a segment of
type i is redefined to be a maximal finite word from W ∗

i , which will again be
interpreted as a conveyor belt built from two binary words. We can use the
same S = BB (assume S ∩ Σ = ∅), and thus we use the alphabet Σ ∪ S.

For g ∈ Gi, the automorphism ĝ applies the natural conveyor belt action
of g in segments of type i (through uncoding the words in Wi to elements of
B). If there is an element s ∈ S to the left of the segment, and a segment of
type j immediately to the left of s, where j 6= i, {i, j} /∈ E, then additionally
permute the rightmost Wj-word of the segment of type j, as we did in the finite
case. Since the graph is locally cofinite, the function is continuous, and thus we
obtain an automorphism action. The proof that this gives a faithful action of
the graph product is analogous to the finite case.

Now, consider an arbitrary Γ. In this case, we modify the previous con-
struction further: Set S = B × BB × B, and after an element ĝ is applied
(for any g ∈ Gi), if the rightmost B-component of s was changed from d to
d′, as a side-effect we always change (a, b) in the leftmost B-component to
(a, b)+s′(d′)−s′(d), where s′ is the BB-component of s. (This description does
not make sense if ĝ modifies both the leftmost and rightmost B-component, but
we make sure this never happens.)

If s ∈ S has a segment of type i to the left of it, and a segment of type j to
the right of it, then we “include” the rightmost B-component of s to the segment
on the right (i.e. we think of it as joined in the beginning of the conveyor belt

6



coded by the W ∗
j -word) if

i 6= j ∧ (i > j ∨ {i, j} /∈ E).

We include the leftmost B-component of s to the segment on the left if

i 6= j ∧ (j > i ∨ {i, j} /∈ E).

When s has a segment on only one side, the B-symbol on the side of the segment
is always included in the segment.

The inclusion of the bordermost B-symbols in the S-symbol effectively puts
a lower bound on the length of certain segments, so let us make the assumption
that every nontrivial g ∈ Gi acts on BZ with minimal radius at least 10; this is
possible because there exists a self-embedding of Aut(ΣZ) such that all nontrivial
automorphisms in the image have minimal radius at least 10.

Now again for g ∈ Gi, the map ĝ simply applies g in segments of type i.
To see that this is an automorphism, observe that a local rule can tell whether
B-components of possible neighboring S-symbols belong to the segment since
when g ∈ Gi, this requires only knowing the sets Wk up to k ≤ i. Note that
as required, this never modifies both B-components of a symbol s ∈ S, because
that would mean the segments on both sides are of type i, and in this case neither
B-component would be included in the segments on its side. By the assumption
on the minimal radius of the maps g ∈ Gi, this gives a correct embedding of the
graph product with an analogous proof as in the above cases.

As a side-note, the above proof does not use the normal form theorem for
graph products, so as a side-effect we prove the usual normal form theorem in
the case where node groups act on a full shift.

Sometimes it is convenient to have the groups Gi act on some full shift ΣZ

other than {0, 1}Z, and it is clear that one can modify the construction to use

Σ2 instead of B = {0, 1}2. The set BB is simply replaced with (Σ2)Σ
2

. We
use this in the proof of Lemma 10. In the case of finite graph products, one
can even use a different alphabet in each segment (replacing BB by the set of
functions from one square alphabet to another).

Besides graph products, another generalization of the free product is the free
product with amalgamation. Here, there is also a simple normal form, and in
fact using the same “segments of different types” construction it seems plausible
that one can prove at least some restricted closure results for this operation.

Question 1. If G,H ∈ G, when is G ∗K H ∈ G?

If we take all the node groups to be Z2 (resp. Z), but instead of commutation
relations we add relations of the form (st)m = e, we obtain the family of Coxeter
(resp. Artin) groups.

Question 2. Which finitely-generated Coxeter (resp. Artin) groups are in G?

By a Theorem of Tits, all f.g. Coxeter groups are linear, and thus residually
finite [8, 6]. They are automatic [?] so their word problem is decidable in
polynomial time.
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4 Aithful and strongly faithful actions

Recall that we restrict our systems to be discrete group actions on compact
metrizable zero-dimensional spaces. This includes subshifts and the natural
actions of automorphism groups of subshifts.

Definition 1. Let X be a G-system and let A be a finite abelian group. We say
the system X is Aithful if there exists a finite abelian group B and a continuous
function θ : X → Hom(A,B) such that for any finite support map f : G → A
we have

(∀x ∈ X :
∑

g∈G

θ(gx)(f(g)) = 0) =⇒ f = 0.

Recall that we consider Hom(A,B) with the discrete topology. While the
function notation is convenient, a continuous function from a zero-dimensional
compact metric space to a finite discrete set S just means a finite clopen partition
of the space where the partition elements are indexed by S. Of course the
definition could be applied in more general contexts, but we have not explored
this, and A will always be finite abelian when we use the word Aithful.

Algebraically, when A is abelian (and written additively) maps f : G → A
with finite support form an abelian group under elementwise sum. Analogously
to group rings, we write this group as A[G] (but there is typically no product)
and write elements as (essentially) finite sums

∑
g∈G f(g) · g. We can define

a map φ = φθ,B : A[G] → BX by f 7→ (x 7→
∑

g θ(gx)(f(g))), and this is
clearly a homomorphism (for any choice of h). Aithfulness means that this
homomorphism is injective for some choice of B and h.

Lemma 1. We can always pick B = Ad for some d in the definition of
Aithfulness.

Proof. The map h is determined by some finite clopen partition P1⊔P2⊔· · ·⊔Pd

of X . We can factor h as the pointwise composition x 7→ θ′′(x) ◦ h′(x), where
θ′|Pi

: Pi → Hom(A,Ad) is the constant map with image

a 7→ (0, 0, ..., 0, a
ith position

, 0, ...0) (1)

and θ′′ : X → Hom(Ad, B) is the constant map with image the homomorphism
α : (0, 0, ..., 0, a, 0, ...0) 7→ θ(x)(a) for any x ∈ Pi, where a appears in the
ith position. Since θ′′ is a constant map and α is a homomorphism, a short
calculation shows

φθ,B(f)(x) = α(φθ′,Ad(f)(x)),

and since we are aiming it is safe to drop θ′′ and replace θ with θ′.

The proof shows more: we can pick the homomorphism to be the one de-
scribed in (1), with respect to some finite clopen partition.

Lemma 2. Let X be a G-system and let A be a finite nontrivial abelian group.
If the action is Aithful then there is a faithful subshift factor.

Here, recall that group actions on compact metrizable zero-dimensional
spaces are inverse limits of expansive ones, i.e. their subshift factors obtained by

8



recording only the current partition element visited along an orbit, with respect
to a finite partition.

A faithful subshift factor implies faithfulness, but not vice versa. For exam-
ple the natural action of a residually finite group on its profinite completion is
faithful but its subshift factors are finite.

Proof. We prove the contrapositive, so suppose no subshift factor is faithful.
Let B be an abelian group and let θ : X → Hom(A,B) be a continuous. Then
h factors through a subshift Y as θ = θ′′ ◦ θ′ with θ′ : X → Y , θ′′ : Y →
Hom(A,B). Since (G, Y ) is not faithful, there exists k ∈ G such that ky = y
for all y ∈ Y . Let f = −a · k + a · eG. We have

∑

g∈G

θ(gx)(f(g)) =
∑

g∈G

θ′′(θ′(gx))(f(g))

= θ′′(θ′(kx))(f(k)) + θ′′(θ′(x))(f(e))

= θ′′(θ′(x))(−a) + θ′′(θ′(x))(a) = 0,

where θ′(kx) = kθ′(x) = θ′(x) by the assumption on k. Thus, the map φ :
A[G] → AX is not injective for any θ,B, contradicting Aithfulness.

Lemma 3. Let G = Z, let X be a G-system, and let A be a finite nontrivial
abelian group. If (G,X) has a faithful subshift factor then it is Aithful.

Proof. We prove the contrapositive, so suppose the action is not Aithful. Con-
sider any clopen partition X = P1 ⊔ · · · ⊔ Pn, and for i ∈ {1, . . . , n} define
θ : X → End(A) by θ(x) = id for x ∈ Pi, θ(x) = 0 otherwise. Since the action
is not Aithful, there exists nonzero f ∈ A[G] such that

∑

g∈G

θ(gx)(f(g)) = 0

for all x ∈ X .
Let g′ = max{g ∈ Z | f(g) 6= 0A} in the usual ordering of Z. Then for all

x ∈ X we have
∑

g<g′ θ(gx)(f(g)) = −θ(g′x)(f(g′)) for all x. We have to have
g′x ∈ Pi whenever

∑
g<g′ θ(gx)(f(g)) 6= 0 (though this may not be sufficient),

and have to have g′x /∈ Pi whenever
∑

g<g′ θ(gx)(f(g)) = 0, so whether g′x ∈ Pi

can be deduced from
∑

g<g′ θ(gx)(f(g)), and thus from the set of g < g′ such
that f(g) 6= 0 and gx ∈ Pi.

This is easily seen to imply that the set of all g ∈ G such that g · x ∈ Pi

forms a finite union of arithmetic progressions with a bounded period (over all
of X). Since this happens for all i = 1, . . . , n, the subshift factor given by the
partition is uniformly periodic, thus not faithful.

In particular, for infinite Z-subshifts, as well as faithful Z-actions commuting
with subshifts (on any group), faithfulness is equivalent to Aithfulness for any
nontrivial A (for the latter class this follows from e.g. [16]).

Question 3. For which pairs (G,A) does there exist a faithful G-subshift which
is not Aithful?

Apart from G = Z, we do not know the answer for any (G,A). We next show
that the Ledrappier subshift is Aithful A = Z2, even though (by definition) it
admits a cancelling pattern over Z2. (In fact, it is Aithful for all nontrivial A.)
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Example 1: Consider the Ledrappier subshift

X = {x ∈ Z
Z
2

2 | ∀v ∈ Z
2 : xv + xv+(0,1) + xv+(1,0) = 0},

and let A = Z2. Let θ : X → Hom(Z2, B) be any continuous function for B an
abelian group. We may assume B = Zd

2 for some d, and then |Hom(Z2, B)| = 2d.
The map θ is then determined by d and by a partition (Cv)v∈B.

If the partition depends only on the symbol at (0, 0), then θ never proves
Z2ithfulness: take

f = 1Z2
· (0, 0) + 1Z2

· (1, 0) + 1Z2
· (0, 2) + 1Z2

· (1, 1),

(where 1Z2
is the generator of Z2) and consider the sum

∑

v∈Z2

θ(vx)(f(v)).

By assumption, θ(vx) only depends on xv, and adds a particular vector to B
depending on its value. In any single coordinate of B, we either add 1 in any
case (in which case the sum is 0 since f has support of size four), never add 1
(a trivial case), or we add 1 when xv = a for a particular a ∈ Z2. This amounts
to counting the parity of the number of 0s or 1s in x|{(0,0),(1,0),(0,2),(1,1)}, and a
short calculation shows that this is always even.

Setting d = 1, C = {x ∈ X | (x(0,0), x(−1,0)) = (0, 1)}, and letting θ|C =
id, θ|X\C = 0, on the other hand, proves Z2ithfulness: consider any nonzero
f ∈ Z2[Z

2]. The sum
∑

v∈Z2 θ(vx)(f(v)) now amounts to counting (modulo 2)
how many times C is seen on the support of f , i.e. how many 0s there are on
the support of f , such that the symbol on the left is 1.

Let i ∈ Z be the leftmost x-coordinate that appears in the support of f .
There is a configuration in the Ledrappier subshift such that on the ith column,
there is exactly one occurrence of 0, and we can align it with one of the elements
in the support of f to obtain a configuration x. There is also a configuration
y ∈ X satisfying y(i−1,j) = 1 for all j ∈ Z, and any such configuration satisfies
y(i+k,j) = 0 for all k ≥ 0, j ∈ Z. Clearly the number of times C is entered by x
and x+ y in the support of f differs by exactly one, so one of these numbers is
odd, and this configuration proves Z2ithfulness. #

Most of our examples of Aithful actions, in particular all our cellular au-
tomata actions, come from the following stronger property.4

Definition 2. An action (G,X) is strongly faithful if there is a clopen set C ⊂
X such that for all ∅ 6= F ⋐ G there exists x ∈ X such that ∃!g ∈ F : gx ∈ C.

Lemma 4. Every strongly faithful action is faithful and Aithful for all A.

Proof. Assume a G-system X is strongly faithful. Since Aithfulness implies
faithfulness (and even a faithful subshift factor), it suffices to prove the latter
claim, but we give a direct proof of faithfulness: let g ∈ G \ {e} and take
F = {e, g}. By strong faithfulness there exists x such that exactly one of x, gx
is in C. In particular x 6= gx and the action is faithful.

For Aithfulness, let A be any finite abelian group. We need to show the
action is Aithful. Define θ : X → End(A) by θ−1(idA) = C, and θ(x) = 0 for

4It is possible that also the Ledrappier subshift has this property, but we have no proof.
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x /∈ C. Suppose f ∈ A[G] and that
∑

g∈G θ(gx)(f(g)) = 0 for all x ∈ X . Let
F ⋐ G be the support of f . If F 6= ∅, let x ∈ X be given by strong faithfulness,
so there is a unique g′ ∈ F with g′x ∈ C. By the choice of θ we then have∑

g∈G θ(gx)(f(g)) = θ(g′x)(f(g′)) = f(g′) 6= 0, a contradiction. Thus F = ∅,
i.e f = 0, thus the action is Aithful.

The following is proved in a straightforward fashion from the definitions.

Lemma 5. If (G,X) is strongly faithful (resp. Aithful) then so is (H,X) for
any H ≤ G.

We sandwich strong faithfulness between two other properties, which may
clarify it. Let X≤1 = {x ∈ {0, 1}G |

∑
x ≤ 1} be the sunny-side-up subshift on

G. Say a system is a subquotient of another if it is a factor of a subsystem. A
horoball in a finitely-generated group G is a limit of balls with radius tending
to infinity, with respect to a fixed generating set (see [10]; here we include the
denegerate horoball G, and one should take limits with right translates of balls
Brg).

Lemma 6. If (G,X) admits a sunny-side-up subquotient, then it is strongly
faithful. If (G,X) is strongly faithful and G is generated by the finite set S,
then there exists a clopen set C, an S-horoball H and x ∈ X such that hx ∈ C
for a unique element h ∈ H.

Proof. For the first claim, if Y ⊂ X has a sunny-side-up factor φ : Y → X≤1.
Observe that [1] = {x ∈ X≤1xe = 1} is clopen in X≤1 so φ−1([1]) is clopen in
Y , so by basic topology there is a clopen set C ⊂ X such that C ∩Y = φ−1([1]).
Let y ∈ Y be any element of C ∩ Y . Then we can use C and translates of y to
satisfy strong faithfulness.

For the latter claim, under strong faithfulness for any finite F ⋐ G there
exist x ∈ G and g ∈ F such that

{h|hx ∈ C} ∩ F = {g}

This implies {hg−1|hx ∈ C} ∩ Fg−1 = {e} implies

{h|hgx ∈ C} ∩ Fg−1 = {e}

and thus letting y(F ) = gx and t(F ) = Fg−1 we have y(F ) ∈ C and ∀h ∈
t(F ) \ {e} : gy(F ) /∈ C.

Let P be the set of pairs (H, z) such that e ∈ H and

∀h ∈ H : (hz ∈ C ⇐⇒ h = e).

Clearly this set is closed in 2G×X since C is clopen. In particular applying the
observation of the previous paragraph to balls with respect to the generating
set S, one obtains an S-horoball H and z ∈ C such that the H-orbit of z does
not revisit C.

Of course one can apply this argument to finite sets other than balls.

Remark 1. In the case of Z2, in a precise sense an “optimal” sequence of sets to
apply it to are discretized balls whose boundaries eventually contain arithmetic
progressions in every rational direction, namely this forces t to give a set H ∋
{(0, 0)} in the limit which contains the predecessor set N of (0, 0) in some
translation-invariant total order of Z2 – this is the best we can do since t could
plausibly always force translates inside any such set N . #
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Example 2: There is a strongly faithful subshift without a sunny-side-up sub-
quotient. For example the Cantor’s dust Z2 subshift [20, Figure 1c] has this
property. On the other hand, consider any Z2-subshift obtained as the orbit
closure of a discretization of a rational line in direction ~v (see [20, Figure 1b],
but consider a rational continuation). Such a subshift is not strongly faithful
(as it is not even faithful), but for any generating set whose convex hull has no
edge in direction ~v (up to orientation), there are points that visit [1] (the clopen
set of drawings that hit the origin) just once in a horoball. #

5 Strongly faithful actions by cellular automata

Lemma 7. If G admits a strongly faithful (resp. Aithful) action by automor-
phisms on some full shift (ΣZ, σ), then it admits a strongly faithful (resp. Aithful)
action by automorphisms on any uncountable sofic Z-shift.

In particular, the class of groups admitting strongly faithful (resp. Aithful)
actions on the full shift ΣZ does not depend on the choice of nontrivial alphabet
Σ. We include sofic shifts here, but other than this lemma we stick to full shifts
in all statements.

Proof. It is straightforward to check that strong faithfulness (resp. Aithfulness)
is preserved under the conveyor belt simulation of [19] (or the construction of
[14]): to determine the clopen set C′ for the simulating action from the clopen
set C for the original action (resp. a map θ′ from a map θ), read a part of the
simulated configuration along the conveyor belts, taking the contents of the top
track at the origin as the starting point, and checks whether it is in C (resp.
which partition element it lies in the definition of h). Considering configurations
where the simulated configurations are Z-shaped (i.e. the conveyor belts do not
wrap around), strong faithfulness (resp. Aithfulness) of G implies the same
property for H .

We mention the following closure property out of general interest.

Lemma 8. If G admits a strongly faithful action by automorphisms on some full
shift (ΣZ, σ) and H is commensurable to G, then H admits a strongly faithful
action on any full shift.

Proof. By Lemma 5, it is enough to show that the class of groups acting strongly
faithfully is closed under passing to finite index supergroups. Suppose first G
is infinite. The result is then straightforward from the proof of closure under
finite extensions in [14]: If [H : G] = n, we construct the induced representation
of H on (Σn)Z from a set of left coset representatives. Let C be the clopen
set for strong faithfulness of the G-action, and let C′ to be the clopen set of
configurations where the coordinate corresponding to the trivial coset contains
a configuration from C.

Now consider nonempty F ⋐ H , w.l.o.g. suppose eG ∈ F so F ∩ G is a
nonempty subset of G and apply strong faithfulness to obtain a configuration
x such that there is a unique element h ∈ F ∩ G such that hx ∈ C. Put
the configuration x in the coordinate corresponding to the trivial coset, and in
other coordinates put a configuration y whose G-orbit does not enter C (which
is possible when G is infinite). Let z ∈ (Σn)Z be the resulting configuration.
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Now, observe that the H-orbit of z contains only configurations where the
coordinates contain elements from Gx and Gy, and the coordinate of gz corre-
sponding to the trivial coset contains an element of Gx if and only if g ∈ G.
Now hz is in C′ by the definition of the induced action. On the other hand,
gz ∈ C′ implies that the trivial coset coordinate of gz contains an element in
C, thus an element of Gx, thus g ∈ G. But g ∈ F ∩G implies g = h, thus h is
the only element of F mapping z into C′.

To cover finite extensions of finite groups G, it is necessary and sufficient to
prove that all finite groups act strongly faithfully, and thus it is enough to show
this for the symmetric groups. The cellwise coordinate permutation action on
(Σn)Z gives a strongly faithful action of the symmetric group Sym(n).

Definition 3. Let G be a group of cellular automata. We say G has property P
if for all g ∈ G \ {eG} acting with minimal radius r, the following holds: there
exist u ∈ Σ2r and a, b, c, d ∈ Σ such that g(auc) 6= g(bud), while for all h ∈
G \ {g} we have h((auc)Z)|{r,r+1} = h((bud)Z)|{r,r+1}.

In the above definition, auc is a word of length 2r+2, and g(auc) and g(bud)
refer to the application of the local rule of g to the prefix and suffix of length
2r + 1 to obtain a word of length 2. The definition is not particularly natural
from a dynamical point of view, it is simply what we encounter in the following
proof, and is sufficient for our purposes.

Lemma 9. Let G be a group of cellular automata with property P and let n ∈ N.
Then there is an isomorphic group of cellular automata with property P (possibly
on a larger alphabet) such that every element g ∈ G \ {e} has minimal radius at
least r.

Proof. The property P is preserved in the conveyor belt construction, at least
when it is performed using suitable mutually unbordered words. Namely, if
G acts on ΣZ, pick alphabet Σ2 ∪ {#} and act on maximal subwords of the
form Σ2#r, wrapped into conveyor belts. To ensure a minimal radius ≥ r for
all nontrivial elements, we do not act on length-2 conveyor belts consisting of
a single element of Σ2. It is easy to see that property P is inherited from G:
Write aub and buRa on the top and bottom track of a conveyor belt, respectively
(separated by #r-runs), to obtain a word w; then do the same for cud to obtain
w′. Looking at the top track we see g(w) 6= g(w′), while h sees the same periodic
point it sees in the original action.

Lemma 10. Suppose that finitely many groups (Gi)i∈I each act strongly faith-
fully on a one-dimensional full shift, and all have property P. Then their free
product acts strongly faithfully by automorphisms on any full shift.

Proof. Suppose I = {0, 1, . . . , ℓ}. By Lemma 7, it is enough to show the free
product acts strongly faithfully on some full shift. We consider the construction
from the finite case of Theorem 1, and assume the groups Gi all have property P.
By the previous lemma, we may assume all g ∈ Gi \ {e} have minimal radius at
least 10.

If F ⋐ G = G0 ∗ G1 ∗ · · · ∗ Gℓ, take g ∈ F with a maximal number of
syllables among elements of F , and as in the proof of Theorem 1 construct a
configuration where g sends a bit of information to the origin (the cell 0 ∈ Z),
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in the sense that the leftmost difference between two words t, t′ moves from the
right end to the left, one segment at a time.

If we use words given by property P in this construction, then no h ∈ F \
{g} has time to send information to the origin: by construction the leftmost
difference between t, t′ can move at most one segment per applied syllable, so
at the first difference between g and h (counted from the right), h fails to move
the difference to the next syllable, and can never catch up. The lower bound on
minimal radius ensures that radius 0 maps do not cause a problem, noting that
10 > 0.

Theorem 2. The free product of any finite family of finite groups acts strongly
faithfully by automorphisms on any full shift.

Proof. It is enough to construct an action of an arbitrary finite group G with
the property from the previous theorem. Let |G| ∈ {n, n− 1} for n even, take
alphabet {0, 1, 2, 3, 4} and let G act on the words wi = 102i202n−2i−13 by the
left regular action, identifying wi with the ith group element, under an arbitrary
identification (starting with w0, and ignoring w|G| if n = |G|+ 1).

It is easy to see that property P holds: by changing 3 to 4 we can “cancel”
the application of g ∈ G \ {eG}, so all that is needed is to pick wi so that the
action of g ∈ G, if not cancelled, changes wi to wn/2. Since the action is free,
no other h ∈ G changes i to the same value (or a neighboring value, because
the 1s are separated by distance two), whether or not it is cancelled.

We believe it should be possible to generalize this to infinite free products
with a bit of work. The fact finite free products act faithfully on full shifts was
first proved in [1].

Corollary 1. Every free group acts strongly faithfully by automorphisms on
any full shift.

Proof. The free product Z2 ∗ Z2 ∗ Z2 contains all free groups, and by Lemma 5
a subaction of a strongly faithful action is strongly faithful.

It seems that typically in concrete cases of the graph product construction
of Theorem 1, we obtain a strongly faithful action, and we do not have exam-
ples where an Aithful action is not obtained. Nevertheless, we do not know
whether the set of groups acting strongly faithfully (or Aithfully) by full shift
automorphisms is closed under free product. We also do not know if the set
of groups acting strongly faithfully by automorphisms of a full shift is closed
under G 7→ Z2 ≀G, though in this case we know that the construction given in
the following section usually does not give an Aithful action.

Lemma 11. The class of groups acting strongly faithfully by automorphisms on
a full shift is closed under finite direct products.

Proof. The product action of strongly faithful actions is obviously strongly faith-
ful, and can be seen as an automorphism action on a larger full shift.

It does not seem obvious that the product action of a finite family of Aithful
actions is Aithful, as the assumption only tells us something about polynomials
with a product decomposition.
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We do not know whether either class (strongly faithful or Aithful CA ac-
tions) are closed under infinite direct sums, indeed for infinite sums we used
a different construction in the proof of Theorem 1, and the following remark
outlines the problem with this approach. It also shows that Aithfulness fails in
this construction even for product polynomials.

Remark 2. The direct sum case of Theorem 1 does not typically give strongly
faithful (resp. Aithful) actions, at least if the clopen set C (resp. function h)
looks at just one coordinate. Perform the construction for G×G′. It turns out
the action is not Aithfulness no matter how G and G′ act. To see this, take
f = (eG − g)(eG′ − g′) ∈ Z2[G×H ]. Here we suggestively use additive notation
and standard conventions and notation for the grofcoup ring structure, more
precisely the element is

f = 1Z2
· (e, e) + 1Z2

· (g, e) + 1Z2
· (e, g′) + 1Z2

· (g, g′).

Observe now that if the segment at the origin of a configuration x is “of type G”
(the case G′ being symmetric), then we have

∑

(k,k′)∈G×G′

θ((k, k′)x)(f(k, k′)) = θ(x)(f(e, e))− θ((g, e)x)(f(g, e)) +

θ((g, g′)x)(f(g, g′))− θ((e, g′)x)(f(e, g′)) = 0,

if θ only looks at the central coordinate: we have

θ(x)(f(e, e)) = θ((e, g′)x)(f(e, g′))

and
θ((g, e)x)(f(g, e)) = θ((g, g′)x)(f(g, g′)),

since f((e, e) = f((e, g′)), f((g, e) = f((g, g′) by our choice of f and since the
action of (e, g′) is not visible at the origin. Similarly, strong faithfulness is
contradicted for any C that only looks at the central coordinate. #

6 Wreath products

Theorem 3. Let A be a finite abelian group and suppose G ≤ Aut(ΣZ) acts
Aithfully. Then A ≀G ∈ G.

Proof. Suppose G and A are disjoint. Let θ : ΣZ → Hom(A,B) be the proof
of Aithfulness. We pick the alphabet Σ × B, and to g ∈ G associate ĝ ∈
Aut((Σ × B)Z) by ĝ(x, y) = (gx, y); clearly g 7→ ĝ is a homomorphism. To
a ∈ A associate â by

â(x, y)i = (xi, θ(σ
i(x))(a) + yi)

The map a 7→ â : A → Aut((Σ×B)Z) is a homomorphism because

(̂a+ b)(x, y)i = (xi, θ(σ
i(x))(a + b) + yi)

= (xi, θ(σ
i(x))(a) + θ(σi(x))(b) + yi)

= b̂(â(x, y))i.
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We have
âĝ(x, y)i = (xi, θ(σ

i(gx))(a) + yi),

from which it is clear that any âĝ and b̂ĝ
′

commute for a, b ∈ A, g, g′ ∈ G. These
are the standard relations of the wreath product, and thus we have obtained an
action of the wreath product.

We need to show the faithfulness of this action. For this, suppose w ∈ A ≀G
and ŵ = id(Σ×B)Z . Clearly the natural homomorphism from A ≀ G to G maps

w to the identity, and we can write w =
∏n

j=1 a
gj
j for some n, and some gj ∈

G, aj ∈ A, where we may assume gj 6= gj for i 6= j and ai 6= 0 for all i. By the
formula for conjugates âĝ, we have

ŵ(x, y)i = (xi,

n∑

j=1

θ(σi(gjx))(aj) + yi) = (xi, yi)

for all x, y, so
∑n

j=1 θ(σ
i(gjx))(aj) = 0 for all x ∈ ΣZ and i ∈ Z. Setting i = we

have
n∑

j=1

θ(gjx)(aj) =
∑

g∈G

θ(gx)(f(g)) = 0

where f =
∑n

j=1 aj · gj, so by Aithfulness f = 0, meaning w = id. Thus w 7→ ŵ
is injective.

Combining with the results of the previous section, we obtain that for any
finite abelian group A and any n ∈ N, we have A ≀ Fn ∈ G and A ≀ Zn ∈ G. It is
plausible that A can be generalized to other (necessarily abelian) groups.

Question 4. Is Z ≀ Z is in G?

The proof that (for instance) Z2 ≀Z, requires that the action of Z is Aithful,
and the action of Z2 ≀ Z we obtain is typically not Aithful. This suggests the
following candidate group to study. Note that it is residually finite by [12,
Theorem 3.1] and has word problem solvable in polynomial time.

Question 5. Is Z2 ≀ (Z2 ≀ Z) is in G?

7 The one-sided case

Theorem 4. For finite Γ and Gi ∈ G′
ni

we have (G1, G2, . . . , Gk)
Γ ∈ G′

maxni+1.

Proof. The construction for finite Γ in the proof of Theorem 1 works almost
directly, the main difference being that we replace the conveyor belts with words.
We see Aut(ΣN) as the subgroup of Aut(ΣZ) containing those f such that both
f and f−1 are one-sided as automorphisms of ΣZ.

First, we give a construction with a large alphabet. Suppose |Bi| = ni with
Bi ∩ Bj = ∅ for i 6= j and let Σ = S ⊔

⊔
iBi where S is the disjoint union

of sets of functions B
Bj

i . If g ∈ Gi, on segments of type i (maximal words
over the subalphabet Bi) ĝ applies the natural action, interpreting the last
symbol as a constant tail: the segment contents ua ∈ Bℓ

i , a ∈ Bi, is replaced by
vb ∈ Bℓ

i , b ∈ Bi, where g(ua∞) = vb∞.
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On segments of type j, j 6= i, we modify the last symbol as in Theorem 1
when the leftmost symbol of a segment of type i is changed: if c is changed to
d when ĝ is applied, then in the segment of type j on the left we change a to
a+ s(d)− s(c). It is clear that ĝ is a one-sided automorphism, and the proof of
correctness is analogous to that in Theorem 1.

Now, let us optimize the alphabet size. First, we need not actually have
the individual symbols know the type of the segment they belong to, as long as
they can tell their type by looking to the right. Thus, we can take an alphabet
of size maxi ni + 1, use the same symbols for all segments, and use the one
extra symbol, say #, to denote the type of the segment, representing w ∈ B∗

i

by w0#
iw1#

i · · ·#iw|w|−1#
i.

Similarly, the large set S can be replaced by words of the form #mk for
m = 1, 2, . . . , |S|, since i ∈ {0, 1, . . . , k− 1} and m can be deduced from #i#mk

(interpreting m = 0 as the lack of an S-symbol).

Apart from some trivial cases, we do not know if increasing the alphabet is
necessary, nor whether it is possible to do infinite products.

Remark 3. The radii of the automorphisms are rather massive in this construc-
tion. If desired, this can be avoided by using two special symbols instead of one,
and coding the lengths of the #∗-runs in binary, giving embeddings of graph
products of groups Gi ∈ G′

ni
in G′

maxni+2 with more reasonable radii. With a
bit more work, one can optimize both the alphabet size and the radii simulta-
neously, by using the basic size maxni alphabet also for coding the lengths of
runs. #

Theorem 5. Every right-angled Coxeter and Artin group is in G′
3.

Proof. We have Z2 ∈ G′
2, since f(x)i = 1 − xi defines an automorphism of the

binary full shift. If Γ is a graph, then (Z2,Z2, . . . ,Z2)
Γ is, by definition, just

the right-angled Coxeter group C(Γ). The previous theorem then shows that
that Aut({0, 1, 2}Z) contains every right-angled Coxeter group. Right-angled
Artin groups are clearly subgroups of right-angled Coxeter groups (see [9] for a
finite-index embedding).

Question 6. Which Coxeter groups (or Artin groups) are in G′
n for each n?

There is a bound on orders of finite-order elements [4], which forbids some
Coxeter groups, but it is likely that there are additional restrictions.

Example 3: As RACGs and RAAGs are important families of groups, we
explain the construction explicitly, with an ad hoc optimization of the set S.
Let g ∈ Gi where Gi is the ith copy of Z2. Then ĝ(x)i = a is determined as
follows: If xi = 2, then a = 2. If xi ∈ {0, 1}, and the maximal segment of 2s to
the right is 2j , then let j = i′ +mkn where 0 ≤ i′ < kn and m ∈ {0, 1}. If this
cannot be done since the 2∗-segment is too long, then set a = xi.

Suppose then that we find i′ and m. Then if i′ = i, set a = 1 − xi (we are
inside a segment of type i). If i′ 6= i and m = 0, set a = xi (we are properly
inside a segment of type i′). If i′ 6= i, m = 1 and {i, i′} ∈ E set a = xi (we are
at the right boundary of a segment of type i′, but Gi commutes with Gi′).

If i′ 6= i, m = 1 and {i, i′} /∈ E, then consider the configuration to the right
of the 2j-word. It starts with an element of {0, 1}, so suppose it is in {0, 1}2j

′

for
some maximal j′ (again if the run is very long, set a = xi). Let j

′ = i′′ +m′kn.
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If i′′ 6= i, then set a = xi. If i′′ = i then check whether ĝ will flip this bit. Set
a = 1− xi if it will, otherwise set a = xi.

Analogously to the proof of Lemma 10, it is easy to see that the actions are
strongly faithful when Γ has no edges. #

Remark 4. In particular, letting Γ be the complement of the disjoint union of
n copies of the k-clique in the above theorem, we get

Z
n, Fk ≤ Fn

k ≤ (Z2 ∗ Z2 ∗ · · · ∗ Z2)
n ≤ (Z2,Z2, . . . ,Z2)

Γ ∈ Aut({0, 1, 2}Z).

This action is not strongly faithful in general, but as we noted it is when applied
to an edgeless graph. As in Lemma 11 it is easy to see that direct products of
strongly faithful actions are strongly faithful. From these observations, we get
that Zn and Fk admit strongly faithful actions in G′

∞. #

Theorem 6. If A is finite abelian and G ∈ G′
∞ is Aithful, then A ≀G ∈ G′

∞.

Proof. Let N = {0, 1, . . . , n − 1} and suppose G acts Aithfully on NN. Let θ :
NN → Hom(A,Ad) be the continuous function from the definition ofAithfulness.
For our embedding we pick the alphabet Σ = Ad ⊔ N . If g ∈ G, ĝ acts on
maximal finite segments over N as in the above proof (so the word wa ∈ N∗

with a ∈ N represents wa∞, and we conjugate the natural action through this
identification). Symbols in Ad are not modified by ĝ.

If a ∈ A, â acts trivially on symbols in N . If xi ∈ Ad, then if also xi+1 ∈ Ad

we set â(x)i = xi, while if xi+1 ∈ N we interpret a prefix of x[i+1,∞) as a

configuration in y ∈ NN the same way ĝ does, i.e. if x[i+1,∞) is a one-way
infinite word overN , then directly use this configuration, and otherwise take the
maximal finite segment over N and interpret the last symbol as being repeated
infinitely. Now set â(x)i = xi+θ(y)(a). The proof that this gives an embedding
of the wreath product is similar to Theorem 3.

The Aithfulness certificate of G might use a large power of A, so it is difficult
to include alphabet sizes in the statement. The proof, combined with ideas from
the proof of Theorem 4, shows that maxi p

ei
i + 1 symbols suffice in addition to

N if A =
∏

i Z
ei
pi
, because Ad acts faithfully by disjoint cycles on a finite set of

cycles of cardinalities in peii , and that we can code the type of the cycle using
the alphabet itself.

Theorem. If A is finite abelian and n ∈ N, then A ≀ Fn, A ≀ Zn ∈ G′
∞.

Proof. This follows from the previous theorem and Remark 4.
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