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Abstract

Objectives: The non-linear progression of new infection numbers in a pandemic poses challenges to the
evaluation of its management. The tools of complex systems research may aid in attaining information that
would be difficult to extract with other means.
Methods: To study the COVID-19 pandemic, we utilize the reported new cases per day for the globe, nine coun-
tries and six US states through October 2020. Fourier and univariate wavelet analyses inform on periodicity
and extent of change.
Results: Evaluating time-lagged data sets of various lag lengths, we find that the autocorrelation func-
tion, average mutual information and box counting dimension represent good quantitative readouts for the
progression of new infections. Bivariate wavelet analysis and return plots give indications of containment
vs. exacerbation. Homogeneity or heterogeneity in the population response, uptick vs. suppression, and
worsening or improving trends are discernible, in part by plotting various time lags in three dimensions.
Conclusions: The analysis of epidemic or pandemic progression with the techniques available for observed
(noisy) complex data can extract important characteristics and aid decision making in the public health
response.

Keywords: autocorrelation; average mutual information; complex systems; COVID-19; epidemiology; fractal
dimension; new infections; wavelet analysis.

Introduction

The spread of infectious diseases depends on pathogen factors (virulence), host factors (immunity), and
– on the population level – on countermeasures taken by the community. Such measures cover a broad
spectrum of possible engagements, and they may be highly consequential for the course of an epidemic or a
pandemic (Christakis 2020). The analysis of acute infectious progression in a society is critical for gauging the
effectiveness of public health responses, but it is made difficult through the non-linear nature of the under-
lying process. Conventional approaches of reductionist research or common linearization techniques are not
meaningfully applicable. The differential equations of the frequently applied SIR (susceptible, infectious,
recovered individuals) and SEIR models (susceptible, exposed, infectious, recovered individuals) do not cap-
ture the complex nature of epidemiologic progression, even when additional variables are taken into account
(Al-Raeei, El-Daher, and Solieva 2021; Stehlé et al. 2011), such as the inclusion of quarantine (Groendyke and
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Combs 2021). Stochastic transition models and newer mathematical models to characterize imported escaper
and asymptomatic patients have displayed similar limitations (Sun and Wang 2020).

Various strategies have been employed to account for the complexity of infectious propagation. The spread
of COVID-19 has been modeled with machine learning (Mehta et al. 2020), networks of compartments (Wang
et al. 2020) and cellular automata (Bin, Sun, and Chen 2019). Power laws have been inferred (Blasius 2020).
Such investigations are of value, even though they are inevitably based on idealizing assumptions regarding
the mechanisms of progression. These assumptions generate algorithms, which are then refined to match
the real curves as closely as possible. In addition to modeling approaches, the analysis of actually observed
data is of critical importance. This latter strategy does not require mechanistic premises or hypotheses at the
outset. It seeks to extract patterns and characteristics from the numbers obtained in the field. The challenge
has been that the numbers in such data sets are noisy, and they are eminently non-linear (also described as
“complex data” or “observed chaotic data” (Abarbanel 1995)). Complex systems research has increasingly
made techniques and algorithms available to extract relevant information from observed non-linear data
series.

The manifestations of the COVID-19 pandemic have varied widely among geographic areas, when com-
pared across countries (Bertacchini, Bilotta, and Pantano 2020; Chakraborty and Maity 2020; Wang et al. 2020)
as well as across US states (White and Hébert-Dufresne 2020), depending on when the virus reached them,
what the population characteristics were at the time of onset, and what actions were taken in response to the
infectious spread. Here, we set out to investigate underlying patterns. We apply basic tools of complex systems
research to compare the spread of COVID-19 in distinct countries, characterized by their varying approaches
to the pandemic, from its beginning stages through early or late October 2020. Further, we compare various
regions within the USA, which has left major decisions to the individual states. Patterns are discernible in
Fourier and wavelet analyses. Order can be detected in time-lagged plots. Therefrom, quantitative measure-
ments are obtainable, including autocorrelation, average mutual information (AMI), fractal dimension, and
embedding dimension, which inform on the pandemic progression.

Methods

Source data

Here we analyze the new infections per day, either as absolute numbers or as rates per 10,000 inhabitants. The source data utilized
for the present analysis came from Bing COVID-19 Tracker (www.bing.com/covid).

Fourier spectrum and univariate wavelet analysis

Fourier analysis evaluates the spectral density by relative numbers of new infections (case rates per 10,000 inhabitants) vs.
frequency or vs. period. Wavelet analysis does not assume stationarity in the time-series. Thus, it allows the study of localized
periodic behavior. In particular, we look for regions of high-power in the frequency-time plot. The calculations for wavelet
analyses of new infections were done in R, a free software environment for statistical computing and graphics (R Core Team 2020).
In WaveletComp, the null hypothesis, that there is no periodicity in the series, is tested via p-values obtained from simulation,
where the model to be simulated can be chosen from a range of options (Roesch and Schmidbauer 2018). The algorithm analyzes
the frequency structure of uni- or bivariate time series using the Morlet wavelet. The time series to be analyzed was standardized,
after detrending, in order to obtain a measure of the wavelet power, which is relative to unit-variance white noise and directly
comparable to results of other time series. Detrending is accomplished using polynomial regression. Where indicated, all graphs
are normalized to the same y-axis scale.

Bivariate wavelet analysis

Wavelet methodology transforms the time series from the time domain to the frequency domain just as the spectrum analysis
does. It can be applied to a single time series (univariate wavelet analysis) or two times series simultaneously (bivariate wavelet
analysis). As an important analysis tool to study periodic phenomena in time series, wavelets are particularly useful in the presence

http://www.bing.com/covid
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of potential frequency changes across time. We conducted bivariate analysis of lagged data (t vs. t + 7 or t + 14 or t + 21) for joint
periodicity. The concepts of cross-wavelet analysis provide tools for comparing the frequency contents by two time series as well
as for drawing conclusions about their synchronicity at certain periods and across certain ranges of time. While cross-wavelet
power corresponds to covariance in the time domain, wavelet coherence is a time-series measure similar to correlation. Two
waves are coherent if they have a constant relative phase. The bivariate analysis results include the cross-wavelet power plot,
the wavelet coherence plot, the average power plot and the phase difference image. The cross-wavelet power and coherence plot
contain arrows showing the area of significant joint periods (significance level = 0.05). The direction of these arrows indicating
the direction of phase differences. Up-right pointing arrows indicate that the two series are in phase and x(t) series leads, while
down-right pointing arrows indicate the two series are in-phase and x(t+ n) series leads. Similarly, up-left pointing arrows express
that the two series are out of phase and x(t+ n) series leads, while down-left pointing arrows express that the two series are out of
phase and x(t) series leads. The arrows are only plotted within white contour lines indicating significance at the 10% level. A more
explicit global view of the phase difference can be produced with (𝜋∕2, 𝜋) and (−𝜋, −𝜋/2) for out of phase and (−𝜋/2, 𝜋/2) for
in-phase. The time-averaged cross-wavelet power provides a summarized view on the shared periods, the corresponding power
and the statistical significance. Cross-wavelet plots may mark areas significant due to one series swinging widely, rather than two
series sharing a joint period. To avoid this false positive readout, it is more appropriate to examine wavelet coherence plots, like
the coefficient of correlation. It has a value range between 0 and 1 and it shows statistical significance only in areas where the two
series actually share jointly significant periods.

Return plots

From the total numbers of new infections, we generated return plots with increasing lags, plotting daily changes x(t + 1), . . . ,
x(t + 7) vs. x(t) and weekly changes x(t + 14), . . . , x(t + 49) vs. x(t). Short time lags tend to cluster around the 45◦ angle,
whereas increasing time delays reveal the structure of the oscillations. When graphed in 3 dimensions, these diagrams can aid in
reconstructing the underlying attractor.

Autocorrelation

A time series sometimes repeats patterns or has other properties, whereby earlier values display some relation to later values. The
autocorrelation statistic (serial correlation statistic) measures the degree of that affiliation as it refers to linear dependence. The
magnitude of its dimensionless number reflects the extent of similarity. The formula for autocorrelation Rm is comprised of terms
for autocovariance and variance

autocorrelation = autocovariance
variance

Rm =

1
N

N−m∑
t=1

(xt − x)(xt+m − x)

1
N

N∑
t=1

(xt − x)2

Autocorrelation coefficients range from−1 to+1, with+1 indicating perfect synchrony and−1 reflecting exact mirror images.
An absence of any correlation yields Rm = 0.

Box counting dimension

The dimension of a fractal is best described as a non-integer. The dimension is a quantitative measure for the evaluation of
geometric complexity by objects. A general relationship assumes

dimension ∝ log(number of increments)
log

(
1

scale size

)

Here, the characteristic of dimension is that it specifies the rate, at which the number of increments varies with scale size. We
calculated the box counting dimension after binning into 16 × 16 squares of 2-dimensional return plots with various lags.

Average mutual information

The AMI represents a non-linear correlation function, which indicates how much common information is shared by the mea-
surements of x(t) and x(t + n). The AMI was calculated with the mutual function R package tseriesChaos. It estimates the
mutual information index for a specified number of lags. The joint probability distribution function is estimated with a simple
bi-dimensional density histogram.
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Embedding dimension

Here by R package nonlinearTseries, we first use the timeLag function to decide the optimal time lag 𝜏 based on the AMI and then
by the estimateEmbeddingDim function to assess the optimal embedding dimension m. Then the optimal set of regressors related
to x(t) is x(t− 𝜏), . . . , x(t− (m− 1)𝜏), x(t−m𝜏). The function to determine the minimum embedding dimension from a scalar time
series applies the algorithm by Cao (1997), which recommends using two functions, E1(d) and E2(d), to determine the minimum
embedding dimension, where d denotes the dimension. E1(d) stops changing when the dimension d is greater than or equal to
the embedding dimension (d0), staying close to 1. E2(d) distinguishes deterministic signals from stochastic signals for stagnating
E1(d).

Surrogate data analysis

For non-linear data sets it is important to distinguish between complexity and randomness. To investigate the complexity inherent
in the time series, we carried out a collection of non-linearity tests on the data from 9 countries, including the surrogate data test
on a linear stochastic process assumption, as well as additional tests with various null hypotheses. Teraesvirta’s neural network
test for neglected non-linearity uses a Taylor series expansion of the activation function to arrive at a suitable test statistic. It uses
either the F-statistic or the 𝜒 2 statistic. The White neural network test for neglected non-linearity of the time series is consistent
against arbitrary non-linearity in mean. It uses either the F-statistic or the𝜒 2 statistic. The McLeod–Li test assesses autoregressive
conditional heteroscedascity (ARCH) among various time lags. The Keenan test is designed to have optimal local power against
departure from the linear autoregressive function in the direction of the square of the linear autoregressive function. The null
hypothesis of the Tsay test is that the true model is an autoregressive (AR) process. The AR order, if missing, is estimated.

Results

Comparison across countries

Across countries, a wide spectrum of measures was taken to curb the spread of SARS-CoV2. This resulted
in a range of very different progression curves when graphing the numbers of new infections over time
(Figure 1). India, Brazil, Sweden, Italy and the United States have been considered as hard-hit for their own
internal reasons. France, Germany, over a long period Poland, and South Korea had tighter control and a
less aggressive spread. All curves display close to linear ramp-up phases, followed by more or less irregular
oscillations. The levels of success at suppressing the new infection rates diverged among countries, and
several are experiencing a second peak. Surrogate data analysis showed that these time series are complex,
not random (Table 1).

Wavelet methodology aids in studying periodic phenomena in time series, particularly in the presence
of potential frequency changes over time. For cross-country evaluations, all graphs were plotted on the same
scale (Figure 2A). Each country was also plotted on its own scale (Figure 2B). The univariate analysis of the
time course for the countries under study shows prominence of the recent upswing in France (heat intensity
on the right margin of the graph). By contrast, there is comparatively more successful management by Italy,
Germany, Poland and South Korea through October 2020. India, Brazil, Sweden, and the United States display
cyclical fluctuations of various durations, none of which have been contained. A period of 7 days is prominent
in the fluctuations of most countries, which may reflect real cyclicity or weekly reporting habits. The worldwide
data are displayed in Figure S1.

For cross-country comparisons, we converted the new infection total numbers to new infection rates
by relating them to 10,000 members of the population (Figure 3A). Complex systems can be analyzed with
Fourier analysis. We first plotted Fourier power spectra vs. frequency for the rates of new infections (Figure
3B). Spectral density range (high in Brazil, low in South Korea) and frequency distribution provide a readout
for infectious spread. The spectral density of the normalized rates (identically scaled y-axes) (Figure 3C)
confirmed good management of the pandemic spread in Germany, Poland, and South Korea (and to some
degree in Italy). Despite the progressive increase in the numbers of infections in India, on a population basis,
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Figure 3: Fourier analysis.
(A) New infection rates. Daily reported new numbers of infections divided by 10,000 inhabitants. The x-axis shows the calendar
date. (B) Power spectrum. Fourier power spectra vs. frequency for new infections per 10,000 inhabitants per day in each of 9
countries. (C) Normalized power spectrum. Spectral density (y-axis) vs. period (in days) for infection rates per 10,000
inhabitants (x-axis). The curve shows the smoothed spectral density estimates. All y-axes have the same scale.
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control has apparently not been lost through October 2020. By contrast, the power spectra for Brazil, Sweden,
and France are reflective of potentially adverse developments. The United States display an anomaly with a
periodic behavior that has a prominent cycle around 100 days.

To gain a better understanding of the dynamics, with which disease spread occurs, we investigated
progressive numbers of new infections in comparison to their increasing time lags. This approach may reveal
periodicities or aid in the visualization of attractors. Expectedly, short time delays were associated with little
change. With a lag time of about 7 days onward, distinct patterns emerged among countries. According
to bivariate wavelet analysis for time-delayed data series (including the cross-wavelet power plot, wavelet
coherence plot, average power plot and phase difference image), Italy, Germany and South Korea shared
significantly joint periods of 1–2 months in the comparison x(t) vs. x(t + 7). South Korea has comparatively
high power and significant shared periods around 3 weeks at the early stage and later the significant shared
periods are also 1–2 months. The remaining countries all have segments of shorter periods (around 7 days)
and longer periods shared. For India, Brazil, France, USA and Poland, the shared 7-day period only appears
significant in the later part of the series. Similar results are observed in the analyses for x(t) vs. x(t + 14)
and x(t) vs. x(t + 21). The phase difference plots show that in the shared longer periods, x(t) are mostly in
phase with x(t + 7), while they gradually become out of phase in x(t) vs. x(t + 14) and x(t) vs. x(t + 21), thus
making longer lags more discriminating and informative (Figure 4A and Figure S2A and B). A reduction in
cross-wavelet power levels is apparent in Italy, Germany and South Korea. Poland and France are experiencing
recent increases. India, Brazil and the USA have had protracted periods of high cross-wavelet power levels.
Containment is associated with longer periodicity in the distribution of cross-wavelet power. This is the case
for South Korea, Germany and Italy. High cross-wavelet power around a periodicity of 7 days is reflective of
poor control.

To generate informative return plots, we utilized 3 dimensions, which allows for the visualization of two
lags from x(t) (or from a later start point) and may reveal the pattern of an attractor. In this depiction, a rapid
increase or decrease in new infections is reflected in a close-to straight line, oscillations generate a near-
toroid attractor, while successful management shrinks the torus and moves it closer to the origin. Initially,
we evaluated multiple time delays. Most discriminating were x(t), x(t + 7), x(t + 14) and x(t + 3), x(t + 7), x(t
+ 14) and x(t + 5), x(t + 14), x(t + 28) (Figure 4B). The progressive increase in new cases over the time period
in India is reflected in a predominantly linear curve on each scale. The wide fluctuations in Brazil generate a
largely disordered appearance. Disorder is also apparent in Sweden. France initially managed the pandemic
well, but is experiencing a dramatic upswing, which obscures order. Cyclical patterns, suggesting the outlines
of attractors, are apparent in USA, Italy, Germany, and South Korea (where most data points are concentrated
near the origin). Poland initially displayed a well-contained attractor, but the recent substantial upswing in
new infections is reflected in a linear progression from there (for separate analyses of the two phases, see Figure
S3). We also calculated the embedding dimensions for the lagged data (Figure 4C). Germany has the highest
embedding dimension of 10, followed by Poland with 9. Several countries have an embedding dimension of
7, including Brazil, Sweden, USA and South Korea. Italy and France have the embedding dimension equal to
5. India is unusual due to its longer lag period of 24 days. When the lag period is set at 7 days, the embedding
dimension of India is also equal to 7. For the worldwide data, the calculated embedding dimension is 7 with
a time lag of 1 (not shown).

The autocorrelation of two data strings with short time lags is expected to be high (approaching 1.0)
because there is little opportunity for dramatic change (high infection rates on day t likely produce similarly
high numbers on the consecutive day t + 1, while low numbers are followed by few new infections on the
next day). Autocorrelation may remain high for extended lags in the initial ramp-up and at the oscillatory
stage, depending on the regularity of the fluctuations. A society that succeeds in curbing the disease spread
will leave the highly correlated initial ramp-up and consecutive oscillatory phases, thus displaying a gradual
decrease in values at the longer lags. The decline in the autocorrelation numbers of progressively lagged data
by country appeared to be reflective of the stringency, with which the pandemic was addressed (Table 2A).
From a lag of 6 onward, Poland and South Korea have substantially declining values (although due to the
recent steep upswing in new infections, Poland deviates from the trend at very long lags), Germany shows a
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x(t+3),x(t+7),
x(t+14)

x(t+5),x(t+14),
x(t+28)B

Figure 4: Time-lagged data analysis.
(A) Bivariate wavelet analysis. Shown are cross-wavelet power plot, wavelet coherence plot, average power plot and phase
difference image (from left to right in each row) time-lagged data were used for x(t), x(t + 14) (for the lags x(t), x(t + 7) and x(t),
x(t + 21) see Figure S2). White contour lines indicate significance for joint periodicity, black arrows depict the phase difference
in the areas with significant joint periods. The solid red dots on the average power plot (the third from the left) depict significant
joint periods at a probability of error of 0.1. Where shown, the color bars reveal the ranges of cross-wavelet power levels. (B)
Return plots in 3 dimensions. Time-lagged return plots in 3 dimensions are shown (from left to right) for x(t), x(t + 7), x(t + 14)
and x(t + 3), x(t + 7), x(t + 14) and x(t + 5), x(t + 14), x(t + 28). Each country of interest has its own row. (C) Embedding
Dimension. The plots show how Cao’s algorithm uses 2 functions in order to estimate the embedding dimension from the time
series (the E1(d) and E2(d) functions), where d denotes the dimension.
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Figure 4: (continued)

dramatic lowering at a lag of 21 and above. By contrast, India and Brazil stay uniformly high. So do the global
numbers, which are inherently heterogeneous.

The AMI reflects information shared by the measurements of x(t) and x(t + n). Expectedly, it declines
with increasing lag. Poland starts with a relatively low value (1.15 at t vs. t + 1) and shows a rapid decrease
with longer lag. It then stays around at a low level of 0.15 from lags of 21–49 days. France displays a gradually
decreasing trend with the AMI starting at 1.60 and ending at 0.34 at the lag of 49 days. India shows a similar
pattern as France but with much higher AMI (due to the constant uptick in numbers), ranging between 2.61
and 1.37. Four other countries, including Germany, USA, Sweden and Brazil, all express relatively flat AMI
values, staying around levels of 2.20 for the USA and Brazil, 1.5 for Germany, and 1.3 for Sweden. Reflecting
progressively improved control, Italy and South Korea also have decreasing trends, but much flatter at
1.96–1.36 for Italy and 1.26 to 0.66 for South Korea, respectively (Table 2B).
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A rapid increase in new infections is reflected in a small fractal dimension (practically approximated by
the box counting dimension with values between 1 and 2) of the 2-dimensional return plots with progressive
lags. Intermediate phases are characterized by higher fractal dimensions (approaching 2), depending on
the nature of the oscillations. Conversely, successful management through the reduction in new infections
should be reflected in a contraction of the attractor on the return plot, which is assessable through the box
counting dimension. A trend is displayed in the comparisons from shorter to longer lag periods. Distinct
management strategies across different countries generate a heterogeneous pattern worldwide, rendering the
fractal dimension high regardless of the lag in x(t+ n) vs. x(t) plots. Steep increases in new infections (Poland,
India) have dimensions close to 1. Intermediate phases are characterized by higher numbers. Successful
fights against the pandemic (South Korea) are causative for declining size dimensions with increasing lag
(Table 2C).

Comparison across US states

Within the USA, individual states have encountered a rather wide range of progression phenotypes in the
spread of new COVID-19 infections (Figure 5). This is due to variations in international connectedness and
population density (reflected in the early peaks in the Northeastern states New York and Massachusetts),
holiday travel (Florida), policy decisions and other factors.

Wavelet analysis of new infections (one scale across all states) shows good control (right side of the
graph) after initial affliction (left area) for Massachusetts and New York, which having had early spikes in
new infections have achieved good success in containment. Through the observation period, control has not
been maintained in Ohio. The periodicity in individual states (each on their own scales) is poorly defined,
except for Florida and Ohio, where 7 days yield a prominent signal (Figure 6A and B).

We normalized the new infection numbers to rates by relating them per 10,000 inhabitants (Figure 7A).
Figure 7B shows the periodogram for the 6 states under investigation with frequencies between 0 and 0.10 (the
graph is almost flat for the higher frequencies). There exist clear heterogeneous patterns in the comparison
among these states. New York and Massachusetts display steadily decreasing spectral density values from
the longest period to around 1–2 weeks (corresponding to a frequency range around 0.07–0.14). Florida and
Texas share similar patterns with a few low spikes in their periodograms after the first 3 highest ones. The
graph for California flattens out after the lowest three frequencies, with the longest period (the whole series)
having the highest value. Ohio’s pattern is quite unique with fluctuating values from the longest periods
through around 5–6 weeks. The Fourier power spectrum for the infection rates (Figure 7C) indicates similar
periodic patterns as in the periodograms of Figure 7B. These patterns are less prominent due to the adjustment
to the same y-axis scale (the scale reflects the magnitude of the positive rates, the shape shows the evolution
of the disease).

We conducted bivariate wavelet analysis on the time-lagged data (Figures 8A and S4). The shared syn-
chronicity segments between x(t) and x(t + n) can be grouped into shorter periods (around 7 days) and
longer periods (approximately 3 weeks, 1 month, 2 months). New York does not display substantial joint
short periods. Ohio and Texas mainly have correlation at the end of the series around the 7-day period. Mas-
sachusetts experiences joint periodicity around the 7-day period at the early stage of the series. Florida and
California have joint periods in the middle of the observation time frame. The levels of average cross-wavelet
power are higher in states with poor control (x-axes scales for Florida, Ohio). The peak power shifts toward
higher periodicity with improved control (y-axes scales for New York, Massachusetts). The return plots in 3
dimensions, utilizing the same time lags as for the countries, seemed to reflect contraction of the attractor
in Massachusetts, cyclicity in New York, Florida and California, no containment in Texas, and an ejecting
diagonal in Ohio which may reflect exacerbation (Figure 8B). The embedding dimensions varies among
states, such that the most contained states (New York, Massachusetts) have the lowest embedding dimension
(Table 3).

The autocorrelation for return plots of increasing lags show a progressive decline in the numbers of New
York and Massachusetts, which implemented strong containment measures after having been afflicted early.
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Figure 7: Fourier analysis.
(A) New infection rates. Daily reported new numbers of infections divided by 10,000 inhabitants (infection rates). The x-axis
shows the calendar date. (B) Power spectrum. Periodogram plot on the series of the new infection rates. The x-axis is the
frequency (per day) and the y-axis represents the spectral density. The y-axis ranges vary among graphs. (C) Normalized power
spectrum. Spectral density vs. period (in days) for infection rates. All y-axes have the same scale.
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Figure 8: Time-lagged data analysis by US state.
(A) Bivariate wavelet analysis. Shown are cross-wavelet power plot, wavelet coherence plot, average power plot and phase
difference image (from left to right on each row). Time-lagged data were used for x(t), x(t + 14) (for the lags x(t), x(t + 7) and x(t),
x(t + 21) see Figure S4). White the contour lines indicate significance of joint periodicity, black arrows indicate the phase
difference in the areas with significant joint periods. The solid red dots on the average power plot (the third from the left) reflect
significant joint periods at a significance level of 0.1. (B) Return plots in 3 dimensions. Time-lagged return plots in 3 dimensions
are shown (from left to right) for x(t), x(t + 7), x(t + 14) and x(t + 3), x(t + 7), x(t + 14) and x(t + 5), x(t + 14), x(t + 28). Each state
under investigation has its own row.
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Figure 8: (continued)

Table 3: Embedding dimension for time-lagged data by U.S. state.

State California Ohio Florida Texas New York Massachusetts

Time lag 11 3 3 3 10 7
Embedding dimension 8 8 7 7 6 6

Embedding dimensions were calculated according to Cao’s algorithm, which uses 2 functions in order to estimate the
embedding dimension from the time series. The table shows the calculated time lags and embedding dimensions for each U.S.
state under study.

The values decline less steeply for Texas and California. Ohio displays an anomaly with increasing values for
very long lags. The state, while not heavily afflicted on a per capita basis, never achieved containment, only
a stationary level, and has since experienced another wave (Table 4A). Up to a maximum lag of 49 days, the
AMI for the 6 US states under study ranges between 1.0 and 2.0. Overall, all states show a slightly decreasing
pattern except for California, which is relatively leveled at a value of 2.0 (Table 4B). Unexpectedly, the box
counting dimension (Table 4C) is less discerning than it was for the evaluation across countries. This may be
due to the much lower power conveyed by smaller population sizes.
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Discussion

In the present investigation, we find that the analysis tools for observed complex data can aid in the interpre-
tation of pandemic spread across communities. Difficulties in analyzing the non-linear patters of infectious
disease progression may be tamed by applying the methods of complex systems research. The approach can
reveal patterns, where a simple time course of new cases does not (Supplement Figure S6 (note added in
proof)), and it does not require the formulation of models and algorithms upfront. Fractal dimension can
be used to measure the complexity of the dynamics in a time series. Its graphic depiction may inform on
rhythmicity/periodicity, and confinement is reflected in a shrinking/movement by the attractor toward the
origin of the graph. Autocorrelation and AMI find repeating patterns in the time series. Harmonics can be
an indicator of exacerbation. The operational approximation of Lyapunov exponents may be meaningful,
although they were largely uninformative for the present study (Supplemental Figure S5). Fuzzy Logic is
meaningfully added to represent the uncertainty in the process of making a forecast (Castillo and Melin 2020;
Castillo and Melin 2021). Further, non-linear analysis allows the study into various facets of the process,
depending on whether the starting data are new cases, hospitalizations, deaths or other readouts. Maps can
be generated and evaluated for their fractal dimensions (Păcurar and Necula 2020). Computer programs are
available or can be written to update pertinent readouts whenever new data are received. We expect that
the tracking of infectious progressions with these tools of complex systems analysis will provide improved
readouts for the state of the crisis management and will enable more informed decision making.

Among the countries analyzed, South Korea has had the most successful control of the pandemic spread
according to low intensity in univariate wavelet analysis, low spectral density range in Fourier analysis, low
spectral density of the normalized rates, a reduction in cross-wavelet power levels according to bivariate
wavelet analysis and longer periodicity in the distribution of cross-wavelet power. Further, declining box
counting dimensions, autocorrelation values with increasing time lag, and decreasing trends (at a low slope) in
AMI confirm containment. Cyclical patterns in return plots, suggesting the outlines of attractors, are apparent
and most data points are concentrated near the origin of the graph. Germany exhibited good management
through October 2020 according to univariate wavelet analysis, spectral density in the power spectrum of the
normalized rates, a reduction of cross-wavelet power levels in bivariate wavelet analysis, longer periodicity in
the distribution of cross-wavelet power, a dramatic lowering of autocorrelation values at a lag of 21 and above,
and relatively flat AMI values, staying around levels of 1.5. Cyclical patterns in return plots suggest the outlines
of an attractor. Good control by Italy consecutive to the early impact and through October 2020 is reflected
in low intensity and fluctuation when applying univariate wavelet analysis, in a reduction of cross-wavelet
power levels for bivariate wavelet analysis of time-delayed data, longer periodicity in the distribution of cross-
wavelet power, and decreasing trends (at a low slope) in AMI. Cyclical patterns in return plots, suggesting
the outlines of an attractor, are apparent. Poland had two distinct phases. By univariate wavelet analysis
and density in the power spectrum of normalized rates, there was indication of good management through
October 2020. According to bivariate wavelet analysis for time-delayed data series and return plots, the recent
substantial upswing in new infections is reflected, which also results in box counting dimensions close to 1.
From a lag of 6 onward, Poland has substantially declining autocorrelation values, although due to the recent
steep upswing in new infections, the trend reverses at very long lags. The AMI starts with a relatively low
value (1.15 at t vs. t + 1) and shows a rapid decrease with longer lag, staying level from lags of 21–49 days.
In the United States, univariate wavelet analysis displays cyclical fluctuations of various durations, none
of which have been contained. According to bivariate wavelet analysis for time-delayed data series, there
have been protracted periods of high cross-wavelet power levels. Cyclical patterns in return plots, suggesting
the outlines of attractors, are apparent. The USA expresses relatively flat AMI values, staying around levels
of 2.20. In France, univariate wavelet analysis of the time course shows prominence of the recent upswing
(heat intensity on the right margin of the graph), the power spectrum is reflective of potentially adverse
developments. The second wave of infections is apparent in bivariate wavelet analysis and in the obscured
order in return plots. France displays a gradually decreasing trend of AMI. India expresses cyclical fluctuations
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of various durations in univariate wavelet analysis, none of which have been contained. On a population
bases, the spectral density suggests that control has not been lost through October 2020. Bivariate wavelet
analysis shows protracted periods of high cross-wavelet power levels, return plots reflect the progressive
increase in new cases over the time period in a predominantly linear curve on each scale, box counting
dimensions are close to 1, and autocorrelation values stay uniformly high with increasing time lag. India
displays a gradually decreasing trend of AMI. Brazil experiences cyclical fluctuations of various durations
in univariate wavelet analysis, none of which have been contained. By Fourier analysis, the spectral density
range is high. The power spectrum is indicative of potentially adverse developments. According to bivariate
wavelet analysis, there have been protracted periods of high cross-wavelet power levels. In return plots, the
wide fluctuations generate a largely disordered appearance. The autocorrelation values stay uniformly high.
Brazil expresses relatively flat AMI values, staying around levels of 2.20. Sweden shows cyclical fluctuations
of various durations in univariate wavelet analysis, none of which have been contained. The power spectrum
is reflective of potentially adverse developments. In return plots, disorder is apparent. Sweden expresses
relatively flat AMI values.

Prima facie, the curves of new infections vs. time for three Western European countries, France, Italy,
and Germany, appear similar. Complex systems analysis reveals the upswing in France to be much more
perilous than the increases in the curves of new infections by the other two countries. The management of
infectious spread also requires improvements in the United States, Sweden and Brazil. The selection of the
observation period can dramatically influence the results. Poland was initially very successful in containing
the pandemic, but then experienced a substantial upswing. Analyzing these two phases individually or in
conjunction yields very different data sets, which inform about distinct aspects of the infectious progression.

The fluctuations of new infections in an epidemic or a pandemic pose challenges to the evaluation
whether a decline reflects true containment (“rounding the corner”) or just the calm before another wave.
The readouts of non-linear systems analysis can aid in making such a distinction. A complex occurrence
that experiences containment will strive toward a point attractor in phase space and move toward the origin.
Such a progression is represented in a declining fractal dimension, and the transition from fluctuations (often
associated with a torus attractor, where the time series does not have a strict periodicity, the trajectory is not
closed, and the limit cycle acquires the shape of a torus.) toward limitation of new cases is expected to reduce
the autocorrelation.

One constraint of complex systems analysis is the need for large data sets. In this regard, the availability
of about 230 data points (daily new cases March through October 2020) for each geographic area in this study
is somewhat low. The robustness of pertinent studies increases with larger data sets over time. Reporting
errors could have a non-trivial impact, and may be reflected in the frequent occurrence of a peak at 7 days in
the spectral analysis (possibly indicating weekly totals). This problem can be addressed by utilizing moving
averages. The homogeneity or heterogeneity in management by the community under study determines the
noise level. The worldwide numbers of new infections have a lot of background due to varying patterns across
countries.
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