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Abstract 

Evidence for an anomalous annual periodicity in certain nuclear decay data has led to 

speculation concerning a possible solar influence on nuclear processes. As a test of this 

hypothesis, we here search for evidence in decay data that might be indicative of a 

process involving solar rotation, focusing on data for 32Si and 36Cl decay rates acquired at 

the Brookhaven National Laboratory. Examination of the power spectrum over a range of 

frequencies (10 – 15 year-1) appropriate for solar synodic rotation rates reveals several 

periodicities, the most prominent being one at 11.18 year-1 with power 20.76. We 

evaluate the significance of this peak in terms of the false-alarm probability, by means of 

the shuffle test, and also by means of a new test (the “shake” test) that involves small 

random time displacements. The last two tests are the more robust, and indicate that the 

peak at 11.18 year-1 would arise by chance only once out of about 107 trials. However, 

the fact that there are several peaks in the rotational search band suggests that modulation 

of the count rate involves several low-Q oscillations rather than a single high-Q 

oscillation, possibly indicative of a partly stochastic process. To pursue this possibility, 

we investigate the running mean of the power spectrum, and identify a major peak at 

11.93 year-1 with peak running-mean power 4.08. Application of the shuffle test indicates 

that there is less than one chance in 1011 of finding by chance a value as large as 4.08. 

Application of the shake test leads to a more restrictive result that there is less than one 

chance in 1015 of finding by chance a value as large as 4.08. We find that there is notable 

agreement in the running-mean power spectra in the rotational search band formed from 

BNL data and from ACRIM total solar irradiance data. Since rotation rate estimates 

derived from irradiance data have been found to be closely related to rotation rate 

estimates derived from low-energy solar-neutrino data, this result supports the recent 

conjecture that solar neutrinos may be responsible for variations in nuclear decay rates. 

We also carry out a similar comparison with local temperature measurements, but find no 

similarity between power spectra formed from BNL measurements and from local 

temperature measurements. 
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1. Introduction 

There is strong evidence [1-3] for an annual periodicity in decay data acquired at both the 

Brookhaven National Laboratory (BNL) [4] and at the Physicalisch Technische 

Bundesandstalt (PTB) [5]. Such a variation could in principle be caused by 

environmental effects, but a detailed investigation by our collaboration shows that the 

results of our BNL and PTB analyses cannot be explained by variations of temperature, 

pressure, humidity, etc. [6]. Norman et al. [7] have reexamined data from several studies 

of nuclear decay rates and found no evidence for a correlation with Sun-Earth distance. 

However, our collaboration has recently re-analyzed Norman’s data, which Norman and 

his collaborators generously provided, and we have detected an annual periodicity with a 

small amplitude but the same phase as that found in the BNL and PTB datasets. Cooper 

[8] has analyzed data from the power output of the radioisotope thermoelectric generators 

aboard the Cassini spacecraft, finding no significant deviations from exponential decay. 

However, we show in Section 9 of our recent article [6] that there is no conflict between 

Cooper’s results and our results [1-3]. 

 

To investigate more closely the possibility that the annual variations are somehow caused 

by the Sun, we now look for a periodicity that may be associated with solar rotation. It is 

convenient to adopt a working hypothesis for a possible solar influence. If the data prove 

to be incompatible with the hypothesis, that will reduce by one the number of possible 

causes. If the data were to prove to be compatible with the hypothesis, that would 

strengthen the case for that hypothesis. We adopt, as a working hypothesis, our recent 

suggestion that nuclear decay rates are influenced by solar neutrinos [1].  

 

The solar convection zone and radiative zone have synodic rotation frequencies (as 

observed from Earth) in the equatorial plane in the range 12.9 to 13.8 year-1 

(corresponding to sidereal rotation frequencies 13.9 to 14.8 year-1) [9]. However, we have 

found evidence that low-energy solar neutrinos, as detected by the Homestake [10,11] 

and GALLEX [12-15] experiments, are modulated at a lower frequency (11.85 year-1) 

that shows up also in ACRIM [16,17] total solar irradiance data for the Homestake and 
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GALLEX time intervals [18,19]. It is reasonable to suspect that this frequency may be 

related to the synodic rotation frequency of the solar core, since this is where neutrinos 

originate. These results suggest that the solar core rotates more slowly than either the 

convection zone or the radiative zone, and that rotation of the core influences both the 

solar neutrino flux and (somewhat surprisingly) the solar irradiance.  

 

The primary goal of this article is therefore to determine whether decay data—

specifically the BNL data—show evidence of a periodicity in a “search band” appropriate 

for synodic solar rotation rates, which we take to be 10—15 year-1. For the above reasons, 

we shall be particularly interested in evidence for rotation rates that are slower than those 

of the radiative zone and the convection zone. 

 

The preparation of the data and the power spectrum analysis are presented in Section 2, 

where we find a major peak at frequency 11.18 year-1, and assess the significance of that 

peak by calculating the false-alarm probability [20] and (in Section 3) by applying the 

more robust shuffle test [21]. We also carry out a significance estimate using a new test 

that we call the “shake test.” This involves the comparison of the actual power spectrum 

with a large number of power spectra derived from simulated data generated by small 

random displacements of the times of measurements. 

 

However, the power spectrum formed in Section 2 contains several peaks in the rotational 

search band, suggesting that the variations in the decay rates are not to be attributed to a 

unique high-Q (stable, narrow-band) oscillation (due for instance to the steady rotation of 

a steady but asymmetric source). It may be due to several transient oscillations of 

different frequencies, or to an oscillation that drifts in amplitude and frequency, or to a 

process that is partly periodic and partly stochastic. For this reason, we seek to evaluate 

the entire power spectrum over the rotational search band. To this end, we form in 

Section 4 a weighted running mean of the power spectrum. We find a major peak at 11.93 

year-1, very close to the major peak (at 11.85 year-1) found in a comparative analysis of 

low-energy solar neutrino data and total solar irradiance data [18,19]. We examine the 

significance of this peak in Section 5, using the shuffle and shake tests. These tests 
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indicate that the power-spectrum structure found in the rotational search band is highly 

significant. 

 

We discuss these results in Section 5, where we compare the running-mean power 

spectrum formed from BNL data with those formed from ACRIM irradiance data [16,17] 

and from local temperature measurements. We find a close similarity with the former, but 

no similarity with the latter.  

 

2. Power Spectrum Analysis 

 

The BNL dataset comprises 366 measurements in the time interval 1982.11 to 1989.93, 

where dates are measured in what we call “neutrino years,” which have proved useful in 

analyzing neutrino data. (Dates in “neutrino days” are counted from January 1, 1970, as 

day 1, and dates in “neutrino years” are given by 1970 + (neutrino days)/365.2564.) We 

have prepared the data for time-series analysis by dividing the decay count rates by the 

counts expected on the basis of a purely exponential decay, using the mean decay rate 

determined from the best fit to the data. The resulting normalized count rates are shown 

in Figures 1 and 2 for the Cl (36Cl) and Si (32Si) data, respectively. We show in Figure 3 

the ratio of the normalized Si measurements to the normalized Cl measurements. It is 

clear that the ratio of Si to Cl measurements shows less scatter than either the Cl or the Si 

measurements. This is borne out by inspection of the standard deviations, which are 

0.0013 and 0.0014 for Cl and Si data, respectively, but only 0.0011 for the ratio. This 

comparison suggests that the Cl and Si measurements are subject to some experimental 

(environmental or instrumental) influences which are mitigated on forming the ratio. For 

the above reasons, we have focused our attention on the ratio of the measurements.  

 

We have next performed a power-spectrum analysis of the data shown in Figure 3, using 

a likelihood procedure [22] that is equivalent to the Lomb-Scargle procedure [20, 23]. 

The result is shown in Figure 4. The biggest peak is at 0.17 year-1, which should probably 

be interpreted as a secular trend, since the dataset extends over less than 8 years. The next 

biggest peak is close to 1 year-1, which is to be expected [1-3]. The third, fourth, and fifth 
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peaks (11.17 year-1 with power S = 20.76; 13.11 year-1 with S = 16.79; and 11.73 year-1 

with S = 12.96) all fall within the band of 10—15 year-1, which we adopt as our search 

band for rotational frequencies. 

 

There are 22 peaks in the search band. Adopting this value for M, the number of 

“independent measurements” in that band, and using the standard formula [20] for the 

“false-alarm probability”, 

 

   FAP =1− 1− e−S( )M
,      (1) 

 

with S = 20.76, we obtain the estimate FAP = 2.1 10-8. However, when one is over-

sampling a power spectrum (as in this case), the average value of the peaks is larger than 

the average value of the power by approximately unity [24]. Using SM = 19.76 and N = 

22, we obtain the revised estimate FAP = 5.8 10-8. 

 

 

3. Significance Estimates 

The false-alarm formula is derived on the assumption that measurements are derived 

from an exponential distribution, as would be appropriate for a power spectrum derived 

from normally distributed random noise [18]. This may be approximately true for the 

current dataset, but there is no reason to expect that it is absolutely true. Since the false-

alarm probability estimate depends critically on this assumption, it is advisable to 

perform more robust significance estimates that do not depend on that assumption. One 

such procedure is the “shuffle test” [21]. 

 

We denote by tn, and xn, n = 1,…,N, the times of the measurements and the 

measurements, respectively. In carrying out the shuffle procedure, we retain the actual 

values tn and xn, but we pair up the times and the measurements randomly. This test does 

not depend on an assumed form for the distribution of measurements. For each 

simulation, we repeat the power spectrum analysis, and note the value of the biggest peak 

in the search band. The result of 10,000 such simulations is shown in histogram form in 
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Figure 5. For none of the 10,000 simulations is there a peak in the search band as large as 

the actual power (20.76). (The largest value is found to be 14.16.) 

 

These results are also shown in a logarithmic display in Figure 6. This figure also shows 

an extension of the empirical curve, derived from a projection of the last 1,000 points. 

This projection leads us to expect that we would obtain a peak as big as the actual peak 

only once in about 107 random simulations. 

 

We have already noted that there are two peaks in the power spectrum shown in Figure 4 

that are bigger than the peaks in the search band. The one at 0.17 year-1 probably 

represents a secular trend. Since the shuffle test necessarily pairs measurements from 

times that are well removed from each other, this could conceivably introduce a bias in 

the significance estimate derived from the shuffle test. We have therefore looked into the 

possibility of devising a test that is in principle similar to the shuffle test, but which 

would take into account the fact that the distribution of measurements may not be the 

same throughout the dataset. We believe that the following “shake test” meets these 

requirements. 

 

We retain the actual values xn of the measurements. However, we replace each time tn by 

one that differs from tn by an amount that is small compared with the timescale for 

changes in the pattern of measurements, but is big enough to disrupt periodicity in the 

range being investigated. Specifically, we use the algorithm 

 

   tn → tn + Dt * R  ,     (2) 

 

where R denotes a number drawn randomly over the range -1 to 1. To decide on the 

appropriate value of R, we have run 1,000 analyses of a fictitious dataset comprising the 

actual periodicity at 11.18 year-1 superposed on Gaussian noise with the same standard 

deviation as the actual data. We find that Dt = 0.0005 gives a power distribution close to 

a delta function at S = 20; Dt = 0.005 gives a wide scatter from S = 3 to S = 21; Dt = 0.05 

gives a distribution close to that obtained from S = 0.5, a bell-shaped distribution ranging 
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from S = 3 to S = 10. We have therefore adopted the value Dt = 0.05 year, which is large 

enough to disrupt the coherence of a wave with frequency in the range 10 - 15 year-1, but 

small compared with the timescale (of order 1 year) of the patterns seen in Figure 3. 

 

We have carried out 10,000 shake simulations of the data, arriving at the result shown in 

histogram form in Figure 7. One again, we find that none of the 10,000 simulations leads 

to a power as large as the actual power (20.76) of the principal peak in the search band. 

(The largest value is 12.92.) 

 

These results are shown in a logarithmic display in Figure 8, which also shows an 

extension of the empirical curve, derived from a projection of the last 1,000 points. This 

projection leads us to expect that we would obtain a peak as large or larger than the actual 

peak only once in about 107.4 simulations. This would correspond to a false-alarm 

probability FAP = 4.0 10-8, close to the estimate 5.8 10-8 obtained in Section 2. 

 

4. Frequency-Averaged Power Spectra 

We see from the power spectrum shown in Figure 4 that there are several peaks in the 

range 11 - 13 year-1, indicating that the time series should not be attributed to a single 

stationary high-Q periodic process. It suggests, if we think in terms of variability due 

primarily to rotation, that the signal may be attributed to rotation in more than one region, 

and that the rotation rate of any region may be variable. (It is also worth noting that the 

power spectrum produced by a hypothetical obliquely rotating Sun depends critically on 

the angle between the rotation axis and the normal to the ecliptic [25].) For this reason, 

we seek a procedure for evaluating a complex of peaks, rather than focus on only one 

peak. To this end, we have adopted the procedure of forming a running mean of the 

power spectrum.  

 

We denote by ν j  the sequence of frequencies (with spacing 0.01 year-1) at which the 

power is evaluated, and by Sj the power sequence, where j =1,...,Nν . We then form the 

sequence 
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   ˜ S j = W j − k( )
k

∑ Sk  .      (3) 

 

We have adopted 

 

   W j( )= Ccos π
2

j
m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , j = −m,...,m  ,     (4) 

 

in which C is chosen so that the mean value of W is unity: 

 

    C = W j( )
−m

m

∑  .      (5) 

 

We have adopted m = 200, which is equivalent to forming running means of the power 

over intervals of width 4 year-1. However, we find that, for m = 200,  

 

    W j( )
−m

m

∑ j 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 2

= 0.435m  ,    (6) 

 

so that the rms frequency deviation is only 0.87 year-1. 

 

The result of applying this smoothing operation to the power spectrum shown in Figure 4 

(extended to 100 year-1) is shown in Figure 9. We find that the smoothed power spectrum 

has a peak centered on 11.93 year-1 with peak power 4.08. 

 

In order to obtain a significance estimate for this peak, we again use the shuffle test, re-

computing the power spectrum and then the running mean of the power spectrum many 

times, keeping the original times and the original count rates, but randomly sorting one of 

these datasets. We have carried out this procedure 10,000 times, determining the 

maximum weighted running mean of the power in the rotational search band for each 

simulation. The histogram formed from these maxima is shown in Figure 10. We see that 
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none of the random simulations yields as large a value of the running mean of the power 

in the search band as the actual value (4.08). (The largest value is 2.11.) 

 

These results are shown in a logarithmic display in Figure 11, which also shows an 

extension of the empirical curve, derived from a projection of the last 1,000 points. This 

projection leads us to a p-value of 10-11.0, implying that we could expect to obtain a peak 

as large or larger than the actual peak only once in about 1011 simulations. 

 

We have also examined the running-mean power spectrum by means of the shake test, 

again carrying out 10,000 simulations. The results are shown in histogram form in Figure 

12 and as a logarithmic display in Figure 13. We see that none of the simulations has as 

large a value of the maximum running-mean power in the search band as we obtain in our 

analysis of the actual data. (The largest value is 2.02.) A projection of the curve is found 

to have the abscissa value 4.08 where the ordinate value is – 15.5, from which we infer 

that the result of this test corresponds to a p-value of 10-15.5, a stricter result than that 

found from the shuffle test. 

 

5. Discussion 

 

We have recently drawn attention to the fact that a p-value may not be interpreted as the 

probability that the null hypothesis is false, and we have proposed a Bayesian approach 

that does lead to such a probability [26]. Equation (25) of that article leads to the 

following formula for the odds on the null hypothesis, 

 

   Ω H0 | pv( )= 2.44 1.92 − log pv( )( )pv .    (7) 

 

If we adopt the more conservative estimate pv = 10-11.0 from the shuffle test in Section 4, 

rather than the value derived from the shake test, we estimate the odds on the null 

hypothesis to be 7 10-10, implying that the odds are 1.4 109 in favor of a real modulation 

in the rotational search band. 
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In the Introduction, we drew attention to the fact that a combined analysis of low-energy 

solar neutrino data and the total solar irradiance shows that neutrinos and irradiance 

exhibit a periodicity at the same frequency, 11.85 year-1[18,19]. However, inspection of 

the power spectra derived from the neutrino and irradiance data shows that this is simply 

the dominant peak of a cluster of peaks. Hence, in order to compare the BNL data with 

neutrino and irradiance data, it is convenient to analyze either neutrino or irradiance data 

in the same way that we have analyzed decay data, i.e. in terms of running-mean power-

spectra. It is more advantageous to work with irradiance data since they are more 

accurate and extensive, so that we may extract measurements for the BNL time interval. 

 

Beginning with ACRIM measurements [16,17] over the time interval of BNL 

measurements, we have carried out a power spectrum analysis and then formed the 

weighted running means of the power using the procedure outlined in Section 4. The 

result of this analysis is shown in Figure 14 in which we also reproduce for comparison 

the curve derived from BNL data, previously shown in Figure 9. Focusing on the 

rotational search band 10 – 15 year-1, we see that these distinct datasets both yield 

significant peaks at essentially the same frequency, approximately 11.9 year-1. 

 

As we noted in the introduction, such a low frequency cannot be attributed to either the 

radiative zone or the convection zone. This leaves only the solar core as the place of 

origin of this periodicity. This of course helps one understand the association with solar 

neutrinos, since the core is by definition the location of nuclear reactions in the Sun. 

 

(We remark, parenthetically, that the peak in the irradiance curve at 27.2 year-1 is too 

high to be a harmonic of the periodicity associated with the core, but it may be 

interpreted as a harmonic of the photospheric rotation frequency for which the equatorial 

synodic frequency is in the range 13.4—13.6 year-1, suggesting that it may be attributed 

to an ellipsoidal distortion of the photosphere.) 

 

In reviewing evidence for an annual oscillation in decay data [1-3], one faces the 

requirement of distinguishing a periodicity in the data due to nuclear processes from 
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possible periodicities due to environmental influences. Of the possible environmental 

factors (temperature, pressure, humidity, etc.), the local ambient temperature shows the 

strongest seasonal variation. We have therefore applied our power-spectrum running-

mean analysis to the local temperature associated with the BNL experiment. The result is 

shown in Figure 15, where we again reproduce for comparison the curve for BNL data 

shown in Figure 9. We see that (in contrast to our results from decay data and irradiance 

data) the ambient temperature does not lead to a corresponding peak in the rotational 

search band. It therefore seems highly unlikely that environmental effects have played 

any role in leading to a periodicity in the rotational search band. 

 

We have found evidence that decay data exhibit a periodicity very close to that found in 

low-energy solar neutrino data and in solar irradiance data. Hence our results are 

compatible with our “working hypothesis” for a solar influence on nuclear decay rates. 

Concerning possible mechanisms, it has seemed reasonable to attribute periodicities in 

neutrino and irradiance data in the range 11 – 12 year-1 to processes involving the rotation 

of a longitudinally asymmetric solar core [18,19]. It is worth noting that, since the Sun’s 

axis is inclined with respect to the normal to the ecliptic, a latitudinal asymmetry in the 

solar core could contribute to the annual variation found in decay rates [1-3]. This effect, 

in association with an annual variation due to the eccentricity of the Earth’s orbit, may 

explain why the phases of the annual variations in decay data do not agree with what 

would be expected on the basis of a purely orbital effect. This issue will be discussed in 

more detail in a later article.  

 

Although the physical implications of the present analysis remain uncertain, the results 

appear to be compatible with the hypothesis that some nuclear decay rates are influenced 

by solar neutrinos. We may not conclude from this compatibility that the hypothesis is 

valid, but we may conclude that—as far as the present analysis is concerned—the 

hypothesis remains viable. 
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FIGURE CAPTIONS 

 

Figure 1. Normalized count rates from the 36Cl source in the BNL experiment.  

 

Figure 2. Normalized count rates from the 32Si source in the BNL experiment.  

 

Figure 3. Ratio of the normalized count rate from the 32Si source to the normalized count 

rate from the 36Cl source in the BNL experiment.  

 

Figure 4. Power spectrum formed by a likelihood procedure from the ratio of the Si and 

Cl count rates.  

 

Figure 5. Histogram of 10,000 power estimates generated by the shuffle procedure. None 

has power as large as that in the actual power spectrum (20.76, shown in red; the largest 

value is 14.16).  

 

Figure 6. Logarithmic display of the power estimates generated by 10,000 shuffle 

simulations of the BNL data. A projection of the curve indicates that one would expect to 

obtain the actual power (20.76) only once in about 107 trials.  

 

Figure 7. Histogram of 10,000 power estimates generated by the shake procedure. None 

has power as big as that in the actual power spectrum (20.76, shown in red; the biggest 

value is 12.92).  

 

Figure 8. Logarithmic display of the power estimates generated by 10,000 shake 

simulations of the data. A projection of the curve indicates that one would expect to 

obtain the actual power (20.76) once in about 107 trials.  

 

Figure 9. Plot of the 501-point weighted running means formed from the power spectrum 

shown in Figure 4 . The peak occurs at frequency 11.93 year-1 with weighted-running-

mean power 4.08.  
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Figure 10. Histogram of 10,000 estimates of the maximum weighted-running-mean 

power in the search band 8—17 year-1 generated by the shuffle procedure. None of the 

simulations gives a value as big as that (4.08) in the actual data. (The biggest value is 

2.11.)  

 

Figure 11. Logarithmic display of 10,000 estimates of the maximum weighted-running-

means power in the search band 8—17 year-1 generated by the shuffle procedure. A 

projection of the curve indicates that one would expect to obtain the actual value (4.08) 

only once in about 1011 trials.  

 

Figure 12. Histogram of 10,000 maximum weighted-running-mean power generated by 

the shake procedure. None has a value as big as that derived from the actual data (4.08). 

(The biggest value is 2.02.)  

 

Figure 13. Logarithmic display of the maximum weighted-running-mean power 

generated by 10,000 shake simulations of the BNL data. A projection of the curve 

indicates that one would expect to obtain the actual value (4.08) less than once in about 

1015 trials.  

 

Figure 14. Plot of the weighted-running-mean power formed from the BNL data (red), 

and the corresponding figure formed from the ACRIM irradiance data for the BNL time 

interval (green). The ACRIM power has been reduced by a factor of 2.  

 

Figure 15. Plot of the weighted-running-mean power formed from the BNL data (red), 

and the corresponding figure formed from local temperature data for the BNL time 

interval (green).  
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Figure 1. Normalized count rates from the 36Cl source in the BNL experiment.  
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Figure 2. Normalized count rates from the 32Si source in the BNL experiment.  
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Figure 3. Ratio of the normalized count rate from the 32Si source to the normalized count 

rate from the 36Cl source in the BNL experiment.  
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Figure 4. Power spectrum formed by a likelihood procedure from the ratio of the Si and 

Cl count rates.  



    

 21/31 

 

 
 

Figure 5. Histogram of 10,000 power estimates generated by the shuffle procedure. None 

has power as large as that in the actual power spectrum (20.76, shown in red; the largest 

value is 14.16).  
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Figure 6. Logarithmic display of the power estimates generated by 10,000 shuffle 

simulations of the BNL data. A projection of the curve indicates that one would expect to 

obtain the actual power (20.76) only once in about 107 trials.  
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Figure 7. Histogram of 10,000 power estimates generated by the shake procedure. None 

has power as big as that in the actual power spectrum (20.76, shown in red; the biggest 

value is 12.92).  
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Figure 8. Logarithmic display of the power estimates generated by 10,000 shake 

simulations of the data. A projection of the curve indicates that one would expect to 

obtain the actual power (20.76) once in about 107 trials.  

 



    

 25/31 

 

 
Figure 9. Plot of the 501-point weighted running means formed from the power spectrum 

shown in Figure 4 . The peak occurs at frequency 11.93 year-1 with-weighted running-

mean power 4.08.  
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Figure 10. Histogram of 10,000 estimates of the maximum weighted-running-mean 

power in the search band 8—17 year-1 generated by the shuffle procedure. None of the 

simulations gives a value as big as that (4.08) in the actual data. (The biggest value is 

2.11.)  
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Figure 11. Logarithmic display of 10,000 estimates of the maximum weighted-running-

means power in the search band 8—17 year-1 generated by the shuffle procedure. A 

projection of the curve indicates that one would expect to obtain the actual value (4.08) 

only once in about 1011 trials.  
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Figure 12. Histogram of 10,000 maximum weighted-running-mean power generated by 

the shake procedure. None has a value as big as that derived from the actual data (4.08). 

(The biggest value is 2.02.)  
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Figure 13. Logarithmic display of the maximum weighted-running-mean power 

generated by 10,000 shake simulations of the BNL data. A projection of the curve 

indicates that one would expect to obtain the actual value (4.08) less than once in about 

1015 trials.  
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Figure 14. Plot of the weighted-running-mean power formed from the BNL data (red), 

and the corresponding figure formed from the ACRIM irradiance data for the BNL time 

interval (green). The ACRIM power has been reduced by a factor of 2.  
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Figure 15. Plot of the weighted-running-mean power formed from the BNL data (red), 

and the corresponding figure formed from local temperature data for the BNL time 

interval (green).  

 


