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Given current anthropogenic alterations to many ecosystems and commu-
nities, it is becoming increasingly important to consider whether and how
organisms can cope with changing resources. Metabolic rate, because it
represents the rate of energy expenditure, may play a key role in mediating
the link between resource conditions and performance and thereby how
well organisms can persist in the face of environmental change. Here, we
focus on the role that energy metabolism plays in determining organismal
responses to changes in food availability over both short-term ecological
and longer-term evolutionary timescales. Using a meta-analytical approach
encompassing multiple species, we find that individuals with a higher meta-
bolic rate grow faster under high food levels but slower once food levels
decline, suggesting that the association between metabolism and life-history
traits shifts along resource gradients. We also find that organisms can cope
with changing resource availability through both phenotypic plasticity and
genetically based evolutionary adaptation in their rates of energy metabolism.
However, the metabolic rates of individuals within a population and of species
within a lineage do not all respond in the same manner to changes in food
availability. This diversity of responses suggests that there are benefits but
also costs to changes in metabolic rate. It also underscores the need to examine
not just the energy budgets of organisms within the context of metabolic rate
but also how energy metabolism changes alongside other physiological and
behavioural traits in variable environments.

Anthropogenic drivers such as climate change and habitat degradation are
having a marked impact on resource availability for organisms in many biologi-
cal communities. Shifts in food availability occur not only as a result of altered
trophic interactions [1] but also via impacts on organismal physiology and be-
haviour that alter resource demands and foraging rates [2—4]. There is
increasing evidence that these changes in resource availability can alter the
structure and dynamics of populations [2,4] and, in some cases, lead to their
decline and subsequent extinction [1]. In good times, abundant food sources
provide sufficient energy for growth, reproduction and survival, but balancing
energy intake with demand among these competing functions can present a
formidable challenge when resources are limited [5-7]. Morphological, physio-
logical and behavioural traits, such as organ size [5,8-10], body temperature
[8,11] and activity levels [5,12], can respond to changes in food availability
over both ecological and evolutionary timescales. Many of these strategies are
facilitated by changes in energy acquisition and expenditure [13]. As such,
shifts in the rate of energy metabolism may play a key role in mediating the
link between population resilience and resource conditions, partly explaining
how well organisms can persist in the face of environmental change.

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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Metabolic rate determines the energetic cost of living [14].
At the very minimum, organisms need energy to maintain
the homeostatic mechanisms necessary for life [15,16]. This
baseline or minimum rate of energy expenditure is termed
standard metabolic rate in ectotherms and basal metabolic
rate in endotherms and is typically measured as the rate of
oxygen consumption of a post-absorptive, inactive, non-
reproductive individual at a given temperature in ectotherms
or within the thermoneutral zone of endotherms [17,18].
Above this baseline expenditure, aerobic power is needed
to fuel important functions such as locomotion, digestion,
thermoregulation, growth and reproduction. However,
organisms are limited by their maximum metabolic rate,
the upper bound to their aerobic capacity [19].

Shifts in metabolic rate may be an important mechanism
for organisms to balance their energy budgets and thereby
cope with changes in food availability over both ecological
and evolutionary timescales. Indeed, metabolic rate is a plas-
tic trait [20—22] that is also heritable [23] and known to evolve
[24,25], but how it is expected to change in response to shifts
in food availability is far from certain. The adaptive value of
shifts in metabolic rate in response to changes in food avail-
ability will depend on how metabolic rate impacts fitness
and whether that impact changes along gradients of resource
availability. However, at present there are multiple mechanis-
tic hypotheses for how metabolic rate should impact fitness
and no apparent empirical support for any single hypothesis
(see below). As such, it is difficult to make predictions for
how metabolic rate may change in response to changes in
food levels over both ecological and evolutionary timescales.

Here, we use a meta-analytical approach to examine links
between metabolic rate and performance across gradients of
food availability in multiple taxa. We focus on baseline rates
of mass-independent metabolism, i.e. standard and basal
metabolic rate (referred to more generally as resting metabolic
rate hereafter), since they have received the greatest attention.
We then use output from our meta-analysis to derive predic-
tions for how resting metabolic rate may enable or constrain
responses to changes in food conditions via phenotypic plas-
ticity and evolutionary adaptation. Finally, we evaluate and
discuss evidence for these predictions across a wide diversity
of animal taxa.

Given that energy is needed to persist in any environment,
different mechanistic hypotheses have been put forward
regarding how resting metabolic rate might impact organis-
mal performance [26,27]. On the one hand, resting metabolic
rate may reflect the maintenance costs of the metabolic
machinery needed to maintain higher metabolic rates for
activity, growth and/or reproduction [28-32], such that a
higher resting metabolic rate facilitates higher energy intake,
which is beneficial for fitness [26,33]. This ‘increased intake’
hypothesis predicts a positive relationship between resting
metabolic rate and fitness. By contrast, the ‘allocation” hypoth-
esis proposes that a higher resting metabolic rate may limit
metabolic power that could otherwise be devoted to other
important functions, such that resting metabolic rate is nega-
tively correlated with components of fitness [26,34]. A third
hypothesis integrates both the allocation and increased

intake hypotheses but places them within the larger ecological
context of varying food availability (figure 1a, [27]). Specifi-
cally, it proposes that, in the absence of food restriction,
any fold-increase in whole-organism metabolic expenditure
would be accompanied by a proportional increase in mainten-
ance costs, activity levels and production rates (increased
intake hypothesis), while under food restriction the available
energy must be allocated to maintenance at the expense of
activity, growth and/or reproduction (allocation hypothesis).
As such, this ‘context-dependent’ hypothesis predicts that
high resting metabolic rate will have a negative impact on per-
formance under low food conditions but a positive impact on
performance when food is readily available (figure 1a).

Numerous studies have examined the impact of resting
metabolic rate on performance, but results are thus far equiv-
ocal. For example, some laboratory studies report a positive
correlation between resting metabolic rate and growth [35],
reproduction [36] and survival [37,38] while other studies
report no correlation or a negative relationship with these
same components of fitness (e.g. growth: [39], reproduction:
[40], survival: [41]). Similar inconsistences have been found
in studies of wild populations [42,43]. These results have
been interpreted to varying degrees as evidence for or against
the increased intake and/or allocation hypotheses. However,
the majority of studies are conducted under a single food
level, so the role that food availability plays in determining
these metabolic impacts and whether that varies across taxa
or environments remains largely unexplored.

To address this question, we combed the literature for
studies that examined the relationship between intra specific
variation in mass-independent standard and basal metab-
olism and fitness-related traits. From those studies, we
extracted the correlation coefficient (r) between metabolic
rate and the fitness-related trait, and the temperature and
food level used in each study. We then examined whether
(1) effect sizes (z-scores) for the correlation differed from
zero using an intercept-only model, and (2) food level (cate-
gorized as low or high per the authors description and
included as a categorical predictor) and temperature (con-
tinuous covariate) had an impact on the magnitude and
direction of the relationship between metabolic rate and com-
ponents of fitness. Among studies that focused on metabolic
impacts on somatic growth rate (i.e. change in body size over
time; electronic supplementary material, table S1; n=27
estimates from 14 ectotherm and 1 endotherm species), corre-
lation coefficients () ranged from —0.53 to 0.76 and had a
mean effect size+1 s.e. of 0.07+0.08, which did not differ
from zero (Fjpy;=0.64, p=0.431). However, effect sizes
differed between food levels (F; 5 =14.76, p <0.001). Specifi-
cally, there was a significant positive effect size under high
food conditions (r=0.25+0.08, t;5=3.33, p=0.003) but a
similar yet negative effect size (r=-0.25+.0.10, t;5=-2.49,
p=0.020) under low food conditions (figure 1b,c). There
was no effect of temperature on the correlation between
metabolic rate and growth (F;,5=0.31, p=0.580). We were
unable to find any studies looking at the correlation between
resting metabolic rate and reproduction under different food
levels. Studies of metabolic impacts on survival were
restricted to fishes and too few in number to warrant quanti-
tative analysis, but results thus far were similar to those
found for growth: there was a negative correlation between
resting metabolic rate and survival under low food con-
ditions, and a weak but positive correlation under high
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Figure 1. Context-dependent hypothesis (a) and mean effect sizes for low and high food conditions (b,c). (a) Whole-organism metabolic rate (MR) can be parti-
tioned into survival costs (i.e. ‘the costs of living’, which include the costs of maintenance (as measured by resting metabolic rate (RMR) and activity) and production
of new tissue (i.e. metabolic power allocated to growth or reproduction). In the absence of food restriction (high food), any fold-increase in MR would be
accompanied by a proportional increase in both maintenance costs and production rates, while under food restriction (low food) the available energy must be
allocated to maintenance at the expense of production. (b) Average intra specific correlation between metabolism (MR) and growth rates obtained under low
and high food. (¢) Correlations reported in different studies plotted against their sample sizes (symbol colours as in b). In both (b) and (c), Pearson correlation
coefficients r were transformed to z effects following Fisher’s transformation to comply with assumptions of normality and homogeneity of variance. Dashed lines
show the z-transformed critical values for a two-tailed hypothesis; hence values outside these boundaries are statistically significant, with p < 0.05.

food conditions [44,45]. These results provide strong evidence
for the context-dependent hypothesis, particularly for
growth, in that a high resting metabolic rate is advantageous
under high food conditions, and conversely, that a low meta-
bolic rate is beneficial when food is scarce.

Given that the impact of resting metabolic rate on these
different metrics of performance depends on food avail-
ability, we might therefore make the following predictions
with respect to how metabolic rate may respond in an
adaptive manner to changing food levels:

Prediction 1: Under short-term changes in food availability,
phenotypic plasticity in metabolic rate will be advan-
tageous such that selection favours those individuals that
upregulate their metabolic rate when food levels increase
and downregulate their metabolic rate when food levels
decrease.

Prediction 2: Over longer timescales, organisms will evolve
higher metabolic rates in more productive environments,
while populations and species living in less productive
environments will evolve a lower metabolic rate. We would
therefore expect a positive relationship between metabolic
rate and food availability across populations and species.

3. Metabolic responses to short-term changes in
food availability

Phenotypic plasticity of standard and basal metabolic rate in
response to changing food availability is found across a wide
variety of taxa including invertebrates [20,46] and all major
vertebrate classes such as fish [12,21,47,48], amphibians
[49], reptiles [22,50], birds [51-54] and mammals [55,56].
Changes in energy metabolism occur over timescales ranging
from days to weeks [47,57] and differ considerably among
individuals [12,21,48,57]. For example, the magnitude of
shifts in metabolic rate can differ by up to 10-fold among
individuals in the same population [21]. Species also show
variation in their metabolic responses to changes in food
availability but are more difficult to compare owing to differ-
ences in experimental design and treatments across studies
[5]. However, on average, organisms typically upregulate
their resting metabolic rate when food levels increase and
downregulate their metabolism when food becomes scarce
[5]. These shifts in metabolic rate are thought to reflect under-
lying changes in organ mass and associated digestive and
assimilative processes [9], mitochondrial number and/or
efficiency [58], and respiratory substrate use [5].
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Metabolic responses to changes in food availability may
reflect adaptive strategies for meeting energy demands, but
studies of the fitness consequences of metabolic plasticity
are currently few in number and thus far focus exclusively
on growth impacts in fishes [12,21]. Collectively, these labora-
tory food manipulation studies demonstrate that individuals
that upregulate their resting metabolic rate to a greater extent
in response to increasing food levels grow at a faster rate com-
pared with individuals whose metabolic rates are less flexible
[21,59,60]. By contrast, when food levels decline, those indi-
viduals that downregulate their metabolic rate to a greater
extent grow at faster rates or lose less body mass than less
flexible individuals [12,21,59,60]. These studies support Pre-
diction 1 and provide evidence that plasticity in metabolic
rate in response to changes in food availability can be advan-
tageous, but more research across a wider diversity of taxa is
needed to evaluate the impacts of metabolic flexibility on
growth and other fitness-related traits such as reproduction
and survival.

Why individuals within a population differ in their meta-
bolic flexibility is also not clear given the beneficial impacts
observed for growth. Reduced metabolic plasticity may be
maladaptive, but differences among individuals in their meta-
bolic plasticity may also reflect alternative strategies for
maximizing fitness under changing food levels. One alterna-
tive strategy is the reduction of activity levels rather than
metabolic rate per se under low food conditions. For example,
in brown trout (Salmo trutta), some individuals reduce their
rates of mass loss by downregulating their metabolism while
other individuals in the same population do so by reducing
their activity in response to food deprivation [12]. Changes
in habitat use may also represent an alternative strategy
for coping with changes in food availability. For instance,
Atlantic salmon (Salmo salar) individuals with higher standard
metabolic rates shift from foraging in pools to faster-flowing
but more profitable riffle habitats when food availability
declines [61]. Similarly, in environments with high spatial
or temporal thermal variability, the selection of cooler
microclimates can result in substantial energy savings by
behavioural means without major changes in physiological
machinery (e.g. [62,63]).

The presence of alternative strategies suggests that there
are costs to plasticity that differ among individuals [64].
One potentially important cost is the impact of an increase
in resting metabolic rate on absolute aerobic scope, the
metabolic power available to the organism after meeting its
baseline energetic demands [65]. Evidence thus far is limited
but suggests that, in contrast to the flexibility observed in
resting metabolic rates, maximum rates of metabolism are
immutable under changing food levels [66]. As a result,
allocation of metabolic power to maintain important functions
(resting metabolic rate) comes at a cost to the amount of
power allocated to drive those same functions (aerobic
scope; [65,67]). Given this trade-off between resting metabolic
rate and aerobic scope, we might therefore expect that indi-
viduals with a low maximum aerobic capacity would be
less likely to increase their resting metabolic rates when
food levels increase and more likely to decrease them when
food levels decline. It is also possible that metabolism affects
life-history traits in multiple ways—e.g. under low food con-
ditions, a lower metabolism is beneficial for growth but could
also come at a cost to an organism’s ability to compete with
other individuals or escape from predators—resulting in

trade-offs that give rise to different strategies. However, the [ 4 |

costs, benefits and limitations of metabolic flexibility versus
alternative behavioural strategies require further research.

Metabolic rates are heritable [23,68-70], subject to selection
[45,71,72], and known to evolve in both laboratory
[24,25,73] and wild [72,74] populations. However, at large
spatial and temporal scales, it is unclear how metabolic
responses to different levels of food availability translate
into variation across populations, species or lineages. Studies
thus far have looked at population- or species-specific meta-
bolic rates and whether they covary with environmental
factors such as productivity [74-77] and climate [76,78-81]
that are thought to reflect food availability, but evidence is
thus far mixed. For example, many studies report a positive
correlation [74-77,81] as proposed in our Prediction 2, but
others find a correlation with some but not all [78,82] indices
of food availability.

Equivocality of results may arise in part because factors such
as productivity and climate are often highly correlated in space
and time (e.g. [78]) but also due to the breadth of adaptive
responses that lineages can exhibit to cope with decreased food
availability. For example, strategies such as torpor or hibernation
in endotherms constitute classic examples of evolutionary
responses that have been favoured to a large degree as an
energy saving strategy [83-85], and heterothermy has been
suggested as an important attribute for avoiding extinction
[86]. In ectothermic organisms, aestivation is often employed
to cope with the combined challenge posed by high tempera-
tures and low food or water supply [85]. However, in light of
the predominant role of temperature in shaping metabolic
variation at multiple timescales (from minutes up to millions
of years), it remains to be seen whether general responses to
different levels of food availability exist across ectotherms.

Another confounding factor in interspecific studies of
metabolic diversity is body size. Because energy balance is
inherently linked with body size, a thorough understanding
of how metabolism evolves in response to food availability
must also take body size evolution into consideration. Plastic
or evolutionary responses such as Dehnel’s phenomenon,
where certain species decrease in size in anticipation of
periods of scarcity [87], or insular dwarfism [88], may reflect
strategies to cope with restricted resource availability and yet,
from a strictly energetic perspective, similar reductions in
energy expenditure could have been attained at a constant
body size by decreasing mass-specific metabolism. The fun-
damental issue, analytically, is to disentangle how variation
in resource availability translates into metabolic responses
at the whole-organism level, which include scaling effects
with their own degree of uncertainty, and responses that
are independent of size (figure 24,b). Importantly, other
factors that vary with body size, such as life-history traits
or thermoregulatory performance, are also under selection
during the evolution of different lineages, adding layers of
complexity that are neglected here for sake of clarity.

The inclusion of body size complicates analyses based on
energy balance because of the impact body size has on meta-
bolic rates (i.e. energetic costs) but also other factors such as
home range area, starvation resistance and foraging efficiency
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Figure 2. Energy allocation with varying body size. (a) Interspecific metabolic variation is analysed including body size as an independent variable, but size can also
vary in response to resource availability. Therefore, the evolution of metabolic rates (MR) and size must be studied in tandem. The scheme shows how an evol-
utionary shift in both traits deviating from the scaling relationship may be interpreted as selection either for reduced whole-organismal MR or for increased mass-
corrected MR. (b) Schematic evolutionary trajectories of these traits with simulated body mass and MR data. (c) Scaling of MR for ectothermic organisms with low
and high food reviewed here (P. darwini was not included), also accounting for the effects of temperature (R? =0.914). (d) Metabolic levels removing scaling and
temperature effects predict the strength of the association (z-scores) between MR and growth, but this effect varies in sign in high (white circles, dashed line) versus
low food (grey circles, solid line) and suggests that resource availability can alter the evolutionary trajectory of these traits, everything else being equal.

(i.e. potential benefits). Neglecting this issue, as well as the
dichotomy between whole-organism versus mass-indepen-
dent metabolism, will inevitably lead to an incomplete
understanding of the set of circumstances underlying the evol-
ution of animal size and energetic strategies. For instance,
analyses testing whether mass-independent metabolic rates
vary as a function of food availability are not conclusive [89],
partly because what is meant by availability varies with size.
As recent studies on size evolution in whales [90] and
endothermy in birds [91] suggest, larger sizes, as well as
higher mass-independent metabolic rates, can be favoured by
selection and explained on energetic grounds. While larger
whales are more efficient foragers, the emergence of birds
from their ectothermic theropod ancestors involved a consistent
reduction in body size that seems to have offset the costs of elev-
ated mass-specific metabolic rates typical of endotherms
(figure 2a,b).

Selective pressures aside, the multivariate genetic and phe-
notypic nature of these traits makes it difficult to predict long-
term evolutionary trends. For instance, the impact of food
availability on phenotypic correlations between metabolism
and growth rates (electronic supplementary material, table
S1) should result in different responses to selection in any of
these traits, assuming that growth rates will have an impact
on adult body size. Similarly, the presence of central or periph-
eral limitations in energy and nutrient turnover may impose a
limit on the amount of resources that can be allocated to
growth or reproduction (figure 1), suggesting that organisms
with high metabolism may be differentially affected by food

restriction. Accordingly, after removing scaling and tempera-
ture effects on resting metabolism (figure 2c), effect sizes for
the intraspecific correlation between growth and resting meta-
bolic rates (electronic supplementary material, table S1) were
affected by food availability primarily in animals with high
metabolic levels, as evidenced by a significant interaction
between mass-independent metabolic rate and food avail-
ability (t, =2.32, p=0.029) in a regression weighted for the
correlation sample size (figure 2d). In summary, not only
will the nature of selection associated with food availability
vary with size, the trajectory of the response to this selective
pressure may also be contingent on many other factors. Spatial
and temporal variation in temperature and food availability
complicate things further, as some strategies such as selecting
cooler microhabitats (ectotherms) or entering torpor or hiber-
nation (endotherms) may reduce overall energy expenditure
below metabolic estimates standardized for comparative pur-
poses, such as standard metabolism at a specific temperature
or basal metabolic rates. Consequently, it is not surprising
that the general expectation that lineages should reduce their
total energy expenditure by decreasing size [92] and/or
mass-independent metabolic rates [75,76] under restricted
food availability is not always supported [78].

Balancing energy intake with demand among competing
functions in the face of changing resource levels is requisite
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for persisting in variable environments. Given increasing
anthropogenic impacts on communities and ecosystems
[93,94], understanding whether and how organisms cope
with changes in resource availability will be key to predicting
the fitness of individuals and the abundance, distribution and
evolutionary trajectories of species now and in the future.
Our meta-analysis provides evidence that the impacts of
baseline metabolic rate on performance depend on environ-
mental conditions. In addition, our review highlights the
mutability of metabolic rate; resting metabolic rate can
increase or decrease in response to shifts in food availability
through both phenotypic plasticity and genetically based
evolutionary adaptation. The direction of these changes is
generally in line with our predictions for adaptive responses
at the individual and species level: (1) performance is higher
among individuals that upregulate their baseline metabolic
rate when food levels increase and that downregulate their
metabolism when resources decline, and (2) many popu-
lations and species evolve a higher baseline metabolic rate
in more productive environments. However, the metabolic
rates of individuals within a population and of species
within a lineage do not all respond in the same manner to
changes in food availability.

context of metabolic rate but also how energy metabolism [ 6 |

changes alongside other physiological and behavioural
traits in variable environments. We highlight evidence for
strategies at the individual (e.g. shifts in activity rates or
microhabitat use) and species (e.g. evolution of smaller
body size) levels that may interact with and influence how
whole-organism as well as mass-independent metabolism
respond to environmental change. However, more integrative
research is needed to better understand the costs and benefits
of these and other strategies and thereby how they evolve
across environmental gradients.

Data used in the meta-analysis are available in
electronic supplementary material, table S1.
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