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ON THE TOPOLOGY OF LAGRANGIAN FILLINGS OF THE

STANDARD LEGENDRIAN SPHERE

JOONTAE KIM AND MYEONGGI KWON

Abstract. In this paper we study the uniqueness of Lagrangian fillings of the standard
Legendrian sphere L0 in the standard contact sphere (S2n−1, ξst). We show that every exact
Maslov zero Lagrangian filling L of L0 in a Liouville filling of (S2n−1, ξst) is a homology
ball. If we restrict ourselves to real Lagrangian fillings, then L is diffeomorphic to the n-ball
for n ≥ 6.

1. Introduction

Let (W,dλ) be a Liouville domain of dimension 2n with a Liouville form λ. Its boundary
Σ = ∂W admits a natural contact structure ξ = kerλ|Σ. In this case, (W,dλ) is called a
Liouville filling of a contact manifold (Σ, ξ). Given a Legendrian submanifold L ⊂ (Σ, ξ),
we call L ⊂ (W,dλ) an exact Lagrangian filling of L if L is a Lagrangian submanifold with
∂L = L, the 1-form λ|TL is exact, and the Liouville vector field of λ is tangent to TL near
the boundary ∂L.

The classification of Lagrangian fillings of Legendrian submanifolds has been an interesting
problem in contact and symplectic topology. For Legendrian (2, n)-torus links with maximal
Thurston–Bennequin invariant, there are non-uniqueness results on exact Lagrangian fillings;
[26] and [29] give a lower bound of the number of exact Lagrangian fillings in terms of augmen-
tations and cluster varieties. Examples of Legendrian links with infinitely many distinct exact
Lagrangian fillings are then found in [6, 7, 15]. In contrast, it is shown in [12] that the Leg-
endrian unknot in the standard contact sphere (S3, ξst) with maximal Thurston–Bennequin
invariant admits a unique exact Lagrangian filling in C

2 up to compactly supported Hamilton-
ian isotopy. This result has been partially generalized to higher dimensions in [8, Theorem 4.7
and Remark 4.3] for the standard Legendrian sphere

L0 := {x+ iy ∈ S2n−1 ⊂ C
n | y = 0} ∼= Sn−1

where the n-ball L0 = {x + iy ∈ B2n | y = 0} ∼= Bn serves as an obvious Lagrangian
filling. Using relations between bilinearized Legendrian contact homology and wrapped Floer
homology, [8] showed that every exact Lagrangian filling of L0 in the standard symplectic ball
(B2n, dλst) is contractible.

In the first part of this paper, we investigate the uniqueness of Lagrangian fillings up
to homology focusing on a special property of L0 called index-positivity. Roughly speaking,
it is a relative version of the dynamical convexity for contact manifolds in symplectic field
theory, which has played an important role in the uniqueness of symplectic fillings e.g. as in
[22, 30]. See Definition 2.3 for a precise definition. The triple (S2n−1, ξst,L0) of the standard
Legendrian sphere L0 in (S2n−1, ξst) forms an example of index-positive triples, and this is a
key ingredient of the following theorem.
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Theorem A. Let (W,dλ) be a Liouville filling of (S2n−1, ξst) and L ⊂ W an exact Lagrangian
filling of L0 ⊂ (S2n−1, ξst) with vanishing Maslov class. Then L has the same homology group
H∗(L;Z) as the ball Bn.

We remark that a Liouville filling (W,dλ) in Theorem A is not necessarily the standard
symplectic filling (B2n, dλst), while W is diffeomorphic to the ball B2n by Eliashberg–Floer–
McDuff [23]. The vanishing of the Maslov class µL : π2(W,L) → Z is a technical condition
for Floer theory, and this is the case for example when the first homology group H1(L;Z) is
torsion.

We prove the above theorem using invariance properties of wrapped Floer homology. The
wrapped Floer homology HW(L) of an admissible Lagrangian L, introduced in [1], is in
principle an invariant of L, but sometimes its positive part HW+(L) is completely determined
by the boundary Legendrian. This is for example the case when the Legendrian is index-
positive. Furthermore, the Legendrian boundary constraint L0 actually forces the positive
wrapped Floer homology HW+(L) of its Lagrangian filling L to be isomorphic to the homology
of the obvious filling L0 = Bn. This comes from the fact that any Liouville filling of (S2n−1, ξst)
has vanishing symplectic homology [28, Corollary 6.5]. In conclusion, the homology of L is
completely governed by its boundary L0.

Our argument applies to a more general setup with index-positive Legendrians and La-
grangian fillings with vanishing wrapped Floer homology; see Theorem 2.7.

Remark 1.1.

• There are infinitely many Legendrians in (S2n−1, ξst) with multiple exact Lagrangian
fillings up to homeomorphism as in [5, Theorem 1.5]. Those Legendrians are not the
standard Legendrian spheres by Theorem A. Also, examples of Legendrian subman-
ifolds in high dimension with infinitely many exact Lagrangian fillings up to Hamil-
tonian isotopy can be found in [17].

• As for another uniqueness result in high dimensions, let Σ be an integral homology
sphere with non-trivial π1. In [2, Corollary 1.8] it is shown that every exact Maslov
zero Lagrangian filling of the Legendrian unknot in the cotangent bundle T ∗Σ is a
homology ball.

Remark 1.2. In the setting of Theorem A, it might be possible to prove further that every
exact Lagrangian fillings of the standard Legendrian sphere is simply-connected and hence
diffeomorphic to the ball in high dimensions. An idea is to utilize a twisted version of wrapped
Floer homology following [8]. In [8, Section 4.2], a wrapped Floer homology HW(L) of a

Lagrangian filling L with local coefficients via the universal covering L̃ → L is described; it is
a vector space over the group ring Z2[π1(L)] and is equipped with a canonical π1(L)-action by
deck transformations. If HW(L) is vanishing as the non-twisted version, then one can deduce
that there is a π1(L)-equivariant isomorphism between the positive action part HW+(L) and

the singular homology of L̃ as in [8, Corollary 4.8]. By a similar algebraic argument to the
proof of [8, Proposition 4.9], this would imply that π1(L) = 0.

It is however not clear to the authors whether the twisted wrapped Floer homology HW(L)
is still vanishing, as in analogue to Ritter [27, Theorem 10.6] and Seidel–Smith [28, Corollary
6.5].

In the second part of the paper, we restrict ourselves to a special class of exact Lagrangian
fillings, called real Lagrangian fillings. For those fillings, we can manipulate symmetry in
J-holomorphic curves to show that they are diffeomorphic to the ball.
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Let (Σ, ξ, ρ) be a real contact manifold, meaning that (Σ, ξ = kerα) is a contact manifold
with a contact form α and ρ : Σ → Σ is an anti-contact involution, i.e. ρ2 = id and ρ∗α = −α.
A real Liouville filling (W,ω,R) of (Σ, ξ = kerα, ρ) is a Liouville filling (W,dλ) equipped
with an anti-symplectic involution R : W → W such that R is exact, i.e. R∗λ = −λ, and
R|∂W = ρ. If the fixed point sets Fix(R) and Fix(ρ) are non-empty (and hence they are
Lagrangian and Legendrian, respectively), then we say Fix(R) is a real Lagrangian filling
of the real Legendrian Fix(ρ). Since ρ is exact, any real Lagrangian filling is exact. The
Liouville domain (B2n, dλst) endowed with complex conjugation R0(x, y) = (x,−y) is a real
Liouville filling of the standard real contact sphere (S2n−1, ξst, ρ0 := R|S2n−1). Moreover,
L0 ⊂ (B2n, dλst,R0) serves a canonical real Lagrangian filling of L0. The following result
shows that the real Legendrian boundary constraint determines the diffeomorphism type of
real Lagrangian fillings uniquely in high dimensions.

Theorem B. If n ≥ 6, then every real Lagrangian filling of L0 in a real Liouville filling of
(S2n−1, ξst, ρ0) is diffeomorphic to the ball Bn.

We refer to Theorem 3.2 for a more general statement.

Remark 1.3.

• The classical Smith inequality (i.e. dimH∗(W ;Z2) ≥ dimH∗(L;Z2)) already tells us
that any Lagrangian filling L = Fix(R) ⊂ (W,dλ,R) in Theorem B is a Z2-homology
ball since W is diffeomorphic to B2n.

• Theorem B implies that the anti-contact involution on (S2n−1, ξst) given by complex
conjugation can only be extended to an exact anti-symplectic involution on a Liou-
ville filling of (S2n−1, ξst) in such a way that the corresponding real Lagrangian is
diffeomorphic to Bn.

The proof of Theorem B employs the filling-by-holomorphic-curves technique, which goes
back to [11]. A key observation is that the real contact manifold (S2n−1, ξst, ρ0) admits a
real symplectic capping, described in Section 3.2, which is foliated by J-holomorphic disks
with boundary on a real Lagrangian. This allows us to perform a real version of the degree
method, as in [4, 23], via J-holomorphic disks. The main technical point lies in the fact
that we deal with Z2-anti-invariant almost complex structures. This allows us to make use
of analysis of J-holomorphic spheres, well-studied in [4, 23], to understand the behavior of
J-holomorphic disks with boundary on a real Lagrangian; those disks are the half of spheres.
A price to pay is to achieve an equivariant transversality with respect to Z2-symmetries
by anti-symplectic involutions. This can be done, as observed in [21], by showing that a
naturally induced involution on the moduli space of J-holomorphic disks has no fixed points,
see Lemma 3.6.

Organization of the paper. In Section 2 we first review wrapped Floer homology and dis-
cuss the key invariance property under index-positivity conditions described in Section 2.2.
The proof of Theorem A is then given in Section 2.3. For the proof of the result on real La-
grangian fillings, we introduce the capping construction in Section 3.2 and study J-holomorphic
disks in Section 3.3 with a focus on equivariant transversality. The main step of the degree
method for the proof of Theorem B is done in Section 3.4.
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2. Homology group of Lagrangian fillings

2.1. Wrapped Floer homology. We briefly explain basic notions in wrapped Floer homol-
ogy. We refer to [1] for more details.

Let (W 2n, dλ) be a Liouville domain with a Liouville form λ. The boundary ∂W admits
a contact structure ξ = kerα, where α = λ|∂W . A Lagrangian L ⊂ W is called admissible if
it is exact (i.e. λ|TL is exact), the Liouville vector field on (W,dλ) is tangent to TL near the
boundary, and L intersects the boundary ∂W in a Legendrian ∂L ⊂ ∂W . In particular, exact
Lagrangian fillings are admissible. For an admissible Lagrangian L in a Liouville domain
(W,dλ) we can complete a pair (W,L) by attaching part of the symplectization (R≥1 ×
∂W, d(rα)), where r ∈ R, along the boundary ∂W via the Liouville flow:

Ŵ = W ∪∂W (R≥1 × ∂W ), L̂ = L ∪∂L (R≥1 × ∂L).

The wrapped Floer homology HW(L) of L is the Lagrangian Floer homology of L̂ using a

quadratic Hamiltonian on Ŵ whose chain complex is generated by contractible Hamiltonian

1-chords relative to L̂. It consists of two classes of generators corresponding to Morse critical
points on L and to Reeb chords in (∂W,α, ∂L). The boundary map is defined by counting
the Floer strips.

Remark 2.1. To equip HW(L) with Z-grading, it is common to assume that the Maslov class
µL : π2(W,L) → Z vanishes as in Theorem A. If L is spin, i.e. the second Stiefel–Whitney
class of L vanishes, then we can define HW(L) over any field F, see [1, Section 9.1]. Otherwise,
we define HW(L) with F = Z2.

Example 2.2. The simplest example of Liouville domains is the closed unit ball B2n ⊂ C
n

endowed with the standard Liouville form λst =
1
2

∑
j(xjdyj−yjdxj), where x+iy ∈ B2n. The

restricted 1-form αst = λst|S2n−1 to the boundary defines the standard contact form on S2n−1

and its kernel ξst = kerαst is the standard contact structure. The n-ball L0 = {x + iy ∈
B2n | y = 0} is an admissible Lagrangian, and its Legendrian boundary is the standard
Legendrian sphere L0 ⊂ S2n−1. Notice that the topological conditions in Remark 2.1 are
obviously satisfied.

The positive wrapped Floer homology HW+
∗ (L;F) is defined by filtering out the generators

corresponding to Morse critical points on L from the full chain complex. A useful algebraic
property is the following tautological exact sequence [27, Lemma 8.3]:

(2.1) → Hk+n(L, ∂L;F) → HWk(L;F) → HW+
k (L;F) → Hk+n−1(L, ∂L;F) →

2.2. Independence of HW+. In this section we recall a well-known invariance property of
HW+(L;F) under an index-positivity condition on a Legendrian boundary ∂L.

Definition 2.3. A triple (Σ, ξ,L) consisting of a contact manifold (Σ2n−1, ξ) and a Legendrian
L ⊂ Σ is called index-positive if c1(ξ)|π2(Σ) = 0, the Maslov class µL : π2(Σ,L) → Z of L
vanishes, and there exists a contact form α for (Σ, ξ) with the following properties on the
Conley–Zehnder indices:

• Every contractible periodic Reeb orbit γ in (Σ, α) is non-degenerate and CZ(γ) > 3−n;
• Every Reeb chord x of (Σ, α,L) that is trivial in π1(Σ,L) is non-degenerate and
CZ(x) > 0.
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Remark 2.4. Here the Conley–Zehnder indices of periodic Reeb orbits and Reeb chords are
the ones in [9, Section 9.5]. The latter also matches the degree of Reeb chords given in [10,
Equation (2.1)].

The following invariance property is extracted from [9, p. 2105, Section 9.5]. See also [3,
Corollary 2.12]. The condition π1(Σ,L) = 0 below insures that contractible chords in (W,L)
are contractible in (Σ,L); cf. [9, p. 2105, Condition (ii)].

Proposition 2.5. Let (Σ, ξ,L) be an index-positive triple with π1(Σ,L) = 0. If there are two
exact Maslov zero Lagrangian fillings L and L′ of L (in Liouville fillings W and W ′ of (Σ, ξ),
respectively) which are spin, then HW+(L;F) ∼= HW+(L′;F) as groups.

We can apply the invariance property to the case of the standard Legendrian sphere L0

and its Lagrangian fillings:

Example 2.6. We claim that the triple (S2n−1, ξst,L0) is index-positive. This can be seen
from a direct computation with respect to a perturbed non-degenerate contact form on
(S2n−1, ξst). Using the standard complex coordinates, the contact form is written by

α̃ =
i

2

n∑

j=0

aj(zjdzj − zjdzj)|S2n−1 ,

where the coefficients a0, a1, . . . , an ∈ R>0 are rationally independent. The Reeb flow is given
by coordinate-wise rotations on C

n

(z0, z1, . . . , zn) 7−→ (eit/a0z0, e
it/a1z1, . . . , e

it/anzn)

and periodic Reeb orbits are of the form

γmj (t) = (0, . . . , 0, eit/aj zj , 0, . . . , 0),

for m ∈ N, 1 ≤ j ≤ n, and zj ∈ S1, with period 2πmaj . Note also that Reeb chords in
(S2n−1, α̃,L0) are of the form

xmj (t) = (0, . . . , 0,±eit/aj , 0, . . . , 0),

with period πmaj . We can compute their indices explicitly:

CZ(γmj ) = n− 1 + 2
∑

i 6=j

⌊
maj
ai

⌋
+ 2m,

CZ(xmj ) = n− 2 +
∑

i 6=j

⌊
maj
ai

⌋
+m.

See for example [18, Lemma 2.1]. Assuming a1 < a2, . . . , an, we see that γ11 and x11 attain the
minimum indices with values

CZ(γ11) = n+ 1, CZ(x11) = n− 1.

It follows that the triple (S2n−1, ξst,L0) is index-positive for n > 1.

Therefore, every exact Maslov zero Lagrangian filling L of L0 has the same positive wrapped
Floer homology group HW+(L;Z2) by Proposition 2.5.

2.3. Proof of Theorem A.



6 JOONTAE KIM AND MYEONGGI KWON

2.3.1. Over Z2-coefficients. We first compute the homology group H∗(L, ∂L;Z2). Over Z2-
coefficients, the wrapped Floer homology group of L is well-defined without assuming L is
spin. By [28, Corollary 6.5], the symplectic homology SH∗(W ) is vanishing. It follows that
HW∗(L;Z2) also vanishes since it admits a module structure over the ring SH∗(W ;Z2) as in
[27, Theorem 6.17]. In view of the tautological exact sequence (2.1)

→ Hk+n(L, ∂L;Z2) → HWk(L;Z2) → HW+
k (L;Z2) → Hk+n−1(L, ∂L;Z2) →

we deduce that

(2.2) HW+
k (L;Z2) ∼= Hk+n−1(L, ∂L;Z2)

for every k ∈ Z. In particular, the standard Lagrangian filling L0 for L0 in Example 2.2
satisfies

HW+
k (L0;Z2) ∼= Hk+n−1(B

n, Sn−1;Z2) ∼=

{
Z2 for k = 1;

0 otherwise.

Applying the invariance property of HW+ as in Proposition 2.5, we obtain

HW+
k (L;Z2) ∼= HW+

k (L0;Z2),

and hence

(2.3) Hk(L, ∂L;Z2) ∼=

{
Z2 for k = n;

0 otherwise.

In particular, the cohomology groups H1(L;Z2) and H2(L;Z2) are vanishing so that L is
orientable and spin.

2.3.2. Over Z-coefficients. To prove Theorem A, it is enough to show that the reduced ho-
mology H̃∗(L;F) = 0 for any field F, see [19, Corollary 3A.7]. Since L is spin as shown in the
previous section, the wrapped Floer homology group of L is now well-defined over F. Provided
this, notice that the argument to compute H∗(L, ∂L;Z2) in the previous section still works
over F in exactly the same way. This yields

Hk(L, ∂L;F) ∼=

{
F for k = n;

0 otherwise.

In view of the long exact sequence for the pair (L, ∂L)

(2.4) → Hk(∂L;F) → Hk(L;F) → Hk(L, ∂L;F) → Hk−1(∂L;F) →

it is direct to see that H̃k(L;F) = 0 for k ≤ n− 2. In addition, since L is a smooth manifold
with boundary and is orientable as in the previous section, we have Hn(L;F) = 0. Considering
the top-dimensional part of the long exact sequence (2.4)

0 → Hn(L, ∂L;F)
∂∗−→ Hn−1(∂L;F) → Hn−1(L;F) → 0

it follows that the connecting map ∂∗ : Hn(L, ∂L;F) ∼= F → Hn−1(∂L;F) ∼= F is an isomor-
phism. This implies Hn−1(L;F) = 0 by the exactness. Summing up the computations, we

conclude that H̃∗(L;F) = 0. This finishes the proof of Theorem A.
The argument so far actually proves the following more general statement:
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Theorem 2.7. Let (Σ, ξ,L) be an index-positive triple with π1(Σ,L) = 0. If there are two
exact spin Maslov zero Lagrangian fillings L and L′ of L (in Liouville fillings W and W ′

of (Σ, ξ), respectively) having vanishing wrapped Floer homology, then H∗(L) and H∗(L′) are
isomorphic.

Remark 2.8.

• Using the fact that HW∗(L) vanishes if and only if its cohomology version HW∗(L)
vanishes (see [27, Theorem 10.4] and [9, Theorem 3.4] for version in symplectic ho-
mology), one can show that H∗(L) ∼= H∗(L

′) in the situation of Theorem 2.7.
• One can generalize Theorem 2.7 in terms of asymptotically dynamically convexity for
Legendrians, introduced in [22].

3. Diffeomorphism type of real Lagrangian fillings

3.1. Real symplectic fillings. We introduce a generalized notion of real Liouville fillings,
which is enough for our purposes. A symplectic manifold (W,ω) equipped with an anti-
symplectic involution R is called a real symplectic manifold.

Definition 3.1. A real symplectic filling (W,ω,R) of a real contact manifold (Σ, α, ρ) is a
real symplectic manifold (W,ω,R) such that

(1) (W,ω) is a strong symplectic filling of the contact manifold (Σ, ξ) as in [16, Defini-
tion 5.1.1] so that there is a Liouville form λ for ω near the boundary ∂W = Σ whose
Liouville vector field is pointing outwards along ∂W and λ|Σ = α;

(2) R is an anti-symplectic involution which is exact near the boundary, i.e. R∗λ = −λ
near ∂W .

The goal of this section is to prove the following theorem, which is more general than
Theorem B.

Theorem 3.2. Let (W,ω,R) be a real symplectic filling of the standard real contact sphere
(S2n−1, ξst, ρ0) that is symplectic aspherical, i.e. ω vanishes on π2(W ). If n ≥ 4, then the real

Lagrangian filling L = Fix(R) of L0 satisfies π1(L) = 0 and H̃k(L;Z) = 0 for all k ≥ 0. In
particular, L is diffeomorphic to the ball Bn for n ≥ 6.

3.2. Capping construction. Let (W,ω,R) be a real symplectic filling of the standard real
contact sphere (S2n−1, ξst, ρ0). We follow the construction in [4, Section 2.1] (see also [23,
Section 3.2]) with additional care about real structures. Since R∗λ = −λ near the boundary,
a collar neighborhood of ∂W ⊂ W can be identified with

(ν(∂W ), ω,R) ∼= ((1 − ǫ, 1]× Sn−1, d(rαst), id×ρ0).

This allows us to construct a real symplectic manifold replacing the ball B2n in C
n by W as

follows:

(Z,Ω,R′) := (W,ω,R) ∪(S2n−1,ξst,ρ0) (C
n \ IntB2n, ω0,R0).

Here ω0 = dλst is the standard symplectic form on C
n and R0 is complex conjugation. By

compactifying the last C-factor of Cn = C
n−1 × C to be C ∪ {∞} = CP 1, we obtain the real

symplectic manifold

(3.1) (Ẑ, Ω̂, R̂) := (W,ω,R) ∪(S2n−1,ξst,ρ0) (C
n−1 × CP 1 \ IntB2n, ω0 ⊕ ωFS,R0 × ρCP 1),
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where ωFS denotes the Fubini–Study form and ρCP 1 is complex conjugation on CP 1. Denote

L := Fix(R) ⊂ W . The real Lagrangian of (Ẑ, Ω̂, R̂) is then given by

L̂ := Fix(R̂) = L ∪L0
(Rn−1 × RP 1 \ IntBn).

See Figure 1.

(W,ω) Ẑ

S2n−1

L̂

C
n−1

CP 1

Figure 1. The pair (Ẑ, L̂) and standard holomorphic disks

Later, it will be useful to consider the following complex hypersurface

(3.2) H := C
n−1 × {∞} ⊂ Ẑ

with the intersection number [pt×CP 1] · [H] = 1. Observe that H is invariant under the

involution R̂.

Remark 3.3. Note that Z and Ẑ are basically the same ambient symplectic manifolds as those
in [4] and [23] where the behavior of J-holomorphic sphere is studied. Our proof of Theorem B
will highly rely on this.

3.3. The moduli space. Denote the standard complex structure on C
n−1 and CP 1 by J0

and j, respectively. Let J
R̂

be the space of Ω̂-compatible almost complex structures J on Ẑ
such that

• J is of the form J0 ⊕ j on Ẑ \ IntW ;

• J is R̂-anti-invariant, i.e. R̂∗J = −J .

Take J ∈ J
R̂
. Let D2

+ be the disk in CP 1 = C ∪ {∞} given by the compactification of the

upper half plane (including the real line R) in C. Denote the other disk in CP 1 by D2
− so

that CP 1 = D2
+ ∪D2

− and RP 1 = D2
+ ∩D2

−. We abbreviate by D2 ⊂ C the closed unit disk.
For v0 ∈ R

n−1 with the norm ‖v0‖ > 1 and a biholomorphism τ from D2 to D2
+, we have a

J-holomorphic disk u : (D2, ∂D2) → (Ẑ, L̂) of the form u(z) = (v0, τ(z)), and its homology

class is given by [u] = [pt×D2
+] ∈ H2(Ẑ, L̂). We call it a standard holomorphic disk. The

region in L̂ consisting of (v, z) ∈ R
n−1×D2

+ with ‖v‖ > 1 is foliated by the boundary of those

standard ones, see Figure 1. Pick pairwise distinct boundary points w1, w2, w∞ ∈ ∂D2 and
pairwise distinct points z1, z2, z∞ = ∞ ∈ RP 1 away from the glued region in (3.1). We define

the moduli space M of J-holomorphic disks u : (D2, ∂D2) → (Ẑ, L̂) such that

• its homology class [u] represents [pt×D2
+] ∈ H2(Ẑ, L̂);

• u(wi) ∈ R
n−1 × {zi} for i = 1, 2,∞.
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Proposition 3.4. Let n ≥ 4. For generic J ∈ J
R̂
, the moduli space M is an oriented smooth

manifold of dimension n− 1.

The rest of this section is devoted to give a proof of Proposition 3.4. A technical point here

is that J is R̂-anti-invariant, and this requires to achieve an equivariant transversality.
We first introduce the notion of the double of holomorphic disks with boundary on a

real Lagrangian. Recall that ρCP 1 is the anti-holomorphic involution of CP 1 whose fixed
point set is RP 1 and that τ is a biholomorphism from D2 to D2

+. For a J-holomorphic disk

u : (D2, ∂D2) → (Ẑ, L̂), its double u# : CP 1 → Ẑ is a smooth J-holomorphic sphere defined by

u#(z) =

{
u(τ−1(z)) for z ∈ D2

+,

R̂
(
u(τ−1(ρCP 1(z)))

)
for z ∈ D2

−,

see [21, Section 5.2]. The homology class [u#] ∈ H2(Ẑ) satisfies

j∗(u
#) = [u]− R̂∗[u],

where j∗ : H2(Ẑ) → H2(Ẑ, L̂) is the natural map in the long exact sequence for the pair (Ẑ, L̂).
The following lemma will be crucial later.

Lemma 3.5. Let n ≥ 4 and J ∈ J
R̂
.

(1) The natural map j∗ : H2(Ẑ) → H2(Ẑ, L̂) is injective.

(2) The homology class [pt×D2
+] ∈ H2(Ẑ, L̂) is not J-spherical, i.e. it is not the image of

the homology class of a J-holomorphic sphere under the map j∗ : H2(Ẑ) → H2(Ẑ, L̂).

Proof. We first prove that the map j∗ : H2(Ẑ) → H2(Ẑ, L̂) is injective. In view of the long

exact sequence for the pair (Ẑ, L̂)

→ H2(L̂)
i∗−→ H2(Ẑ)

j∗
−→ H2(Ẑ, L̂) →

it suffices to show that the induced map i∗ : H2(L̂) → H2(Ẑ) of the inclusion is trivial.
Considering the Mayer–Vietoris sequences for the decompositions

L̂ = L ∪L0
(Rn−1 × RP 1 \ IntBn), Ẑ = W ∪S2n−1 (Cn−1 × CP 1 \ IntB2n)

we obtain the following commutative diagram:

H2(L0) H2(L)⊕H2(R
n−1 × RP 1 \ IntBn) H2(L̂) H1(L0)

H2(S
2n−1) H2(W )⊕H2(C

n−1 × CP 1 \ IntB2n) H2(Ẑ) H1(S
2n−1)

Φ∗

i∗⊕i∗ i∗

Ψ∗

Here the horizontal arrows are of the Mayer–Vietoris sequences and the vertical arrows come
from the exact sequences for the respective pairs. Since n ≥ 4, the groups Hk(L0 = Sn−1),
Hk(S

2n−1) for k = 1, 2 are trivial, and hence the maps Φ∗, Ψ∗ are isomorphisms. By the
theorem of Eliashberg–Floer–McDuff [23], the filling W is diffeomorphic to the ball B2n, so
H2(W ) is trivial. Moreover the second homology group H2(R

n−1×RP 1\IntBn) is isomorphic
to H2(R

n−1 × RP 1) ∼= H2(RP
1) which is trivial. (One way to see this is to consider the long

exact sequence for the pair (Rn−1×RP 1,Rn−1×RP 1\IntBn).) Therefore the second horizontal
inclusion

i∗ ⊕ i∗ : H2(L)⊕H2(R
n−1 ×RP 1 \ IntBn) → H2(W )⊕H2(C

n−1 × CP 1 \ IntB2n)
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is vanishing. By the commutativity, we conclude that the inclusion

i∗ : H2(L̂) −→ H2(Ẑ)

is also trivial, as asserted.
To show the second assertion, we suppose on the contrary that j∗[σ] = [pt×D2

+] for some J-

holomorphic sphere σ : CP 1 → Ẑ. Consider the reflected J-holomorphic sphere σ : CP 1 → Ẑ
defined by

(3.3) σ = R̂ ◦ σ ◦ ρCP 1 .

Its homology class is given by [σ] = −R̂∗[σ], and hence we have

j∗[σ] = j∗(−R̂∗[σ]) = −R̂∗(j∗[σ]) = −R̂∗([pt×D2
+]) = [pt×D2

−].

It follows that

j∗([σ] + [σ]) = [pt×D2
+] + [pt×D2

−] = j∗[pt×CP 1].

Since j∗ : H2(Ẑ) → H2(Ẑ, L̂) is injective as in the above claim, we obtain

[pt×CP 1] = [σ] + [σ].

Consider the complex hypersurface H in (3.2). Note that the involution R̂ on Ẑ restricts
to H. This implies that if the sphere σ intersects H, then so does σ. Positivity of intersections
implies that the intersection number ([σ] + [σ]) · [H] must be even, and this contradicts to
[pt×CP 1] · [H] = 1. �

Let M̂J be the space of J-holomorphic disks of (Ẑ, L̂) representing the homology class

[pt×D2
+] ∈ H2(Ẑ, L̂) and Aut(D2) the group of biholomorphisms on D2. Unless we emphasize

the choice of J , we suppress J in the notation. The moduli space M̂/Aut(D2) admits the

involution induced by R̂

Ξ[u] = [R̂ ◦ u ◦ ρD2 ],

where ρD2 is complex conjugation of D2 ⊂ C. Achieving equivariant transversality for M̂ is
closely related to the phenomenon that Ξ has no fixed point.

Lemma 3.6. Let n ≥ 4 and J ∈ J
R̂
.

(1) Every u ∈ M̂ is simple, i.e. the set of injective points of u,

{z ∈ D2 | du(z) 6= 0, u−1(u(z)) = {z}}

is dense.
(2) The involution Ξ of M̂/Aut(D2) has no fixed point.

Proof. For the first assertion, let u# : CP 1 → Ẑ be the double of u ∈ M̂. Then the simplicity
of u is equivalent to that of u#. Note that the homology class of u# satisfies

j∗[u
#] = [pt×D2

+]− R̂∗[pt×D2
+] = [pt×D2

+] + [pt×D2
−] = j∗[pt×CP 1].

Since j∗ is injective by Lemma 3.5, we have

[u#] = [pt×CP 1].

Note that [pt×CP 1] is a primitive class in H2(Ẑ) since [pt×CP 1] · [H] = 1. Therefore u# is
a simple J-holomorphic curve, and so is u.
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We now prove the second assertion by following [21, Lemmata 3.4 and 3.5] and the proofs

therein. Arguing by contradiction we assume that there exists [u] ∈ M̂/Aut(D2) such that
Ξ[u] = [u]. Then there is an anti-holomorphic involution ρ of D2 such that

• the fixed point set of ρ is a simple smooth arc with ends in ∂D2 and it divides the
disk D2 into two closed disks D+ and D−.

• R̂ ◦ u ◦ ρ = u.

Choose any biholomorphism φ : IntD2 → IntD+ that extends to a C0-map from D2 to D+.

The continuous maps from (D2, ∂D2) to (Ẑ, L̂),

u1 = u ◦ φ, u2 = u ◦ ρ ◦ φ ◦ ρ

extend to smooth J-holomorphic disks, still denoted by u1 and u2. By construction, we obtain

[u] = [u1] + [u2] ∈ H2(Ẑ, L̂). Since

R̂ ◦ u1 ◦ ρ = R̂ ◦ u ◦ φ ◦ ρ = u ◦ ρ ◦ φ ◦ ρ = u2

and ρ is orientation-reversing, we have [u2] = −R̂∗[u1]. Therefore, we deduce that

j∗[u
#
1 ] = [u1]− R̂∗[u1] = [u1] + [u2] = [u].

This contradicts to the fact that [u] = [pt×D2
+] is not J-spherical as proved in Lemma 3.5. �

We are in position to prove Proposition 3.4.

Proof of Proposition 3.4. For a standard holomorphic disk u, its double u# is a simple J-

holomorphic sphere in R
n−1 × CP 1 \ IntB2n ⊂ Ẑ whose image is {v0} × CP 1 for some

v0 ∈ R
n−1. It is known, see for example [24, Corollary 3.3.5], that the linearized Cauchy–

Riemann operator Du# of u# between suitable Banach spaces is surjective as J = J0 ⊕ j
on C

n−1 × CP 1 \ IntB2n. By [20, Proposition on pg. 158] or [21, Section 5.3], the operator
Du corresponding to the standard disk u is surjective as well, and this holds for all J ∈ J

R̂
.

Combining the doubling trick with the maximum principle [4, (i) in Lemma 2.1], we deduce

that every u ∈ M̂ is of a standard disk or must intersect the interior of W . Since Ξ has no
fixed point by Lemma 3.6, it follows from equivariant transversality theorem [21, Section 3.3]
that there exists a Baire subset J reg

R̂
⊂ J

R̂
such that for every J ∈ J reg

R̂
the operator Du of

any disk u ∈ M̂ intersecting IntW is surjective. Therefore, for J ∈ J reg

R̂
the space M̂ is a

smooth manifold of dimension

dimM̂ = n · χ(D2) + µL̂(u) = n+ 2,

where µL̂(u) is the Maslov index of u ∈ M̂. To complete the proof, we shall show that there

exists a Baire subset Ĵ reg

R̂
of J

R̂
such that for every J ∈ Ĵ reg

R̂
we have J ∈ J reg

R̂
and the

evaluation map

evw : M̂ → L̂× L̂× L̂, evw(u) = (u(w1), u(w2), u(w∞))

is transverse to the submanifold

K := (Rn−1 × {z1})× (Rn−1 × {z2})× (Rn−1 × {z∞}),

since then M = ev−1
w

(K) is a smooth manifold of dimension

dimM = dimM̂ − codimK = n− 1.
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Claim. Every point in L̂ × L̂ × L̂ of pairwise distinct points in L̂ is a regular value of the
universal evaluation map

evuniv : N → L̂× L̂× L̂, evuniv(u, J) = evw(u),

where N = {(u, J) | J ∈ J ℓ
R̂
, u ∈ M̂J} is the universal moduli space and J ℓ

R̂
consists of

J ∈ J
R̂

of Cℓ-classes.

Let (u, J) ∈ N such that evw(u, J) = (u(w1), u(w2), u(w∞)) is a tuple of pairwise distinct

points. For any tuple of vectors vi ∈ Tu(wi)L̂ choose a smooth function F : Ẑ → R such that
XF (u(wi))+vi = 0, where XF is the Hamiltonian vector field of F . Using [24, Exercise 3.1.4],

we know that Du(XF (u)) =
1
2 (LXF

J)(u)du ◦ j. Since R̂∗XF = XF and J is R̂-anti-invariant,

we have R̂∗(LXF
J) = L

R̂∗XF
R̂∗J = −LXF

J , yielding that (−XF (u),LXF
J) ∈ T(u,J)N and

d evuniv(u, J)
(
−XF (u),LXF

J
)
= (v1, v2, v∞).

See [24, Section 3.4] for details. This shows the claim as asserted.
Since every point in K is of pairwise distinct points, evuniv is transverse to K, and hence

the universal moduli space ev−1
univ(K) is a Banach manifold. The rest of the proof is a stan-

dard argument, namely that we use the Sard–Smale theorem and Taubes’ argument to the
projection map π : ev−1

univ(K) → J ℓ
R̂
. We refer to [24, Theorem 3.1.6 and Proposition 3.4.2]

for more details.
In order to orient the moduli space M, it suffices to show that L̂ and M̂ are orientable. By

Remark 1.3, we know Hk(L;Z2) = 0 for all k ≥ 1. In particular, L is orientable, and so is L̂.

By the Mayer–Vietoris sequence for the decomposition L̂ = L∪L0
(Rn−1×RP 1 \ IntBn), one

can show that H2(L̂;Z2) = 0, and hence L̂ is spin. A standard construction in [14, Section 8.1]

yields an orientation on M̂. �

Remark 3.7. As in [4, Lemma 2.1], we can apply the maximum principle in the Cn−1-direction

of Cn−1×CP 1\IntB2n ⊂ Ẑ to J-holomorphic spheres which are the doubles of J-holomorphic
disks u ∈ M. We see that every u ∈ M whose double intersects the region {(v, z) ∈ C

n−1 ×

CP 1 \ IntB2n ⊂ Ẑ | ‖v‖ > 1} is a standard disk, i.e. u(z) = (v0, τ(z)) for some v0 ∈ R
n−1

and a biholomorphism τ from D2 to D2
+. It follows that the end of the moduli space M,

{u ∈ M | u(z) = (v0, τ(z)) is standard with v0 ∈ R
n−1 and ‖v0‖ > 1},

is naturally identified with the space {v ∈ R
n−1 | ‖v‖ > 1}. We orient the moduli space M

so that this identification is orientation-preserving.

3.4. Evaluation map. From now on, let n ≥ 4 and choose generic J ∈ J
R̂

as in Proposi-

tion 3.4. Consider the evaluation map êv : M× ∂D2 → L̂ given by êv(u, z) = u(z).

Proposition 3.8. The evaluation map êv : M× ∂D2 → L̂ is proper and is of degree 1.

Proof. For properness, it suffices to show in view of Remark 3.7 that if u∞ is a stable map
described in [13] which is the Gromov-limit of a sequence {uν} in M, then u∞ ∈ M. The
map u∞ consists of finitely many J-holomorphic disks and spheres attached at finitely many
points. Denote by

u1, . . . , uN1 , σ1, . . . , σN2

those disks uj and spheres σk. We know from [13, Theorem 1.1] that the homology class of
[u∞] is still [pt×D2

+].
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By doubling each of uj ’s and σk’s, we obtain a collection u#∞ of J-holomorphic spheres,
which consists of

(u1)#, . . . , (uN1)#, σ1, σ1, . . . , σN2 , σN2

where σk is defined as in (3.3). See Figure 2.

double

Figure 2. A Gromov-limit u∞ and its double u#∞

The homology class of u#∞ then satisfies

j∗[u
#
∞] = [u∞]− R̂∗[u∞] = [pt×D2

+] + [pt×D2
−] = j∗[pt×CP 1].

Since j∗ is injective by Lemma 3.5, it follows that

[u#∞] = [pt×CP 1] ∈ H2(Ẑ).

The intersection number with the complex hypersurface H is given by

[u#∞] · [H] =




N1∑

j=1

[(uj)#] +

N2∑

k=1

(
[σk] + [σk]

)

 · [H]

= [pt×CP 1] · [H] = 1.

(3.4)

Observe that [σk] · [H] = [σk] · [H] for each 1 ≤ k ≤ N2 since H is invariant under R̂. By
positivity of intersections, we must have [σk] · [H] = [σk] · [H] = 0 in view of (3.4). Since σk

and σk are J-holomorphic spheres in Ẑ, applying [4, Lemma 2.1] and the assumption that W
is symplectically aspherical, we conclude that they are constant by the same argument as in
[4, Proposition 2.3].

Now, by positivity of intersections again, we may assume that

[(u1)#] · [H] = 1, [(uj)#] · [H] = 0 for 2 ≤ j ≤ N1.

As before, (uj)# is constant for 2 ≤ j ≤ N1, and this implies that the original disk uj is
constant as well. We therefore conclude that u∞ consists of a single J-holomorphic disk, and
this means u∞ ∈ M, as desired.

Notice from Remark 3.7 that the preimage êv−1(v, z) of any point (v, z) ⊂ R
n−1 × RP 1 \

IntBn with ‖v‖ > 1 consists of a single element coming from a standard disk. Therefore the
degree of êv is equal to 1. �

3.5. Proof of Theorem B. Observe that the evaluation map êv : M×∂D2 → L̂ restricts to

ev : M× (∂D2 \ {w∞}) −→ L̂ \ (Rn−1 × {∞}).

Indeed, for u ∈ M the double u# : CP 1 → Ẑ intersects only once with the complex hyper-
surface H by positivity of intersections, and therefore the image u(∂D2 \ {w∞}) does not
intersect Rn−1 × {∞} ⊂ H. Moreover, ev is a proper map of degree 1 by Proposition 3.8.
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Now consider the following commutative diagram:

M× (∂D2 \ {w∞}) L̂ \ (Rn−1 × {∞})

M× {w2} R
n−1 × {z2}

ev

ev

h.e. i

Here h.e. means a homotopy equivalence. Since the upper evaluation map ev is proper and
of degree 1, it is straightforward to adapt the argument in [4, Proposition 2.4] to show that
the induced map on homology groups is surjective. Furthermore the same argument as in [4,
Section 2.5] using covering spaces shows that the induced map on the fundamental groups is
also surjective. It follows that the inclusion

i : Rn−1 × {w2} −֒→ L̂ \ (Rn−1 × {∞})

likewise induces surjective maps on the homology groups and fundamental groups by the

commutativity of the diagram. Since L̂ \ (Rn−1 × {∞})
h.e.
≃ L, we conclude that π1(L) = 0

and H̃k(L) = 0 for all k ≥ 0. For n ≥ 6, the h-cobordism theorem [25, Proposition A in pg.
108] tells us that L is diffeomorphic to the ball Bn. This finishes the proof of Theorem B.
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