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Synaptic Plasticity Can Produce and Enhance
Direction Selectivity
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The discrimination of the direction of movement of sensory images is critical to the control of many animal behaviors.
We propose a parsimonious model of motion processing that generates direction selective responses using short-term
synaptic depression and can reproduce salient features of direction selectivity found in a population of neurons in the
midbrain of the weakly electric fish Eigenmannia virescens. The model achieves direction selectivity with an elementary
Reichardt motion detector: information from spatially separated receptive fields converges onto a neuron via
dynamically different pathways. In the model, these differences arise from convergence of information through
distinct synapses that either exhibit or do not exhibit short-term synaptic depression—short-term depression produces
phase-advances relative to nondepressing synapses. Short-term depression is modeled using two state-variables, a
fast process with a time constant on the order of tens to hundreds of milliseconds, and a slow process with a time
constant on the order of seconds to tens of seconds. These processes correspond to naturally occurring time constants
observed at synapses that exhibit short-term depression. Inclusion of the fast process is sufficient for the generation of
temporal disparities that are necessary for direction selectivity in the elementary Reichardt circuit. The addition of the
slow process can enhance direction selectivity over time for stimuli that are sustained for periods of seconds or more.
Transient (i.e., short-duration) stimuli do not evoke the slow process and therefore do not elicit enhanced direction
selectivity. The addition of a sustained global, synchronous oscillation in the gamma frequency range can, however,
drive the slow process and enhance direction selectivity to transient stimuli. This enhancement effect does not,
however, occur for all combinations of model parameters. The ratio of depressing and nondepressing synapses
determines the effects of the addition of the global synchronous oscillation on direction selectivity. These ingredients,
short-term depression, spatial convergence, and gamma-band oscillations, are ubiquitous in sensory systems and may
be used in Reichardt-style circuits for the generation and enhancement of a variety of biologically relevant
spatiotemporal computations.
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Introduction induce short-term synaptic depression in these midbrain

neurons, and measures of this depression correlate signifi-

Control of animal behavior often requires the discrim-
ination of the direction of movement of sensory images. In
some behaviors, including tracking [1-5] and postural balance
[6-9], animals must determine the direction of sensory slip to
generate appropriate compensatory movements to stabilize
the sensory image on the receptor array. For other behaviors,
including prey capture [10,11], animals must respond to the
direction of motion of prey relative to the sensory back-
ground. A neural correlate of these functions was described
over 40 years ago: Hubel and Wiesel characterized central
neurons in the mammalian visual system that exhibited
preferential responses to particular directions of movement
of sensory images [12-14]. Following this discovery, direction-
selective response properties have been found in a diversity
of animal species and across different sensory modalities,
from the visual cortex of cats [12] and somatosensory cortex
of monkeys [15] to the electrosensory midbrain of weakly
electric fish [16,17].

Of particular interest are the direction selective responses
of midbrain neurons observed in a species of weakly electric
fish, Eigenmannia virescens. These neurons exhibit an unex-
pected enhancement of direction selectivity by the addition
of concomitant naturally occurring sensory oscillations in the
gamma frequency range [17]. These oscillations strongly
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cantly with direction selectivity [17-19]. These correlations
suggest that a depression-based mechanism might underlie
both the generation of direction selectivity and its enhance-
ment by the addition of gamma-band oscillations. Here we
propose a parsimonious model to describe and explore the
essential features of this mechanism.

The model is based on a conceptual framework for motion
processing known as Reichardt detectors: information from
two spatially separated channels with asymmetric temporal
properties combine via a nonlinear operation on a down-
stream (post-synaptic) neuron to produce direction selective
responses [20,21] (Figure 1). When supplied with a stimulus
moving in the preferred direction, the temporal shift can
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compensate for the spatial separation, allowing the inputs

from the two channels to interact constructively. The
temporal phase shift is typically modeled as a pure delay or
a low-pass filter.

For direction-selective neurons in V1, Chance et al. [22]
propose that the dynamical differences between synapses that
exhibit short-term synaptic depression and those that do not
may provide a mechanism for generating both the asym-
metrical temporal properties and the nonlinear operation
required by an elementary Reichardt circuit (the electro-
sensory midbrain of Eigenmannia also exhibit these requisite
ingredients for Reichardt-style selectivity based on short-
term depression [19,23].) For a depressing synapse, the
magnitude of the response in the post-synaptic cell decreases
during repetitive activation [24-27]. Short-term synaptic
depression involves two dynamic processes with distinct time
constants: the faster process, with a time-constant on the
order of tens to hundreds of milliseconds, can be attributed
to the depletion of the supply of readily releasable synaptic
vesicles, while the slower process, with a time-constant of
seconds to tens of seconds, can be attributed to the
mechanisms for the replenishment of this supply [25,26].

Here we propose a parsimonious model that describes a
mechanistic linkage between short-term synaptic depression
and direction selectivity, based on a Reichardt-style circuit.
We further test the possibility that the enhancement of
direction selectivity by concomitant gamma-band oscillations
may be mediated by short-term synaptic depression. Global
synchronous oscillations in activity may arise endogenously,
as occurs in cortical and other circuits [28], or exogenously, as
occurs in weakly electric fish from the interaction of the
electric fields of nearby conspecifics [29] and the jamming
avoidance response [30]. In the model, these oscillations
induce depression, which can lead to an enhancement of
direction selectivity to moving objects. We systematically
explore the effects of variations of biologically relevant
parameters of the model and evaluate the results in relation
to electrophysiological data from a population of motion-
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sensitive electrosensory neurons in the midbrain of weakly

electric fish [17].

Results

Information from two spatially separated receptive fields
converges onto a post-synaptic neuron via dynamically
different synapses: one that exhibits short-term synaptic
depression and the other that does not (Figure 1). The spatial
separation of the receptive fields combined with the differ-
ences in temporal dynamics of the synaptic inputs satisfies
the requirements for an elementary Reichardt motion
detector. In this model, only the depressing synapse contrib-
utes state to the model, which consists of one or two variables
whose dynamic evolution is governed by uncoupled and
identical (up to parameters) nonlinear ordinary differential
equations.

Direction Selectivity Is Mediated by the Fast Process

We have found that the one-state model, which includes
only the fast process of short-term synaptic depression,
exhibits direction selectivity (Figure 2A). Since short-term
synaptic depression creates a phase advance in the synapse, a
moving stimulus that first passes through the nondepressing
area leads to a simultaneous arrival (a constructive combina-
tion) of signals from both synapses (Figure 2A, blue).
Movement in the opposite direction leads to asynchronous
arrival of information (Figure 2A, red). These results are
similar to those reported previously [22].

The response to the sine-wave grating is nearly identical
from cycle to cycle over time. In this case, the time constant
of depression is fast relative to the period of the stimulation
so that the depressing synapse has sufficient time to return to
its initial state during the dark phase of each cycle.

Enhancement Is Mediated by the Slow Process

In the two-state model, which includes both the fast and
slow processes associated with short-term synaptic depres-
sion, neurons exhibit direction selectivity that enhances from
cycle to cycle of a sustained sine wave grating (Figure 2B). In
the first cycle, the response is nearly identical to the response
of the one-state model. However, in each subsequent cycle
there is a total reduction in the probability of firing and in
the total number of spikes for both directions of motion. This
reduction in probability of firing is asymptotic.

This overall reduction in firing nonetheless increases the
direction index (reported in the caption to Figure 2 and
defined in Model) by increasing the relative difference
between the responses to the preferred and non-preferred
directions of movement. Intracellularly, this enhancement
effect will occur as long as the stimulus is maintained even if
the depression limits the PSPs so that they do not reach the
spiking threshold. In extracellular recordings, however, there
is a possibility that the depression could lead to a complete
elimination of spiking responses to the moving stimulus.

Responses to Intermittent Stimuli

The sine-wave gratings that we used are sustained stimuli—
such stimuli that might arise during image-stabilization tasks.
In contrast, many behaviors, such as prey capture, involve
spatiotemporally localized, or intermittent stimuli. We have
examined the performance of the model to this class of
stimuli.
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Figure 1. Short-Term Synaptic Depression Can Contribute to Direction Selectivity in an Elementary Reichardt Detector

(A) Information from two channels (blue and red: right and left, respectively) converges on a post-synaptic cell. The blue channel exhibits short-term
synaptic depression (D), which nonlinearly filters the stimulus, advancing the timing of the channel’s peak response relative to the timing of the peak of
the stimulus (blue dashed lines). The red channel exhibits no depression (ND), which linearly scales the stimulus, leaving the timing of the channel’s
peak response to coincide with the timing of the stimulus (red dashed lines). Differences in temporal processing interact with a spatial separation of the
two channels’ receptive fields to produce direction selectivity. A moving stimulus pulse first activating the red channel leads to the summation of
coincident peaks in the post-synaptic cell. A stimulus pulse moving in the opposite direction leads to the summation of disparate peaks and hence a
weaker response in the post-synaptic cell.

(B) A schematic outline depicting the ascending electrosensory system in Apteronotus and Eigenmannia and other Gymnotiform genera. In short,
electrosensory information from receptors in the skin (RF 1 and RF 2) project topographically onto the electrosensory lateral line lobe (ELL). Neurons in
the ELL in turn project topographically onto neurons in the torus semicircularis (Torus) in the midbrain via the lateral lemniscus (LL). Midbrain afferents
include both depressing and nondepressing synapses that converge on to individual neurons: this convergence of information meets the requirements
for the proposed elementary Reichardt motion detector. We used three categories of stimuli: global stimuli (social signals that stimulate the entire

sensory surface simultaneously), a localized moving bar (shown), and a larger moving sinewave grating.

doi:10.1371/journal.pcbi.0040032.9001

Our intermittent stimulus consists of the temporal se-
quence defined by Equation 2, which is a 1.5 cycle sine-wave
pulse. Prior to the arrival of the stimulus, we initialized the
system with at least 3 seconds of a spatially homogeneous
stimulus of intermediate intensity, which we call 50% grey
(see Model). At the arrival of the pulse, the model lies in
approximately the same state as it does for the first cycle of
the sine grating. As a result, the responses to the first cycle of
the grating and to the intermittent stimulus are nearly
identical (compare Figures 2B and 3A). For the same
parameter values, the responses differ only because the
stimuli are subtly different: the sine grating stimulus appears
in both receptive fields at the same time, but at different
phases, whereas the 1.5 cycle pulse first appears in one
receptive field then moves to the other and disappears.

We also tested the model’s response to an intermittent
stimulus that was initialized not with a uniform background
but rather with global synchronous gamma-band oscillations.
These sorts of oscillations occur exogenously in groups of
weakly electric fish [29] and endogenously in many CNS
circuits [28]. In the model, the gamma-band oscillations drive
activity simultaneously in both afferents which activates both
the fast (0 < D(t) < 1) and slow (0 < §(t) < 1) processes in the
depressing synapse (see Model).

The response of the model to the moving pulse after 3
seconds of global stimulation compares to its asymptotic
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response to a persistent sine grating (compare Figures 2B and
3B). The response in this condition is more “sparse” than in
the grey-initialized condition—the responses are reduced due
to the activation of the slow process associated with short-
term synaptic depression. The code is more sparse in that
fewer spikes more reliably encode information—the direc-
tion of movement. Depending on the values of the param-
eters, this reduction in spiking can lead to an enhancement of
direction selectivity (Figure 3A versus 3B) or a reduction of
the direction selectivity (Figure 3C versus 3D).

We varied the contributions of the depressing and non-
depressing synapses in the model and measured the response
to the moving pulse in both the grey initialized and gamma-
band initialized conditions (Figure 4A and 4B). Both plots
show that direction selectivity reaches a maximum along a ray
from the origin corresponding to an optimal ratio of
depressing to nondepressing synapses.

To determine under which conditions the gamma-band
initialization will lead to an enhancement of direction
selectivity, we subtracted the surfaces in Figure 4A and 4B.
The maximum enhancement was found to occur along a ray
in which the depressing synapses make a greater contribution
than the nondepressing synapses (Figure 4C, magenta). In
addition, we found a region in which the combinations of
depressing and nondepressing synapses lead to a reduction in
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Figure 2. Response of Model to a Moving Sine Grating Following 500 msec Initialization with 50% Grey

(A) The one-state model with the fast process alone, s = 1.

(B) The two-state model with both the fast and slow processes, s =0.99. Blue and red (middle trace of each subpanel) shows membrane potential, V..(t).
Cyan and magenta shows firing rate, F(t) (beneath V..(t), and timing of action potentials determined from F(t) by a Poisson process (above). Blue and
cyan (top subpanel in both A and B): preferred direction (¢ = 1); red and magenta (bottom subpanel): non-preferred direction (¢ =—1). Small numbers
are the expected action potentials in each cycle. Black dotted line indicates threshold for action potentials. In the one-state model, the direction index
(defined in Model) is constant across all cycles at 0.48. In the two-state model, the direction index increases from 0.49 to 1—the two-state model
becomes more direction selective with time. Other parameters of model are R, =5 Hz, R.=172 Hz X log(67 X 0.2), x,,=—45°, x4, =45°, tp =150 msec, ts=
3,000 msec, d =04, g4=15,9,=0.7,Vo=0.7, Vo =70 mV, Ve =0 mV, V,=—64 mV, V,=—65 mV, t,, = 30 msec, tg = 10 msec. Other parameters of the

stimulus are t, = —500 msec, t; = 0 msec, t;= 3,000 msec, f=2 Hz, py =, p; = —x.

doi:10.1371/journal.pcbi.0040032.g002

direction selectivity with the addition of the gamma-band
oscillations (Figure 4C, green).

Relations between Measures of Direction Selectivity and
Post-Synaptic Potential Depression

In intracellular recordings of midbrain neurons in Eigen-
mannia, the addition of an exogenous gamma-band oscillation
resulted in an enhancement of direction selectivity to a
moving bar stimulus [17]. In many neurons a correlate of the
activity of inputs that experience short-term synaptic
depression was observed: the amplitude of post-synaptic
potentials (PSPs) declined on a cycle-by-cycle basis to a
sustained gamma-band oscillation [17] (Figure 5). This “PSP
depression” has been shown likely to result from short-term
synaptic depression and not other mechanisms [18,19]. We
tested the model with identical stimuli and made an identical
measurement of “PSP depression” [18]. PSP depression is the
magnitude of the decline in amplitude of PSPs measured at or
near the soma, and is therefore a sum of the synaptic activity,
including both depressing and nondepressing synaptic
inputs, to the neuron (Figure 5).

In the model, PSP depression was strongest where the ratio
of depressing synapses to nondepressing synapses was high,
but the total number of synapses was low (Figure b5).
Surprisingly, adding more depressing synapses actually
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decreased the measure of short-term synaptic depression.
This measure consisted of a ratio of the response (maximum
depolarization above resting potential) to the first cycle of
global synchronous stimulation to the average responses to
later cycles, after the transient had decayed. As more
depressing synapses were added, both the numerator and
the denominator of this ratio increased, but they did so in a
way such that the value of this ratio decreased.

In Eigenmannia, strong correlations were observed between
the magnitude of PSP depression measured in each neuron
and the magnitude of direction selectivity to the moving bar
in both grey and gamma-band initialized conditions (Figure
6A). We tested whether any simple set of parameters in the
model could reproduce these relations.

We considered four hypothetical distributions, asking if
each reproduced the qualitative observations drawn from the
sample of neurons within the electrosensory midbrain of
Eigenmannia virescens [17]. The qualitative observations were
that the measures of PSP depression and direction selectivity
were positively correlated in both grey and gamma-band
initialized conditions, and that direction selectivity was
increased by the addition of the gamma-band oscillation
(Figure 6A).

We tested hypothesized distributions supported on one-
dimensional restrictions of the parameter space in which 14
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Figure 3. Response, V..(t), of the Two State Model to a Pulse Stimulus

(A,Q) Initialized with a temporally and spatially uniform 50% grey stimulus.

(B,D) Initialized with global synchronous gamma-band oscillations. Solid lines represent responses to movement in the preferred direction, dashed lines
to the non-preferred direction. The responses in each plot are aligned to the peak of the PSP from the depressing synapse. This facilitates the
comparison between the preferred and non-preferred directions of movement, but as a result, the onsets of the moving stimuli are not aligned. In the
preferred direction, the object passes first through the nondepressing part of the receptive field and then enters the depressing part. Parameters of the
model for this and all remaining figures are the same as listed in Figure 2 except for the synaptic factors, which vary. For A and B (magenta): g,=0.2, g4
=8. For Cand D (green): g, =0.6, g4=4. The stimulus parameters used throughout for the pulse stimulus are f;=20 Hz, A;=0.7, or A; =0 (respectively,
with or without initializing global synchronous oscillations), to =—1,000 msec, t; =0 msec, t;= 5,500 msec, ¢ = 135°; o, po, and p; differed depending on

direction of movement: 6 =1, po =—16p, p; =—19p, (preferred direction); c =—1, po =—15p, p; =—19p (non-preferred direction).

doi:10.1371/journal.pcbi.0040032.9g003

of the 16 model parameters remained fixed and the other two
varied. The two parameters we varied determined the
contributions of the depressing and nondepressing synapses.
For convenience, we describe our parameter space restric-
tions in terms of numbers of synapses (with fixed synaptic
weights, see Model). Distribution 1 assumes that the total
number of synapses remains constant (80), but the ratio of
depressing to nondepressing synapses varies. Distribution 2
assumes the number of depressing synapses remains constant
(80) but the number of nondepressing synapses varies.
Distribution 3 assumes the ratio of depressing to non-
depressing synapses remains constant (5/3) but the total
number varies. Finally, distribution 4 assumes the number of
nondepressing synapses remains constant (12) but the
number of depressing synapses varies. The restrictions of
parameter space associated with these distributions are
plotted in Figure 6B.

The resulting relationships between the measures of PSP
depression and direction selectivity for each distribution are
plotted in Figure 6C-6F. Distributions 6E and 6F match the
three qualitative features seen in the population of neurons
observed in the midbrain of Eigenmannia.

Discussion

We examined the roles of short-term synaptic depression
in the generation and enhancement of direction-selective
responses. A one-state model that includes the fast process
(hundreds of milliseconds) associated with short-term synap-
tic depression can produce direction selectivity in an
elementary Reichardt motion detector. The addition of a
second state, the slow process of short-term depression
(seconds to tens of seconds), can lead to an enhancement of
direction selectivity. This enhancement is a form of sparsi-
fication: fewer spikes more accurately encode direction of
movement.

Modulation of Spatiotemporal Processing via the Slow
Process

In our model, the activation of the slower process of short-
term depression is quantified by the state variable S(¢) that
depends upon the stimulus history. If there has been little
recent stimulation (recent with respect to the time constant,
which in this model is set to 3 seconds), then the neuron
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resides in a state in which it responds vigorously to stimuli
that are moving in any direction.

On the other hand, if there has been recent stimulation, the
depressing synapses will be depressed, and as a result the
neuron will respond less vigorously. As shown in Figure 4C,
the ratio of the contributions of depressing and non-
depressing synapses determines whether the neuron will be
more or less directionally selective in the depressed state that
results from recent stimulation. In a population of midbrain
neurons in FKigenmannia, recent stimulation leads to an
enhancement of direction selectivity [17].

Recent stimulation shifts depressing synapses from a highly
responsive state to a more depressed state. The difference
between these two states may correspond to vigilance and
focus (at least in Eigenmannia) and can be seen as a form of
attention. In this way, the current value of the slow variable
S(t) corresponds to an attentional state associated with the
neuron. Indeed, the state of the slow process could be critical
to specific computations. Although we only explored the
responses to moving stimuli, these results could be applied
more broadly to any computation in the brain that involves
the temporal comparison of information that converges from
independent pathways.

Indeed, we have shown that any stimulus that activates the
slow process can lead to a shift in the computational
properties of elementary Reichardt circuits. As a result, any
change in the activity patterns, whether they be stimulus-
driven or endogenous, could affect neural computations
through similar mechanisms. This feature may provide an
opportunity for animals to use behavior to modulate
computations in the brain.

Behavioral Modulation of Direction Selectivity

Animals may modulate the state of their synapses and
hence the degree of direction selectivity in central neurons
using behavior. This form of behavioral modulation requires
that: 1) the behavior generates patterns of activity that elicit
short-term depression in downstream neurons and 2) that
these patterns of activity do not interfere with the motion
processing.

Evidence for the behavioral modulation of direction-
selectivity is seen in the Jamming Avoidance Response (JAR)
of weakly electric fish. In the JAR, the electric fields of fish
that are within about a meter of each other interact to
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Figure 4. Magnitude of Direction Selectivity to a Moving Pulse Stimulus as a Function of Synaptic Factors

(A) Initialized with 50% grey. (B) Initialized with Global Synchronous Gamma-Band Oscillations. Direction selectivity is quantified, in each condition, as
the ratio (in decibels) of the peak values of V..(t) - V, in response to the pulse in the preferred to the non-preferred directions (solid and dotted curves in

Figure 3). Brighter shades of grey indicate more direction selectivity. Co

lored circles indicate parameter values used in Figure 3.

(C) Magnitude of enhancement (magenta) or reduction (green) of the directional response caused by the addition of global synchronous gamma-band
oscillations. This measurement was quantified by the difference between the values calculated for (A) and (B). The color indicates sign of difference;

intensity indicates magnitude.
doi:10.1371/journal.pcbi.0040032.g004

produce oscillations in electroreceptor activity across the
entire body [30]. In this way, the stimulation leads to global,
synchronous activity across the receptor array. In the wild,
the frequencies of these oscillations are most commonly in
the gamma frequency band, from 20 to 80 Hz [29]. Laboratory
experiments have shown that lower frequency oscillations,
below approximately 8 Hz, impair the perception of moving
objects [31-33].

These gamma oscillations are encoded by electroreceptors
and propagate through the ascending electrosensory system.
In the midbrain, these oscillations match the stimulation
frequencies that best elicit short-term depression [18,19]. As a
result, the ongoing oscillations that occur in social situations
dramatically modulate short-term depression, leading to an
enhancement of direction selectivity to intermittent stimuli
[17].

Another more general example of behavioral modulation
of temporal processing in plasticity-based elementary Reich-
ardt circuits could include movement-induced self-stimula-
tion of sensory receptors. For example, were an electric fish
to remain motionless in a tube, the slow process will be in its
initial state for midbrain electrosensory neurons, whereas if
the fish were to move back and forth within the tube, the slow
process may be activated. The neurons would be more
responsive and less selective while the animal remained
motionless and would be less responsive but more selective
when the animal was moving relative to nearby objects.

Intrinsic Modulation of Spatiotemporal Computations

If behavior can be used to generate patterns of brain
activity that change the state of depressing synapses to alter
spatiotemporal computations in the brain, then intrinsic
activity in brain circuits could possibly have the same effect.
The intrinsic activity would have to have two properties: 1)
the patterns of activity must elicit short-term depression in
downstream neurons and 2) these patterns of activity must
not interfere with the spatiotemporal computation.

There are numerous examples of endogenous oscillations
that occur at all levels of the CNS [28]. If the output of these
endogenous synchronous oscillations converge on neurons
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that perform spatiotemporal computations, such as motion
processing, through synapses that experience short-term
synaptic depression, then the endogenous oscillations could
have the same effects on computation that have been
reported in Eigenmannia. The correlation between attentional
processes and the emergence of gamma-band oscillations in
cortical and other circuits may support this idea. Perhaps the
gamma-band synchronous activity shifts elementary Reich-
ardt circuits from a more responsive but less selective state to
a less responsive but more selective state.

Parameter Distributions in Populations of Neurons

The population of neurons observed in the midbrain of
Eigenmannia showed a positive correlation between a measure
of short-term synaptic depression (PSP depression) and
direction selectivity. We tested the hypothesis that this
relation follows from the proposed elementary Reichardt
circuit that uses short-term synaptic depression. The model,
however, clearly demonstrated that this relation is but one
possible outcome. Indeed, without assumptions constraining
the distribution of parameter values, the model does not
make any specific prediction about the relationship between
PSP depression and direction selectivity in populations of
neurons.

Thus, the relationship previously observed in the midbrain
of weakly electric fish [17] is likely associated with functional
constraints beyond the elementary Reichardt circuit. These
functional constraints may be related to the control of
specific behaviors. For example, in tracking behavior [4,5,34],
fish make compensatory movements to stabilize an image on
the sensory array. Future studies will determine, via neural
system identification, how a population of direction-selective
neurons may encode the sensorimotor transfer function
inferred from behavioral performance [5].

Dynamic Receptive Field Structure

A key feature of the model is the convergence of
information from spatially separated locations on the
receptor array. The receptive field of a neuron that uses the
mechanisms associated with this model should be composed
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Figure 5. PSD Depression as a Function of Synaptic Factors and
Exemplary Traces Used To Calculate This Measure

(A) Measure of PSP depression (measured at the soma—a sum of all
synaptic inputs) as a function of synaptic factors. Brighter shades of grey
indicate more synaptic depression.

(B-D) Exemplary traces of V.(t) in response to the initializing global
synchronous oscillations at three positions in parameter space (indicated
in (A) with dots of corresponding colors). This measure of PSP depression
is identical to that used in previous studies of midbrain neurons in
Eigenmannia [17-19]. Specifically, depression was quantified as the ratio
(in decibels) of the peak value of V.(t) — Vj in the first cycle of the
initializing global synchronous stimulation to the average of the peak
values for 11 consecutive cycles, starting 3 seconds into the stimulus.
doi:10.1371/journal.pcbi.0040032.g005

of regions that differ in relation to short-term synaptic
plasticity: the response of the neuron to stationary, highly
localized stimuli at different locations should show differ-
ences in measures of short-term depression.

In the simplest case, the receptive field has two regions, e.g.,
caudal and rostral. If the neuron exhibits little or no short-
term depression when the stimulus is in the caudal region and
strong depression to local stimulation in the rostral region,
then the model predicts that the neuron will respond more
strongly to caudal-to-rostral movement than to rostral-to-
caudal movement [23]. Preliminary evidence obtained from
midbrain neurons in weakly electric fish are consistent with
this hypothesis: gamma-band stimulation in subregions of the
receptive fields of midbrain neurons elicit different levels of
short-term synaptic depression (personal observations).
Nevertheless, one could envision far more complicated
receptive field structure leading to direction selectivity using
similar mechanisms.

Quantitative Validation of the Model

By posing a parsimonious model describing the trans-
formation of the spatiotemporal stimulus into the neural
response, we have taken the first step in a rigorous
identification of the underlying neural system. The steps
remaining include (for each neuron) validating or falsifying
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the model, estimating its parameters and comparing our
model to alternative models. The field of system identifica-
tion offers systematic and rigorous approaches to these
remaining problems. For example, the stochastic model that
includes action potential timing can be used to determine the
likelihood that an experimentally observed train of action
potentials was generated using mechanisms captured by the
model. Systematic exploration of the parameters can be made
to achieve the maximum likelihood estimates [35,36]. This
procedure can be repeated for each neuron studied in the
population to get more rigorous estimates of the distribution
of parameter values.

Model

The structure of the model is generic: it does not
incorporate any specific features from particular animal
systems. Nevertheless, the basic structure of the model is
inspired by a model for direction selectivity in V1 neurons by
Chance et al. [22]. Further, stimuli (including moving objects
and global synchronous gamma-band oscillations) approx-
imate those used in electrophysiological experiments in
weakly electric fishes, such as Apteronotus leptorhynchus and
Eigenmannia virescens [37]. The parameters of the model,
including the time constants for the fast and slow processes of
depression, are similar to those observed in mid-brain
neurons in Eigenmannia [18].

Electrosensory information from receptors in the skin
project topographically onto the electrosensory lateral line
lobe, which in turn projects onto the torus semicircularis in
the midbrain (Figure 1B). Midbrain afferents include both
depressing and nondepressing synapses that converge onto
individual midbrain neurons. We use three categories of
stimuli global stimuli (social signals that stimulate the entire
sensory surface simultaneously), a localized moving bar, and a
larger moving sinewave grating.

Our computational model explains how direction selectiv-
ity arises from known features of midbrain neurons of the
weakly electric fish Eigenmannia. Our model reproduces and
explains the surprising experimental result that global
synchronous electrosensory oscillations experienced prior
to a local moving stimulus enhance direction selectivity of the
local stimulus in weakly electric fish [17]. Moreover the model
captures the diversity of the directionally selective neurons in
the midbrain with respect to the observed correlation
between direction selectivity and a measure of short-term
synaptic depression.

Our model has been adapted, and substantially simplified,
from a previously published model of direction selectivity
[22]. The Chance et al. model incorporates a large number of
dynamic variables and fixed parameters, many of which, we
show, are not needed to reproduce the phenomena. We have
significantly simplified the model, capturing the relevant
features with a minimal number of dynamic variables (two),
and substantially fewer fixed parameters (16), making the
model amenable for the purpose of system identification [38].
We have provided our model code, written in MATLAB, in
Protocol S1.

We model the response of a neuron to a spatiotemporal
stimulus as a cascade of four elements: the afferents, the
synapses, the synaptic conductance, and the cell membrane.
In our simplest formulation of the model, only the depressing
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Figure 6. Reproducing the Properties of a Population of Midbrain Neurons

(A) Experimental data from a population of midbrain neurons in Eigenmannia (replotted from [17]). PSP depression plotted against direction selectivity
observed in two conditions for each neuron. Asterisks with solid line: response of each neuron to the moving object. Circles with dashed line: response
of the same neurons to the moving object but with concomitantly presented global synchronous gamma-band oscillations. Curves are the best fit
second degree polynomials.

(B) Hypothetical distributions of synaptic properties in model populations of neurons. The background gradient is a region of Figure 4C where the
addition of global synchronous oscillations enhances direction selectivity. Lines represent one-dimensional restrictions of the parameter space—these
lines are four hypothetical distributions of parameter values across a population of neurons, lines labeled C through F.

(C-F) Model data plotted in the same manner as the experimental data shown in (A). The data shown in each of the plots in (C-F) correspond to the
labeled lines in (B). In (C-F), the lower curve shows direction selectivity to the moving object and the upper curve shows direction selectivity to the
moving object with concomitant oscillations. For this plot, the parameters determining the relative contributions of the depressing and the
nondepressing synapses have been expressed as a count of more numerous, but individually weaker, synapses. We arbitrarily model the numbers of
depressing and nondepressing synapses, as well as their contributions to the post-synaptic potentials as roughly equal. To achieve these approximate
equalities, we multiplied the number of the depressing synapses by a weight of 0.2 and the nondepressing synapses by a weight of 0.01. The
hypothetical distribution are: (C) constant total number of synapses (80) with variable ratio of numbers of depressing to nondepressing; (D) constant
number of depressing synapses (80) with variable number of nondepressing synapses; (E) constant ratio of numbers of depressing to nondepressing
synapses (5/3) with variable total numbers of synapses; (F) constant number of nondepressing synapses (12) with variable number of depressing
synapses. (E) and (F) are most similar to the experimental data shown in (A).

doi:10.1371/journal.pcbi.0040032.9006

synapses have state, i.e.,, dynamics that depend on state synapse (which has a memory in that it exhibits activity-

variables that “remember” the stimulus history. State variables
“remember” the stimulus history in the sense that differential
equations integrating the element’s input determine how
they evolve. The other elements in the cascade are all
memoryless, i.e., do not depend on any history-dependent
quantities. For such elements, the input at every moment
completely determines their output at that moment.

Our minimal instantiation utilizes a single depressing
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dependent reduction in efficacy) and a single nondepressing
synapse (memoryless). Based on neurophysiological observa-
tions, the short-term synaptic depression dynamics involve
two time constants, corresponding to faster and slower
depression processes, each involving a single state variable.
Chance et al. [22] attribute direction selectivity to the faster
process of depression and propose that contrast adaptation
might involve the slower process of depression. As evidence,
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they note that both contrast adaptation and the slower
process of depression exhibit similar time scales. We use the
more general term sparsification, in lieu of contrast adaptation,
because the slow process is driven by any persistent stimulus
that causes depression, not just to changes in contrast of the
scene. We will build on Chance’s observations by elucidating
another role for activation of the slower process: enhance-
ment of direction selectivity.

The input stimulus. The input to the system is the stimulus
intensity as a function of time ¢ and position x: I(t,x). We
consider only four classes of stimuli or temporal sequences
thereof: constant functions for all x and #; global synchronous
oscillations in which I(tx) varies sinusoidally with time,
independent of x; moving sine gratings, used by Chance et
al. to test their own model; and a moving sinusoidal pulse
(with a 1.5 cycle period), analogous to a moving bar.
Following Chance et al. [22] and others we normalize the
intensity function so that I(tx) € [-1,1] with I(tx) =
representing 50% grey.

The temporal sequence we use for a moving pulse stimulus
is defined (for tnp <t < 1)) as follows:

o). 0

p(t,x) =21 (’“

1fl0<l<t
50% grey
{1ft <t<t and

[ o

A/sm 27{]’Y Gp t,x) > bo
(gamma-oscillations)

if t, <t < ¢ and (2)
p1 < Gj) t x < bo

(pulse)

{1ft Stgt/and

sin(p(¢,x)

0 op(t,x) <py

(50%grey)

\

In Equation 1, A is the spatial wavelength that sets the unit
for space: without loss of generality, we say A = 360°. Likewise
fis the temporal frequency that determines the speed of the
motion of the pulse. In this case, f determines more than just
the scaling of time, because finteracts with the time constants
of the model. The parameter ¢ determines the phase of the
pulse in units of A, in our case degrees. Finally ¢ = *1
determines the direction of motion of the stimulus.

In Equation 2, the stimulus parameters p, and p; determine
the moving pulse boundaries. Setting p, — p; = 3n gives the
pulse a period of 1.5 cycles. The sign c appears in the
conditions on the right-hand side of Equation 2 to reverse the
direction of inequalities, needed because p decreases with
time for a positively directed stimulus (¢ = 1) and increases
with time for a stimulus in the opposite direction (6 =-1). We
choose py and p; so that sin(py) = sin(p;) = 0, cos(py) = &, and
cos(p1) = —6 to determine a time-symmetric pulse that
darkens from 50% grey on its boundaries.

The parameters ¢y and ; are, respectively, the initial and
final times of the stimulus. The stimulus parameter ¢ is a
switching time between stimuli in the temporal sequence. At
time ¢; the moving pulse appears, usually outside, but moving
toward, the model cell’s receptive field. Ahead of the pulse
(and also appearing at time ¢) lies initializing input. Behind
the pulse lies 50% grey. The initializing input consists of
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either global synchronous oscillations in the gamma band (4,
>0, 20 Hz < f, < 80 Hz) or 50% grey (A, = 0).

To compare our simulated responses with experimental
data we include a preinitialization phase with 50% grey (t) <t
< ), prior to the gamma oscillations. The preinitialization
phase allows a meaningful quantification (independent of the
model’s arbitrary initial state) of short-term synaptic depres-
sion. This quantification compares the model’s response to
the first cycle of global synchronous oscillations following
preinitialization to the response to a later cycle after the
gamma oscillations have affected the state of the model.

Equations 1 and 2 can, for the appropriate choice of
stimulus parameters, also define all the other stimuli we
employ (see figure captions). For example, the persistent sine
grating (with a initialization before first cycle) can be defined
by setting po = % and p; = —°. Finally, note that we do not
count the stimulus parameters as part of the 16 fixed
parameters of the model neuron, because they determine
properties of the stimulus rather than the model cell.

The afferents. The afferents, the first element in our
cascade, transform the input signal, /(¢,x), into the firing rates,
R,(t) and R,,(?), of two pre-synaptic cells in the depressing and
nondepressing channels, respectively. The receptive fields of
these two cells are spatially separated, with centers at x; and
x,. Following Chance et al. [22] receptive fields are separated
by 90° relative to the stimulus wavelength A to maximize the
model’s response, however, the model is robust to the
receptive field spacing relative to stimulus wavelength.

In the interest of model parsimony, we have replaced the
kernel of the spatiotemporal integration from Chance et al.
[22] with a delta function, rendering the afferents memoryless
and confining the receptive fields to a single point. The input/
output transformation of the afferents is given (for I € {d,n})
by the rectified linear equation

Ri(t) = max{0, R, + R (t,x;)}. (3)

The parameters R, and R, are, respectively, the baseline
firing rate and the contrast-dependent rate factor.

The synapses. These afferent firing rates (R (), R,(t)) serve
as input to the second element, the synapses, consisting of
parallel depressing and nondepressing channels. In the case
of the nondepressing synapse, inputs are trivially passed to
the output: R, () — R,(f). The depressing synapse, on the
other hand, is the only component of our model with state. Its
input/output relationship is given by the transformation R (t)
= (Rq(t),D(1),S(t)) where (D(¢),S(¢)) is the synapse state which
evolves according to

D' (1) = 1 — D(t) + tp(1 — d)D(£)Ra(2), (4)

58" (1) = 1 = S(1) + t5(1 — 5)S(H)Ra(1)- (5)

Here 15 and tg are the fast and slow time constants of
depression and d and s are the fast and slow depression
strengths, taken to be between 0 and 1. In Chance’s model,
D(t) and S(t) are reduced by the factors d and s, respectively,
subsequent to an action potential arriving at the correspond-
ing depressing synapse, as timed by a Poisson process with
inhomogeneous rate R (). Equations 4 and 5 result from
averaging (taking the expected values of) the resulting
stochastic differential equations, eliminating the randomness
in the model. In our model, each depressing synapse is
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governed by two uncoupled, deterministic, nonlinear differ-
ential equations. Setting the depression strength s (or d) to 1
removes the corresponding state (after some input-inde-
pendent transient); setting both strengths to 1 renders the
synapse memoryless and equivalent to the nondepressing
synapse.

The synaptic conductance. The third element of the
cascade is the model of the synaptic membrane conductance:

G (1) = YaD()S(ORa (1) + ¥, R (D). (6)

In the corresponding element of the Chance model, Gg(?) is
a state variable whose evolution is given by a differential
equation with a time constant 1Tz = 2 msec, two orders of
magnitude faster than the time constants T, and tg of our
model. In Equation 6 we replace Chance’s dynamic state
variable with its asymptotic value, removing the memory of
the element. This manipulation has only a small effect on the
overall dynamics, a difference that is not important for
reproducing the phenomena considered here.

We call the coefficients y, and vy, the synaptic factors,
depressing and nondepressing respectively. The term “syn-
aptic factors”, in place of the more common “synaptic
weights”, suggests a second more biologically relevant
interpretation of the model. In this interpretation, each
synapse in fact represents a synapse class, encompassing the
contribution of a population of similar synapses that project
onto the same midbrain neuron. The synapses within each
class are identical in the sense that they have identical
properties, receive identical input, and maintain an identical
state. Under this interpretation, the synaptic factor equals the
product of the individual synaptic weights and the number of
synapses in the respective class. By covarying these two new
parameters, class population and synaptic factor, the model
demonstrates the diversity in the population of toral neurons
that was observed by Ramcharitar et al. [17].

The membrane: Membrane and action potentials. We
consider three alternatives for modeling the cell membrane.
The first candidate is the classical leaky-integrate-and-fire
mechanism where V, is the resting potential, Vg is the
synaptic reversal potential, and 1, is the membrane time
constant:

TmV(l) =Vy— V(t) -+ G}.;(t)(VE — V(t)) (7)

Equation 7 applies to the intervals between action
potentials. We say the model fires an action potential when
the membrane potential reaches a threshold potential V,.
When an action potential occurs, the membrane potential
discontinuously resets to V,, then again evolves according to
Equation 7. By our choice of parameters Vo < V, < V, < Vp,
the synaptic current is excitatory.

Notice that the above formulation requires the membrane
potential to be a state of the system. However, the time
constant of the membrane is roughly an order of magnitude
less than the time constant for the faster depression process,
so we may again approximate this third state algebraically.
This alternative to the leaky-integrate-and-fire mechanism
replaces the membrane potential with its instantaneous
asymptotic value given the present state of the conductance.
This calculation averages the reversal potentials for the leak
current (i.e., the resting potential) and the synaptic current:
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T1+6e(0) T 1+ Ge(h)

V(1) V. (8)

This approximation eliminates the reset dynamics to avoid
chattering between V.(¢) and V, when V.(f) > V,, limiting its
use to modeling membrane potential with action potentials
blocked.

Whereas the second alternative eliminates action potentials
from the model, the third alternative predicts the action
potential firing rate during these intervals. This firing rate
can be fed to an inhomogeneous Poisson process to predict
the timing of the action potentials within the periods of
activity, or, more importantly, to determine a statistical
model of the timing, useful for identifying the system from
extracellular data [35,36]. Alternatives two and three can be
combined in a model without adding an additional state
variable to the system.

We say that the instantaneous firing rate of the neuron,
assuming V() > V,, equals the reciprocal of the time
required for the membrane potential to reach the action
potential threshold, V,, from the reset potential, V,, assuming
that the value of the synaptic conductance remains fixed at its
present value, Gg(t). If V() < V,, such a traversal cannot
happen and we say the firing rate is 0. Because the membrane
dynamics, given by Equation 7, are linear, the firing rate, as
we have defined it, is an exponential function that can be
calculated in closed form. Nevertheless, we find it helpful to
make one further simplifying approximation. We assume that
the rate of change of the membrane potential during the
interval between reset and firing is approximately constant
and equal to its value at threshold V,. The closer V, lies to V,,
the better this approximation. With this simplifying assump-
tion, our firing rate calculation reduces to a rectified linear
algebraic equation:

F()(l) = max{O,RS(GE(t) — Gf)}/ (9)
where
Ve—=V;
M TaE) o
G =v= o (11)

VeV

Here R, and Gy are constants.

The quantity Fy(f) represents the firing rate of the cell that
is unbounded by a refractory period. Biological neurons have
such bounds. For example, a refractory period of 1tz puts an
upper limit of 1/t on the firing rate of the cell. Without such
a limit the firing rate of the model in response to certain
stimuli can grow much larger than is biologically plausible.
Fortunately by assuming the following saturation in firing
rate, we can incorporate a refractory period into our model
cell, without adding state to the membrane:

F(t) = Fo(t)

1 +F0(t)’l?137 (12)

where F(¢) is the firing rate output of the cell, bounded by the
refractory period tgz. Note that if the firing rate F(¢)

determines the timing of action potentials by a Poisson
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process then it remains possible, though not particularly
likely, that the cell will fire two (or more) action potentials
within any given time interval of duration of tz. This unlikely
possibility will not prevent identifying the system through
fitting parameters of the model to experimental data.

Measures of the response. Finally, we consider several
measures to quantify the response of the model to various
stimuli. For the sine wave grating we use the direction index
as a function of stimulus cycle number. Our calculation of
direction index involves the expected number of action
potentials for the jth cycle in the preferred (P;) and non-
preferred (N)) directions, calculated by integrating the firing
rate over the corresponding period. If we assume 0 < N; < P,
and P; # 0 (i.e, that the preferred direction has been
correctly identified) then the following equation gives the
direction index:

(13)

Note that the quantities P; and N; can be defined in other
ways, but as long as 0 < Nj < Pj and Pj # 0, the direction
index lies between 0 and 1, reaches its maximum when N;=0,
and its minimum when N; = P;.

While the direction index remains the most common way
to quantify direction selectivity, other quantifications can be
useful. Ramcharitar et al. [17] used an unbounded measure of
direction selectivity (referred to as magnitude of direction
selectivity) to demonstrate a nearly linear correlation with a
similar measure of short-term synaptic depression (called
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magnitude of PSP depression). To compare our results with these
data, and because their experimental paradigm corresponds
to the moving pulse stimulus for our model, we use this
second measure to quantify the response of our model to the
pulse stimulus. This second measure is the ratio (converted to
dB) of the height of the depolarization of the membrane
above the resting potential in the preferred direction to the
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model and plotting Figure 2.
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